
Quantifying Uncertainty in Natural Language
Explanations of Large Language Models

Sree Harsha Tanneru
sreeharshatanneru@g.harvard.edu

Chirag Agarwal
chiragagarwall12@gmail.com

Himabindu Lakkaraju
hlakkaraju@seas.harvard.edu

Harvard University

Abstract

Large Language Models (LLMs) are increasingly used as powerful tools for several
high-stakes natural language processing (NLP) applications. Recent prompting
works claim to elicit intermediate reasoning steps and key tokens that serve as
proxy explanations for LLM predictions. However, there is no certainty whether
these explanations are reliable and reflect the LLM’s behavior. In this work, we
make one of the first attempts at quantifying the uncertainty in explanations of
LLMs. To this end, we propose two novel metrics — Verbalized Uncertainty and
Probing Uncertainty — to quantify the uncertainty of generated explanations.
While verbalized uncertainty involves prompting the LLM to express its confidence
in its explanations, probing uncertainty leverages sample and model perturbations
as a means to quantify the uncertainty. Our empirical analysis of benchmark
datasets reveals that verbalized uncertainty is not a reliable estimate of explanation
confidence. Further, we show that the probing uncertainty estimates are correlated
with the faithfulness of an explanation, with lower uncertainty corresponding
to explanations with higher faithfulness. Our study provides insights into the
challenges and opportunities of quantifying uncertainty in LLM explanations,
contributing to the broader discussion of the trustworthiness of foundation models.

1 Introduction

Large Language Models (LLMs), such as GPT4 [18], Bard [16], Llama-2 [25], and Claude-
2 [Anthropic], have garnered significant attention and are employed across a wide range of
applications, including chat-bots, computational biology, creative work, and law [9] due to their
impressive natural language understanding and generation capabilities. However, state-of-the-art
LLMs are complex models with billions of parameters, where their inner working mechanisms are
not fully understood yet, making them less trustworthy amongst relevant stakeholders. This lack
of transparency causes hindrance to deploying LLMs in high-stakes decision-making applications,
where the consequences of incorrect decisions are severe and could result in the generation of
harmful content, misdiagnosis [35], and hallucinations [6, 31]. The lack of user trust demands the
development of robust explanation techniques to gain insights into how these powerful LLMs work.

Previous works for explaining language models can be broadly categorized into perturbation-based
methods [12, 13], gradient-based methods [10, 24]), attention-based methods [4, 28], example-based
methods [8, 26, 29, 32], and Natural Language Explanations (NLEs) [30]. While most of the above
methods require white-box access to models (e.g., model gradients and prediction logits), NLEs
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generated by LLMs enable us to understand the behavior of these models even when the models
are closed-source. For instance, Chain-of-Thought (CoT) [30] explanations, a popular class of NLEs
generated by LLMs show the step-by-step reasoning process leading to the outputs generated by these
models. While CoTs and other natural language explanations generated by LLMs often seem quite
plausible and believable [27], recent works have demonstrated that these natural language explana-
tions may not always faithfully capture the underlying behavior of these models [27]. However, there
is little to no work that focuses on deciphering if and to what extent the generated NLEs faithfully
capture the behavior of the underlying model. One way to address this problem is to quantify the
uncertainty in the NLEs generated by LLMs. However, this critical direction remains unexplored.

Prior works on uncertainty estimation in the context of LLMs have only focused on providing
uncertainty estimates (i.e., confidence) corresponding to the responses (answers) generated by
LLMs [34]. While uncertainty in LLM predictions has been studied using external calibrators [7],
model fine-tuning [14], and non-logit-based approaches [34], there is little to no work on estimating
the uncertainty of LLM explanations. Understanding the uncertainty in natural language explanations
generated by LLMs is paramount to ensuring that these explanations are trustworthy and are not
just plausible hallucinations.

Present work. In this work, we make one of the attempts at quantifying the uncertainty in natural
language explanations generated by LLMs. In particular, we propose two novel approaches – Verbal-
ized uncertainty and Probing uncertainty metrics – to quantify the confidence of NLEs generated by
large language models and compare their reliability. While verbalized uncertainty metrics focus on
prompting a language model to express its uncertainty in the generated explanations, probing uncer-
tainty metrics leverage different kinds of input perturbations (e.g., replacing words with synonyms,
paraphrasing inputs) and measure the consistency of the resulting explanations. Using our proposed
metrics, we provide the first definition of uncertainty estimation of language model explanations. In
addition, our work also demonstrates key connections between uncertainty and faithfulness of natural
language explanations generated by LLMs.

