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1 Introduction

There is growing recognition that financial intermediaries play a key role in determining asset

prices. Much of the research on intermediaries treats them as a monolith, assuming that all financial

institutions face the same, typically limited, set of constraints, fund homogeneously from the

household sector, and perfectly share risk with each other. This view of intermediaries has several

implications. It suggests that all risk premia should strongly comove with aggregate intermediary

balance sheet strength, and conversely that all risk premia should be equally informative about the

health of the intermediary sector. In addition, if intermediaries are strongly integrated, fire sales

in any market have economy-wide effects on credit creation because intermediaries will reduce

lending and instead provide that market with liquidity.

In this paper, we argue that the assumption of a representative intermediary, while helpful for

many applications, understates the importance of frictions within the intermediary sector and their

implications for prices. We provide empirical evidence that segmentation within the intermediary

sector has a first-order impact on asset prices. We focus our analysis on arbitrage spreads—riskless

returns in excess of riskless rates—that arise from violations of the law of one price in equity, fixed

income, and foreign exchange markets. We take this approach for two reasons. First, arbitrage

is intermediated by financial institutions such as broker-dealers and hedge funds and cannot be

easily performed by households (Haddad and Muir, 2021). Second, arbitrage spreads are accurate

measures of expected returns, the key objects in any asset pricing theory. Thus, arbitrages offer

a high-power setting for understanding the frictions faced by intermediaries. In contrast, studies

analyzing risky assets must work with average realized returns, a noisy proxy for expected returns

(Merton, 1980).

To fix ideas, we begin with a stylized model in which intermediaries determine arbitrage

spreads. In the model, a continuum of intermediaries participates in a set of fundamentally riskless

arbitrage trades. Intermediaries potentially face two types of frictions that break the Modigliani

and Miller (1958) theorem. First, they may face balance sheet constraints like regulatory capital

requirements, which are costly to satisfy due to external financing frictions. Second, intermediaries
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may face frictions that prevent them from raising financing to fund riskless assets at the riskless rate.

Intermediaries may fund from different sources with different costs, and certain trades may require

them to fund from a specific source. We model these frictions in reduced form to focus on their

implications for arbitrage spreads.

In the model and throughout the paper, we distinguish between three assumptions typically

embedded in theoretical and applied work using a representative intermediary. First, balance sheet

integration means that the marginal balance sheet cost of holding a given riskless asset is equalized

across intermediaries. Second, funding integration means intermediaries can fund all riskless assets

from the same source. Third, the set of constraints intermediaries face is limited. These assumptions

result in one- or two- factor structures for arbitrage spreads.1 For instance, if the representative

intermediary faces a single constraint (e.g., a leverage constraint) and funding is frictionless, then all

arbitrage spreads are determined by the shadow cost of the constraint. Thus, spreads are perfectly

correlated and follow a single-factor structure.

We then use the model to illustrate how segmentation can reduce correlations between arbitrage

spreads. Funding segmentation—violations of funding integration—can reduce correlations between

trades that use different funding sources. Similarly, balance sheet segmentation—violations of

balance sheet integration—implies that trades performed by the same arbitrageurs will be more

correlated with each other than trades performed by different arbitrageurs.

We next turn to the data, focusing on the decade following the 2007-2009 financial crisis. We

study 32 arbitrage trades that fall into seven broad strategies: (i) equity spot-futures arbitrage,

(ii) equity options arbitrage, which enforces put-call parity, (iii) currency spot-futures arbitrage,

which enforces covered interest parity (CIP), (iv) CDS-bond arbitrage, (v) Treasury spot-futures

arbitrage, (vi) Treasury-interest rate swaps arbitrage, and (vii) Treasury-inflation swaps arbitrage.

For each arbitrage trade, we define the spread as the difference between the riskless rate implied by

no-arbitrage conditions (e.g., spot-futures parity) and a relevant benchmark rate.

Our first result is that the daily correlation of spreads is low on average. The average pairwise

1See, e.g., He et al. (2017); He and Krishnamurthy (2013); Adrian et al. (2014); Ivashina et al. (2015); Gromb and
Vayanos (2018); Andersen et al. (2019).
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correlation is 0.22, and the 75th percentile of pairwise correlations is 0.42. While these low

correlations could be driven by measurement error, this measurement error would have to be large to

explain our results since observed correlations are far from one. Furthermore, we observe a similar

factor structure if we smooth the data. For instance, after taking monthly moving averages, 10

principal components are required to explain 90% of the variation in arbitrage spreads. Correlations

are also low among the subsample of arbitrage trades with short tenors (3-6 month horizons),

suggesting that convergence or noise trader risk (Delong et al., 1993) is not the source of the

high-dimensional factor structure. The data are therefore far from the one- or two-factor structure

predicted by models in which balance sheet and funding integration hold in an intermediary sector

facing few constraints.

Departures from the integrated intermediary benchmark imply that the correlations of arbitrage

spreads are determined by both arbitrageur supply and end-user demand. One might therefore

wonder whether the low correlations we document arise primarily from the supply side or the

demand side. We use the sign-restricted structural VAR methodology of Uhlig (2005) to uncover

separate supply and demand shocks for the subset of trades for which we have quantity data.

Correlations of supply shocks across trades are low, consistent with the idea that intermediaries

performing these arbitrages face significant frictions.

We then show that funding segmentation is one reason that correlations between arbitrage

spreads are low. Our analysis starts from the observation that equity spot-futures, equity options,

and CIP arbitrage face relatively higher margin requirements than other strategies. Because these

high-margin strategies require more unsecured funding, we refer to them as “unsecured” arbitrages,

while we call the remaining ones “secured” arbitrages.2 Unsecured arbitrages are more correlated

with each other than they are with secured arbitrages. We provide evidence that this higher

correlation reflects the higher exposure of unsecured arbitrages to conditions in unsecured funding

markets, which we proxy for with the Treasury-Eurodollar (TED) spread. We find that unsecured

arbitrage spreads are nearly seven times more sensitive to movements in the TED spread than are

2Secured arbitrages include Treasury spot-futures, Treasury-swap, TIPS-Treasury, and CDS-bond.
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secured arbitrage spreads.

While the higher loading of unsecured arbitrage spreads on the TED spread is consistent with

funding segmentation, it could also be driven by balance sheet segmentation. For example, if

broker-dealers specialize in unsecured arbitrages, then a deterioration of their balance sheets could

cause both the TED spread and unsecured arbitrage spreads to rise. To isolate the role of funding

segmentation, it is therefore useful to trace out how shocks to the supply of unsecured funding

differentially impact unsecured versus secured arbitrages. Following Anderson et al. (2019), we

conduct an event study around the 2016 money market fund (MMF) reform, which resulted in a

sharp contraction in unsecured lending by MMFs. During the reform, the TED spread and unsecured

arbitrage spreads rise, while secured arbitrage spreads do not, demonstrating that segmentation in

funding markets is an important driver of arbitrage spreads.

We then provide evidence that funding markets are more segmented than the simple divide

between secured and unsecured trades because funding providers specialize (Chernenko and Sun-

deram, 2014; Li, 2021). Thus, shocks to individual funding sources move specific arbitrage spreads

without moving others. We illustrate this idea by studying supply shocks to Fidelity MMFs, which

Hu et al. (2021) show are especially active in funding holders of equity securities. These shocks

move equity spot-futures arbitrage spreads, but not others.

We next show that balance sheet segmentation also contributes to the low overall correlation of

arbitrage spreads. In other words, it is not the case that intermediary balance sheets are integrated

and a representative intermediary facing segmented funding is marginal in all strategies. We first

provide event study evidence that the balance sheet constraints of certain intermediaries affect some

trades more than others. We study the “London Whale” episode, in which JP Morgan lost over $6

billion through its credit derivatives hedging program in 2012. This event is useful for our purposes

because it did not materially affect the firm’s funding rates but did result in a tightening of the firm’s

risk limits (U.S. Senate, 2014). We show that the episode led equity spot-futures arbitrage spreads

to rise relative to others.

Balance sheet segmentation is also evidenced by the fact that secured arbitrage spreads tend to
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rise following losses at hedge funds that specialize in fixed income arbitrage, yet unsecured arbitrage

spreads do not. These joint patterns suggest that hedge fund balance sheets are thus particularly

important for secured arbitrages. Moreover, specific hedge funds appear to matter for specific

trades. For example, the hedge funds with balance sheets important for CDS-Bond arbitrage are

not the ones that are important for TIPS-Treasury arbitrage. Overall, our evidence suggests that

arbitrage activity is segmented due to fragmented funding sources (e.g., unsecured vs secured) and

specialization across financial institutions (e.g., dealers vs hedge funds).

Our paper belongs to the rapidly expanding literature on financial intermediaries and their role

in capital markets. The theoretical literature in this area, including Shleifer and Vishny (1997),

Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Garleanu and Pedersen (2011),

Adrian and Boyarchenko (2012), He and Krishnamurthy (2013), and Brunnermeier and Sannikov

(2014), generally assumes a representative intermediary and theoretically studies how different

constraints on its activity impact equilibrium asset prices or arbitrage spreads. Our results suggest

that these theories most naturally describe market segments, rather than providing a uniform account

of dynamics across all capital markets.3

The empirical literature can be divided into three categories. One strand studies law of one

price violations in specific markets, including equity (van Binsbergen et al., 2019; Hazelkorn et al.,

2021), foreign exchange (Du et al., 2018), Treasury (Fleckenstein et al., 2014; Jermann, 2020;

Barth and Kahn, 2021), and corporate bond markets (Bai and Collin-Dufresne, 2019). Our paper

departs from this research by simultaneously analyzing law of one price violations across many

different markets, which enables us to characterize the frictions and constraints faced by different

intermediaries sector.4 A second strand, including Pasquariello (2014), Adrian et al. (2014), He

et al. (2017), and Du et al. (2019), aims to empirically link sector-level measures of intermediary

constraints to risky asset prices.5 Our results suggest that accounting for which intermediaries are

3A recent theoretical literature has emphasized the importance of intermediary heterogeneity for macroeconomic
outcomes and optimal macroprudential policy (Begenau and Landvoigt, 2021; Jamilov, 2021).

4There is also work documenting segmentation in short-term money markets (Bech and Klee, 2011; Duffie and
Krishnamurthy, 2016). Our paper shows how that segmentation ultimately impacts risky asset prices.

5Adrian et al. (2014) and He et al. (2017) fail to reject the null of integration based on a test of whether the prices of
risk for intermediary factors differ across markets. However, their tests use realized average returns to proxy for ex-ante
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active in a market and how they fund themselves is likely to improve the performance of these kinds

of intermediary-based asset pricing models. This conclusion accords with Siriwardane (2018), who

shows how specialization by financial intermediaries affects the pricing of credit derivatives.

A third strand of the empirical literature, including Boyarchenko et al. (2016), Boyarchenko

et al. (2020), and Liu (2020), studies large panels of arbitrage spreads like we do. These papers

emphasize moments of the data that are consistent with the integrated intermediary model. For

instance, Boyarchenko et al. (2016) and Boyarchenko et al. (2020) assume globally systemically

important banks are all active in a wide range of arbitrages and study how spreads respond to the

introduction of the supplementary leverage ratio requirement under this assumption. Similarly, Liu

(2020) emphasizes the common variation in spreads by studying their first principal component

and correlating it with the TED spread and hedge fund returns. In contrast, our analysis starts from

moments that are inconsistent with the integrated intermediary model, the pairwise correlation

matrix of arbitrage spreads. This difference in empirical focus leads us to conceptually different

economic conclusions from the existing literature. We start from moments that suggest segmentation

and then characterize the nature of that segmentation, emphasizing frictions in funding markets and

the segmentation of balance sheets (i.e., arbitrageur equity capital) as two distinct drivers of low

correlations between arbitrage spreads.

2 Motivating Model

To fix ideas, we begin with a stylized model in which intermediaries face multiple frictions and

determine arbitrage spreads. The model highlights how balance sheet constraints, balance sheet

segmentation, and funding segmentation all impact arbitrage spreads. The key point is that the three

assumptions typical of the intermediary asset pricing literature—(i) a small number of constraints, (ii)

balance sheet and (iii) funding integration—result in highly correlated arbitrage spreads. Violating

any of the three assumptions can result in the high-dimensional factor structure for arbitrage spreads

risk premia, which lowers their power. Accordingly, Bryzgalova (2015) finds that the quarterly intermediary capital
factor is weak in the sense that it has a small covariance with asset returns.
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that we document below. Balance sheet and funding segmentation further predict that some spreads

move with proxies for balance sheet and funding costs, but others do not.

2.1 Setup

Formally, suppose there are N arbitrage trades that are riskless. Normalize the riskless rate to zero

and let sn,t denote the arbitrage spread on trade n at time t. For simplicity, we assume arbitrageurs

are always net long, so that all spreads in the model are positive. In the empirics, we will work with

the absolute value of spreads since arbitrageurs can be net long or net short each trade.

A unit measure of competitive and atomistic arbitrageurs (i.e., intermediaries) engages in these

trades, supplying qn,t of trade n.6 Arbitrageurs face two main frictions, both of which are modeled

in reduced form. First, there are K balance sheet requirements of the form ∑n qn,tvn,k =Vk,t . These

requirements capture equity capital and liquidity constraints, which may be set by regulators or by

arbitrageurs themselves for internal risk-management purposes. We assume that the contribution of

trade n to constraint k, vn,k, is fixed over time. Arbitrageurs can adjust their balance sheets to meet

requirement k at total cost 1
2ck,tV 2

k,t , which capture costs of external finance or other adjustment

costs. For instance, a high value of ck,t could capture that the signaling problem associated with

equity issuance is more severe. The existence of balance sheet requirements does not imply balance

sheet segmentation. Even with multiple balance sheet requirements, all arbitrageurs can face the

same marginal balance sheet cost for a given trade, which means that we can model a single,

representative intermediary for all trades. We introduce balance sheet segmentation below.

