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Abstract

Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the US
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can be used (along with assignment algorithms) to match
families to locations, with the goal of maximizing a policy-relevant integration out-
come such as employment status after a certain duration. Existing implementations
and research train models to predict the policy outcome directly, and use these
predictions in the assignment procedure. However, the merits of this approach,
particularly in non-stationary settings, has not been previously explored. This study
proposes and compares three different modeling strategies: the standard approach
described above, an approach that uses newer data and proxy outcomes, and a
hybrid approach. We show that the hybrid approach is robust to both distribution
shift and weak proxy relationships—the failure points of the other two methods,
respectively. We compare these approaches empirically using data on asylum
seekers in the Netherlands. Surprisingly, we find that both the proxy and hybrid
approaches out-perform the standard approach in practice. These insights support
the development of a real-world recommendation tool currently used by NGOs and
government agencies.

1 Introduction

Under the status quo refugee resettlement and/or asylum procedures in many countries—including
the United States, Switzerland, Netherlands, Sweden, and others—newly arrived refugees and/or
asylum seekers are centrally assigned to different localities across the country as they arrive, subject
to capacity and other constraints. The objectives of national resettlement and asylum programs often
include integration goals, such as helping newcomers achieve economic self-sufficiency. In support of
this objective, Bansak et al. [2018] introduced outcome-based refugee assignment, whereby refugees
are matched to locations in a manner that seeks to maximize a chosen metric of integration success,
such as employment. To accomplish this, machine learning (ML) models, trained on historical data,
are used to generate counterfactual outcome predictions for every refugee–location combination upon
arrival, which are then used in an assignment procedure. Further research has built upon this initial
proposal, incorporating various other features and constraints [Gölz and Procaccia, 2019, Acharya
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et al., 2022, Ahani et al., 2021a,b, Bansak and Paulson, 2022], and algorithmic refugee assignment
has been implemented on a limited basis in Switzerland and the United States.

The goal of the algorithm designer is to maximize the outcome of interest to the policy makers—what
we refer to as the policy outcome—which can be thought of as exogenously given. However, there
remains a question as to what outcome(s) and estimation method should be used to produce the
predictions that will guide the assignment decisions. Existing research has largely overlooked this
question, operating under the assumption that assignments are made by simply generating direct
predictions of the policy outcome, using models that are estimated with all available labeled historical
data. We refer to this method, currently deployed in Switzerland and the US, as the standard approach.
While this approach may be suitable in some scenarios (e.g., with stationary data), its implications
are less clear in real-world settings characterized by distribution shifts.

In this study we consider how to choose and model the outcome(s) amidst random distribution shifts
over time. Understandably, policy outcomes are often long-term, as longer-term outcomes better
capture the experience and welfare of refugees than short-term outcomes that may reflect transient
dynamics. Yet due to the potentially lengthy duration of policy outcomes, distribution shift can pose
a problem, causing models fit on old data to be biased with respect to the true expected outcomes
for today’s newly arrived cases. This paper addresses the following questions: Given the goal of
maximizing a specific policy outcome, what outcome(s) should actually be used—and how should
they be used—in estimating the models that will guide assignment decisions? How and under what
conditions would using shorter-term outcomes in the estimation process be beneficial?

1.1 Contributions

This study makes several contributions. On the theoretical front, we contribute to the research agenda
on algorithmic decision-making under distribution shifts (see related work below) by providing the
first comparison of models under random distribution shifts in a nonparametric setting. We formalize
and characterize the benefits and drawbacks of several alternative prediction strategies under such
random distribution shifts: the standard approach described above, an approach that uses newer data
to predict a shorter-term but related proxy outcome (the proxy approach), and a hybrid approach
that utilizes both older and newer data, and both the policy and proxy outcome. Theorem 1 provides
an exact characterization of the weaknesses of each approach: the standard approach is ineffective
when distribution shift is large, and the proxy approach falters if the proxy relationship is not strong
enough. The hybrid approach, on the other hand, is robust to both of these failure points.

Moreover, we establish that this issue is not simply a theoretical novelty but a matter of real-world,
practical significance by presenting empirical evidence from an IRB-approved study on asylum
seekers in the Netherlands. Our findings indicate that among the three proposed strategies, we expect
the standard approach to result in significantly lower employment outcomes compared to the other
two approaches, and the hybrid and proxy approaches perform similarly, indicating a strong proxy
relationship and substantial distribution shift in the data (which is further supported by additional
analyses). Consequently, we underscore the non-obvious fact that maximizing a longer-term outcome
may, in some cases, be best achieved by making decisions based on a related shorter-term outcome,
even when ample historical data is available. These insights support the development of a real-
world recommendation tool currently employed by NGOs and government agencies to determine
resettlement locations for newly arriving refugees and asylum seekers.

2 Related work

Self-training. A popular method for combining labeled data with unlabeled data is self-training
[Scudder, 1965, Chapelle et al., 2006]. In its most basic form, one starts by learning a prediction
mechanism only for the labeled data. Then, based on imputations on the unlabelled data, the prediction
mechanism is re-trained on its own predictions for the unlabelled data and the original labeled data.
In the past few years, there has been an increasing interest in studying the theoretical properties of
self-training, in particular, its robustness under distribution shift [Carmon et al., 2019, Chen et al.,
2020, Raghunathan et al., 2020, Kumar et al., 2020]. Self-training is similar to the approach τC

below. Due to the distribution shift structure, we discard the outdated data during the re-training
stage. We add to this literature by showing that a variant of self-training is more robust under random,
symmetric distribution shift than alternative procedures.
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Pre-training. In the transfer learning literature, it is common to learn a feature representation by
regressing auxiliary data on the covariates on a large data set and then using this as a feature vector on
the smaller (target) data set, either by updating the feature vector or by regressing the final outcome
on the feature representation [Caruana, 1997, Weiss et al., 2016, Hendrycks et al., 2019]. The first
step is similar to the approach τB below, i.e. using the more abundant short-term outcomes to train
a first prediction model. One important property of our setting is that predictions of the short-term
outcome are already a reasonable optimization target.

Adversarial machine learning. There is a rich literature that models distributional perturbations as
adversarial [Huber, 1964, Ben-Tal et al., 2009, Maronna et al., 2019, Biggio and Roli, 2018]. The
intuition is that a small change in input at the training or prediction stage should not change the
output. Adversarial inputs are somewhat pessimistic for our problem setup, where the changes occur
due to natural shifts over time.

Invariance-based approaches. Instead of considering small shifts, another line of work considers
distribution shifts that lie on subspaces and relies on the assumption that certain conditional probabili-
ties or representations stay invariant across settings. In other words, these works study representations
and procedures that use invariances to transfer across settings [e.g., Ganin and Lempitsky, 2015,
Rojas-Carulla et al., 2018, Arjovsky et al., 2019, Rothenhäusler et al., 2021]. For an overview, see
Chen and Bühlmann [2021]. These methods have shown some success, but do not consistently beat
empirical risk minimization [Gulrajani and Lopez-Paz, 2020, Koh et al., 2021].

Surrogate outcomes. When policy outcomes are long-term, surrogate outcomes are a common tool
to guide policy decisions on a faster time scale [Prentice, 1989]. In the traditional setting, the policy
maker may have access to historical data containing the long-term outcome but not the treatment
decision, and experimental data containing the treatment decision but not the long-term outcome
[Yang et al., 2020, Athey et al., 2019]. Thus, the problem can be viewed as a missing data issue. By
contrast, in this paper the historical data contains both treatment decisions and the long-term outcome
of interest, and the motivation for using a shorter-term version of the outcome is distribution shift.

3 Setup

3.1 Preliminaries

Consider a finite time horizon with three distinct periods: period 0 (the present), period −1 (one
period prior), and period −2 (two periods prior). In each period, refugees arrive and must be assigned
to a single location within the set L = {1, 2, ...|L|}. Let J ∈ L denote the location assignment of a
refugee that arrives in the current period, and let X denote a vector of background characteristics.