We evaluate the effectiveness of our proposed metrics on three math word problems and two com-
monsense reasoning benchmark datasets and conduct experiments using different GPT variants. Our
empirical results across these datasets and LLMs reveal the following key findings. 1) Verbalized
uncertainty is not a reliable estimate of explanation confidence and LLMs often exhibit very high
verbalized confidence in the explanations they generate. 2) Probing uncertainty is correlated with the
predictive performance of the LLM, where correct answers from a model tend to generate more confi-
dent/less uncertain explanations. 3) A clear connection exists between the uncertainty and faithfulness
of an explanation, where less uncertain explanations tend to be more faithful to the model predictions.

2 Preliminaries

Notations. Large language models typically have a single vocabulary V that represents a set of unique
“tokens” (words or sub-words). Let M : 𝑄 → 𝐴 denote a language model mapping a sequence of 𝑛
question tokens 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑛) to sequence of 𝑚 answer tokens 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑚), where
𝑞𝑖 and 𝑎𝑖 are text tokens belonging to the model vocabulary V. In addition to the original question 𝑄,
we design specific prompts 𝑄𝑒 to generate natural language explanation (NLE) 𝐴𝑒 from the language
model M.

Uncertainty. Black-box LLMs do not provide access to parameter gradients or model logits,
rendering traditional explainability techniques ineffective. To this end, most language models
leverage NLEs, which are explanations generated from the language model to serve as proxy
explanations and are a viable alternative. While NLEs are essentially a sequence of tokens sampled
from the model that serve as explanations, there is an associated uncertainty for the generated
explanations. Quantifying the uncertainty of these explanations is essential to estimate the reliability
of generated NLEs. For the rest of the paper, we will use the term “confidence score” to refer to
the uncertainty of an explanation, as determined by the language model.

Explanation Methods. We confine our study to two explanation methods — Token Importance
and Chain of Thought (CoT) explanations. While token importance explanations [12, 33] aims to
identify input tokens (refer to tokens 𝑡 in an input text 𝑇 for LLMs) that most contribute to a model’s
predictions, CoT explanations [30] focus on revealing the sequence of operations or reasoning steps
𝑆𝑖 ∈ 𝑆 the language model M takes when processing the question 𝑄 and arriving at its predictions,
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Read the question, and assign each word an importance score between 0 and 100 of how important
it is for your answer. The output format is as follows:
Word: [Word 1 here], Importance: [Your importance score here]
. . .
Word: [Word N here], Importance: [Your importance score here]
Final answer and overall confidence (0-100): [Your answer as a number here], [Your confidence
here]
Note: The importance scores of all words should add up to 100. The overall confidence score
indicates the degree of certainty you have about your importance scores. For instance, if your
confidence level is 80%, it means you are 80% certain that importance scores assigned are correct.
Provide the answer in aforementioned format, and nothing else.
Q: Jake has 11 fewer peaches than Steven. If Jake has 17 peaches. How many peaches does Steven
have?

Answer:
Word: Jake, Importance: 20%
Word: Steven, Importance: 20%
Word: peaches, Importance: 60%
Final answer and overall confidence (0-100): 28, 100%

Figure 1: Template for generating token importance and its confidence. The prompt 𝑄𝑒 appended to the
original question 𝑄 to elicit a token importance explanation 𝑇 𝐼. We ask the underlying LLM to verbally assign
an importance score to each word in the question 𝑄 and then provide the final answer 𝐴 with overall confidence.

where 𝑛𝑠 = |𝑆 | denotes the total number of steps in a CoT explanation. For token importance
explanation, we concatenate a prompt 𝑄𝑒 to the given question 𝑄 using the template: “Read the
question and output the words important for your final answer. . . ”. Whereas, the prompt 𝑄𝑒 to
generate CoT explanations uses the following template: “Read the question, give your answer by
analyzing step by step, . . . ”. Please refer to Figures 12-13 in appendix for more details.

We generate an answer from the LLM M as follows: M(𝑄) = 𝐴. We also generate an explanation
𝐴𝑒 along with answer 𝐴 using the aforementioned template question 𝑄𝑒 as: M(𝑄𝑒 +𝑄) = 𝐴 + 𝐴𝑒.

3 Quantifying Uncertainty in Explanations

Next, we describe our metrics which aim to estimate the uncertainty in token importance and CoT
explanations generated by LLMs.

Problem formulation (Uncertainty in Explanations). Given a question-answer pair and prompt
𝑄𝑒 to generate natural language explanation 𝐴𝑒 from the model M : (𝑄,𝑄𝑒) → (𝐴, 𝐴𝑒), we aim
to develop an uncertainty function UNC : 𝐴𝑒 → [0, 1], which maps a generated explanation 𝐴𝑒

to a scalar score that determines the uncertainty in the generated explanation, i.e.,

Uncertainty = UNC(𝐴𝑒),

where M(𝑄𝑒 +𝑄) = 𝐴 + 𝐴𝑒.