Second, there are funding frictions. There are L funding sources with associated cost f1,t , ..., fL,t

(in excess of the riskless rate of zero) per unit borrowed. One dollar of trade n can be financed with

wn,l dollars from funding source l ∈ L. This assumption captures violations of the Modigliani and

Miller (1958) theorem in funding markets. Despite the fact that all N trades are riskless, arbitrageurs

may not be able to fund the basket of securities and derivatives that underlie each trade at the riskless

6As discussed in Wallen (2019), market power among intermediaries may be important in certain markets. The
results here would be qualitatively unchanged in oligopolistic market structures if the elasticity of demand from outside
investors is constant over time.
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rate (Duarte et al., 2006). For instance, Treasury and equity repo rates differ even when both sources

of funding are used in a fundamentally riskless futures-basis arbitrage. The assumption that wn,l

does not vary over time corresponds to the empirical notion that rates on funding fluctuate more

than haircuts (Copeland et al., 2010). If L = 0, then funding is frictionless. If L = 1, then funding

is frictional but integrated, and if L > 1 (and wn,l varies across trades and financing sources), then

funding is segmented.

The arbitrageur’s problem is:

max
N

∑
n=1

(
qn,t

(
sn,t −∑

l
wn,l fl,t

))
− 1

2

K

∑
k=1

ck,tV 2
k,t . (1)

Since arbitrageurs are atomistic, they take sn,t as given. To close the model, we assume that outside

demand for trade n is inelastic and given by an,t > 0. Market clearing then requires that qn,t = an,t .7

2.2 Canonical Intermediary Asset Pricing Models

Though it is stylized, the model allows us to nest common assumptions in the intermediary asset

pricing literature. We discuss two typical structures here, both of which feature balance sheet and

funding integration.

Balance sheet and funding integration with a single balance sheet constraint. Many models

of intermediaries consider a single balance sheet constraint and frictionless funding (e.g., He and

Krishnamurthy (2013)). This case can be captured by setting fl,t = 0 for all l, c1,t ̸= 0, and ck,t = 0

for all k > 1.8 The solution to Eq. (1) is then given by

sn,t = vn,1c1,tV1,t = vn,1c1,t

(
∑
n

an,tvn,1

)
. (2)

From this expression, it is clear that spreads will be perfectly correlated. There is a single factor—the

7We make the assumption that outside demand is completely inelastic for simplicity. Our key results would not
qualitatively change if outside demand were elastic (e.g., given by an,t −bnsn,t ).

8This is equivalent to setting wn,l = 0 for all n, l and vn,k = 0 for all k > 1, which can be interpreted as the ability to
fully fund trades at the riskless rate with trades loading on a single balance sheet requirement (k = 1).
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marginal cost of the balance sheet constraint, c1,tV1,t—that moves all trades proportionally. Trades

that face a higher balance sheet requirement vn,1 load more heavily on this factor, but all spreads

move linearly with the marginal cost of the constraint. This one-factor structure in spreads holds

despite the fact that there are a large number of primitive shocks in the model. In particular, the

balance sheet shocks c1,t and the outside demand shocks an,t for each trade n fluctuate independently,

yet a one-factor structure still obtains. The intuition is that these independent shocks all move the

marginal cost of balance sheet, which is ultimately all that matters for spreads.

Balance sheet and funding integration with a single funding factor. Another simple structure

featuring both balance sheet and funding integration involves no constraints and a single frictional

funding factor: ck,t = 0, vn,k = 0, fn,1 > 0, and fn,l = 0 for l > 1. Then we simply have spreads

driven by the funding factor: sn,t = wn,1 f1,t . In this case, we again have perfect correlations across

spreads. Spreads may load differentially on the funding factor, but they all move linearly with it.9

2.3 Integration with Many Constraints

While much of the intermediary asset pricing literature features perfectly correlated arbitrage

spreads, balance sheet and funding integration need not imply them. In particular, balance sheet and

funding integration admit a single frictional funding source (L = 1) and arbitrarily many balance

sheet constraints (K > 0). In this case, all riskless arbitrages are funded from the same source and

marginal balance sheet costs are equated across arbitrageurs for each trade n. Spreads are given by:

sn,t = wn,1 f1,t +
K

∑
k=1

vn,kck,tVk,t (3)

and feature a K +1 factor structure. Thus, a high-dimensional factor structure for arbitrage spreads

rules out balance sheet and funding integration with a small number of constraints.

9Andersen et al. (2019) has this reduced form, though formally they obtain the result by microfounding the costs of
external equity with a debt overhang problem. With this microfoundation, the marginal cost of external equity funding
for a riskless asset, wn,equity fequity,t , is equal to the arbitrageur’s credit spread.
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2.4 Segmentation

We next consider the impact of segmentation on spreads. We consider two types of segmentation:

funding segmentation and balance sheet segmentation.

Segmented funding. By funding segmentation, we mean that certain trades can use certain

funding sources while other trades cannot. For instance, Treasury repo financing can be used for

Treasury spot-futures arbitrage but cannot be used for equity spot-futures arbitrage. To see the

implications of this kind of segmentation, suppose that trades n = 1, ...,N1 < N can be funded only

using source l = 1 with corresponding cost f1,t , while trades n = N1 +1, ...,N can be funded only

using source l = 2 with corresponding cost f2,t . If there are no further frictions, we have

sn,t =

{
wn,1 f1,t if n ≤ N1

wn,2 f2,t if N1 < n
. (4)

In this case, spreads have a two-factor structure. All trades that can be funded using source 1 are

perfectly correlated, as are all trades that can be funded using source 2, but the correlation between

the two groups is the correlation between f1,t and f2,t :

ρ(sn1,t ,sn2,t) =

{
1 if n1,n2 ≤ N1 or N1< n1,n2

ρ( f1,t , f2,t) if n1 ≤ N1,n2 > N1
. (5)

Extending the argument to more than two funding sources, segmented funding can create a high-

dimensional factor structure for arbitrage spreads. In this case, the outside demand shocks an,t

still do not impact the correlation of spreads because balance sheets are integrated and funding is

elastically supplied.

Segmented balance sheets. Finally, we consider balance sheet segmentation with frictionless

funding. We use balance sheet segmentation to describe environments in which certain trades

are done by one set of intermediaries and are therefore subject to their balance sheet constraints,

while other trades are done by another set of intermediaries and are subject to their balance

sheet constraints. One could microfound this segmentation with a small amount of specialization
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in different trades. For instance, suppose there are small marginal costs εn,i associated with

arbitrageur i doing trade n and there are two types of arbitrageurs. Arbitrageurs i ∈ I have a marginal

cost advantage εn,i < εn, j for trades n = 1, ...,N1 over all other arbitrageurs j ∈∼ I. Conversely,

arbitrageurs j ∈∼ I have a marginal cost advantage εn, j < εn,i for trades n = N1 +1, ...,N. In other

words, one group of arbitrageurs has a cost advantage in one set of trades, while the other has a cost

advantage in a different set of trades. There is a representative arbitrageur for each group.

Finally, suppose there is a single balance sheet constraint ( fl,t = 0 for all l, c1,t ̸= 0, and ck,t = 0).

Further allow arbitrageurs i ∈ I to face a different frictional cost of meeting the single balance sheet

constraint, 1
2cI

1,t

(
V I

1,t

)2
, than arbitrageurs j /∈ I, 1

2c∼I
1,t

(
V∼I

1,t

)2
. If the outside demand for each group

of trades is similar, then by market clearing arbitrageurs i ∈ I will absorb all demand for trades

n = 1, ...,N1 and arbitrageurs j ∈∼ I will absorb all demand for trades n = N1 +1, ...,N.10 In other

words, we have V I
1,t = ∑

N1
n=1 an,tvn,1 and V∼I

1,t = ∑
N
n=N1

an,tvn,1, where an,t is the outside demand for

trade n.

In this case, then spreads are given by

sn,t =

{
εn,i + vn,1cI

1,tV
I
1,t, if n ≤ N1

εn, j + vn,1c∼I
1,tV

∼I
1,t if N1 < n

. (6)

In other words, spreads have a two-factor structure. Intuitively, spreads for the first group of trades

(n = 1, ...,N1) reflect the shadow cost of the balance sheet constraint for arbitrageurs in group I. For

the second group of trades (n = N1 +1, ...,N), spreads will reflect the shadow cost of the balance

sheet constraint for arbitrageurs outside group I.

To get closed form expressions for the correlation structure in this case, assume that balance

sheet costs cI
1,t and c∼I

1,t , as well as all outside demand shocks are jointly normally distributed

with mean zero. For simplicity, also assume that there is a single trade in each group: group I

intermediates trade 1 and group ∼ I intermediates trade 2. Then we can use the results in Bohrnstedt

10Formally, we need an assumption ensuring that marginal cost advantages (ε’s) are not swamped by differences in
adjustment costs (c’s) or outside demand (through the V ’s).
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and Goldberger (1969) to compute the correlations of spreads

ρ(s1,t ,s2,t) = ρ(cI
1,t ,c

∼I
1,t )ρ(a1,t ,a2,t)+ρ(cI

1,t ,a2,t)ρ(c∼I
1,t ,a1,t). (7)

In other words, the correlation between two spreads intermediated by different groups of arbitrageurs

depends on: (i) the correlation of balance sheet shocks ρ(cI
1,t ,c

∼I
1,t ), (ii) the correlation of demand

shocks ρ(a1,t ,a2,t), and (ii) cross terms, i.e., the correlation of balance sheet shocks for one group

of arbitrageurs with the demand shocks facing another group of arbitrageurs: ρ(cI
1,t ,a2,t) and

ρ(c∼I
1,t ,a1,t). This intuition extends to the case where each group of arbitrageurs intermediates many

trades. In that case, the correlation of spreads intermediated by the same group of arbitrageurs is 1,

while the correlation of spreads intermediated by different groups is determined by correlations of

supply, demand, and cross terms.

This setup can also be used to explore the implications of slow-moving capital for the correlation

of spreads. Suppose without loss of generality that the marginal cost of balance sheet is higher

for arbitrageurs in group I : cI
1,tV

I
1t > c∼I

1,tV
∼I
1t . Further suppose that between times t and t +∆t,

flows equilibrate the marginal costs of capital between the two groups. For instance, suppose

that the marginal cost advantages εn,i between the two groups vanish between t and t +∆t. Then

arbitrageurs in group I could sell some of their positions to other arbitrageurs, and we will have

cI
1,t+∆tV

I
1t+∆t = c∼I

1,t+∆tV
∼I
1t+∆t . In other words, with such capital flows, we get back to the integrated

intermediary model and spreads are again perfectly correlated. Extending the argument, if capital

flows so that differences in marginal costs of balance sheet for group I and ∼ I shrink but are

not fully equated, the correlation of spreads will rise but not all the way to 1. We further explore

arbitrage dynamics within the model in Internet Appendix Section A.3.

2.5 Empirical Implications

The model highlights what we can learn from spreads alone and what conclusions require ancillary

data. For instance, a high-dimensional factor structure for spreads rejects simple models in which
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both balance sheet and funding integration obtain and the representative intermediary is subject to

a single constraint. As Eq. (3) shows, however, a high-dimensional factor structure by itself does

not distinguish between situations in which (i) both balance sheet and funding integration obtain,

but the representative intermediary is subject to many constraints and (ii) either balance sheets or

funding markets are segmented. As Eq. (4) shows, the empirical signature of funding segmentation

is a covariance between certain spreads and certain funding rates. Similarly, Eq. (6) shows that

the empirical signature of balance sheet segmentation is a covariance between certain spreads and

individual intermediary balance sheet costs. Our empirics below follow this outline. We begin by

describing the factor structure of arbitrage spreads and then provide direct evidence of both types of

segmentation. For instance, we will directly show that certain spreads comove with the costs of

particular types of funding. And we will show that certain spreads directly respond to shocks to the

balance sheets of specific intermediaries.

Finally, while we have discussed funding and balance sheet segmentation separately, it is worth

noting that they are not mutually exclusive. We think of segmented funding and segmented balance

sheets simultaneously driving individual arbitrage spreads. For instance, we will show below that

equity spot-futures spreads depend both on the TED spread, which captures conditions in the market

for unsecured funding, and JP Morgan’s balance sheet constraints. In other words, JP Morgan is

acting as an arbitrageur in these trades, so that its balance sheet conditions impact them, and raising

financing from the frictional unsecured funding market to finance them. Moreover, the dealer banks

sometimes finance arbitrage and sometimes participate directly as arbitragers, depending on the type

of trade. Our results below broadly suggest that they likely participate as arbitrageurs for unsecured

arbitrages. In contrast, for secured arbitrages, dealers likely finance arbitrage trading through their

role in the repo market (and as prime brokers).
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3 The Factor Structure of Arbitrage

3.1 Data

Our main analysis sample covers 32 arbitrage trades over the period from January 1, 2010 to

February 29, 2020. This period spans the post-financial crisis era and predates the Covid-19

pandemic. For each arbitrage trade, we construct an implied riskless rate based on observed asset

prices and then subtract a maturity-matched benchmark riskless rate. For arbitrage trades that

mature in less than two years, the benchmark is based on overnight indexed swap (OIS) rates;

for longer-maturity trades, it is based on Treasury yields. Our choice of benchmark rates means

that our arbitrage spreads do not represent true riskless profits that are available to unconstrained

intermediaries, since they are not constructed using the exact funding rate that a trader implementing

the arbitrage would face. Instead, our arbitrage spreads capture funding and other frictions faced

by arbitragers, which are precisely what we seek to characterize. A detailed description of each

arbitrage spread and its construction is contained in Internet Appendix A.1. Here, we provide a

short description of the trades, which can be grouped into 7 broad categories or “strategies”. The

code for constructing arbitrage spreads is housed in a publicly available Github repository.11

3.1.1 Arbitrage Spreads

Foreign Exchange Arbitrage We follow Du et al. (2018) and measure arbitrage spreads in

foreign exchange markets with deviations from covered interest parity (CIP). For each currency

we study, we define the CIP arbitrage spread as the difference between the dollar OIS rate and a

synthetic riskless rate that is implied by currency forwards, currency spot rates, and foreign OIS

rates. We build CIP arbitrage spreads for all G-10 currencies except the Danish and Norwegian

krones because OIS rates are not available for these two currencies. We use 3-month CIP violations

to avoid any confounding effects that the quarter-end spikes documented in Du et al. (2018) may

have on correlations. We obtain data on spot and forward exchange rates and OIS rates from

11https://github.com/esiriwardane/arbitrage-spreads-public.
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Bloomberg. See Internet Appendix A.1.1 for more details.