Let Y2 be the policy outcome of interest, measured two periods after arrival, and Y1 be a related
but shorter-term outcome measured one period after arrival1. Following the potential outcomes
framework of Neyman [1923] and Rubin [1974], let Y1(j) and Y2(j) denote the one-period and
two-period potential outcomes under assignment to location j ∈ L. We assume that the stable unit
treatment assumption (SUTVA) holds, so we observe Y1 = Y1(J) and Y2 = Y2(J) [Rubin, 1980].

For refugees who arrive in any period t and the variables defined above, we posit the existence of a
tuple generated according to a probability distribution Pt:

(Y1(1), ..., Y1(|L|), Y2(1), ..., Y2(|L|), X, J)t ∼ Pt.

Further, we assume that within any period, the assignment mechanism is such that

Y1(j) ⊥⊥ J |X, Y2(j) ⊥⊥ J |X, and P (J = j|X = x) > 0 ∀ j, x.

This is often referred to as the ignorability assumption [Rosenbaum and Rubin, 1983]. It is satisfied
here when location assignments are made on the basis of the observed characteristics, and when those
characteristics do not preclude refugees from being assigned to any particular location, as in our
application to the Dutch asylum system. Therefore, Et[Yk(j)|X] = Et[Yk|X, J = j] for k = 1, 2.
This paper is focused on the identifiable quantities Et[Yk|X, J = j].

1Appendix B discusses how to extend the proposed methods to more than two time periods and outcomes
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3.2 Problem

The policy objective in the present period 0 is to assign the refugees arriving in this period to
locations in order to maximize the sum of Y2 among period 0 arrivals. To maximize Y2, we
would ideally choose location assignments for the refugees arriving in period 0 by first estimating
τ(x, j) = E0[Y2|X = x, J = j], and using these estimates within a static or dynamic matching
procedure to optimally assign each refugee to a particular location subject to any necessary constraints,
such as capacity constraints and the need to keep family members together, as in the algorithmic
assignment procedures proposed by Bansak et al. [2018], Ahani et al. [2021a,b] and Bansak and
Paulson [2022]. However, we do not observe Y2 (nor do we observe Y1) for the cohort that arrives
in period 0 at the time of their assignment. Instead, at the time of assignment, we observe the data
(Y2, Y1, X, J)−2 ∼ P−2, (Y1, X, J)−1 ∼ P−1, and (X)0 ∼ P0.

3.3 Alternative approaches

In the presence of distribution shift, there are (at least) three strategies one could pursue:

1. τA(x, j) = E−2[Y2|X = x, J = j]

2. τB(x, j) = E−1[Y1|X = x, J = j]

3. τC(x, j) = E−1[E−2[Y2|Y1, X, J ]|X = x, J = j]

The first approach estimates the policy outcome using the data from period −2.2 Using the resulting
model(s) for τA(x, j), expected outcomes in each possible location j can be estimated for the newly
arriving refugees in period 0 given their background characteristics x, and optimal assignments
then made using those estimates. This is the default approach in the literature. Unfortunately, its
performance may suffer under distribution shift due to its reliance on period −2 data.

The second approach estimates the shorter-term outcome Y1 using data from period −1, and uses
these estimates to inform the location assignments. Relative to τA(x, j), the advantage of this strategy
is that it employs more recent data, and hence is less susceptible to the effects of distribution shift.
However, this approach is only reasonable if optimizing the outcome Y2 results in similar assignments
as optimizing the proxy outcome Y1. When Et[Y2|X = x, J = j] = β1Et[Y1|X = x, J = j] + β0,
where β1 > 0 and β0 are unknown constants and t ∈ {−2, 1, 0}, optimizing on Y1 will yield identical
assignments as optimizing with respect to Y2 (due to the linearity of assignment algorithms). Even if
perfect linearly does not hold, the assignments may still remain close.

The third approach again estimates Y2, but uses the data from both periods −2 and −1. This strategy
proceeds by first regressing Y2 on X and Y1 using the period −2 data, and then regressing that fitted
model on X using the period −1 data. The general idea behind the third strategy is that we want to
devise the best available approximation of the density P0(y2, y1, x, j) = P0(y2|y1, x, j)P0(y1, x, j).
We cannot know P0(y2|y1, x, j) and so we use the best guess P−2(y2|y1, x, j). And we cannot know
P0(y1, x, j) so we use the best guess P−1(y1, x, j), since P−1 is likely closer to P0 than is P−2.

Relationships between strategies in the absence of distribution shift. In the special case of no
distribution shift, τA = τ . Hence, the first strategy is the natural strategy of choice in reasonably
stationary data-generating environments. Furthermore, by the tower property of conditional expecta-
tions, it is also the case that τ = τA = τC . From an infinite data perspective, then, the first and third
strategies are interchangeable in the absence of distribution shift. In the following, we will study
these procedures in more detail from a distribution-shift perspective.

4 Predictions under distribution shift

We model distributional changes as random [Jeong and Rothenhäusler, 2022], and introduce a
simplified model that captures natural shifts and allows us to study tradeoffs between the three
methods. To avoid measurability issues and simplify the discussion, we will focus on discrete
distributions, that is, the random variable takes value in a finite alphabet (X,Y1, Y2, J) ∈ X ×
Y1 × Y2 × L. Note that this focus does not impose a serious practical constraint, as any continuous

2In practice, data from earlier periods could also be used. This is also true for the second and third approaches.
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variables of interest can be arbitrarily coarsened to meet this requirement. We consider the distribution
P−2(y1, y2|x, j) as fixed, and assume that P−1(y1, y2|x, j) differs randomly from P−2(y1, y2|x, j)
and that P0(y1, y2|x, j) differs randomly from P−1(y1, y2|x, j). To be more specific, we write

St(y1, y2|x, j) = Pt+1(y1, y2|x, j)− Pt(y1, y2|x, j) for t ∈ {−2,−1},
where we call St(y1, y2|x, j) a distributional shift variable. That is, between time 0 and −1 and
between time −1 and −2 the probabilities of events get shifted by a random amount that can depend
on y1, y2, x, and j. There are two constraints on the shift variables to make P−1 and P−2 well-defined
probability measures. First, the shift variables must satisfy 0 ≤ Pt(y1, y2|x, j)+St(y1, y2|x, j) ≤ 1.
Furthermore, since

∑
y1,y2

P0(y1, y2|x, j) = 1 =
∑

y1,y2
P−1(y1, y2|x, j) the shift variable St has

to satisfy
∑

y1,y2
St(y1, y2|x, j) = 0.

We will not discuss how to construct such distribution shifts. Such constructions can be found in
Jeong and Rothenhäusler [2022], where for fixed x and j the authors introduce a perturbation process,
which we employ here, that satisfies

Var(S−2(•|x, j)) = κ−2P−2(•|x, j)(1− P−2(•|x, j)), and
Var(S−1(•|x, j)|S−2) = κ−1P−1(•|x, j)(1− P−1(•|x, j)),

(1)

for some potentially unknown κt > 0 for all events • ⊆ Y1 × Y2. In equation 1, the event •, and the
variables x and j are considered fixed, and the variance is over the randomness in the shift S−2 (top
equation) or S−1 (bottom equation).

Intuitively, this perturbation process captures “well-behaved” or “symmetric” distribution shift [Jeong
and Rothenhäusler, 2022], where the perturbation of an event depends on its initial probability:
events that have a small probability are only perturbed by a small amount. In the concrete context of
modeling employment, this captures gradual shifts in labor market dynamics. One can think about
the unknown scaling factor κt as a measure of the strength of distribution shift between Pt+1 and Pt.

In addition to the structure above, we allow the distribution to shift arbitrarily in (X, J); however, to
avoid issues of identifiability, we require the support of (X, J) to be time invariant. Note that we also
allow the shifts to be correlated across different x, that is we allow

Cov(St(y1, y2|x, j), St(y1, y2|x′, j′)) ̸= 0

for x ̸= x′ or j ̸= j′. This allows for shifts that affect many units in a similar way (for example, an
economic boom). We also assume that the perturbation process has (conditional) mean zero, that is
E[S−2] = 0 and E[S−1|S−2] = 0. Intuitively, this means that the perturbation has no momentum:
the perturbation that shifts P−2 to P−1 is uncorrelated with the perturbation that shifts P−1 to P0.
This does not rule out memory/momentum driven by systematic factors (e.g. systematic or secular
changes in the labor market) that can be captured by time and other covariates contained in X .