As mentioned before, we confine our study to two natural language explanation methods – Token
Importance and CoT. We use TI𝑞 : {𝑤 | 𝑤 ∈ 𝑄} to denote a token importance explanation which
is a subset of words in the question 𝑄 that are important for predicting the answer 𝐴 and CoT𝑞 :
{(𝑆1, 𝑐1) → (𝑆2, 𝑐2) · · · → (𝑆𝑛𝑠 , 𝑐𝑛𝑠 )} a CoT explanation for a prediction 𝐴 from question 𝑄. Here
𝑆𝑖 = (𝑠1, 𝑠2, . . . 𝑠𝑛𝑠 ) is a text sequence denoting the natural language reasoning and 𝑐𝑖 ∈ [0, 1] is the
LLM’s confidence of CoT step 𝑆𝑖 .

3.1 Verbalized Uncertainty

A straightforward approach to elicit uncertainty of an explanation is to directly request the LLM M
to output a confidence score for the explanation ranging from 0% to 100%. By directly soliciting the
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Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2: [Your reasoning here], Confidence: [Your confidence here]%
...
Step N: [Your reasoning here], Confidence: [Your confidence here]%
Final answer and overall confidence (0-100): [Your answer as a number here], [Your confidence
here]%
Note: The confidence indicates the degree of certainty you have about your reasoning. For instance,
if your confidence level is 80%, it means you are 80% certain that your reasoning is correct.
Provide the answer in aforementioned format, and nothing else.
Q: Jake has 11 fewer peaches than Steven. If Jake has 17 peaches. How many peaches does Steven
have?

Answer:
Step 1: Jake has 11 fewer peaches than Steven. Confidence: 100%
Step 2: Jake has 17 peaches. Confidence: 100%
Step 3: If Jake has 17 peaches, then Steven has 17 + 11 = 28 peaches. Confidence: 100%
Final answer and overall confidence (0-100): 28, 100%

Figure 2: Template for generating CoT explanation and its step-wise confidence. The prompt 𝑄𝑒 appended
to the original question 𝑄 to elicit a CoT explanation. We ask the underlying LLM to verbally assign an
importance score to each step of the CoT explanation and then provide the final answer 𝐴 with overall confidence.

model’s self-assessment of uncertainty, this approach seeks to extract explicit uncertainty information
inherent in the model. We provide the template of the prompts for confidence elicitation for token
importance and CoT explanations in Figures 1-2. For token importance, we ask the underlying LLM
to verbally assign an importance score to each word in the question 𝑄 and then provide the final
answer of the question with overall confidence (see Fig. 1). In contrast, for CoT explanations (see
Fig. 2), we ask the LLM to assign verbalized confidence to each step in the CoT reasoning and the
final answer.

3.2 Probing Uncertainty

Verbalized uncertainty elicits confidence in an explanation by directly requesting the underlying LLM
to output a confidence score in a given range. In contrast, for estimating uncertainty using probing,
we leverage the consistency of explanations as a measure to estimate the uncertainty in explanations
generated by a language model M. More specifically, let 𝐴𝑒 denote the natural language explanation
generated by the model M for a given question 𝑄 and [𝐴𝑒1 , 𝐴𝑒2 , . . . , 𝐴𝑒𝑁 ] be 𝑁 explanations
generated for 𝑁 perturbation of the same question using its local neighborhood. Next, we describe
two different perturbation strategies to generate 𝑁 explanations for a given question and answer.

Sample Probing. Motivated by the local neighborhood approximation works in XAI [21, 22], we
propose uncertainty metrics that leverage the consistency of a model in generating the explanation in
a local neighborhood. Here, we presume that the local behavior of the underlying LLM is consistent
for perturbed samples of the original question and gradually introduce perturbations in the questions
by paraphrasing the original question 𝑄. Given a question 𝑄, we paraphrase the question into 𝑁
different forms {𝑄1, 𝑄2, . . . , 𝑄𝑁 }, such that each paraphrased question 𝑄𝑖 is semantically equivalent
to Q, and the true reasoning process remains the same, i.e., given a question: “Jake has 11 fewer
peaches than Steven. If Jake has 17 peaches. How many peaches does Steven have?”, some of
its local paraphrased counterparts used to calculate uncertainty in explanations are i)...What is the
number of peaches Steven has? ii)...How many peaches is Steven in possession of? iii)...How many
peaches does Steven possess? Next, we generate the explanations using the LLM by probing the
model using the paraphrased questions 𝑄𝑖 . Mathematically,