Equity Options Arbitrage (Box Arbitrage) We infer riskless rates and arbitrage spreads from

S&P 500 (SPX) equity options based on the put-call parity relationship. As discussed in Ronn and

Ronn (1989) and van Binsbergen et al. (2019), implied riskless rates from put-call parity are often

called box rates in practice. We adopt this naming convention and refer to this arbitrage as the box

trade for the remainder of the paper. We take box rates for six, twelve, and eighteen month tenors

directly from van Binsbergen et al. (2019), who estimate them using minute-by-minute pricing

data for SPX options through 2018. We then follow van Binsbergen et al. (2019)’s methodology

to extend the data to 2020 using SPX option data purchased directly from the CBOE. Arbitrage

spreads are then computed by subtracting off a maturity-matched OIS rate.

Equity Spot-Futures Arbitrage For equity futures markets, we measure arbitrage spreads based

on violations of spot-futures parity. As we discuss in Internet Appendix A.1.3, the spot and futures

markets for equities close at different times, which prevents us from using the spot-futures parity

relationship to accurately compute implied riskless rates from closing prices alone.12 Instead, we

compute implied forward rates based on the relative pricing of futures contracts with different

tenors. To illustrate, consider a futures contract on an asset that does not pay a dividend. In this

case, spot-futures parity implies that the current futures price FT1 for a contract with tenor T1 and

the spot price S satisfy FT1 = S(1+ rT1), where rT1 is the riskless rate between today and T1. Next,

consider another futures contract with tenor T2 > T1. Under the parity condition, the ratio of the

two futures prices FT2/FT1 equals the gross forward rate 1+ fT1,T2 between T1 and T2.

We estimate implied forward rates using Bloomberg futures data on the S&P 500, Dow Jones

Industrial, and Nasdaq 100 indices. For each index, our analysis is based on the nearby and first-

deferred contracts, which are the most liquid. Internet Appendix A.1.3 provides more details about

our implementation, including how we account for dividends and compute arbitrage spreads from

implied forward rates.

12Hazelkorn et al. (2021) avoid this issue by using high-frequency data for both futures and spot markets.
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Treasury Spot-Futures Arbitrage For Treasury futures markets, we measure arbitrage spreads

based on violations of spot-futures parity, following Fleckenstein and Longstaff (2020) and Barth

and Kahn (2021). We study five such trades, associated with the first-deferred futures contract on

the 2-year, 5-year, 10-year, 20-year, and 30-year Treasury. We measure arbitrage spreads using

the first-deferred contract to avoid complications with the nearby contract in the futures delivery

month (Fleckenstein and Longstaff, 2020). We obtain futures-implied riskless rates directly from

Bloomberg and define arbitrage spreads by subtracting off a maturity-matched OIS rate. See Internet

Appendix A.1.4 for more details.

Treasury Swap Arbitrage For interest rate swap markets, we measure arbitrage spreads using

OIS swap spreads, defined as the difference between the fixed rate on overnight indexed swaps and

Treasury yields. We study seven such trades, associated with 1-year, 2-year, 3-year, 5-year, 10-year,

20-year, and 30-year Treasuries. OIS swap rates are from Bloomberg. As discussed in Jermann

(2020), Du et al. (2022), and Hanson et al. (2022b), only negative OIS swap spreads indicate a

guaranteed arbitrage. We show in Internet Appendix A.1.5 that this condition is satisfied for the

large majority of observations in our analysis sample.

TIPS-Treasury Arbitrage We build on Fleckenstein et al. (2014) and construct the difference

in yield between a synthetic nominal Treasury, constructed using Treasury Inflation Protected

Securities (TIPS) and inflation swaps, and the true nominal Treasury yield. Unlike Fleckenstein et al.

(2014), who construct the arbitrage at the security level, we use the zero-coupon constant-maturity

TIPS and Treasury yields that are published by the Federal Reserve based on Gürkaynak et al. (2007)

and Gürkaynak et al. (2010).13 Constant-maturity inflation swap data is taken from Bloomberg. In

Internet Appendix A.1.6, we provide additional details and compare our series to the one constructed

in Fleckenstein et al. (2014). We focus on 2, 5, 10, and 20 year maturities to ensure the underlying

TIPS securities used to construct the arbitrages are sufficiently liquid.

13The yield curve models can be found here.
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CDS-Bond Arbitrage For U.S. corporate bond and credit default swap (CDS) markets, we follow

Duffie (1999) and measure arbitrage spreads based on the difference between cash-bond implied

credit spreads and CDS spreads. Cash bond and CDS pricing data both come from Markit. We

form CDS-bond bases for both investment-grade and high-yield bonds, aggregating over bonds in

each ratings category. The average number of bonds used to compute the daily investment grade

and high-yield bases is 1,690 and 307, respectively. Internet Appendix A.1.7 contains the full

construction methodology.

Summary Statistics Table 1 provides summary statistics. The data is daily and spreads are

reported in annualized basis points (bps). Unless otherwise noted, we work with absolute values

of spreads since the sign of the spread depends on whether arbitrageurs are net long or short a

particular leg of the trade. The number of observations varies slightly across trades, mainly due

to availability from raw data providers (e.g., Bloomberg versus Markit) and differences in trading

holidays across swaps and futures markets.

Table 1 shows that there is significant variation in spreads, both across trades on average and

within trades over time. For many individual trades, the daily standard deviation of spreads is

around half the mean spread. Figure 1 helps visualize this variation by plotting average spreads by

broad strategy, both at the daily and monthly frequencies. Figure 2 plots average spreads across

trades. Table 1 also indicates that spreads are highly persistent at the daily level, a fact that we are

careful to account for when conducting statistical inference.

3.1.2 Quantity Data

In addition to data on arbitrage spreads, we use data from the Commodity Futures Trading Commis-

sion (CFTC) on quantities.14 The CFTC publishes weekly “Traders in Financial Futures” reports,

which break down open interest for futures markets in which 20 or more traders hold large positions.

The position data is supplied by clearinghouses and other reporting firms. The reports break down

positions into four trader types: dealers, asset managers, leveraged funds, and other reporting
14The data are available at this link.
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entities. These classifications are based on the predominant business purpose self-reported by

traders on the CFTC Form 40. This data is weekly and begins in July 2010.

3.1.3 Money Market Fund Holdings

We obtain data on the holdings and total net assets (TNAs) of money market mutual funds (MMFs)

from Crane data. The data is compiled from form N-MFP, which MMFs are required to file with the

Securities and Exchange Commission (SEC) every month.

3.1.4 Hedge Fund Returns

We also use hedge fund returns from the Preqin Pro Hedge Fund Database. This database includes

performance data on over 24,000 hedge funds. Importantly for our purposes, the database contains

descriptive information on fund strategies, which allows us to focus on funds that self-report being

involved in the arbitrage trades that we study.

3.2 Characterizing Arbitrage Comovement

3.2.1 Baseline Results

We now turn to our first main result: the correlation between arbitrage spreads is low. Figure 3

presents this result graphically, depicting a heat map of pairwise correlations between the absolute

value of different spreads. Darker red indicates higher positive correlations. With the exception of

the diagonal, little of the figure is dark red, indicating that correlations are generally low.

Table 2a provides formal statistical evidence on pairwise correlations. The average pairwise

correlation is 0.22, and the 75th percentile of pairwise correlations is 0.42. These results are at

odds with simple structures for the intermediary sector, in which there is only a single balance

sheet constraint or a single funding factor. As shown in Section 2, in these cases, arbitrage

spreads should be perfectly correlated. In Figure 4, we conduct a principal components analysis of

spreads. Consistent with the low correlations documented above, it takes 11 principal components
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to cumulatively explain 90% of the variation in arbitrage spreads. Furthermore, the last column of

Table 2a shows that we can reject the null of equal correlations across all arbitrage pairs.15 Thus,

the data suggest a complex structure for the intermediary sector. Either balance sheet and funding

integration hold, but the representative intermediary faces a large number of different constraints, or

there is significant segmentation in arbitrage.

3.2.2 Measurement error

Measurement error is an important issue to consider when interpreting low arbitrage correlations.

To see why, suppose that the observed spread si,t equals the true spread s∗i,t plus an error term that is

independent across arbitrages:

si,t = s∗i,t + εi,t ,

where the variance of the true spread is Var[s∗i,t ] = σ2
i and the variance of the measurement error

εi,t is Var[εi,t ] = σ2
i,ε . Let ρ∗

i j denote the correlation between the true spreads and ρi j denote the

correlation between the observed spreads. In this setting, the true correlation ρ∗
i j and measured

correlation ρi j are related as follows:

ρi j = ρ
∗
i j/(λiλ j)

λi =

√
σ2

i +σ2
i,ε

σ2
i

. (8)

Because the adjustment factor λi is above 1 for all i, observed correlations will be biased toward

zero. Thus, if arbitrage is fully integrated and the representative intermediary faces a limited number

of constraints (ρ∗
i j ≈ 1), measurement error may lead us to incorrectly conclude otherwise based on

low measured correlations.

We address potential measurement error in a few complementary ways. To start, consider the

simple case in which the variance of measurement error is a constant proportion θ of the variance

15The low daily correlation between arbitrage spreads is more striking given that the high daily persistence of spreads
(Table 1) should, if anything, generate spurious relationships between arbitrages (Granger and Newbold, 1974). The
average pairwise correlation of changes in arbitrage spreads is similarly low at 5%.
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of true spreads, σ2
i,ε = θσ2

i . In this case, Eq. (8) simplifies to ρi j = ρ∗
i j(1+θ)−1. If the variance of

the measurement error is less than half that of true spreads (θ < 0.5) and true spreads are perfectly

correlated, measured pairwise correlations should be greater than 0.67. However, in Table 2a we

reject the null that the average pairwise correlation of all spreads is greater than 0.67. Moreover,

we reject the null that the individual pairwise correlation is above 0.67 for 90% (448/496) of pairs.

One can also reverse the exercise and ask how large measurement error would need to be in order to

generate the correlations that we observe. If σ2
i,ε = θσ2

i and true spreads are perfectly correlated,

θ ≈ 4 would be required to generate a measured correlation of 0.22.16

If true spreads more persistent than measurement errors, another approach is to smooth the data.

Figure 4 shows that we obtain very similar results if we compute principal components after taking

a five-day or one-month moving average of spreads. Averaging should increase the ratio of variation

driven by true spreads as opposed to noise, but it has little effect on the principal components

analysis. Even after taking one-month moving averages of spreads, it takes 10 principal components

to cumulatively explain over 90% of the variation in our arbitrage spreads.

The final reason we think measurement error is unlikely to be driving our results is that the

correlations are not uniformly low. While spreads are far from perfectly correlated, they still

have an interesting structure. Figure 4 shows that there is important common variation in spreads

as emphasized by the previous literature, including Pasquariello (2014) and Liu (2020). When

considering all trades, the first three principal components of daily spreads cumulatively explain

59% of their variation. If spreads were completely uncorrelated, we would expect them to explain

only 33%.17 Thus, our principal components analysis reveals a meaningful underlying economic

structure to arbitrage spreads.

Figure 3 and Table 2b suggest two places to look for this structure. First, cross-strategy

16Eq. 8 also shows that any attenuation bias can be directly addressed with knowledge of the adjustment factors, λi.
If arbitrage spreads follow a one-factor model, the adjustment factors can be estimated using instrumental variables
(IV) regressions (Hausman, 2001). Section A.2.1 of the Internet Appendix develops this idea further and shows that
arbitrage correlations remain low even after adjusting them for measurement error.

17If spreads were uncorrelated, then the first three principal components would simply be the three spreads with the
largest variance, and the total variance of spreads would be the sum of individual spread variances. In our data, the ratio
of the sum of the largest three variances to the sum of all variances is about 33%.
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correlations are relatively high for the box, CIP, and equity-spot futures spreads. Second, correlations

are higher within strategy than across strategy. For instance, Table 2b shows the average pairwise

correlation of the three box trades is 0.87 and the average pairwise correlation of CIP spreads is

0.35. We explore these sources of correlation further in Sections 4 and 5 of the paper, arguing that

they reflect funding and balance sheet segmentation.

3.2.3 The Term Structure of Arbitrage

The term structure is another important consideration when interpreting the correlation of arbitrage

spreads. This topic has been studied in recent work by Du et al. (2022) and Hanson et al. (2022b).

In our setting, intertemporal considerations may change the correlation structure of arbitrage even

with an integrated intermediary sector. For instance, trades that differ in tenor may not be perfectly

correlated because long-tenor trades reflect expected future balance sheet costs while short-tenor

trades reflect only current balance sheet costs. Internet Appendix A.3 modifies our baseline model

to formalize these considerations; for a fuller treatment, see Du et al. (2022) and Hanson et al.

(2022b).

A simple way to mitigate these concerns is to compare trades with similar tenors. Table 3

implements this idea by grouping trades into one of three buckets based on their tenor. The short-

tenor bucket contains all trades whose maturity is always less than six months, namely CIP, equity

spot-futures, and Treasury-spot futures. Medium-tenor trades are those whose tenor is greater than

or equal to 6 months but less than or equal to 3 years. Finally, long-tenor trades are those with a

tenor exceeding 3 years. The CDS-Bond arbitrages are included with long-tenor trades based on the

typical tenor of their underlying bonds.

Table 3 shows the distribution of pairwise correlations for short, medium, and long-tenor trades.