We now present a theorem that compares the predictive performance of the three approaches under
distribution shift, in the infinite-data case. Finite-sample considerations are discussed in Section 4.3.
The proof can be found in Appendix D. For clarity, we will assume that Y1 and Y2 are on the same
scale. That is, a positive linear transformation has been applied to Y1 in a pre-processing step such
that E−2[(E−2[Y1|X,J ]−E−2[Y2|X, J ])2] is as low as possible. Strictly speaking, the mathematical
results below do not require this scaling, but the interpretation is clearer with scaling. When Y1 is
rescaled, we will rename τB as τ̃B and Y1 as Ỹ1.
Theorem 1 (Comparison of methods). Under the assumptions made above,

MSE(τC) =κ−2E−2[(Y2 − E−2[Y2|Y1, X, J ])2]︸ ︷︷ ︸
shift between −2 and −1

+K1 +O(κ−1κ−2)

MSE(τA) =κ−2E−2[(Y2 − E−2[Y2|X, J ])2]︸ ︷︷ ︸
shift between −2 and −1

+K1 +O(κ−1κ−2)

MSE(τ̃B) =E−2[(E−2[Y2 − Ỹ1|X, J ])2]︸ ︷︷ ︸
error due to using proxy outcome

+κ−2E−2[(Y2 − Ỹ1 − E−2[Y2 − Ỹ1|X, J ])2]︸ ︷︷ ︸
inflation of proxy error under shift

+K1

+O(κ−1κ−2)

where K1 := κ−1E−2[(Y2−E−2[Y2|X, J ])2] is the shift between −1 and 0 that impacts all methods
equally. Here the MSE is over the randomness in distribution shifts and the randomness in X
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and J , that is MSE(τ•) = E[(τ•(X, J)− τ(X, J))2], where the outer expectation is both over the
randomness in distribution shift and the randomness in X and J .

Let us discuss how to interpret the results for the case of τC . On a high level, one can think about the
error as

MSE(τC) =
∑
shifts

strength of shift · sensitivity

One part of the error depends on the shift between −2 and −1, and one part depends on the shift
between −1 and 0. The strength of the shift enters the equation via κ−1 and κ−2, and is multiplied by
the sensitivity of the τC(x, j) with respect to that particular distributional change. The sensitivity of
τC(x, j) depends on the noise level E−2[(Y2 −E−2[Y2|Y1, X, J ])2]. This makes sense intuitively: if
the noise is high that means there are important unobserved variables besides X and J that determine
the value of Y2. Since those unobserved variables can shift in distribution over time, generalization
may suffer. The estimator τA has a similar decomposition and interpretation as τC .

Now let us turn to the interpretation of the error of τ̃B . There are three terms. The first term captures
whether Ỹ1 is a reasonable proxy for Y2 in the absence of distribution shift. Even if Ỹ1 is a good
proxy under P−2, due to distribution shift this might change between P−2 and P−1. This is captured
in the second term. The second term may be zero, for example in the case where Ỹ1

a.s.
= Y2. Finally,

the last term corresponds to the shift between P−1 and P0, which is the same for τC , τA, and τ̃B .
It can be thought of as an irreducible error since all procedures are equally affected by the shift
between P−1 and P0. One takeaway from the error terms of τ̃B is that ideally, a proxy satisfies
E−2[Ỹ1|X, J ] ≈ E−2[Y2|X, J ]. In addition, it is also important that Var(Y2 − Ỹ1|X,J) is low, since
otherwise the proxy error can inflate drastically between P−2 and P0.

4.1 Comparison of the three approaches

In the following, we build further intuition for the strengths and weaknesses of the approaches.

τA versus τC . On a high level, τA is more affected by shifts between −2 and −1 than τC . In
the theorem this is reflected by the fact that κ−2 is multiplied by sensitivity factor E−2[(Y2 −
E−2[Y2|Y1, X, J ])2], which is always smaller, and can be much smaller, than τA’s sensitivity factor
E−2[(Y2 − E−2[Y2|X, J ])2]. Using the theorem,

MSE(τC) ≪ MSE(τA) +O(κ−1κ−2).

By this argument, τC is generally preferable over τA (and is always preferable under the assumptions
made above). That being said, there may be real-world situations where one would prefer τA over τC .
For example, if P−1 is the time period of a pandemic, then the optimal prediction mechanism might
change drastically for this particular year (P−1), and then switch back to the original mechanism,
leading to P−2 ≈ P0. In this case, the (random) distribution shifts S−1 and S−2 are negatively
correlated, which we assumed not to be the case.

τ̃B versus τC . The comparison between τ̃B and τC is slightly more technical. Please note that
both have the same dependence on κ−1, the shift between P0 and P−1. However, they have a different
sensitivity with respect to the shift between P−2 and P−1. It turns out that this sensitivity is lower for
τC :

E−2[(Y2 − E−2[Y2|Y1, X, J ])2] = min
g(Y1,X,J)

E−2[(Y2 − g(Y1, X, J))2]

≤ E−2[(Y2 − Ỹ1 − E−2[Y2 − Ỹ1|X, J ])2].

Thus, τC also outperforms τ̃B (up to lower-order terms), and the gap will generally grow as the
correlation of Y2 and Ỹ1 decreases.

4.2 Robust predictions under distribution shift.

τ̃B and τA have very different failure points. It turns out that τC can be seen as an interpolation
estimator that behaves similarly to τA and τ̃B , in the following extreme cases.
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Example 1 (Proxy violated). Let us consider the case where Y1 does not help when predicting Y2, that
is E−2[Y2|Y1, X, J ] ≈ E−2[Y2|X, J ]. According to Theorem 1, τ̃B may have a large mean-squared
error due to a large proxy error. On the other hand, τA will have small mean-squared error if κ−2 is
small. Using the tower property,

τC(x, j) = E−1[E−2[Y2|Y1, X, J ]|X = x, J = j]

≈ E−1[E−2[Y2|X, J ]|X = x, J = j]

= E−2[Y2|X = x, J = j]

= τA(x, j).

Thus, in this case the performance of τC is comparable to τA. Now let us turn to a different extreme
case.
Example 2 (Ỹ1 ≈ Y2). Consider the case where E−2[(Y2 − Ỹ1)

2] is small and κ−2 is large, that
is, where the shift between P−2 and P−1 is large. Using Theorem 1, we see that τA will have a
large mean-squared error, while τ̃B should be much less affected by the shift between P−2 and P−1.
Applying Jensen’s inequality, we get E−2[(E−2[Y2|Y1, X, J ]− Ỹ1)

2] ≤ E−2[(Y2 − Ỹ1)
2]. Thus, we

have Ỹ1 ≈ E−2[Y2|Y1, X, J ]. Hence,

τ̃B(x, j) = E−1[Ỹ1|X = x, J = j]

≈ E−1[E−2[Y2|Y1, X, J ]|X = x, J = j]

= τC(x, j).

Thus, under this extreme scenario, τC will perform similarly to τ̃B . In either case, τC will perform
roughly as well as the best of both methods. We see this interpolation property as a major advantage
of τC .

4.3 Finite-sample considerations

These results provide intuition for the relative strengths and weaknesses of each approach, which are
further demonstrated using real-world data in the following section. Recall that these results apply
to an infinite data setting. Since we expect the distribution shift to be of larger order than sampling
uncertainty, in a finite data setting the intuition on the strengths and weaknesses of each estimator
should remain consistent. However, if the distribution shift is very small there are cases where τA or
τ̃B may outperform τC asymptotically. See Appendix C for more details.