M(𝑄𝑒 +𝑄𝑖) = 𝐴𝑖 + 𝐴𝑒𝑖 ; 𝑖 = 1, 2, . . . , 𝑁 (1)
where 𝑄𝑖 is a paraphrased form of question 𝑄, 𝑄𝑒 is the prompt to generate explanations, and 𝐴𝑒𝑖 is
the corresponding generated explanation.
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Model Probing. In contrast to sample uncertainty, where we quantify the uncertainty in explanations
using the variance in the input questions, model uncertainty addresses the uncertainty of LLM
explanations due to the inherent stochasticity of the underlying language model M. More specifically,

Temperature (𝜏)
Question: my favorite food is ….

important words are pizza
important words are pizza
important words are pizza
…
important words are pizza

important words are pizza
important words are noodles
important words are pizza
…
important words are pizza

important words are pasta
important words are noodles
important words are dumpling
…
important words are pizza

𝝉 = 0 𝝉 = 1
Probabilities Probabilities Probabilities

Explanations:

Figure 3: The impact of the temperature 𝜏 on model stochasticity. We find that as 𝜏 increases, the stochasticity in
model responses increases. 𝜏=0 gives near-deterministic answers to a question, whereas 𝜏=1 gives a distribution
of answers.

we use the “temperature” parameter 𝜏 present in most LLMs that control the randomness in the
generated answers by using the probability distribution of each generated token. A high value of
temperature indicates an even distribution among all tokens, and a lower value of temperature indicates
a sharper distribution (see Figure 3). As the temperature parameter increases, the language model
becomes more creative and stochastic in the generated explanations. Intuitively, the temperature
parameter affects the sampling process when generating answers from the model. For a given question
𝑄 (say “my favorite food is . . . ”), we sample 𝑁 answers and their corresponding explanations,
{𝐴𝑖 , 𝐴𝑒𝑖 }∀𝑖 ∈ 1, 2, . . . , 𝑁 from the language model M. Mathematically, we can denote this using:

M(𝑄𝑒 +𝑄) = 𝐴𝑖 + 𝐴𝑒𝑖 ; 𝑖 ∈ {1, 2, . . . , 𝑁} (2)

where 𝐴𝑖 is the 𝑖th answer generated by the LLM for a given temperature 𝜏 and 𝐴𝑒𝑖 is its respective
explanation.

3.2.1 Token Importance Uncertainty

Using the above sample and model perturbation strategies, 𝑁 perturbed natural language explanations
𝐴𝑒𝑖 are generated for a given question 𝑄, answer 𝐴, original explanation 𝐴𝑒. Next, we describe the
metrics for estimating explanation confidence from these perturbed explanations.

We define the uncertainty in token importance explanations as the mean agreement between perturbed
explanations and the original explanation. Two token importance explanations are said to agree with
each other if they employ the same set of important words to arrive at a prediction. To quantify token
importance uncertainty, we use token agreement and token rank metrics. While token agreement
computes the fraction of important tokens that are common between two different explanations,
token rank measures the fraction of important tokens that have the same position in their respective
rank orders. The token rank (TR) metric is defined below:

TR(TI𝑖 ,TI 𝑗 , 𝑘)=
1
𝑘

(⋃
𝑠∈𝑆

{𝑠 |𝑠 ∈ Tokens(TI𝑖 , 𝑘) ∧ 𝑠 ∈

Tokens(TI 𝑗 , 𝑘) ∧ R(TI𝑖 , 𝑠)=R(TI 𝑗 , 𝑠)}
)
,

(3)

where TI𝑖 and TI 𝑗 are any two given token important explanations, Tokens(TI𝑖 , 𝑘) is the first
𝑘 tokens in explanation TI𝑖 , 𝑘 denotes the topK tokens a user wants as explanations, and R(·)
function gives the rank of the word 𝑠 in a token importance explanation TI. The uncertainty in token
importance explanation is defined as the mean agreement between the perturbed explanations TI𝑒𝑖
and the original explanation TIoriginal.