The broad takeaway from the table is that correlations remain relatively low, even within trades

of the same tenor. For example, in Table 3a, the average correlation among short-tenor trades is

0.19 and the 75th percentile of correlations is 0.35. Because short-tenor trades are less exposed

to mark-to-market risk, the low correlation among these trades cuts strongly against conventional
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models featuring an integrated intermediary sector. As a more extreme example, consider the

correlation between two overnight arbitrages: (i) the spread between interest paid on required and

excess reserves (IOER) and the effective federal funds rate (Banegas and Tase, 2020); and (ii) the

spread between the general collateral repo rate and the tri-party repo rate (Correa et al., 2020).

Though these trades have virtually no mark-to-market risk, their correlation during our analysis

sample is 23%, a clear indication of segmentation.18

Tables 3b and 3c summarize the distribution of correlations for medium and long-tenor trades,

respectively. The degree of integration appears higher in these trades compared to those with short-

tenors, at least as evidenced by their larger average pairwise correlation (roughly 40% vs 20%). This

could occur if some institutions specialize in longer-tenor trades, perhaps because they are better

equipped to manage mark-to-market risk. For example, access to stable funding may allow larger

dealers to mitigate noise-trader risk because they can more reliably roll over repo. Specialization

could also arise because longer-tenor arbitrages use fixed-income derivatives like interest rate and

credit default swaps. With that said, the more important point is that correlations within medium

and long-tenor trades are still far from perfect. In both groups, the average correlation is below 40%

and the 75th percentile is around 50%. These relatively low correlations further support our main

argument that arbitrage is more segmented than previously acknowledged in the literature.

3.2.4 Zones of Arbitrageur Inaction

Arbitrageurs may not find it profitable to enter a market unless the level of arbitrage is sufficiently

high due to debt overhang issues—as argued by Andersen et al. (2019), an intermediary facing

a debt overhang problem will only enter a riskless arbitrage if the return is higher than its credit

spread. Consequently, small arbitrage spreads may appear uncorrelated because of this “zone of

inaction” even if the intermediary sector is integrated. To address this concern, we first compute

18We thank Wenxin Du for pointing us to this example. To construct the IOER arbitrage, we use the first-percentile
of the overnight federal funds rate from the New York Federal Reserve. This necessarily focuses on the depository
institutions who can earn an arbitrage profit because they are able to borrow in the Federal Funds market at favorable
rates, most likely large banks (Banegas and Tase, 2020). The correlation between the GCF-TPR and the volume-
weighted IOER arbitrage spread (truncated at zero) is 21%. Tri-party repo rates from BNY Mellon are available starting
in 2016.
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the cross-sectional average 6-month credit default swap (CDS) spread across all New York Federal

Reserve primary dealers, denoted dt .19 Next, we compute the pairwise correlation of each pair of

trades, conditional on both exceeding dt . The logic of Andersen et al. 2019 suggests that dealers

should be active when arbitrage spreads exceed this threshold. Table 4a summarizes the distribution

of pairwise correlations when arbitrage spreads exceed dealer credit spreads. The average correlation

remains below 30% and the distribution is comparable to the one observed in the full sample (Table

2a).

The behavior of arbitrage spreads during the onset of the Covid-19 pandemic also cuts against

the idea that arbitrager inaction is responsible for low spread correlations. From March through

May 2020, the average level of spreads rose to 46 basis points, nearly double the average level in

our main sample. Over the same period, Table 4b shows that the average pairwise correlation of

spreads rose to 0.29, a modest increase from the average of 0.22 observed in our analysis sample.

These low correlations are also readily apparent in Figure 5a, which plots strategy-level spreads

starting in March 2020. The figure shows how different trades diverge at the onset of the pandemic,

with the CDS-Bond and equity spot-futures arbitrages peaking several days after other arbitrages.

This divergence is particularly stark within Treasury spot-futures arbitrage, as Figure 5b shows that

arbitrage spreads based on futures for 20-year Treasuries remained elevated much longer than those

based on shorter-maturity Treasuries. Overall, the fact that correlations remain low when arbitrage

spreads are relatively elevated reinforces our argument that arbitrage activity is segmented.20

3.3 Supply versus Demand

As shown in Section 2, once we depart from the integrated intermediary benchmark, the correlations

of arbitrage spreads are determined by both arbitrageur supply and end-user demand. One might

wonder whether the low correlations we document arise primarily from the supply side or the

19We include any dealer that has been listed as a primary dealer since 2010.
20We further study the behavior of arbitrage spreads before the Dodd-Frank era in Internet Appendix A.2.2, showing

that correlations were low before the 2008-09 financial crisis and providing evidence of funding and balance sheet
segmentation during the crisis.
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demand side. To shed light on this question, we follow the large literature on sign-restricted SVARs

(Uhlig, 2005; Arias et al., 2018). While this approach was originally developed for macroeconomic

time-series analysis, it has been applied more recently in financial markets by Goldberg and Nozawa

(2021) and Hanson et al. (2022a), among others.

Denote Yt =

[
st qt

]′
as the vector of arbitrage spreads and quantities for a given trade.

Quantities are defined more precisely below, but for now it is sufficient to think of them as the size

of the derivative market that supports a particular arbitrage trade (e.g., net outstanding futures). The

dynamics of Yt are assumed to take the following form:

BYt = A0 +A1Yt−1 + εt (9)

where εt =

[
εs,t εd,t

]′
are primitive orthonormal shocks. For reasons discussed below, the

structural shock εs,t can be thought of as a supply shock that emanates from arbitrageurs, whereas

εd,t can be thought of as demand for the derivatives relative to cash securities arising from end users

like insurance or pension funds. Assuming B is invertible, the reduced-form VAR implied by the

structural model in (9) is:

Yt = Φ0 +Φ1Yt−1 +ut

where Φ0 = B−1A0 and Φ1 = B−1A1. The covariance matrix of the reduced-form residuals ut =

B−1εt =

[
us,t uq,t

]′
is given by Σu and depends only on the matrix B. While the reduced-form

parameters (Φ0,Φ1,Σu) can be estimated by OLS or Bayesian methods, the structural parameters

(A0,A1,B) cannot be identified without imposing additional restrictions. One solution to this

problem is to impose restrictions on the sign of the impact of structural shocks on the reduced-form

shocks. In our context, we assume the following sign restrictions:

 us,t

uq,t

=

 − +

+ +


︸ ︷︷ ︸

B−1

 εs,t

εd,t

 (10)
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These restrictions make our labeling of the structural shocks more clear. εs,t is interpreted as a

supply shock because it lowers arbitrage spreads and raises quantities. Conversely, εd,t is interpreted

as a demand shock because it raises both arbitrage spreads and quantities.

We estimate the sign-restricted SVAR using weekly data separately for each futures-based

arbitrage trade, as these are the only trades for which quantity data is publicly available. The

quantity for a given trade is defined as the net amount of futures outstanding in the CFTC’s weekly

“Traders in Financial Futures,” described in more detail in Section 3.1.2. Arbitrage spreads equal

the absolute value of raw spreads because this is the most natural object on which to impose the

sign restrictions.21

Our estimation strategy closely follows Arias et al. (2018), who develop an efficient algo-

rithm to estimate sign-restricted SVARs with appropriately conservative confidence intervals. To

start, Bayesian methods are employed to estimate the reduced-form VAR parameters under a

Normal-Wishart prior. Next, we randomly draw from the posterior distribution of the reduced-form

parameters and use the Cholesky decomposition of Σu to obtain a B that satisfies the sign restriction

in (10).22 This process is repeated 1,000 times to generate a set of structural parameters that all

satisfy the sign restriction, reflecting the well-known result that sign-restricted SVARs are generally

only set-identified. With some abuse of notation, let Θi be the set of identified structural parameters

when estimating the model for trade i. Each element of this set implies its own sequence of supply

and demand shocks and we denote (ε̃s
i,t , ε̃

d
i,t) as the shocks associated with the median parameter

draw from Θi.

Note that since the model is estimated separately for each trade, there are no restrictions put

on the covariance of supply and demand shocks across trades. Figure 6a visualizes the correlation

of estimated supply shocks ε̃s
i,t across trades. The plot shows that supply shocks are far from

perfectly correlated, as would be the case if arbitrage were perfectly integrated. The average

pairwise correlation of 16% is low and supports our broad argument that supply-side frictions like

21The 30-year Treasury spot-futures arbitrage is excluded because it is more prone to missing arbitrage spread data
(see Table 1).

22Our exact implementation is based on the open source VAR Matlab toolbox of Breitenlechner et al. (2019), found
here.
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balance sheet or funding segmentation have a first-order impact on asset prices. With that said,

Figure 6a also reveals portions of the market where arbitrage appears more integrated. For example,

perhaps unsurprisingly, the average correlation of supply shocks within equity-spot futures arbitrage

is higher at 62%.

Figure 6b visualizes the correlation of the demand shocks ε̃d
i,t from the SVAR. Again, these

shocks are most naturally interpreted as the relative demand for futures versus spot contracts from

end-users like insurance companies and pension funds. Consistent with the intuition that demand is

also segmented, the average correlation of the demand shocks equals 16%. However, there are again

portions of the capital markets where demand shocks are more correlated. For instance, within

equity spot-futures trades, the average correlation of demand shocks equals 64%.

The preceding correlation analysis was based on the median structural shocks ε̃s
i,t and ε̃d

i,t from

the SVAR. However, given they are set-identified, we can also use them to put confidence bands on

the correlation of the structural shocks. To do so, we select 10,000 random draws from the identified

set of structural parameters Θi for each trade and compute the implied supply shock series. For each

draw k, we then compute the correlation matrix Rk of the supply shocks across trades. Figure 7a

shows the 99% percentile of each element of Rk. Akin to a traditional bootstrap, the elements of the

figure can be interpreted as the 1% upper bound on the pairwise correlation of supply shocks. The

average upper bound equals 24%, suggesting that arbitrage is far from integrated for futures-based

trades with 99% confidence.

In Internet Appendix A.2.3, we use the SVAR to further decompose the covariance between

a pair of arbitrage spreads into three terms suggested by the model in Section 2: (i) covariance

between supply shocks; (ii) covariance between demand shocks; and (iii) covariance between supply

and demand shocks across two trades. For the average pair, comovement between supply shocks

contributes 14% to the overall covariance and comovement between demand shocks contributes

26%. Thus, according to the SVAR, comovement between supply and demand shocks contribute

similarly to the overall observed covariance of arbitrage spreads. The remaining covariance is

attributable to cross-market supply and demand terms.
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4 Segmented Funding

In this section, we focus on funding frictions as a key driver of the low correlations of supply shocks

documented above. As discussed in Section 2, the underlying violation of the Modigliani and Miller

(1958) theorem is that certain riskless portfolios cannot be funded at the riskless rate. For instance,

the equity spot-futures arbitrage involves holding the underlying equities and selling equity futures.

Taken together, this position is riskless, but it cannot be funded with (for instance) Treasury repo.

As the cost of funding for certain arbitrage trades moves, spreads move as well.

We proceed in three steps. We start with suggestive evidence that there are differences in funding

structures across the different arbitrage strategies we study. We then provide more formal empirical

evidence that movements in funding costs affect arbitrage spreads. In particular, we show that

they help explain the relatively high degree of comovement between the box, CIP, and equity-spot

futures spreads in Table 2b, and the relatively low degree of comovement between those spreads

and the others we study. Finally, we show that specialization in funding creates segmentation that

goes beyond the divide between unsecured and secured funding markets.

4.1 Suggestive Evidence on Margins

Table 5 shows that there are meaningful differences in the availability of secured financing across

arbitrage strategies. The data primarily come from the Federal Reserve Bank of New York’s Tri-

party Repo Infrastructure Reform Task Force.23 The Treasury spot-futures, Treasury-swap, and

TIPS-Treasury arbitrages can be largely financed with Treasury repo, requiring only a 2% margin. In

other words, intermediaries need little unsecured debt or equity funding to enter into these arbitrages.

Conversely, the box, CIP, and equity spot-futures arbitrages require higher margins between 8%

and 12%. For these arbitrages, unsecured funding conditions are much more important. We will

therefore frequently group these trades together, labeling them “unsecured”, while we label the

23For currencies, we report data from central bank lending operations by the Bank of England and the European
Central Bank because the quantity of tri-party repo backed by international collateral is typically small (less than 0.5%
of the total). Margin data from the NY Fed can be found here, Bank of England data can be found here, and ECB data
can be found here.
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remaining trades (Treasury spot-futures, Treasury-swap, TIPS-Treasury, and CDS-bond) “secured.”

4.2 Shocks to Unsecured Funding and Arbitrage Activity

In this section, we show that variation in unsecured funding conditions induces comovement in

unsecured arbitrage spreads but not secured spreads. We start with OLS evidence in Table 6. We

work with implied riskless rates from different arbitrages, as opposed to spreads that subtract out a

benchmark riskless rate, to separate changes in secured and unsecured funding conditions. In the

first two columns, we run the following monthly panel regression:

∆ri, j,t = αi, j +β1∆yi,t +β2∆T EDt + εi, j,t , (11)

where ri, j,t is the implied riskless rate for individual trade i in broad strategy j in month t and

yi,t is the yield on a Treasury with the same maturity as the horizon of the trade—a proxy for

the true riskless rate. T EDt is the maturity-matched Treasury-Eurodollar spread (i.e., LIBOR

minus Treasury) and proxies for unsecured funding costs.24 Standard errors are clustered by

strategy-month.

In the first column of Table 6, the sample consists of unsecured trades (equity spot-futures, CIP,

and box). These trades load on the Treasury yield with a coefficient close to 1, but also have a high

loading on the TED spread, consistent with the idea that these trades require a significant amount

of unsecured funding. Indeed, the coefficient on the TED spread of 0.49 is higher than the margin

requirements listed in Table 5, possibly because these trades require more unsecured funding on the

margin than on average.25

The second column of Table 6 shows a stark contrast for secured trades. These trades also load

on the Treasury yield with a coefficient close to 1, but their loading on the TED spread is much

24ICE Benchmark Association does not publish LIBOR rates beyond one year. Thus, when the tenor of the trade
exceeds one year, we construct the TED spread using the one-year LIBOR and Treasury yields.