5 Empirical Assessment

In this section, we demonstrate the performance of the proposed approaches on asylum seeker data
from the Netherlands. The purpose of this assessment is to empirically evaluate the implications of
distribution shift on algorithmic decision-making and the relative merits of our proposed approaches
on real-world data. This research was approved by the Institutional Review Boards at UC Berkeley,
Harvard, and Stanford.

5.1 Data and Estimation

The data consists of background characteristics, assigned location within the Netherlands, and
employment outcomes for adult asylum seekers in the Netherlands. The modeling approach used
to estimate τA, τB , and τC is based on the methodology developed in Bansak et al. [2018]. In this
approach, separate stochastic gradient boosted tree models are fit for each individual assignment
location. In this context, the assignment locations are comprised of the 35 labor market regions in the
Netherlands. More details on the data and estimation, including the covariates that comprise X , can
be found in Appendix A. Note that year and month are also included in X to allow for systematic
time trends to be captured by the models.

5.2 Counterfactual Impact Assessment

For this assessment, we consider the following two outcomes: Y2 is the proportion of time worked in
an asylum seeker’s first two years after assignment (the policy outcome), and Y1 is the proportion of
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time worked in the first year after assignment. Based on preliminary analyses of the data, we find
strong evidence of distribution shift in the data and a strong proxy relationship between Y1 and Y2

(see Appendix A.5).

We designate as a “test cohort” the n0 asylum seekers who were assigned to labor market regions
between 2018-06-01 and 2018-08-31 (the latest available data at the time of analysis) and employ
the proposed approaches as if these asylum seekers were arriving (and needing to be assigned)
in the present time, with the goal of maximizing the average two-year employment of the cohort.
Specifically, define WA, WB , and WC , which are the analogous matrices that correspond to the
predictions of τA, τB , and τC onto the test cohort. Each row of each matrix corresponds to an
individual asylum seeker in the test cohort, with the columns corresponding to labor market regions.
These matrices are estimated following the procedures described in the previous sections, with
additional details provided in Appendix A. Given the test cohort’s start date of 2018-06-01 (along
with the fact that we treat this as the cohort needing to presently be assigned for this evaluation),
estimation of τA, τB , and τC can only utilize data on Y2 prior to 2016-06-01 and Y1 prior to
2017-06-01. With these matrices in hand, let ZA, ZB , and ZC be defined as:

Zk = argmax
z∈Z

n0∑
i=1

|L|∑
j=1

wk
ijz

k
ij for k = A,B,C (2)

where Z is the set of feasible assignments of asylum seekers to labor market regions3 and wk
ij denotes

the entry in the ith row and jth column of W k. Our goal is to understand how these alternative
assignment strategies perform in terms of improving two-year employment for the test cohort. Thus,
we would like to compare the following quantities:

EA =

n0∑
i=1

|L|∑
j=1

w∗
ijz

A
ij , E

B =

n0∑
i=1

|L|∑
j=1

w∗
ijz

B
ij , E

C =

n0∑
i=1

|L|∑
j=1

w∗
ijz

C
ij (3)

where W ∗ is the matrix containing the true counterfactual employment probabilities corresponding to
τ(x, j). That is, for an arrival i with covariates x, w∗

ij = E0[Y2|X = x, J = j]. Using the benefit of
hindsight, we estimate a model for W ∗ that utilizes all available data (including the contemporaneous
data that would not be available in real time). With slight abuse of notation, we will refer to this
estimate as W ∗ and treat it as the ground truth.

We can compare each quantity EA, EB , and EC to the actual average employment score achieved
by the test cohort given their actual status quo assignments (14.26%) to perform a counterfactual
assessment of the extent to which two-year employment could have been improved had assignments
instead been made algorithmically. Finally, by performing this assessment for each of these three
quantities, we can assess the relative performance of the approaches.

Figure 1 (left panel) shows the resulting gain in two-year employment using each method. The
counterfactual gains in two-year employment are largest using the τC estimator, closely followed by
τB , followed by τA. These results suggest that both the distribution shift between period -2 and 0 is
relatively large, and one-year employment is a good proxy for two-year employment. Unsurprisingly,
the estimated mean squared error between τk and τ for k = 1, 2, 3 is smallest for τC (0.0075),
followed by τ̃B (0.00939), followed by τA (0.01008). Thus, not only does the τC estimator result in
the best estimation of τ , but these improved predictions translate into meaningful gains in employment
(∼4 percentage points above the 14.26% baseline) when used in an algorithmic matching procedure.

5.3 Additional Tests

To further assess the relative performance of the alternative methods under different scenarios and
to highlight the underlying theory, we undertake a set of additional tests in which we induce (a) a
violation of the proxy relationship, and (b) additional distribution shift. For the proxy violation test,
Y1 is randomly permuted for 50% of the full data set, thereby weakening the relationship between
Y1 and Y2. For the additional distribution shift test, the pair (Y1, Y2) is randomly permuted for 50%
of the data prior to 2016-06-01. Importantly, the two-year outcomes (Y2) for the test cohort are

3At a minimum, zij must be binary with each asylum seeker assigned to exactly one location, and Z must
satisfy capacity constraints at each location.
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Figure 1: Counterfactual gains in two-year employment (compared to status quo) with actual data
(left) and perturbed data using the alternative strategies τA, τB , and τC . Confidence intervals are 95%
bootstrapped. For details see Appendix A.

kept intact across the tests, allowing for meaningful comparison of the results across the different
test specifications. For each test, the permutations are applied prior to the training of the models
corresponding to τA, τB , and τC , while the “ground truth” matrix W ∗ is fixed across tests.

The impact on gains in two-year employment for each test is shown in Figure 1. When the proxy
relationship is violated, the performance of τB dramatically suffers, as does the performance of τC
to a lesser extent. However, τC still outperforms τA, thus demonstrating its robustness to proxy
violations. When more distribution shift is present in the data, the performance of all three predictors
suffers, and τB and τC perform similarly well (with a slight edge to τB , although their difference
is not statistically significant). When both a proxy violation and more distribution are introduced,
all three estimators perform similarly. These additional tests highlight the robustness of τC , which
performs at least as well as the other estimators, and better than in certain conditions.

6 Conclusions, Limitations, and Broader Impact

In this research, we proposed three distinct estimation strategies aimed at enhancing algorithmic
location recommendations for refugees and asylum seekers, given the presence of random distribution
shifts. We characterized the strengths and weaknesses of the three approaches, both theoretically and
empirically, using real-world asylum-seeker data from the Netherlands. The standard approach in
outcome-based refugee assignment involves training an ML model to predict an outcome of interest
(e.g., employment status after two years), and using these predictions in an algorithm that recommends
locations [Bansak et al., 2018, Ahani et al., 2021b,a, Bansak and Paulson, 2022]. However, when the
policy outcome of interest is long-term, as is often the case in refugee resettlement, this approach
will suffer under the presence of distribution shift. An alternative approach is therefore to leverage
information on a shorter-term but related outcome using more recent data.

Both in theory and empirically, we show that an estimator that predicts the long-term policy outcome
by combining both older data in which the policy outcome is observed, with more recent data in which
only a short-term proxy is observed, is robust to both random distribution shift and the strength of the
proxy relationship. Thus, in practice, using this estimator to inform the location recommendations
results in higher total employment than the standard method where only the older data is used.

This research has potential for real-world impact through its integration into a recommendation
software tool, and can help various stakeholders including a) the algorithms designers, b) the
agencies/NGOs in charge of resettlement, and c) the refugee and asylum-seeker families. While this
paper does not specifically address issues like biases and fairness, future work could include, for
example, understanding whether different estimation methods could be used for different subgroups
to achieve better and more equitable outcomes.
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The model considered in this paper has several limitations. First, we consider a specific type of
distribution shift, characterized by Equation 1. The results of our empirical analyses, which track
closely with our theory, show how this can be a reasonable model in certain contexts. However, it
does prohibit certain dynamics; for example, we do not address situations where P−2 ≈ P0, but
P−1 ̸= P0. Such a phenomenon could occur if an isolated event impacts period −1 but period 0
reverts back to P−2. Furthermore, this paper only considers random shifts. There could be large,
unpredictable shifts that make all historical data useless (for example a new technology that disrupts
an economy).
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A Appendix for Empirical Assessment

A.1 Data

We use data on asylum seekers in the Netherlands from two data sources. The first is the administrative
data on individuals granted temporary asylum residence permit (“permit holders") from the Central
Agency for the Reception of Asylum Seekers (COA), which is the government agency in charge of the
asylum system in the Netherlands. This is a comprehensive data set covering all permit holders in the
Netherlands containing their background characteristics, procedural information, and location data.
The second is the Asielcohort microdata compiled by Statistics Netherlands (CBS). The Asielcohort
microdata is comprised of merged data from a number of administrative databases, several of which
track various measures of permit holders in the Netherlands after arrival. These include economic,
educational, and other indicators of integration and well-being that can be evaluated as downstream
outcomes.