UNCTI =
1
𝑁

𝑁∑︁
𝑖=1

TR(TI𝑒𝑖 ,TIoriginal, 𝑘), (4)
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3.2.2 Chain of Thought Uncertainty

While the agreement between token importance explanations is intuitive, the agreement between the
chain of thought explanations is non-trivial as each explanation has a sequence of steps 𝑆𝑖 in natural
language as output explanations. To check if the two steps in CoT explanations are equivalent, we
propose using pre-trained sentence encoder models [20]. Let us consider two CoT explanations that
generate 𝑁𝑎 and 𝑁𝑏 steps in their respective explanations, i.e., (CoT𝑎 = (𝑠𝑎1 , 𝑠𝑎2 , . . . , 𝑠𝑎𝑁𝑎

) and
CoT𝑏 = (𝑠𝑏1 , 𝑠𝑏2 , . . . , 𝑠𝑏𝑁𝑏

). We define CoT agreement metric (CoTA) that measures the agreement
between any two given CoT explanations as:

CoTA(CoT𝑎,CoT𝑏) =
1

𝑁𝑎 + 𝑁𝑏

( 𝑁𝑎∑︁
𝑖=1

max
𝑗∈1,...,𝑁𝑏

E(𝑠𝑎𝑖 , 𝑠𝑏 𝑗
)

+
𝑁𝑏∑︁
𝑗=1

max
𝑖∈1,...,𝑁𝑎

E(𝑠𝑎𝑖 , 𝑠𝑏 𝑗
)
)
,

(5)

The intuition behind the above metric is that for every step in the a CoT explanation, we check if
there exists a step in other CoT explanation which agrees with it. E(·, ·) denotes the entailment
model that focuses on the task of textual entailment or natural language inference (NLI). The goal of
NLI is to determine the logical relationship between two sentences, usually framed as “entailment”,
“contradiction”, or “neutral”. Formally, the entailment score between two explanation steps is defined
as:

E(𝑠𝑖 , 𝑠 𝑗 ) =
{
1 if statements entail each other
0 if statements do not entail each other

Finally, the uncertainty in the CoT explanation is calculated as the mean agreement of the perturbed
chain of thought explanations with the original explanation.

UNCCoT =
1
𝑁

𝑁∑︁
𝑖=1

CoTA(CoT𝑖 ,CoToriginal) (6)

To summarize, we introduce a metric for calculating the agreement between two CoT explanations
(Eq. 5). In addition, we generate 𝑁 perturbed explanations for a question, and calculate the mean
agreement of perturbed explanations with the original explanation to estimate explanation uncertainty
(Eq. 6).

4 Experiments

Next, we validate the effectiveness of our proposed uncertainty metric which amounts to asking:
What is the uncertainty in explanations generated by state-of-the-art LLMs with respect to different
explanation methods? More specifically, we focus on the following research questions: RQ1) Does
verbalized uncertainty estimation depict overconfidence in LLMs? RQ2) Is there a relation between
uncertainty and faithfulness of an explanation? RQ3) How does explanation confidence vary for
correct and incorrect answers? RQ4) Are changes in the metric parameters necessary for quantifying
uncertainty in explanations?

4.1 Datasets and Experimental Setup

We first describe the datasets and large language models used to study the uncertainty in explanations
and then outline the experimental setup.

Datasets. We conduct experiments using three math word problem and two commonsense reasoning
benchmark datasets. i) the GSM8K dataset that comprises several math word problems [3], ii) the
SVAMP dataset contains math word problems with varying structures [19], iii) the ASDiv dataset
consisting of diverse math word problems [17], iv) the StrategyQA [5] requires a language model
to deduce a multi-step reasoning strategy to answer questions and v) the Sports Understanding
dataset, which is a specialized evaluation set from the BIG-bench [23] that involves determining
whether a sentence relating to sports is plausible or implausible.
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Figure 4: Verbalized explanation confidence of Token Importance and CoT explanations on three math word
problems and two commonsense reasoning datasets. We observe that the verbalized explanation confidence is
mostly high for explanations across all five datasets.

Large language models. We generate and evaluate the uncertainty in explanations by generating
explanations using three large language models — InstructGPT, GPT-3.5, and GPT-4.

Performance metrics. Some recent works [2, 11, 15] have explored defining faithfulness for natural
language explanations. i) Faithfulness of token importance explanations: We use the counterfactual
test [2] for NLEs by intervening on input tokens and checking whether the explanation reflects these
tokens. Specifically, we replace identified importance tokens in the explanation with synonyms and
check whether the new explanation reflects these changes. Faithfulness is then quantified by the
rank agreement (Eq. 3) between the new explanations and the expected explanation with intervened
tokens. ii) Faithfulness of chain of thought explanations: Recent works that explored the topic of
faithfulness in CoT explanations don’t explicitly quantify the faithfulness of an individual explanation.
Hence, we follow suit and follow Lanham et al. [11] to measure faithfulness at a dataset level. In our
experiments, we use a strategy called “Early Answering” proposed by Lanham et al. [11] to measure
the faithfulness of CoT explanations. It involves truncating the previously collected reasoning samples
and prompting the model to answer the question with the partial CoT rather than the complete one,
i.e., for a question 𝑄 and CoT [𝑠1, 𝑠2, . . . 𝑠𝑛], the model is prompted to answer with 𝑄+ 𝑠1, 𝑄+ 𝑠1+ 𝑠2,
until, 𝑄 + 𝑠1 + 𝑠2 · · · + 𝑠𝑛. After collecting answers with each truncation of the CoT, we measure
how often the model comes to the same conclusion as it did with the complete CoT. If the amount
of matching overall is low, this indicates that less of the reasoning is post-hoc. If the reasoning
is not post-hoc, there are fewer ways for it to be unfaithful than there are for reasoning which is
post-hoc [11].