25In Internet Appendix A.2.6, we provide suggestive evidence in favor of this interpretation for equity spot-futures
arbitrage. We show that the value of equity securities held by dealers is nearly double the size of equity triparty repo,
cutting against the idea that dealers fully finance their equity positions with equity repo.
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lower (0.07 vs 0.49) and is not statistically distinguishable from zero.26 The remaining columns of

Table 6 run the regression strategy-by-strategy. The coefficient on the TED spread is higher for all

unsecured strategies than it is for any of the secured strategies. Moreover, we cannot reject the null

that the TED spread loading is zero for each of the secured strategies, but we can for each of the

unsecured ones.

Previous research has noted that arbitrage spreads are sensitive to the TED spread (e.g., Garleanu

and Pedersen, 2011), particularly during stressed periods like the 2007-09 financial crisis. Our

focus here is to highlight differences in the sensitivity of arbitrage strategies to the TED spread.

We interpret these differences as showing that frictions in funding markets drive cross-sectional

differences in arbitrage spreads.

While the results in Table 6 are consistent with funding segmentation, they could also reflect

balance sheet segmentation. For instance, suppose broker dealers specialize in unsecured trades.

Then a deterioration in their balance sheet health could lead to a simultaneous rise in the TED

spread and unsecured arbitrage spreads. Formally, in the notation of the model, we are interpreting

the results in Table 6 as differential loadings on a funding factor f1,t , captured by the TED spread.

However, they could also reflect variation in the marginal balance sheet costs c1tV1t of arbitrageurs

who specialize in unsecured trades.

To isolate the role of funding segmentation, we follow Anderson et al. (2019) and study the 2016

MMF reform. The reform modified SEC Rule 2a-7, which governs MMFs. It required institutional

prime MMFs to switch from reporting stable to floating net asset values (NAVs), while allowing

government MMFs to continue reporting stable NAVs. Thus, following the reform, many prime

MMFs converted to government MMFs to accommodate client preferences for stable NAVs. Prior

to the reform, prime MMFs were a significant source of unsecured funding for banks, so the reform

plausibly represents a funding shock that is distinct from bank balance sheet shocks. 27 Indeed, as

26Note that correlations with the Treasury yield are very high for some secured trades because these trades involve
Treasuries.

27Consistent with this interpretation, Figure A3 shows that the balance sheet strength of dealers was not negatively
affected by the reform. The measure of balance sheet strength in the plot comes directly from He et al. (2017) and is
defined as the ratio of market capitalization to market capitalization plus book debt for the New York Federal Reserve’s
primary dealers’ publicly-traded holding companies. We discuss the distinction between balance sheet and funding
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shown in Figure 9a, unsecured MMF lending to banks fell approximately $550 billion as a result of

the reform. Anderson et al. (2019) study how global banks respond to this shock, arguing that they

withdraw from CIP and central bank reserve arbitrage. In contrast, we use the shock to trace out

funding segmentation in the cross section of arbitrage.

Figure 9b shows that the MMF reform shock generated a significant rise in the TED spread. As

the reform was anticipated, spreads start rising before the reform is implemented. For example, five

months before the reform, MMFs were more willing to lend to banks unsecured for four months than

six months. Figure 9c shows that around the time of the reform, spreads on unsecured arbitrages

rise relative to secured arbitrages. Thus, unsecured funding shocks induce comovement in arbitrage

spreads for unsecured trades but result in low correlations between secured and unsecured trades.

Table 7 provides formal regression evidence corresponding to these figures.28 We first estimate

the following OLS regression:

si,t = αi +αt +β1[i ∈Unsecured]×1[t ≥ October2016]+ εi,t , (12)

where si,t is the absolute value of the arbitrage spread for trade i on date t, αi is a trade fixed effect,

and αt is a time fixed effect. We estimate the regression using data through October 2017 to focus

on the one-year impact of the reform on arbitrage spreads. Given the persistence of spreads at the

daily level (Table 1), we cluster standard errors by trade and time. In Internet Appendix A.2.5, we

show that our inference is also robust to using Driscoll and Kraay (1998) standard errors, which are

explicitly designed to handle serial correlation and heteroskedasticity in panel settings. Column

(1) shows that unsecured spreads rose by an average of 12 bps in the year following the reform.

In column (2), we estimate a dynamic version of Eq. (12) to more carefully study the response of

spreads to the reform over time. Unsecured spreads initially rise 18 bps relative to other arbitrage

shocks in the context of the MMF Reform in Internet Appendix A.2.4.
28While Figure 9c and Table 7 look similar to a differences-in-differences analysis, they are formally closer to a

placebo test. In particular, the parallel trends assumption should hold under the null of integrated funding. However,
under our preferred interpretation—that the unsecured arbitrages are segmented from the secured arbitrages—there is
no reason for the parallel trends assumption to hold. That is, we do not think that the gap in spreads between unsecured
and secured arbitrages would have remained fixed in the absence of the 2016 MMF reform. Instead, we simply interpret
this evidence as showing that only unsecured arbitrages are affected by a shock to unsecured funding.
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spreads in the October 2016 and remain elevated near that level for the subsequent three months,

after which they only partially revert between February and October 2017. These findings indicate

that the effect of the funding shock on arbitrage activity persisted for many months.

Furthermore, the passthrough of 0.59 implied by the 2016 MMF reform event study is similar

to the OLS estimate of 0.49 in Table 6, and we cannot reject the null hypothesis that they are

equal.29 This suggests that most of the comovement between the TED spread and unsecured

trades in our sample is driven by funding shocks, as opposed to bank balance sheet shocks. Taken

together, the analysis in Tables 6 and 7 shows that funding segmentation is one broad driver of

low correlations among arbitrage spreads. Some trades—equity spot-futures, box spreads, and

CIP—require more unsecured funding than others. These trades are therefore more exposed to broad

conditions in unsecured funding markets, as measured by the TED spread. As a result, unsecured

trades tend to comove more with each other than they do with secured trades. In other words,

funding segmentation impacts asset prices.

4.3 Further Funding Segmentation

We next provide evidence that funding markets are more segmented than the simple divide between

secured and unsecured trades. In particular, we argue that additional funding segmentation helps to

explain why the equity spot-futures, box, and CIP trades, while more correlated than other trades,

are still not highly correlated with each other. Building on the MMF literature (e.g., Chernenko and

Sunderam, 2014; Rime et al., 2017; Li, 2021; Hu et al., 2021), we document that specialization in

certain types of funding by MMFs is reflected in arbitrage spreads.

Our analysis starts from the observation made by Hu et al. (2021), who show that Fidelity

MMFs were the largest provider of equity-repo financing during the period of 2010 to 2013. In

Table 8, we show that funding shocks to Fidelity move equity spot-futures arbitrage spreads over

and above the effect of the TED spread. To do so, we augment Eq. (11) with flows into Fidelity’s

29Around the reform, the TED spread and unsecured spreads increased by 31 and 18 bps, respectively. This implies
that the passthrough of changes in the TED spread to unsecured spreads equals 0.59.
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Institutional Prime (IPrime) MMFs.30 Columns 1-3 report OLS results. Column 1 shows that equity

spot-futures arbitrages spreads fall when funds flow into Fidelity MMFs, consistent with the idea

that a positive Fidelity funding supply shock reduces the cost of funding equity holdings and hence

equity spot-futures spreads. Columns 2 and 3 show that flows to Fidelity have no impact on either

other unsecured trades (box and CIP) or secured trades, suggesting that Fidelity funding supply

shocks do not affect these trades. These results also suggest that flows into Fidelity are not proxying

for aggregate unsecured funding conditions or aggregate intermediary balance sheet health.

The OLS estimates in columns (1)-(3) are potentially biased because flows into Fidelity IPrime

MMFs could be driven by supply or demand. On the one hand, when arbitrage spreads rise,

arbitrageurs may demand funding from Fidelity IPrime MMFs to take advantage of the profit

opportunity, thereby leading to a positive correlation between spread changes and MMF flows. On

the other hand, exogenous outflows from Fidelity IPrime MMFs will contract the supply of repo

funding for available for arbitrage and raise arbitrage spreads, resulting in a negative correlation

between spread changes and flows. The opposing effects of supply and demand therefore work

against finding any relationship between spread changes and Fidelity IPrime flows. Thus, the fact

that there is still a negative relationship between changes in equity spot-futures arbitrage spreads

and Fidelity IPrime MMF flows suggests funding supply shocks dominate for this trade.31

In columns 4-6, we try to address this potential endogeneity bias by instrumenting with “passive

flows” into Fidelity IPrime funds, defined as:

Zt = Ft ×LI
t−3

where Ft is the flow into all Fidelity MMFs and LI
t−3 is the lagged share of Fidelity MMF assets that

are in its Institutional Prime funds. The validity of Zt as an instrument for flows into Fidelity IPrime

30The data for this analysis is based on the SEC’s Form N-MFP. According to these data, virtually all of Fidelity’s
equity repo lending is done by its prime MMFs.

31Another concern is that the OLS results reflect balance sheet segmentation. It could be that specific intermediaries
are important for equity spot-futures arbitrage and flows to Fidelity reflect the health of those intermediaries’ balance
sheets. In this case, however, the most natural interpretation is that both balance sheet and funding segmentation are at
work. Flows to Fidelity reflect the health of particular intermediaries over and above the TED spread because Fidelity
has funding relationships with those intermediaries.
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funds rests on two assumptions. The first is that the lagged share LI
t−3 is exogenous to arbitrager

demand for funding from Fidelity IPrime funds, which seems reasonable given the lag length of

one quarter. The second is that demand for arbitrage funding is exogenous to flows into all Fidelity

MMFs (Ft). This assumption is likely to hold for equity-spot futures arbitrage because equity repo

lending is a very small portion Fidelity’s overall MMF portfolio. During our sample, equity repo

lending accounts for less 1% of all lending by Fidelity MMFs and never exceeds 3.1%. Thus, while

Fidelity is large relative to the equity repo market (average lender share of 53%), it is unlikely that

demand for equity repo funding drives flows into all Fidelity MMFs.

Consistent with demand inducing bias into the OLS coefficients, column (4) shows that the

relationship between equity spot-futures arbitrage spreads and Fidelity IPrime flows is stronger

when we instrument.32 Importantly, the IV estimate is close to zero and is not statistically significant

for other unsecured arbitrages (column 5) and secured arbitrages (column 6), further confirming

that Fidelity IPrime funds play no special role for these trades. Overall, the evidence in Table 8

shows that funding is segmented even within the unsecured market – the cost of funding equity

holdings moves independently of other funding costs.

Taken together, our results suggest that funding segmentation is an important driver of segmenta-

tion in asset prices. Unsecured trades are broadly segmented from secured trades because unsecured

funding is segmented from secured funding, with the TED spread capturing these differences.

Beyond the simple divide between secured and unsecured funding, there is additional segmentation,

which appears to be driven by specialization among funding sources.

4.4 Factor Analysis

To complement our analysis of unsecured and secured arbitrages, we now conduct a simple principal

component analysis of the two groups. To start, we document that the first principal component

of unsecured arbitrages explains 51% of the daily variation in the level of spreads. Reinforcing

the results in Section 4.2, Figure 8a shows that it is natural to interpret this principal component

32In Internet Appendix Section A.2.7, we report the first stage.
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as capturing common unsecured funding costs because the first PC closely tracks the TED spread,

also shown in the figure. The correlation between the two series is 69% at the monthly level. The

existence of a meaningful factor structure among unsecured arbitrages explains why they are more

correlated with each other than secured arbitrages, yet it is also important to note that half of the

total variation in unsecured spreads is not captured by common funding costs. As we argue in

Sections 4.3 and 5, this remaining variation is likely driven by strategy-specific funding costs or

balance sheet shocks to specialized intermediaries.

A similar analysis of secured arbitrages indicates the first principal component explains 40% of

the daily variation in spread levels. Figure 8b plots the monthly version of this PC along with the

TED spread for reference. Unlike unsecured arbitrages, the first PC of secured arbitrages is largely

unrelated to the TED spread, as the two are only 36% correlated at the monthly level. This finding

supports our argument that funding segmentation drives down the correlation between unsecured

and secured arbitrages (Section 4.2). The next question is how to interpret the first PC of secured

arbitrages. We explore three possibilities: (i) secured funding costs, (ii) balance sheet costs of

dealers, and (iii) the balance sheet costs of non-dealer intermediaries.

A first possibility is that secured funding costs move independently from unsecured funding

costs, but also have a strong factor structure. If this were the case, the first PC of secured arbitrage

spreads would have a high correlation with common proxies for funding conditions in secured

financing markets. We find little evidence consistent with this hypothesis. For example, Figure 8b

also plots the spread between the GCF repo rate and the Interest on Excess Reserves (IOER) paid

by the Federal Reserve. This proxy has been used to measure repo market conditions in several

recent papers, including Correa et al. (2020) and Copeland et al. (2021). It is clear from the plot

that the first PC of secured arbitrages and the GCF-IOER spread follow different time-series trends,

as their monthly correlation is only 30%.

Another possibility is that the first PC of secured arbitrage spreads reflects variation in the

balance sheet costs of banks, which could matter for instance because dealers intermediate secured

funding markets, namely repo. This conjecture follows from Correa et al. (2020) and He et al.
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(2022), who show that overnight Treasury repo rates spike at the end of each quarter because

banks reduce their intermediation activity to avoid regulatory capital charges. However, we think

it is unlikely that the first PC of secured arbitrages reflects bank balance sheet costs because the

magnitudes do not line up. The magnitude of quarter-end spikes in overnight repo rates implies

relatively small spikes in one-week and one-month repo rates, which are the relevant tenors for

the secured arbitrages that we study. For instance, He et al. (2022) find that the overnight spread

between the General Collateral Finance Repo rate (GCF) and Tri-Party repo rate (TPR) spikes

by roughly 20 bps at quarter end, implying one-week and one-month spikes of 3 and 0.7 bps,

respectively. By comparison, the time-series volatility of secured arbitrages is roughly 22 bps. Thus,

the variation in repo rates induced by bank balance sheet costs is likely too small to explain the

observed variation in secured arbitrage spreads.