The target population for our assessment is comprised of permit holders who were geographically
assigned in the Netherlands through the regular housing procedure. Further, we only consider data
and outcomes for adults (i.e. 18 years or older). We also exclude some subsets of permit holders who
fall outside the scope of the objectives of algorithmic assignment or for whom data are unreliable.4
In addition, the target population for algorithmic assignment further excludes family reunifiers, since
such permit holders are automatically reunified with their family in the Netherlands.5 The permit
holders in the available data were assigned between January 2014 and August 2018 (n ≈ 46, 000).

As per rules on usage of these data sets, and in accordance with our data access and use agreements
with CBS, our access to and analysis of these data is conducted entirely via a secure Remote Access
Environment. All statistics and results that are reported from these data are checked and cleared for
export by CBS.

A.2 Modeling and Estimation Procedures

The modeling approach is based on the methodology developed in Bansak et al. [2018]. We first merge
the historical data for the target population’s background characteristics, employment outcomes, and
geographic locations. Using supervised learning on these merged data, we fit separate models across
each labor market region (LMR) that predict one- or two-year employment using the predictors
described in a section below. To do so, for each model we first subset the training data to permit
holders who were assigned to a given LMR, and then use this subset for the model training. The
next subsection describes the basis upon which LMRs were targeted as the geographic locations of
interest.

To generate our models, we employ stochastic gradient boosted trees with squared error loss, which
we implement in R using the gbm package. We employ cross-validation to determine the optimal
values for tuning parameters. Specifically, we cross-validate over the number of boosting iterations
(trees) and the interaction depth of the trees. We employ 5 folds in our cross-validation, allowing
the gbm functionality to determine the random splits. For each model, we cross-validate over tree
depths of 3-8 and a number of trees that we ensure are sufficient to be able to identify the number
that yields the minimum CV mean squared error (i.e. we ensure that we do not consider too few
trees to find the minimum CV error). Parameters were tuned independently for each location-specific
model. Preliminary assessments on the bag fraction, learning/shrinkage rate, and minimum number
of observations per node demonstrated relatively little to no impact on model performance within
conventional value ranges, and so these parameters were held fixed at 0.5, 0.01, and 5, respectively.
Where appropriate, 95% confidence intervals are generated using a nonparametric bootstrap.

4We exclude permit holders who fell under the 2019 Children’s Pardon, resettlers / relocants / asylum
seekers covered by the EU-Turkey deal, and permit holders who have “hard criteria” that pre-determined their
locations. Beyond family reunification constraints, hard criteria may be motivated by other determinants such as
employment contracts and medical issues.

5Note, however, that data for family reunifiers is included the data used to estimate the various models
comprising τA and τB , with an family reunifier indicator also included as a variable in the models. Family
reunifiers were not, however, included in the “test cohort" defined below since they are outside the scope of
algorithmic assignment.
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A.3 Target Geography

Selecting the appropriate target unit of geography for algorithmic recommendations requires bal-
ancing three goals: (1) generating a large number of geographic options to provide the algorithmic
recommendation procedure with as much geographic variation as possible, (2) ensuring that each
geographic option is associated with a sufficient amount of historical data such that accurate and
effective predictive models can be trained, and (3) identifying levels or regions of geography that are
administratively compatible with the underlying goals and procedures.

Based on these criteria, and in consultation with our partners at COA, we determined that the best
target unit of geography in the Dutch context is the labor market region (LMR). Hence, as noted above,
we generate separate predictive models for each of the 35 LMRs, and the algorithmic assignment
procedure determines the optimal LMR for each family of permit holders (i.e. the LMR where they
have the highest chance of employment success, subject to all the constraints).

A.4 Predictors

Based on data availability, the pre-arrival characteristics we include as the covariates X are age,
gender, martial status, prior education, number of family members, country of origin, religion, native
language, ethnicity, and prior work experience and industry. In addition, we also include in X several
key variables related to the assignment procedure as predictors, including the month of assignment,
year of assignment, whether or not someone is a family reunifier, and what type of processing location
their housing interview took place at.

A.5 Evidence of proxy relationship and distribution shift

As a simple analysis of the proxy relationship, we fit a linear regression of Y2 on Y1 using the entire
dataset and find a large R2 value of 0.625. The R2 increases to 0.642 when the covariates are added
to the model.

To establish the presence of distribution shift, we perform two analyses making use of the data from
2015-06-01 to 2016-05-31 (analogous to period −2 in our impact assessment) and from 2016-06-01 to
2017-05-31 (analogous to period −1). First, we fit classifiers (using gradient boosted trees according
to the procedures described above, but with binomial deviance loss in place of squared error loss)
that predict which period each data point belongs to as a function of the outcomes and the covariates
(described above). Note that for this procedure, we omit the month and year covariates for obvious
reasons. We find solid predictive performance with these models: a classification accuracy of 0.768
(relative to 0.547 under a null/intercept model) and an R2 of 0.344.

Second, we split the period −1 data into training and test sets, and we estimate models (again using
gradient boosted trees according to the procedures described above, and with squared error loss)
that predict the two-year outcome as a function of the covariates. We fit models using the period −1
training data, and separately also fit models using a period −2 training set that is randomly sampled
to have identical size as the period −1 training set. We then compare the performance of these models
in predicting onto the period −1 test set, and we find clearly superior performance of the period −1
training models (a test set R2 of 0.126) over the period −2 training models (a test set R2 of 0.081).
We find similar results when we use these models to predict onto data that is analogous to period 0.

A.6 Application

W ∗ is estimated by fitting models for expected two-year employment using all of the available data,
including the data for the 2018-06-01 – 2018-08-31 test cohort. We use all of the data for this quantity
for the sake of counterfactual evaluation; if one were trying to assign the 2018-06-01 – 2018-08-31 in
the real world (i.e. if that was the present), it would obviously not be possible to estimate W ∗. In
contrast, WA, WB , and WC are all estimated in ways that would be possible, allowing them to be
used to determine the counterfactual assignment decisions.

WA is estimated by fitting models for expected two-year employment using the data prior to 2016-
06-01 (i.e. two years earlier than the test cohort), equivalent to period −2, and then applying those
models to the test cohort. WB is estimated by fitting models for expected one-year employment
using the data prior to 2017-06-01, equivalent to the union of period −1 and −2, and then applying
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those models to the test cohort. WC is estimated via a two-step process. In the first step, models for
expected two-year employment are fit using using the data from prior to 2016-06-01, with one-year
employment being included as a regressor. Those models are applied to the data between 2016-06-01
and 2017-05-31. With these predicted/expected values in hand, in the second step, another set of
models for two-year employment are fit using all data prior to 2017-06-01—which can be done
“feasibly" by using the predicted/expected values for two-year employment as the outcome for these
models—with only the variables contained in X as the regressors. In addition, the data from prior to
2016-06-01 are also included in the training of these models, with the true/observed values (rather than
predicted/expected values) of two-year employment used for those observations. This methodology
effectively combines period −1 and −2 for the τB estimator and for the second stage of the τC

estimator, which is a deviation from the assumptions made in Section 4. One could also estimate
τB and the second stage of τC using only period −1 data (between 2016-06-01 and 2017-05-31).
In Section A.9 we show a figure analogous to Figure 2 where τB and τC were estimated using this
approach.