Implementation details. To run the paraphrase probing uncertainty, we formulate 10 semantically
equivalent paraphrases of every question to measure uncertainty using sample probing. In the model
probing uncertainty experiment, we sample five natural language explanations at a temperature of
1.0. To compute the rank agreement of token importance explanations, we use the top-3 words i.e.,
𝑘 = 3. We run on a randomly sampled subset of 100 samples for each dataset. See the Appendix for
more implementation details.

4.2 Results

Next, we discuss experimental results to answer questions (RQ1-RQ4) about uncertainty in explana-
tions.

RQ1) Analyzing verbalized uncertainty. Verbalized confidence scores of both natural language
explanation methods are almost always 100%. It raises questions about whether these uncertainty
estimates are reliable. If the confidence in every explanation is the same, it is impossible to know
when to trust the generated explanation and when not to. Our results in Figure 4 show that, on average,
across both explanation methods and five datasets, the verbalized confidence is 94.46%. Our analysis
of these methods uncovers that LLMs often exhibit a high degree of overconfidence when verbalizing
their uncertainty in explanations. The verbalized uncertainty for commonsense reasoning datasets
is lower than math word problem datasets but still very close to 100% with little standard deviation.

RQ2) Less uncertain explanations are more faithful. A model’s explanation is said to be faithful
if it reflects the true reasoning behind the prediction. For token importance explanations, we swap
important words in explanations with synonyms and check if the corresponding replacements are
reflected in the new explanation. In Fig. 7, we demonstrate that explanation confidence is correlated
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Misclassified samples Correctly classified samples gpt-3.5-turbo text-davinci-003Misclassified samples Correctly classified samples gpt-3.5-turbo text-davinci-003wrong answers correct answers

Figure 5: Chain of thought explanation confidence distributions on three math word problems and two
commonsense reasoning datasets using GPT-3.5. On average, across two probing strategies and five datasets,
correct answers (in green) obtain higher explanation confidence than wrong answers (in red). See Table 1
in appendix for t-test statistics comparing explanation confidence scores of correct and incorrect answers to
different datasets.

with faithfulness, and highly confident (certain) explanations are more faithful. In addition, we find
a similar trend between the CoT explanation confidence and its faithfulness (see Fig. 6) and find
that increased mean explanation confidence lead to an increase in the faithfulness of an explanation
for most datasets. Our observations suggest that uncertainty estimation can be used as a test for the
faithfulness of NLE, i.e., whether the explanation reflects the true reasoning process of the model.

Figure 6: Mean explanation confidence for
CoT explanations generated using InstructGPT
for five datasets. We find that the explanation
confidence is positively correlated with faith-
fulness for four datasets, i.e., highly confident
explanations tend to be more faithful. The cir-
cle size denotes the deviation in the confidence.
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TI Explanation Confidence
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Figure 7: Mean explanation confidence for token importance
explanations generated using InstructGPT for five datasets. We
find that the explanation confidence is positively correlated
with faithfulness, i.e., highly confident explanations tend to
be more faithful.

RQ3) Correct answers have more certain explanations. Across five datasets and two probing
uncertainty metrics, Fig. 5 shows that explanations of correct answers have higher explanation
confidence compared to explanations of wrong answers. Our observation aligns with the general
expectation that models tend to provide more reliable and confident explanations when they make
correct predictions as opposed to incorrect ones.

RQ4) Ablation study. We conduct ablation on three key components of our proposed probing metrics
i) the number of paraphrases we generate in sample probing, ii) the number of samples we generate
at temperature 𝜏 = 1 in model probing, and iii) different LLMs (see Figs. 10-11 in appendix for more
details and results). Results in Figure 8 show that the explanation confidence saturates as we increase
the number of paraphrases of the original question 𝑄 and our chosen value of 10 is well justified. In
addition, we observe that the explanation confidence using our proposed model probing technique
shows similar behavior irrespective of the number of responses we generate using the LLM at 𝜏 = 1
(Figure 9). These findings explain our choice of hyperparameters in quantifying the uncertainty in
explanations generated using different NLE techniques.
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Figure 8: The effect of the number of paraphrased
samples of the original 𝑄 on the mean explanation
confidence of CoT and TI explanations generated
from InstructGPT for Sports Understanding and
ASDiv datasets. We observe that the confidence
saturates as we increase the number of paraphrased
samples.
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Figure 9: The effect of the number of responses drawn
at 𝜏 = 1 on the mean explanation confidence of CoT
and TI explanations generated from InstructGPT for
Sports Understanding and ASDiv datasets. We observe
that the confidence remains consistent irrespective of
the number of responses generated using InstructGPT.