In light of these results, our preferred interpretation is that the first PC of secured arbitrages

reflects common variation in the balance sheet costs of (non-dealer) arbitrageurs. Though such costs

are inherently hard to measure without data on the exact institutions that are active in each trade, our

analysis in Section 5.4 supports this interpretation. In particular, we show that when hedge funds

who specialize in fixed income arbitrage experience poor returns in month t, spreads on secured

arbitrages tend to increase in month t +1, whereas unsecured arbitrages are not affected.

To be clear, we are not claiming that secured financing conditions do not matter for secured

arbitrages. Rather, variation in secured financing rates is likely too small to explain the observed

variation in secured arbitrage spreads. To see this more formally within the model in Section 2, let

f sec
t be the spread between the funding rate for secured arbitrages and the riskless rate. Further,

denote ctVt as the marginal balance sheet cost for arbitragers that are active in secured trades. Then

the equilibrium arbitrage spread of secured arbitrages is a linear combination of funding and balance

sheet costs:

sn,t = a f sec
t +bctVt .

Thus, while secured funding costs f sec
t clearly impact the level of spreads, they may not contribute

meaningfully to the variation of spreads if balance sheet costs ctVt are sufficiently volatile. Our
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results essentially suggest that repo rates against fixed income collateral like Treasuries or corporate

bonds (captured by f sec
t ) are much less volatile than the balance sheet costs (captured by ctVt) of

arbitragers in secured trades, like hedge funds.

5 Segmented Balance Sheets

We next provide evidence of a second driver of segmentation in asset prices: balance sheet seg-

mentation across intermediaries. As discussed in Section 2, if different intermediaries specialize

in different trades, then the tightness of their individual balance sheet constraints will affect some

arbitrage spreads but not others.

We provide three complementary types of analysis. First, we provide suggestive evidence from

CFTC quantity data that different intermediaries are more central for different trades. We then

examine two event studies: JP Morgan’s London Whale episode in 2012 and Deutsche Bank’s exit

from the CDS market in 2014. Finally, we show that the tightness of fixed income hedge fund

balance sheet constraints are important for certain secured trades.

5.1 Suggestive Evidence from Quantities

Table 9 uses the CFTC data to provide suggestive evidence that different intermediaries play bigger

roles in certain arbitrage trades. The CFTC summarizes positions in different futures of different

types of intermediaries: dealers, hedge funds (labeled by the CFTC as “leveraged funds”), and asset

managers. For each intermediary type and contract, the CFTC reports total gross positions long

and short of the intermediary type in the contract, as well as total positions in the contract netted by

intermediary type. The data is silent on the specific intermediaries that are active in a particular

trade, and therefore does not perfectly reveal the marginal price setter for each contract. It does,

however, give us a sense of which intermediaries are most active in which contract.

We compute three different measures of activity. First, we look at an intermediary type’s gross

share of activity in a contract—the sum of the intermediary type’s long, short, and spread positions
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in that contract, divided by the total long, short, and spread positions in the contract. Second, we net

within each intermediary type, taking the difference between gross long and gross short positions

for the intermediary type. We then report the intermediary type’s net position as a fraction of the

total net positions across intermediaries. Finally, we report the fraction of days the intermediary

type’s net position is in the direction that would earn the arbitrage spread. A high fraction of days

earning the spread is suggestive evidence that the intermediary type is an important arbitrageur for

the contract, accommodating demand from other sectors.

All three measures tell the same story. Dealers are the biggest players in equity futures, while

hedge funds and asset managers play a more important role in Treasury futures. For instance,

dealers are in a net position that earns the arbitrage spread in equity futures on 87% of days, while

hedge funds are in a net position to earn the spread on 45% of days, and asset managers are in a net

position to earn the spread on only 8% of days. Moreover, dealers have the largest share of equity

futures in terms of gross and net positions. In contrast, hedge funds appear to be the most active

in Treasury futures, as their net position earns the arbitrage spread on 58% of days. Dealers are

in a net position to earn the arbitrage spread on 50% of days, though their shares of gross and net

outstanding are relatively small compared to hedge funds and asset managers.

While certainly not definitive, these numbers suggest that dealer balance sheet constraints are

likely to be particularly important for equity futures, while hedge fund balance sheets are more

important for Treasury trades. The notion that hedge funds are particularly active in Treasury

spot-futures arbitrage is also consistent with Barth and Kahn (2021). We next turn to event studies

for more definitive evidence.

5.2 Event Study: the London Whale

In this section, we first provide suggestive evidence that JP Morgan is a particularly important

intermediary for equity spot-futures arbitrage. We then examine the impact of balance sheet shocks

to JP Morgan on equity spot-futures arbitrage spreads. According to Coalition Greenwich, a

subsidiary of S&P that provides benchmarks for the financial services industry, JP Morgan has
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had the largest share of the market for equity derivatives since 2015.33 This accords with data

from bank regulatory filings, which provide further suggestive evidence. In particular, we use the

Y-9C regulatory filings to examine the trading book securities holdings of all U.S. bank holding

companies. JP Morgan had by far the largest holdings of equity securities in its trading book over

our sample, accounting for 37% of the total. JP Morgan’s dominance was greater earlier in the

sample; for instance, it held 56% of all equities in trading books in 2010. This evidence suggests

that JP Morgan could play an outsized role in equity spot-futures arbitrage.

We now turn to the impact of an exogenous balance sheet shock to JP Morgan—the so-called

“London Whale” episode”—on equity spot-futures arbitrages spreads. The London Whale episode

was a result of activities by JP Morgan’s Chief Investment Office (CIO) designed to hedge credit

risk in the bank’s loan portfolio. The Senate Permanent Subcommittee on Investigations issued a

detailed report on the episode, from which we draw the following background information.34 At

the beginning of 2012, JP Morgan wished to reduce the size of its hedges in the credit derivatives

market. Rather than simply exiting its existing positions, the CIO instead sought to offset the

credit protection it had bought by selling credit protection. In doing so, it became one of the

biggest players in credit derivatives markets, with other traders nicknaming it the London Whale. In

addition, it incurred significant basis risk, in terms of both the credit quality and maturity of the

credit protection it had bought versus sold.

As shown in Figure 10a, this risk taking resulted in significant losses, which reached over $6

billion by the end of 2012. For context, the firm’s market capitalization at the time was about

$125 billion. Figure 10a shows that losses began to accelerate in March 2012, with monthly losses

totaling $550 million and representing 75% of the firm’s year-to-date losses. The Senate report also

indicates that several internal risk limits were breached for the first time during the month. Another

important event occurred on June 13, 2012, when JP Morgan CEO Jamie Dimon testified before

Congress and announced that significant additional losses were to be expected at the firm’s next

conference call with shareholders. We therefore use March 1, 2012 and June 13, 2012 as the focal
33The full report can be found here.
34The report is available at the following link.
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points of our event study.

Figure 10b shows that around these critical dates equity spot-futures arbitrage spreads increased

relative to other spreads. These results are consistent with the idea that JP Morgan is a particularly

important intermediary for equity spot-futures arbitrage. Losses incurred in the London Whale

episode tightened JP Morgan’s balance sheet constraints relative to other intermediaries, moving

equity spot-futures spreads but not other arbitrage spreads.

Figure 10c provides formal regression evidence of the comparison between equity spot-futures

arbitrage spreads and other unsecured-funding intensive trades. In a weekly panel of the absolute

value of spreads on unsecured trades, we estimate the regression:

si,t = αi +αt +
24

∑
j=−4

+β j1[i ∈ Equity Spot-Futures Arbitrage]×1[t = j]+ εi,t . (13)

Figure 10c plots the coefficients β j as well as 95% confidence intervals and shows that the patterns

observed in Figure 10b are statistically significant. Equity spot-futures arbitrage spreads significantly

increased compared to other unsecured arbitrage spreads following the event dates (March 1, 2012

and June 13, 2012) and remained elevated for several months.35

Finally, to bolster the argument that these results are due to balance sheet constraints and not

funding costs, Figure 10d shows the evolution of rates on JP Morgan’s commercial paper over the

same period. There is little indication that short-term funding costs move substantially, which we

take as evidence that the London Whale was primarily a balance sheet shock. Taken together, this

evidence suggests that JP Morgan is an important intermediary for equity spot-futures arbitrage

and shocks to its balance sheet constraints disproportionately impact those trades. In other words,

balance sheet segmentation helps to explain the low correlation of arbitrage spreads.

35A potential confounding factor for the second event date (June 13, 2012) is that it is near the futures roll date in
June. We show Internet Appendix Section A.2.8 that the size of the increase in the calendar spread during this period is
an order of magnitude larger than what is typically observed around futures roll dates, suggesting that the June 2012
increase is not mechanically related to contract rolling. Another potential concern with regression (A.12) is that the
persistence of spreads si,t distorts our inference of the β j’s. We explore this issue in Section A.2.5 of the Internet
Appendix.
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5.3 Event Study: Deutsche Bank’s exit from CDS

In our second event study, we examine Deutsche Bank’s exit from the CDS market. As discussed in

Wang et al. (2021), in late 2014 Deutsche Bank announced that it was exiting the single-name CDS

market and sold a significant fraction of its CDS portfolio to Citigroup. Consistent with a substantial

adjustment in Deutsche Bank’s participation in the CDS market, the notional value of CDS contracts

outstanding fell from 2 trillion euros in its 2013 annual report to 1.4 trillion in its 2014 annual report.

The exact timing of Deutsche Bank’s exit is unknown, but Bloomberg reported the sale to Citigroup

in September 2014, and Deutsche Bank publicly announced the exit on November 17, 2014. Wang

et al. (2021) study the effects of Deutsche Bank’s exit on CDS market liquidity. In contrast, we are

interested in its effect on CDS-bond arbitrage spreads, as compared to other arbitrage spreads.

Figure 11a depicts spreads around the exit event, which we center around the first week of

October. Throughout late 2014, CDS-bond arbitrage spreads rise, but other arbitrage spreads do

not. Figure 11b provides formal statistical evidence by running a regression analogous to (13)

for the CDS-Bond basis relative to other secured trades. The plot shows that the differential

impact of Deutsche Bank’s exit on CDS-bond arbitrage spreads relative to other secured spreads is

significant at the 5% level. Furthermore, the relative widening of the CDS-bond arbitrage spread

persisted for over 5 months. These results are consistent with the idea that Deutsche Bank was a

particularly important intermediary for CDS-bond arbitrages. Its decision to exit the market is akin

to a tightening of its balance sheet constraints, which moved CDS-bond arbitrage spreads but not

other spreads.

5.4 Hedge Fund Balance Sheet Constraints

We next turn to the impact of hedge fund balance sheet constraints, which we proxy for using

monthly hedge fund returns. The idea is that following negative returns, hedge funds face tighter

balance sheet constraints. Arbitrage spreads should subsequently rise for trades in which hedge
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funds are important intermediaries. The following monthly regression tests this idea:

∆si,t = α +β rH
t−1 + εi,t . (14)

∆si,t in the regression is the change in the absolute value of the spread on trade i in month t and rH
t−1

is the monthly return of hedge funds that specialize in fixed income arbitrage at t −1. Hedge fund

returns are measured using Barclay’s fixed income arbitrage hedge fund index, which is based on

the returns of funds aiming to profit from price anomalies between related fixed income securities,

including interest rate swap arbitrage, US and non-US government bond arbitrage, and forward

yield curve arbitrage.36 The monthly hedge fund return series is standardized to have mean zero

and unit variance. Lagged returns are used in the regression to avoid any confounding issues with

reverse causality, since returns should be negatively related to contemporaneous changes in spreads

but not future changes.

The first column of Table 10 shows that lagged fixed income hedge fund returns do not predict

future increases in unsecured arbitrage spreads. In contrast, the second column shows a negative

forecasting relationship for future changes in secured arbitrage spreads. A one-standard deviation

return loss for fixed income hedge funds forecasts a 0.7 basis point increase in future secured

arbitrage spreads. The remaining columns of Table 10 reveal that the relationship is driven primarily

by the link between fixed income hedge fund returns and the Treasury-swap and CDS-Bond

arbitrages. Overall, these results support the idea that hedge fund balance sheet constraints are more

relevant for secured trades than unsecured trades.

We explore more granular balance sheet segmentation using individual hedge fund returns.37

We start by estimating the forecasting regression in Eq. (14) for each strategy and each of the

top ten largest fixed income arbitrage hedge funds according to Preqin. This means we run ten

different regressions for each strategy. We adjust our approach to hypothesis testing by computing

36See this link for more information.
37These results do not imply that dealer banks are completely uninvolved in the secured trades. Indeed, the dealers

often supply hedge funds with funding through repo and prime brokerage relationships Boyarchenko et al. (2020).
However, our analysis suggests that frictions in this funding process contribute less to the variance of secured spreads
than balance sheet frictions in hedge fund equity capital.
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critical values using the Bonferroni adjustment. Figure 12 displays the resulting t-statistic from

these forecasting regressions. In the plot, hedge funds are indexed from one to ten along the x-axis

and plot markers correspond to different strategies. The figure shows that different hedge funds

are important for different arbitrage strategies. For instance, returns for hedge fund 1 negatively

forecast future changes for both the CDS-bond and Treasury-futures arbitrages, with the t-statistics

just at the Bonferroni threshold. Hedge fund 6 appears to be relevant for Treasury-futures arbitrage,

while hedge fund 8 appears relevant for the TIPS-Treasury arbitrage, and hedge fund 10’s balance

sheet is important for the Treasury-swap arbitrages. It is worth noting that these results do not imply

that the hedge funds we study are the only intermediaries that are marginal in a particular trade.