A.7 Assignment and Constraints

Once the models corresponding to τA, τB , and τC have been estimated, the models can then
be applied to the test cohort to estimate their expected employment success (based on Y2 or Y1,
respectively for each method) at each of the possible LMRs. Optimal algorithmic assignment
decisions on which specific LMR each permit holder should be assigned to can then be made, based
on maximizing the expected average employment subject to the constraints. There are two key types
of assignment constraints that we take into account for our assessment. The first are family-related
constraints. All permit holders in the same family (or associated with the same case number for other
reasons) must be assigned together to the same location. The second are location capacity constraints.
That is, permit holders must be assigned across labor market regions according to pre-determined
capacity and proportionality guidance.

A.8 Results

The mean squared error for method K is computed by taking the average over locations and refugee
strata x, in the sense of the following:

1

|L|
∑
j∈L

EX

[
E
[
(τK(x, j)− τ(x, j))2

]]
This is estimated by computing the mean of the squared differences between the entries in the ground
truth matrix W ∗ and the matrix corresponding to the appropriate method.

The MSE for each test is shown in Table A.8.

τA τ̃B τC

Actual 0.010084 0.009388 0.007520
Proxy Violated 0.010084 0.013649 0.009756
More Shift 0.012559 0.009721 0.008650
Proxy Violated + More Shift 0.012407 0.013527 0.012243

Table 1: MSE Results

A.9 Results where old data is dropped for τB and τC

Figure 2 is analogous to Figure 1 but shows the results where τB and the second stage of τC are
estimated only using data from between 2016-06-01 and 2017-05-31. This method more closely
aligns with the theoretical results, but practically turns out to be less desirable because the sample
size becomes much smaller. As can be seen by comparing Figure 2 and 1, both τB and τC perform
slightly worse using this methodology.
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Figure 2: Counterfactual gains in two-year employment (compared to status quo) with actual data
(left) and perturbed data using the alternative strategies τA, τB , and τC . Confidence intervals are 95%
bootstrapped.

B Extensions

B.1 More than two outcomes

In a more general version of the problem discussed above, we have T + 1 time periods: t ∈
{0,−1, ...,−T}, where period 0 is the present time, and we have T outcomes, Y1 through YT , with
YT being the policy outcome of interest. The period t data contains outcomes Y1 through Yt. There
are now at least T + T (T + 1)/2 strategies one could pursue in choosing an outcome and estimation
method to guide the algorithmic recommendations. In particular, there are T estimands of the form:
τ t(x, j) = E−t[Yt|X = x, J = j] for t = 1, ..., T . There are also T (T + 1)/2 nested methods of
the form:

τ t1−t2(x, j) = E−t1 [E−t1−1[...E−t2+1[E−t2 [Yt2 |Yt1 , ..., Yt2−1, x, j]|Yt1 , ..., Yt2−2, x, j]...]|x, j]

for t2 > t1. For example, when T = 3,

τ1−3(x, j) = E−1[E−2[E−3[Y3|Y2, Y1, x, j]|Y1, x, j]|x, j].

Similar intuition for the relative merits and drawbacks of each method as in Section 4 will hold. In
particular, we expect τ1−T (x, j) to have similar robustness properties as τC .

B.2 Other data fusion problems

In addition to extending the modeling framework to an arbitrary number of time periods, one could
also extend the framework to non-temporal shifts. In particular, consider a scenario with three
datasets, I, II, and III. Our goal is to predict a particular outcome, outcome A, for individuals in
dataset I, where no outcome labels are present. Dataset II consists of a population of individuals and
an outcome B, related to outcome A. Finally, dataset III contains yet another population for which
outcomes A and B are both present. The question is how to use datasets II and III, along with the
outcomes they contain, to best predict outcome A for dataset I. In this paper, the random distribution
shift model effectively meant that period -1 data is closer to period 0 than period -2 is to period 0. In
this generalization, a key difficulty is measuring the “closeness” of datasets I, II, and III. If dataset II
is closer to dataset I than dataset III is to I, one could employ an analogous estimator to estimator
τC(x, j).

C Finite-sample considerations

In the following we will study how the procedures compare from a asymptotic viewpoint, in the
absence of distribution shift (that is, if P−2 = P−1 = P0). This setting is particularly important
for relatively small shifts, since in this case the error due to sample size will dominate the overall
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mean-squared error. For mathematical simplicity, we assume that the ratio of units for the two periods
converges to a constant, that is n−1

n−2
→ ρ ∈ (0,∞). We write n = n−1 + n−2.

In general, it is difficult to compare the three approaches since the performance depends both on the
choice of machine learning algorithms and on the data set. In particular, similar to "no free lunch"
theorems in machine learning [Wolpert, 1996], we expect that for any choice of algorithm, any of
the strategies can perform best depending on the dataset. That being said, in the following, we will
see that in the setting where X and Y1 is discrete, a clear comparison can be drawn. In this case, in
low-dimensional settings the estimator can be based on sample proportions. Let I−2,x,j be the set of
indices for units from period t = −2 that have Xi = x, and Ji = j.

τ̂A(x, j) =
1

#I−2,x,j

∑
i∈I−2,x,j

Y2,i.

We now define an estimate of τC . To this end, let I−1,x,j denote the set of indices for units from time
period t = −1 that have Xi = x and Ji = j. Similarly, let I−2,x,j,y be the set of indices for units
from time period t = −2 that have Xi = x, Ji = j, and Y1,i = y. As above, we can define

τ̂C(x, j) =
1

#I−1,x,j

∑
i∈I−1,x,j

Q̂(x, j, Y1,i), where Q̂(x, j, y) =
1

#I−2,x,j,y

∑
i∈I−2,x,j,y

Y2,i.

In the following, we introduce an estimator for τB . Analogously to the above, define

τ̂B =
1

#I−2,x,j

∑
i∈I−2,x,j

Y1,i.

Let us now compare the asymptotic performance of the three approaches. The estimator τ̂B is justified
if the relationship between the target Y2 and the proxy outcome is linear, that is if E−2[Y2|X =
x, J = j] = β1E−2[Y1|X = x, J = j] + β0. This is a very strong assumption. In particular, it
assumes that the relationship does not change for different values of X = x and J = j. The proof of
the following result can be found in Section D.

Example 3 (Invariant distribution; proxy assumption does not hold). Assume that there is no shift,
i.e. that P−2(·|x, j) = P−1(·|x, j) = P0(·|x, j). Then,

√
n(τ̂A(x, j)− τ(x, j)) ⇀ N (0, σ2

A)√
n(τ̂C(x, j)− τ(x, j)) ⇀ N (0, σ2

C),

where σ2
A < σ2

C if and only if ρ < 1. Furthermore, if the linear proxy assumption does not hold, we
have

β1τ̂
B(x, j) + β0 − τ(x, j) ̸→P 0.

Please note that we expect n−2 > n−1, since for P−2 we can pool many observations from previous
timepoints. Thus, if there is not distribution shift and the proxy assumption is violated, one would
generally prefer τ̂A. If the linear proxy assumption holds and n−1 > n−2, then the conclusions
change. This will be discussed in the following.

The following example shows that in this case τB is preferable over the other procedures. The proof
can be found in Section D.

Example 4 (Invariant distribution; proxy assumption holds). Assume that there is no shift, that is
P−2(·|x, j) = P−1(·|x, j) = P0(·|x, j) and that ρ > 1. If E−2[Y2|Y1, X] = β1Y1 + β0, then

√
n(τ̂A(x, j)− τ(x, j)) ⇀ N (0, σ2

A)√
n(τ̂C(x, j)− τ(x, j)) ⇀ N (0, σ2

C)√
n(τ̂B(x, j)− τ(x, j)) ⇀ N (0, σ2

B).