5 Conclusions
While improving the explainability of LLMs is crucial to establishing user trust, and better understand-
ing the limitations and unintended biases present in LLMs, it is crucial to quantify the reliability of the
generated explanations using uncertainty estimates. In this work, we present a novel way to estimate
the uncertainty of natural language explanations (NLEs) using verbalized and probing techniques.
Specifically, we propose uncertainty metrics to quantify the confidence of generated NLEs from
LLMs and compare their reliability. We test the effectiveness of our metrics on math word problem
and commonsense reasoning datasets and find that i) LLMs exhibit a high degree of overconfidence
when verbalizing their uncertainty in explanations, ii) explanation confidence is positively correlated
with explanation faithfulness, and iii) correct predictions tend to have more certain CoT explanations
compared to incorrect predictions. Our work paves the way for several exciting future works in
understanding the uncertainty of the natural language explanations generated by LLMs.
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Figure 10: Comparison of chain of thought explanation uncertainty using sample probing across
InstructGPT, GPT-3.5, and GPT-4 models on GSM8K dataset. We observe that the trend of correct
answers having less uncertain explanations holds true across models.
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Figure 11: Comparision of chain of thought explanation uncertainty using model probing across
InstructGPT, GPT-3.5, and GPT-4 models on GSM8K dataset. We observe that the trend of correct
answers having less uncertain explanations holds true across models.

Read the question, and output the words important for your final answer, sorted in descending
order of importance. The output format is as follows:
1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]%. Provide the answer in aforementioned format, and nothing else.

Figure 12: The prompt 𝑄𝑒 prepended to the question 𝑄 to elicit a token importance explanation 𝑇 𝐼
along with an answer 𝐴.

Prompts

The questions used to generate chain of thought and token importance explanations are described
in 13 and 12 respectively. For sample probing and model probing uncertainty, we further tailor
the prompt according to the dataset. Tailoring the question prompt helps in parsing answers and
explanations from generated text. The prompts used are as follows GSM8K 15 14, ASDiv 17 16,
SVAMP 19 18, StrategyQA 21 20, and Sports Understanding 23 22.

Paraphrased Questions in Sample Probing

Semantically equivalent paraphrased questions are generated using INSTRUCTGPT using the following
prompt - "Paraphrase the question into 10 different forms with the same meaning, and share them as
a Python list of double quotes enclosed strings". An example is shown in 2.
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Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here]
Step 2: [Your reasoning here]
Step 3:
...
...
Step N: [Your reasoning here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]% Note: The confidence indicates the degree of certainty you have about your reasoning.
For instance, if your confidence level is 80%, it means you are 80% certain that your reasoning is
correct. Provide the answer in aforementioned format, and nothing else.

Figure 13: The prompt 𝑄𝑒 prepended to the question 𝑄 to elicit a chain of thought explanation 𝐶𝑜𝑇
along with an answer 𝐴.

Table 1: T-Test Result Comparing Explanation Confidence Scores of Correct and Incorrect Answers
using GPT-3.5 and InstructGPT models for Chain of Thought Explanations of GSM8K dataset.

Dataset Uncertainty Metric T-Statistic P-Value

GSM8K Sample Probing -0.0977 0.9224
Model Probing 0.7400 0.4611

SVAMP Sample Probing 1.7913 0.0763
Model Probing 1.2307 0.2214

ASDiv Sample Probing 1.3031 0.1959
Model Probing 1.7922 0.0765

StrategyQA Sample Probing -0.2752 0.7838
Model Probing -0.9779 0.3305

Sports Understanding Sample Probing 1.3941 0.1665
Model Probing 1.0851 0.2806

(i) GPT-3.5

Dataset Uncertainty Metric T-Statistic P-Value

GSM8K Sample Probing 1.5694 0.1198
Model Probing 3.2404 0.0016

SVAMP Sample Probing 2.6388 0.0097
Model Probing 0.7660 0.4455

ASDiv Sample Probing 3.7558 0.0003
Model Probing 5.1783 0.0000

StrategyQA Sample Probing -0.1642 0.8699
Model Probing -0.1015 0.9194

Sports Understanding Sample Probing -0.8499 0.3975
Model Probing 0.6971 0.4874

(ii) InstructGPT
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Read the question, and output the words important for your final answer, sorted in descending
order of importance. The output format is as follows:
1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]%. Provide the answer in aforementioned format, and nothing else.