Rather, they are likely to be representative of a broader set of intermediaries all following similar

strategies and hence subject to similar balance sheet constraints.

To summarize, the results from this section suggest that balance sheet segmentation is important

for explaining the low correlations of arbitrage spreads. Intermediaries appear to specialize in certain

arbitrage strategies. Furthermore, when an intermediary that is important for one arbitrage suffers a

balance sheet shock, the spread for that arbitrage can move without significantly affecting other

arbitrage spreads. The price effects of shocks to specialized arbitrageurs imply that intermediary

balance sheets are segmented.

6 Discussion and Conclusion

6.1 Persistence of Segmentation

While our empirical results have documented that both funding and balance sheet segmentation

impact asset prices, they are less definitive on how long this segmentation persists. Following market

dislocations, capital will ultimately flow to profitable arbitrage opportunities; the question is how

quickly (Duffie, 2010; Duffie and Strulovici, 2012). The sign-restricted SVARs estimated in Section

3.3 provide some insight into this question. To see why, first recall that the SVARs deliver weekly

supply shocks for each spot-futures arbitrage. These weekly supply shocks can be cumulated to

42



construct supply shocks that occur over longer horizons (e.g., one month). Next, suppose arbitragers

that specializes in a trade i experience an exogenous tightening of their balance sheet in week t.

While arbitragers that specialize in trade j ̸= i may not react immediately to the shock, it seems

natural to expect that they will eventually adjust their balance sheets to take advantage of elevated

spreads in trade i. Over time then, the total supply shocks across the two markets should therefore

appear more correlated.

Consistent with this intuition, Figures 7b and 7c show the pairwise correlation of supply shocks

for spot-futures arbitrages over aggregation periods of one month and one quarter, respectively.

As with Figure 7a, these plots show the 1% upper bound on the pairwise correlation between

supply shocks over different horizons, at least as implied by the sign-restricted SVARs.38 When

moving from the one-week horizon in Figure 7a to the one-quarter horizon in Figure 7c, the darker

red shading clearly shows that the supply shocks become more correlated over longer horizons.

Though this suggests some amount of arbitrage capital flows across trades, the average 1% upper

bound of the quarterly supply shocks is only 37% and thus points to a relatively persistent form of

segmentation in arbitrage. This persistence is also apparent from our event studies of the 2016 MMF

reform (Section 4.2), the JP Morgan London Whale (Section 5.2), and Deutsche Bank’s Exit from

the CDS market (Section 5.3). In all three events, a subset of arbitrage spreads remained elevated

for several months after the initial funding or balance sheet shock.

In Internet Appendix Section A.2.9, we supplement our analysis by studying how the returns to

different arbitrage strategies comove over varying holding periods. While correlations do increase

over longer holding periods, they remain very far from perfect (~15%) even for holding periods

of one quarter. With that said, there are some parts of the market that appear more integrated than

others over longer horizons, such as the 3-month GBP CIP and the 10-year Treasury swap trades.

38To construct each figure, we first draw a random set of identified supply shocks for each trade, cumulate them to
the desired frequency (e.g, one month), and compute the resulting correlation matrix of shocks across trades. The figure
shows the 99% percentile of each pairwise correlation across 10,000 draws.
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6.2 Conclusion

In this paper, we show that riskless arbitrage is segmented. The average correlation between

arbitrage spreads is low. We show that this low correlation is due to both funding and balance sheet

factors.

Overall, our results demonstrate the importance of both balance sheet and funding segmentation

in financial intermediation. In this respect, we build on research that documents how shocks

to specialized risk-bearing capacity can disconnect risk premia across markets. Our focus on

fundamentally riskless arbitrage trades highlights the pervasiveness of these issues. The arbitrages

we study are relatively straightforward to execute and have expected returns that are essentially

observable. These characteristics should mitigate the typical agency problems thought to underlie

segmentation, slow moving capital, and the limits of arbitrage, yet in practice arbitrage still appears

fairly segmented. It seems natural to expect more segmentation in the intermediation of risky

assets where agency problems are likely to be more severe. More broadly, our results suggest that

exploring the boundaries of the firm for financial intermediaries – why certain trades are grouped

together in a market segment – is a promising direction for future research.
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Figure 1: Strategy-Level Average Arbitrage

(a) Daily Frequency
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(b) Monthly Moving Average
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Notes: Panel A shows the average arbitrage spread by strategy at the daily frequency. Panel B plots a monthly (22
trading days) moving average of the daily series for each strategy.
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Figure 2: Arbitrage Spreads by Strategy
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Figure 3: Correlation of Arbitrage Spreads
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Figure 4: The Factor Structure of Arbitrage Spreads
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Figure 5: Arbitrage Spreads at the Onset of Covid
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Figure 6: Correlation of Arbitrage Supply and Demand Shocks

(a) Supply Shocks
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(b) Demand Shocks
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Notes: This figure shows the correlation of supply (panel a) and demand (panel b) shocks based on a sign-restricted
SVAR that is estimated separately for each trade. For a given trade i, we first estimate a sign-restricted SVAR with one
lag following Uhlig (2005) and Arias et al. (2018). Using the median estimated parameter set, we then construct the
implied supply and demand shock series. The top and bottom panels then shows the correlation matrix of the respective
supply and demand shock series across trades. Data is weekly from 2010 to 2020. See Section 3.3 for more details.
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Figure 7: 99th Percentile of Arbitrage Supply Shock Correlations
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(c) One-Quarter

Notes: This figure shows the correlation of supply shock (panel a) and demand shocks (panel b) based on a sign-restricted
SVAR that is estimated separately for each trade. For a given trade i, we first estimate a sign-restricted SVAR with
one lag following Uhlig (2005) and Arias et al. (2018). We then select 10,000 random draws from the identified set of
structural parameters Θi for each trade and compute the implied supply shock series. For each draw k, we then compute
the correlation matrix Rk of the supply shocks across trades. Panels (a), (b), and (c) show the 99th percentile of the
correlation matrix for weekly shocks, monthly, and quarterly shocks, respectively. Monthly and quarterly shocks series
are computed by cumulating weekly shock series. See Section 3.3 for more details.
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Figure 8: Funding Costs and Arbitrage Correlations
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(b) First Principal Component of Secured Arbitrages

Notes: Panel (a) of this figure shows the first principal component (PC) of unsecured arbitrage spreads and the 3-month
TED spread. Panel (b) shows the first principal component of secured arbitrages, the 1-day, 1-week, and 1-month
tri-party general collateral repo rate relative to the interest rate on excess reserves (IOER), and the 3-month TED
spread. All data is sampled monthly. Panel (b) begins in September 2011 due to the availability of the 10- and 20-year
Treasury-swap rate.
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Figure 9: Event Study of the 2016 Money Market Reform
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(c) Unsecured vs Secured Arbitrage Spreads

Notes: This figure summarizes money market fund (MMF) behavior, funding costs, and the absolute values of arbitrage
spreads around the 2016 MMF reform. Compliance with the reform was required by October 2016 and so we define
the reform event as occurring in October 2016. Panel A of the figure shows the time series of bank commercial paper
held by MMFs. Panel B shows the average maturity-matched TED spread (LIBOR - Treasury) for the arbitrages in our
sample. Denote l as the maturity of the nearest-maturity LIBOR for a given trade. The maturity-matched TED spread
for the trade is then defined as LIBOR(l)−Treasury(l). For trades with tenors longer than 1 year, we set l = 1 year
based on the availability of LIBOR rates. Panel C shows the average arbitrage spread of trades that rely heavily on
unsecured funding (CIP, Box, and Equity spot-futures) and those that rely more on secured funding.
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Figure 10: Event Study of the 2012 JPM London Whale
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(c) Impact on Equity Spot-Futures Arbitrage
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(d) Impact on JPM CP Rates

Notes: This figure summarizes JP Morgan’s (JPM) losses, the absolute value of equity spot-futures arbitrage spreads,
and JPM commercial paper (CP) borrowing rates around the 2012 JPM London Whale incident. Panel (a) of the figure
shows the 2012 year-to-date losses on JPM’s credit derivative portfolio, as reported by the U.S. Senate investigation
into the incident. Panel (b) shows the daily average arbitrage spreads of equity spot-futures, other unsecured arbitrages
(CIP and Box), and secured arbitrages in 2012. The first vertical line in the plot is March 1, 2012, which is when losses
began to accelerate. The second dotted line is June 13, 2012, the first day that the CEO of JPM appeared before the
U.S. Senate Committee on Banking, Housing, and Urban Affairs to testify about the Whale trades. Panel (c) shows
the estimated impact on equity spot-futures arbitrage spreads, relative to other unsecured arbitrages (CIP and Box).
The solid lines show the point estimates from a dynamic difference-in-difference model and the dotted lines show the
associated 95% confidence intervals. Panel (d) shows the estimated impact on JPM’s commercial paper (CP) rate,
relative to the CP rates of other large global banks. See Section 5.2 for more details.
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Figure 11: Event Study of the Deutsche Bank’s 2014 Exit from CDS Trading
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(b) Impact on CDS-Bond Basis

Notes: This figure summarizes the behavior of the absolute values of arbitrage spreads around the 2014 exit of Deutsche
Bank (DB) from the CDS market. Panel (a) shows the daily average arbitrage spreads of CDS-Bond arbitrage, other
secured arbitrages (Treasury Futures, Treasury Swap, and TIPS-Treasury), and unsecured arbitrages in the last half
of 2014 and the beginning of 2015. The first vertical line in the plot is October 1, 2014. The exact timing of DB’s
exit is unknown, but there are reports that they sold a large portion of their CDS portfolio to Citibank in September
2014 and they publicly announced the exit on November 17, 2014. Panel (b) plots the point estimates from a dynamic
difference-in-difference model and the associated 95% confidence intervals around the event. See Section 5.3 for more
details.
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Figure 12: Fixed Income Arbitrage Hedge Funds and Secured Arbitrages
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Notes: This figure plots the t-statistics from regressing monthly changes in the absolute values of arbitrage spreads
on the lagged return of ten different fixed income hedge funds. Each hedge fund is indexed along the x-axis, and the
y-axis shows the t-statistic from the regression. The different plot markers correspond to different strategies. We obtain
returns of the ten largest Fixed Income Arbitrage Hedge Funds from Preqin. The horizontal red line corresponds to the
Bonferroni-adjusted t-statistic that corresponds to a 5% significance threshold, which accounts for the fact that we run
ten separate regressions for each strategy. Within each regression, we cluster standard errors by month.
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Table 1: Summary Statistics for Arbitrage Spreads

Mean p50 Std. Dev Min Max AR1 First Last N

Box 6m 35 35 11 0 82 0.897 Jan-10 Feb-20 2,534
Box 12m 34 34 10 0 87 0.914 Jan-10 Feb-20 2,534
Box 18m 33 32 9 2 64 0.943 Jan-10 Feb-20 2,534
Dow SF 45 45 24 0 139 0.976 Jan-10 Feb-20 2,497
NDAQ SF 38 39 22 0 123 0.978 Jan-10 Feb-20 2,496
SPX SF 42 41 20 0 116 0.982 Jan-10 Feb-20 2,495
AUD CIP 13 11 10 0 59 0.933 Jan-10 Feb-20 2,541
CAD CIP 12 9 10 0 62 0.983 Jan-10 Feb-20 2,539
CHF CIP 51 47 27 11 198 0.974 Jan-10 Feb-20 2,541
EUR CIP 35 33 21 0 118 0.986 Jan-10 Feb-20 2,540
GPB CIP 17 12 14 0 93 0.986 Jan-10 Feb-20 2,540
JPY CIP 45 41 24 10 125 0.986 Jan-10 Feb-20 2,541
NZD CIP 11 11 6 0 36 0.873 Jan-10 Feb-20 2,540
SEK CIP 27 21 22 0 99 0.985 Jan-10 Feb-20 2,541
Treasury 2Y SF 13 12 9 0 62 0.930 Jan-10 Feb-20 2,347
Treasury 5Y SF 12 9 11 0 58 0.953 Jan-10 Feb-20 2,388
Treasury 10Y SF 18 15 15 0 113 0.930 Jan-10 Feb-20 2,477
Treasury 20Y SF 17 13 14 0 79 0.898 Jan-10 Feb-20 2,494
Treasury 30Y SF 11 9 10 0 180 0.655 Jan-10 Feb-20 1,734
Treasury-Swap 1Y 6 5 5 0 32 0.964 Jan-10 Feb-20 2,541
Treasury-Swap 2Y 10 9 6 0 34 0.964 Jan-10 Feb-20 2,541
Treasury-Swap 3Y 12 10 8 0 36 0.982 Jan-10 Feb-20 2,541
Treasury-Swap 5Y 17 15 10 0 44 0.984 Jan-10 Feb-20 2,541
Treasury-Swap 10Y 26 25 12 0 59 0.986 Jan-10 Feb-20 2,541
Treasury-Swap 20Y 35 35 15 8 70 0.990 Sep-11 Feb-20 2,105
Treasury-Swap 30Y 54 51 19 23 100 0.995 Sep-11 Feb-20 2,105
TIPS-Treasury 2Y 21 23 12 0 54 0.968 Jan-10 Feb-20 2,541
TIPS-Treasury 5Y 19 20 8 0 56 0.981 Jan-10 Feb-20 2,541
TIPS-Treasury 10Y 25 25 7 1 40 0.976 Jan-10 Feb-20 2,541
TIPS-Treasury 20Y 26 26 8 1 47 0.974 Jan-10 Feb-20 2,541
CDS-Bond IG 22 20 13 0 79 0.973 Jan-10 Feb-20 2,540
CDS-Bond HY 65 59 36 1 188 0.989 Jan-10 Feb-20 2,540