Furthermore,
σ2
B < min(σ2

A, σ
2
C).
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D Proofs

D.1 Proof of Theorem 1

Proof. For notational simplicity, without loss of generality, we will assume that Y1 is already
transformed, that is Y1 = Ỹ1. First, let us prove a few auxiliary results. By assumption, for fixed
y2, y1, y

′
2, y

′
1, x, j, x

′, j′ we have

E[St(y2, y1|x, j)] = 0 and Cov(S−2(y2, y1|x, j), S−1(y
′
2, y

′
1|x′, j′)) = 0, (4)

for t ∈ {−2,−1}. For every function f and fixed x, j we have

Var(
∑
y1,y2

f(y1, y2, x, j)S−2(y1, y2|x, j))

=
∑
y1,y2

∑
y′
1,y

′
2

f(y1, y2, x, j)f(y
′
1, y

′
2, x, j)Cov(S−2(y1, y2|x, j), S−2(y

′
1, y

′
2|x, j))

(5)

Here, the variance is over the randomness in the shift S−2. Now if y1 = y′1 and y2 = y′2, then by
equation (1),

Cov(S−2(y1, y2, |x, j), S−2(y
′
1, y

′
2|x, j))

= Var(S−2(y1, y2|x, j))
= κ−2P−2(y1, y2|x, j)(1− P−2(y1, y2|x, j)).

If y1 ̸= y′1 or y2 ̸= y′2, let A be the event that (y′1, y
′
2) = (Y1, Y2) or (y1, y2) = (Y1, Y2). Then

we can use additivity, that is P−1(A|X = x, J = j) = P−1((y
′
1, y

′
2) = (Y1, Y2)|X = x, J =

j) + P−1((y1, y2) = (Y1, Y2)|X = x, J = j) to obtain

Var(P−1(A|X = x, J = j))

= Var(S−2(y
′
1, y

′
2|x, j)) + 2Cov(S−2(y1, y2|x, j), S−2(y

′
1, y

′
2|x, j)) + Var(S−2(y1, y2|x, j))

Applying equation (1) directly on both sides, we get

κ−2P−2(A|x, j)(1− P−2(A|x, j))
= κ−2P−2(y1, y2|x, j)(1− P−2(y1, y2|x, j)) + 2Cov(S−2(y1, y2|x, j), S−2(y

′
1, y

′
2|x, j))

+ κ−2P−2(y
′
1, y

′
2|x, j)(1− P−2(y

′
1, y

′
2|x, j)).

Applying additivity to the left-hand side, we get

κ−2(P−2(y1, y2|x, j) + P−2(y
′
1, y

′
2|x, j))(1− P−2(y1, y2|x, j)− P−2(y

′
1, y

′
2|x, j))

= κ−2P−2(y1, y2|x, j)(1− P−2(y1, y2|x, j)) + 2Cov(S−2(y1, y2|x, j), S−2(y
′
1, y

′
2|x, j))

+ κ−2P−2(y
′
1, y

′
2|x, j)(1− P−2(y

′
1, y

′
2|x, j)).

Simplifying, we get

−2κ−2P−2(y
′
1, y

′
2|x, j)P−2(y1, y2|x, j) = 2Cov(S−2(y1, y2|x, j), S−2(y

′
1, y

′
2|x, j)).

Thus,

Cov(S−2(y1, y2|x, j), S−2(y
′
1, y

′
2|x, j)) = −κ−2P−2(y1, y2|x, j)P−2(y

′
1, y

′
2|x, j).

To summarize, we have

Cov(S−2(y1, y2, |x, j), S−2(y
′
1, y

′
2|x, j))

=

{
κ−2P−2(y1, y2|x, j)(1− P−2(y1, y2|x, j)) if (y1, y2) = (y′1, y

′
2),

−κ−2P−2(y1, y2|x, j)P−2(y
′
1, y

′
2|x, j) if (y1, y2) ̸= (y′1, y

′
2).

This allows us to re-write equation (5) as

Var(
∑
y1,y2

f(y1, y2, x, j)S−2(y1, y2|X = x, J = j))

= κ−2(
∑
y1,y2

f(y1, y2, x, j)
2P−2(y1, y2|x, j)− (

∑
y1,y2

f(y1, y2, x, j)P−2(y1, y2|x, j))2)

= κ−2Var−2(f(Y1, Y2, X, J)|X = x, J = j).
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On the left-hand side, the variance is over the randomness in the shift St, where on the right-hand
side the variance is computed under P−2. Since S−2 has mean zero, for any function f with
E−2[f(Y1, Y2, X, J)|X = x, J = j] = 0 we have

E[(
∑
y1,y2

f(y1, y2, x, j)S−2(y1, y2|x, j))2]

= κ−2Var−2(f(Y1, Y2, X, J)|X = x, J = j)

= κ−2E−2[f(Y1, Y2, X, J)2|X = x, J = j].

(6)

By an analogous argument, for any function f with E−2[f(Y1, Y2, X, J)|X = x, J = j] = 0 we
have

E[(
∑
y1,y2

f(y1, y2, x, j)S−1(y1, y2|x, j))2]

= κ−1(1− κ−2)E−2[f(Y1, Y2, X, J)2|X = x, J = j].

(7)

(Notice that κ−2 is naturally upper bounded by 1: For an event with Pt(•|x, j) = 1/2, the right-hand
side of equation (1) is κt/4. The left-hand side of (1) is upper bounded by 1/4, since Pt + St is
a [0, 1]-valued random variable, and the maximum variance of a [0, 1]-valued random variable is
achieved by Ber(1/2). Thus, equation (1) implies 1

4 ≥ κt

4 . Thus, we have 0 ≤ κt ≤ 1.)

We now have all auxiliary results in place to investigate the MSE of τC . For every fixed x, j we have

τ(x, j)− τC(x, j) =
∑
y2,y1

y2(P−2(y1, y2|x, j) + S−1(y1, y2|x, j) + S−2(y1, y2|x, j))

−
∑
y2,y1

E−2[Y2|Y1 = y1, X = x, J = j](P−2(y1, y2|x, j) + S−2(y1, y2|x, j))

=
∑
y2,y1

y2(S−1(y1, y2|x, j) + S−2(y1, y2|x, j))

−
∑
y2,y1

E−2[Y2|Y1 = y1, X = x, J = j]S−2(y1, y2|x, j)]

=
∑
y2,y1

(y2 − E−2[Y2|Y1 = y1, X = x, J = j])S−2(y1, y2|x, j)

+
∑
y2,y1

y2S−1(y1, y2|x, j)

The first inequality follows by definition. The second inequality follows from the fact that∑
y2,y1

y2P−2(y1, y2|x, j) = E−2[Y2|X = x, J = j] and
∑

y2,y1
E−2[Y2|Y1 = y1, X = x, J =

j]P−2(y1, y2|x, j) = E−2[E−2[Y2|Y1, X = x, J = j]|X = x, J = j] = E−2[Y2|X = x, J = j]
and thus these terms cancel out. The third inequality follows by rearranging terms.

Since
∑

y2,y1
S−1(y1, y2|x, j) = 0, we have

∑
y2,y1

E−1[Y2|X = x, J = j]S−1(y1, y2|x, j) = 0.
Combining this with the equation above,

τ(x, j)− τC(x, j)

=
∑
y2,y1

(y2 − E−2[Y2|Y1 = y1, X = x, J = j])S−2(y1, y2|x, j)

+
∑
y2,y1

(y2 − E−2[Y2|X = x, J = j])S−1(y1, y2|x, j).