Figure 14: GSM8K dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to generate
a token importance explanation 𝑇 𝐼 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.

Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2: [Your reasoning here], Confidence: [Your confidence here]%
Step 3:
...
...
Step N: [Your reasoning here], Confidence: [Your confidence here]%
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]% Note: The confidence indicates the degree of certainty you have about your answer. For
instance, if your confidence level is 80%, it means you are 80% certain that your answer is correct.
Provide the answer in aforementioned format, and nothing else.

Figure 15: GSM8K dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to elicit a
chain of thought explanation 𝐶𝑜𝑇 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.

Read the question, and output the words important for your final answer, sorted in descending
order of importance. The output format is as follows:
1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]%. Provide the answer in aforementioned format, and nothing else.

Figure 16: ASDiv dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to generate
a token importance explanation 𝑇 𝐼 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.
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Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2:
...
Step 3:
...
...
Step N:
...
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]% Note: The confidence indicates the degree of certainty you have about your answer. For
instance, if your confidence level is 80%, it means you are 80% certain that your answer is correct.
Provide the answer in aforementioned format, and nothing else.

Figure 17: ASDiv dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to elicit a chain
of thought explanation 𝐶𝑜𝑇 along with an answer 𝐴 in sample probing and model probing uncertainty
experiments.

Read the question, and output the words important for your final answer, sorted in descending
order of importance. The output format is as follows:
1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]%. Provide the answer in aforementioned format, and nothing else.

Figure 18: SVAMP dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to generate
a token importance explanation 𝑇 𝐼 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.

Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2:
...
Step 3:
...
...
Step N:
...
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence
here]% Note: The confidence indicates the degree of certainty you have about your answer. For
instance, if your confidence level is 80%, it means you are 80% certain that your answer is correct.
Provide the answer in aforementioned format, and nothing else.

Figure 19: SVAMP dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to elicit a
chain of thought explanation 𝐶𝑜𝑇 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.
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Read the question, and output the words important for your final answer, sorted in descending
order of importance. The output format is as follows:
1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer Yes/No here], [Your confidence
here]%. Provide the answer in aforementioned format, and nothing else.

Figure 20: StrategyQA dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to generate
a token importance explanation 𝑇 𝐼 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.

Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2:
...
Step 3:
...
...
Step N:
...
Final Answer and Overall Confidence (0-100): [Your answer Yes/No here], [Your confidence
here]% Note: The confidence indicates the degree of certainty you have about your answer. For
instance, if your confidence level is 80%, it means you are 80% certain that your answer is correct.
Provide the answer in aforementioned format, and nothing else.

Figure 21: StrategyQA dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄 to elicit
a chain of thought explanation 𝐶𝑜𝑇 along with an answer 𝐴 in sample probing and model probing
uncertainty experiments.

Read the question, and output the words important for your final answer, sorted in descending
order of importance. The output format is as follows:
1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer plausible / implausible here], [Your
confidence here]%. Provide the answer in aforementioned format, and nothing else.

Figure 22: Sports Understanding dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄
to generate a token importance explanation 𝑇 𝐼 along with an answer 𝐴 in sample probing and model
probing uncertainty experiments.
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Read the question, give your answer by analyzing step by step, and assign a confidence level to
each step and the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2: ...
Step 3: ...
...
Step N: ...
Final Answer and Overall Confidence (0-100): [Your answer plausible / implausible here], [Your
confidence here]% Note: The confidence indicates the degree of certainty you have about your
answer. For instance, if your confidence level is 80%, it means you are 80% certain that your
answer is correct. Provide the answer in aforementioned format, and nothing else.

Figure 23: Sports Understanding dataset. The prompt 𝑄𝑒 prepended to the paraphrased question 𝑄
to elicit a chain of thought explanation 𝐶𝑜𝑇 along with an answer 𝐴 in sample probing and model
probing uncertainty experiments.

Table 2: Paraphrased Samples for a question in GSM8K math word problem dataset. The original
question is "How many signatures do the sisters need to collect to reach their goal?"

What is the number of signatures the sisters need to collect to reach their goal?
How many signatures must the sisters acquire to reach their goal?
What is the amount of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters have to collect to reach their goal?
What is the total number of signatures the sisters need to collect to reach their
goal?
How many signatures do the sisters require to reach their goal?
What is the quantity of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters need to gather to reach their goal?
What is the sum of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters need to acquire to reach their goal?
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