Notes: This table presents summary statistics on the absolute values of different arbitrage spreads. Trades are grouped
by strategy (e.g., CIP). All CIP trades are for 3 month tenors. SPX, DJX, and NDAQ SF are spot-futures arbitrages for
the S&P 500, Dow Jones, and Nasdaq indices, respectively. Treasury iY SF is the Treasury spot-futures arbitrage for
i-year maturity Treasuries. CDS-Bond denotes the average CDS-Bond basis for investment grade (IG) and high-yield
(HY) firms. See Section 3.1 and Internet Appendix A.1 for details on the construction of arbitrage trades. The column
AR1 is the coefficient from an AR(1) model estimated from daily data. The columns First and Last are the month and
year of the first and last observation for each series.
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Table 2: Correlations Within and Across Arbitrage Strategies

(a) Distribution of All Pairwise Correlations

ρi j p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρi j = ρ

0.22 0.30 -0.55 0.00 0.17 0.42 0.96 496 0.00 0.00

90% of pairs reject H0: ρi j > 0.67

(b) Average Within and Across-Strategy Correlations

CIP Box Equity S-F Treasury S-F Treasury-Swap TIPS-Treasury CDS-Bond

CIP 0.35 0.39 0.27 0.06 0.36 0.18 -0.00
Box 0.39 0.87 0.42 -0.04 0.36 0.16 -0.18
Equity S-F 0.27 0.42 0.85 -0.05 0.03 0.03 -0.41
Treasury S-F 0.06 -0.04 -0.05 0.20 0.21 0.04 0.28
Treasury-Swap 0.36 0.36 0.03 0.21 0.62 0.16 0.30
TIPS-Treasury 0.18 0.16 0.03 0.04 0.16 0.37 0.10
CDS-Bond -0.00 -0.18 -0.41 0.28 0.30 0.10 0.70

Notes: Panel A summarizes the distribution of pairwise correlations for all arbitrage strategies. The columns under p-
value report tests of the null that the average pairwise correlation is above 0.67 and the null that all pairwise correlations
are equal, respectively. Panel B shows the average pairwise correlation within and across trades in each strategy.
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Table 3: Correlations for Arbitrages of Similar Tenors

(a) Distribution of Pairwise Correlations for Short-Tenor Trades

ρi j p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρi j = ρ

0.19 0.32 -0.41 -0.02 0.15 0.35 0.89 120 0.00 0.00

87% of pairs reject H0: ρi j > 0.67

(b) Distribution of Pairwise Correlations for Medium-Tenor Trades

ρi j p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρi j = ρ

0.39 0.28 0.02 0.21 0.32 0.50 0.93 21 0.00 0.00

81% of pairs reject H0: ρi j > 0.67

(c) Distribution of Pairwise Correlations for Long-Tenor Trades

ρi j p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρi j = ρ

0.37 0.30 -0.22 0.13 0.32 0.53 0.96 36 0.00 0.00

81% of pairs reject H0: ρi j > 0.67

Notes: Panel A summarizes the distribution of pairwise correlations for all arbitrage strategies with tenors of less than
six months. Panel B mirrors Panel A and summarizes the distribution of pairwise correlations for all arbitrage strategies
with tenors greater than 6 months and less than or equal to 3 years. Panel C shows the distribution of correlations for
trades with tenor greater than 3 years, including the CDS-Bond basis strategies. The columns under p-value report
tests of the null that the average pairwise correlation is above 0.67 and the null that all pairwise correlations are equal,
respectively.
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Table 4: Correlations in Different Subsamples

(a) Conditional on Dealer Credit Spreads

ρi j p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρi j = ρ

0.27 0.28 -0.48 0.08 0.27 0.46 0.97 492 0.00 0.00

86% of pairs reject H0: ρi j > 0.67

(b) During the Onset of Covid

ρi j p-value

Mean Sd Min p25 p50 p75 Max N ρ > 0.67 ρi j = ρ

0.29 0.36 -0.68 0.02 0.31 0.57 0.99 496 0.00 0.00

62% of pairs reject H0: ρi j > 0.67

Notes: This table summarizes the distribution of pairwise correlations for arbitrage strategies in different subsamples. In
all cases, the columns under p-value are, respectively, based on tests of the null that average correlations are above 0.67
and the null that all pairwise correlations are equal. Panel A is only for the subsample of dates on which each arbitrage
in a given pair exceeds the average 6-month CDS spread for the set of dealers who have been designated as primary
dealers by the New York Federal Reserve since 2010. Panel B is based on all arbitrage strategies between March 1,
2020 through May 31, 2020.
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Table 5: Margin Requirements for Arbitrage Strategies

Margin Requirement (%)

Arbitrage Collateral p10 Median p90

Treasury Spot-Futures Treasuries 2 2 2
Treasury-Swap Treasuries 2 2 2
TIPS-Treasury Treasuries 2 2 2
IG CDS-Bond IG Corporate Bond 3 5 8
HY CDS-Bond HY Corporate Bond 3 8 15
Equity Box Equities 5 8 15
Equity Spot-Futures Equities 5 8 15
CIP Foreign Currency 6 6-12 12

Notes: This table shows margin requirements for each strategy. Margin data primarily come from the Federal Reserve
Bank of New York’s Tri-party Repo Infrastructure Reform Task Force. For currencies, we report data from central bank
lending operations by the Bank of England and the European Central Bank.
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Table 6: Arbitrage-Implied Riskless Rates and Funding Conditions

Dep Variable: ∆ Implied RF

Unsecured Secured CIP Box Equity S-F TSwap TFut Tips-T CDS-Bond

∆ Treasury 0.88∗∗ 0.93∗∗ 0.85∗∗ 0.99∗∗ 0.78∗∗ 0.99∗∗ 0.80∗∗ 0.95∗∗ 0.71∗∗

(9.34) (51.66) (5.66) (16.68) (2.85) (60.79) (8.74) (35.97) (9.81)

∆ TED 0.49∗∗ 0.07 0.35∗∗ 0.53∗∗ 0.78∗∗ 0.04 0.15 0.08 -0.24
(4.58) (1.33) (2.24) (5.26) (3.81) (0.94) (1.35) (0.77) (-1.12)

R2 0.23 0.66 0.22 0.57 0.11 0.95 0.11 0.88 0.53
N 1,694 2,136 968 363 363 807 603 484 242

Notes: This table shows monthly OLS regressions of changes in arbitrage-implied riskless rates on changes in maturity-matched Treasury yields and TED spreads.
All variables are expressed in basis points. Define l and m, respectively, as the maturities of the nearest-maturity LIBOR and Treasury for a given trade. The
maturity-matched TED spread for the trade is then defined as LIBOR(l)−Treasury(l) and the maturity-matched Treasury yield is defined as Treasury(m). l does
not equal m for longer-tenor trades (e.g., 30-year Treasury swap) because the maximum maturity LIBOR rate we observe is one year. t-statistics are reported in
parentheses under point estimates and are based on standard errors clustered by strategy-month.



Table 7: Analysis of 2016 MMF Reform

Dep Variable: Arb. Spread (bps)

(1) (2)

β 11.77∗∗

(2.47)

β j=−4 -4.01
(-0.59)

β j=−3 0.80
(0.09)

β j=−2 7.23
(0.82)

β j=−1 11.72
(1.64)

β j=0 18.03∗∗

(2.33)

β j=1 18.29∗∗

(2.21)

β j=2 20.70∗∗

(2.58)

β j=3 16.29∗∗

(2.41)

β j≥4 9.26∗∗

(2.18)

p: β j = 0,∀ j < 0 0.00
p: β0 = β1 = β2... 0.00
Adjusted R2 0.59 0.59
N 60,691 60,691

Notes: This table shows estimates of the effect of the 2016 money market reform on the absolute values of arbitrage
spreads. Column (1) presents estimates of the following daily regression: sit = αi +αt +β1[i ∈Unsecured]×1[t ≥
October2016] + εit , where sit is the absolute value of the arbitrage spread for trade i on date t, 1[i ∈ Unsecured] is
a dummy variable that equals 1 if trade i relies heavily on unsecured funding (CIP, Box, and Equity spot-futures),
and 1[t ≥ October2016] is a dummy variable that equals 1 on or after October 2016. Column (2) shows estimates
of the regression: sit = αi +αt +∑

3
j=−4 β j1[i ∈Unsecured]×1[t = October2016+ j]+β j≥41[i ∈Unsecured]×1[t ≥

February2017]+ εit . Arbitrage spreads are expressed in basis points. In column 2, we also report p-values for the null
hypothesis that the coefficients prior to October 2016 (β j for j < 0) are equal to zero, as well as the null hypothesis
that the coefficients on or after October 2016 are equal to each other (β j are equal for j ≥ 0). All regressions include
fixed effects for trade (αi) and date (αt ). t-statistics are reported in parentheses under point estimates and are based on
standard errors clustered by trade and date. The estimation sample ends one year after the reform in October 2017.
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Table 8: Arbitrage-Implied Riskless Rates and Funding Shocks to Fidelity

Dep Variable: ∆ Implied RF

(1) (2) (3) (4) (5) (6)
Equity S-F CIP/Box Secured Equity S-F CIP/Box Secured

∆ Treasury 0.79∗∗ 0.91∗∗ 0.93∗∗ 0.81∗∗ 0.91∗∗ 0.94∗∗

(2.94) (9.65) (51.57) (3.01) (9.45) (50.11)

∆ TED 0.70∗∗ 0.39∗∗ 0.07 0.62∗∗ 0.41∗∗ 0.12∗

(3.56) (3.24) (1.35) (3.16) (3.20) (1.95)

Fidelity IPrime Flows -0.55∗∗ -0.14∗ 0.01 -1.09∗∗ 0.04 0.27
(-3.86) (-1.84) (0.34) (-2.25) (0.12) (1.38)

Estimation OLS OLS OLS IV IV IV
First-Stage F 9 15 30
R2 0.15 0.31 0.66 0.11 0.30 0.65
N 363 1,331 2,136 357 1,309 2,099

Notes: This table presents regression estimates of monthly changes in arbitrage-implied riskless rates on flows out of
Fidelity IPrime money market funds (MMFs). The first three columns show OLS estimates, and the last three columns
show IV estimates, where the instrument is net flows into all Fidelity MMFs interacted with the Fidelity IPrime share
of assets, lagged by 3 months. We also include the change in the maturity-matched Treasury yield and the change in
the maturity-matched TED spread. Define l and m, respectively, as the maturities of the nearest-maturity LIBOR and
Treasury for a given trade. The maturity-matched TED spread for the trade is then defined as LIBOR(l)−Treasury(l)
and the maturity-matched Treasury yield is defined as Treasury(m). l does not equal m for longer-tenor trades (e.g.,
30-year Treasury swap) because the maximum maturity LIBOR rate we observe is one year. See Section 4.3 for details
on instrument construction. Columns (1) and (4) show estimates using only Equity spot-futures, columns (2) and (5)
show estimates for other unsecured trades (CIP and Box), and columns (3) and (6) show estimates for all secured trades.
All implied riskless rates are in basis points and flows are in percentage points. t-statistics are reported in parentheses
under point estimates and are based on standard errors clustered by strategy-month. The F-statistic from the first-stage
of the IV is reported at the bottom of the table.
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Table 9: Trading Behavior in U.S. Futures Markets

Gross Share (%) Position Size (% of Net) Earns Arbitrage (% of days)

Dealers HFs Asset Mgrs Dealers HFs Asset Mgrs Dealers HFs Asset Mgrs

2-Year Treasury Notes 11 37 38 13 33 30 46 63 34
5-Year Treasury Notes 12 30 48 14 32 38 62 66 26
10-Year Treasury Notes 12 30 48 12 30 31 58 74 32
20-Year Treasury Bonds 12 25 56 25 14 43 37 45 62
30-Year Treasury Bonds 16 29 52 18 32 45 46 46 23
S&P 500 Index 21 30 41 27 18 45 88 98 1
Nasdaq Index 35 31 29 41 19 29 80 29 14
Dow Jones Industrial Average 52 32 11 45 29 15 94 8 9
Average Treasury 13 30 48 16 28 37 50 58 35
Average Equity 36 31 27 38 22 30 87 45 8

Notes: This table summarizes the weekly positions of dealers, hedge funds, and asset managers using weekly reports on the Commitments of Traders provided by the
Commodity Futures Trading Commission (CFTC). We use hedge funds (HFs) to designate traders who classified by the CFTC as “leveraged funds”. Gross positions
by type are computed as the sum of long, short, and spread positions. Gross share is the percent of total gross positions outstanding across all reporting agents. The
columns listed under Position Size (% of Net) are computed as follows: (i) compute the net position of each type i in week t as Netit = Longit −Shortit ; (ii) compute
the total net outstanding of the market Nett by summing |Netit | across all reporting agents; and (iii) Position Size (% of Net) is then |Netit |/Nett . We include the
CFTC’s “Other Reporting” agents in our calculation of gross and net outstanding, but do not report their share in the table. This means that shares in the table will not
sum to 100. The Gross Share and Position Size are weekly averages for each contract. The columns under Earns Arbitrage shows the percent of days on which the net
position of the type would earn the observed arbitrage spread.



Table 10: Fixed Income Arbitrage Hedge Fund Returns and Arbitrage Spreads

Dep Variable: ∆ Arbitrage Spread

Unsecured Secured CIP Box Equity S-F TSwap TFut Tips-T CDS-Bond

FI Arb HF Returnt−1 0.00 -0.66∗∗ -0.10 -0.34 0.64 -0.40∗∗ -0.44 -0.49 -2.33∗∗

(0.01) (-3.04) (-0.16) (-0.56) (0.65) (-2.45) (-0.89) (-1.09) (-2.72)

R2 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.06
N 1,694 2,136 968 363 363 807 603 484 242

Notes: This table shows regressions of monthly changes in the absolute values of arbitrage spreads on the lagged aggregate return of hedge funds that specialize on
fixed income arbitrage, as measured by Barclay’s Aggregate Fixed Arbitrage Index. The aggregate return series is standardized to have mean zero and unit variance.
The columns Unsecured and Secured pool strategies based on whether they rely on unsecured funding (CIP, Equity Spot-Futures, and Box). The remaining columns
run the regression by strategy. Standard errors are clustered by strategy-month.
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