Squaring and taking expectations, using equation (4), equation (7), and equation (6) yields

E[(τ(x, j)− τC(x, j))2|X = x, J = j] = κ−2E−2[(Y2 − E−2[Y2|Y1, X, J ])2|X = x, J = j]

+ κ−1E−2[(Y2 − E−2[Y2|X,J ])|X = x, J = j] +O(κ−1κ−2)

Now taking the expectation over X and J yields

E[(τ(x, j)− τC(x, j))2] = κ−2E−2[(Y2 − E−2[Y2|Y1, X, J ])2]

+ κ−1E−2[(Y2 − E−2[Y2|X, J ])2] +O(κ−1κ−2).
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This completes the first claim. Similarly,

τ(x, j)− τA(x, j) =
∑
y2,y1

y2(P−2(y2, y1|x, j) + S−1(y2, y1|x, j) + S−2(y2, y1|x, j))

−
∑
y2,y1

y2P−2(y2, y1|x, j)

=
∑
y2,y1

y2S−1(y2, y1|x, j) + S−2(y2, y1|x, j))

=
∑
y2,y1

(y2 − E−2[Y2|X = x, J = j])(S−1(y2, y1|x, j) + S−2(y2, y1|x, j))

Analogously as above, squaring and taking expectations (using equation equation (4), equation (7),
and equation (6)) yields the claim. Lastly,

τ(x, j)− τB(x, j) = E−2[Y2|X = x, J = j]

+
∑
y2,y1

(y2 − E−2[Y2|X = x, J = j])(S−1(y1, y2|x, j) + S−2(y1, y2|x, j))

− E−2[Y1|X = x, J = j]

−
∑
y2,y1

(y1 − E[Y1|X = x, J = j])S−2(y1, y2|x, j)

= E−2[Y2|X = x, J = j]− E−2[Y1|X = x, J = j]

+
∑
y2,y1

(y2 − y1 − E−2[Y2 − Y1|X = x, J = j])S−2(y1, y2|x, j)

+
∑
y2,y1

(y2 − E−2[Y2|X = x, J = j])S−1(y1, y2|x, j).

As before, squaring and taking expectations yields the claim.

D.2 Proof of Example 3

Proof. For the second statement, please note that due to the law of large numbers τ̂B(x, j) →P

E−2[Y1|X = x, J = j]. Since by assumption E−2[Y2|X = x, J = j] ̸≡ β1E−2[Y1|X = x, J =
j] + β0, β1τ̂

B(x, j) + β0 − τ(x, j) ̸→P 0. This proves the second statement.

Let I−2 denote the set of indices from time period −2 and I−1 denote the set of indices from time
period −1. A Taylor expansion reveals that

τ̂A(x, j)− τ(x, j) =
1

#I−2,x,j

∑
i∈I−2,x,j

Y2,i − E−2[Y2|X = x, J = j]

=
1

n−2

∑
i∈I−2

1
#I−2,x,j

n−2

1Xi=x,Ji=j(Y2,i − E−2[Y2|X = x, J = j])

=
1

n−2

∑
i∈I−2

1Xi=x,Ji=j

P−2(X = x, J = j)
(Y2,i − E−2[Y2|X = x, J = j]) + oP (1/

√
n).

Thus,

√
n−2(τ̂

A(x, j)− τ(x, j)) ⇀ N (0,
1

P−2(X = x, J = j)
Var−2(Y2|X = x, J = j))

As n−1/n−2 → ρ and n = n−1 + n−2,

√
n(τ̂A(x, j)− τ(x, j)) ⇀ N (0, (1 + ρ)

1

P−2(X = x, J = j)
Var−2(Y2|X = x, J = j)).
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For τC the proof proceeds analogously but is a bit more technical:

τ̂C(x, j)− τ(x, j))

=
1

#I−1,x,j

∑
i∈I−1,x,j

1

#I−2,x,j,Y1,i

∑
i′∈I−2,x,j,Y1,i

Y2,i′ − E−2[Y2|X = x, J = j]

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

#I−1,x,j/n−1

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j,Y1,i′=Y1,i

#I−2,x,j,Y1,i/n−2
(Y2,i′ − E−2[Y2|X = x, J = j])

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

#I−1,x,j/n−1

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j,Y1,i′=Y1,i

#I−2,x,j,Y1,i/n−2

· (E−2[Y2|Y1 = Y1,i, X = x, J = j]− E−2[Y2|X = x, J = j])

+
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

#I−1,x,j/n−1

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j,Y1,i′=Y1,i

#I−2,x,j,Y1,i
/n−2

(Y2,i′ − E−2[Y2|Y1 = Y1,i, X = x, J = j])

The first part can be drastically simplified and we can add an additional sum over y to decouple the
second term:

τ̂C(x, j)− τ(x, j))

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

#I−1,x,j/n−1
(E−2[Y2|Y1 = Y1,i, X = x, J = j]− E−2[Y2|X = x, J = j])

+
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

#I−1,x,j/n−1

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j,Y1,i′=Y1,i

#I−2,x,j,Y1,i
/n−2

(Y2,i′ − E−2[Y2|Y1 = Y1,i, X = x, J = j])

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

#I−1,x,j/n−1
(E−2[Y2|Y1 = Y1,i, X = x, J = j]− E−2[Y2|X = x, J = j])

+
∑
y

1

n−1

∑
i∈I−1

1Xi=x,Ji=j,yi=y

#I−1,x,j/n−1

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j,Y1,i′=y

#I−2,x,j,y/n−2
(Y2,i′ − E−2[Y2|Y1 = y,X = x, J = j])

Now by the law of large numbers,

τ̂C(x, j)− τ(x, j))

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

P−2(X = x, J = j)
(E−2[Y2|Y1 = Y1,i, X = x, J = j]− E−2[Y2|X = x, J = j])

+
∑
y

P−2(X = x, J = j, Y1 = y)

P−2(X = x, J = j)

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j,Y1,i′=y

P−2(X = x, J = j, Y1 = y)
(Y2,i − E−2[Y2|Y1 = y,X = x, J = j])

+ oP (1/
√
n)

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

P−2(X = x, J = j)
(E−2[Y2|Y1 = Y1,i, X = x, J = j]− E−2[Y2|X = x, J = j])

1

n−2

∑
i′∈I−2

∑
y

1Xi′=x,Ji′=j,Y1,i′=y

P−2(X = x, J = j)
(Y2,i − E−2[Y2|Y1 = y,X = x, J = j])

+ oP (1/
√
n)

=
1

n−1

∑
i∈I−1

1Xi=x,Ji=j

P−2(X = x, J = j)
(E−2[Y2|Y1 = Y1,i, X = x, J = j]− E−2[Y2|X = x, J = j])

1

n−2

∑
i′∈I−2

1Xi′=x,Ji′=j

P−2(X = x, J = j)
(Y2,i′ − E−2[Y2|Y1 = Y1,i′ , X = x, J = j])

+ oP (1/
√
n)
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Thus, by the CLT, with n−1

n−2
→ ρ we have
√
n(τ̂C(x, j)− τ(x, j)) ⇀ N (0, σ2

C),

where

σ2
C =

1 + ρ

ρ

1

P−2(X = x, J = j)
Var−2(E−2[Y2|Y1, X = x, J = j]|X = x, J = j)

+ (1 + ρ)
1

P−2(X = x, J = j)
Var−2(Y2 − E−2[Y2|Y1, X = x, J = j]|X = x, J = j).

Thus, τ2A < τ2C if and only if ρ < 1.

D.3 Proof of Example 4

Proof. Please note that following the proof of Example 3, the estimators τ̂A(x, j), τ̂Bscaled(x, j) :=
β1τ

B(x, j) + β0 and τ̂C(x, j) are all asymptotically unbiased. Thus, in the following we will
compare their respective asymptotic variances. For τ̂Bscaled(x, j) we have asymptotic variance

1 + ρ

ρP−2(X = x, J = j)
Var(β1Y1 + β0|X = x, J = j)

=
1 + ρ

ρP−2(X = x, J = j)
Var(E−2[Y2|Y1, X = x, J = j]|X = x, J = j)

From the proof of Example 3 we know that the asymptotic variance of τ̂A(x, j) is

1 + ρ

P−2(X = x, J = j)
Var(Y2 − E−2[Y2|Y1, X = x, J = j]|X = x, J = j)

+
1 + ρ

P−2(X = x, J = j)
Var(E−2[Y2|Y1, X = x, J = j]|X = x, J = j).

Similarly, for τ̂C we know that the asymptotic variance is

(1 + ρ)
1

P−2(X = x, J = j)
Var(Y2 − E−2[Y2|Y1, X = x, J = j]|X = x, J = j)

+
1 + ρ

ρ

1

P−2(X = x, J = j)
Var(E−2[Y2|Y1, X = x, J = j]|X = x, J = j).

Since ρ > 1, the claim follows.
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