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Abstract

Routines shape many aspects of day-to-day consumption. While prior work has established
the importance of habits in consumer behavior, little work has been done to understand the im-
plications of routines — which we define as repeated behaviors with recurring, temporal struc-
tures — for customer management. One reason for this dearth is the difficulty of measuring
routines from transaction data, particularly when routines vary substantially across customers.
We propose a new approach for doing so, which we apply in the context of ridesharing. We
model customer-level routines with Bayesian nonparametric Gaussian processes (GPs), lever-
aging a novel kernel that allows for flexible yet precise estimation of routines. These GPs are
nested in inhomogeneous Poisson processes of usage, allowing us to estimate customers’ rou-
tines, and decompose their usage into routine and non-routine parts. We show the value of
detecting routines for customer relationship management (CRM) in the context of ridesharing,
where we find that routines are associated with higher future usage and activity rates, and
more resilience to service failures. Moreover, we show how these outcomes vary by the types
of routines customers have, and by whether trips are part of the customer’s routine, suggesting
a role for routines in segmentation and targeting.
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1. Introduction

Routines are an integral feature of consumers’ daily lives: for many people, from the time they

wake up to the moment they go to sleep, their time is structured around routines. Such rou-

tines often involve consumption, like picking up coffee from a favorite coffee chain each morning,

checking a weather app before leaving home in the morning and before leaving work in evening,

or choosing a mode of transportation to get to and from work. Moreover, consumers are often

different in their routines: while one may drink their coffee only in the mornings, seven days per

week, another may prefer to have their coffee after lunch, and only on weekdays. Marketers can

greatly benefit from understanding consumer routines. Yet, while routines are intuitively impor-

tant drivers of consumer behavior, prior research has not explored the presence of such routines

in consumers’ behavior and their implications for customer management. Accordingly, the objec-

tives of this research are first, to build a statistical model that can capture customer routines at the

individual-level, and second, to explore the relationship between such routines and behavioral

outcomes like transaction frequency and customer activity.

We define a routine as a behavior with a defined, recurring, temporal structure, such that the same

behavior occurs at roughly the same time, period after period. We focus specifically on the period of

a week, as weekly routines capture many common routines, including, for instance, weekday

commutes, weekday lunches, weekend brunches, and weekly grocery shopping.1 Routines are

related to habits, which have been studied more extensively in marketing (e.g. Drolet and Wood

2017). It is the emphasis on temporal structure that differentiates routine behavior from habitual

(or repeat) behavior. For example, a consumer who always shops at the same store may do so

out of habit. A customer who always shops at that same store every Thursday evening exhibits a

routine. In this sense, a routine can be viewed as a habit that is embedded in a consumer’s day-to-

day schedule. We posit that such temporally structured behavior may be an especially important

predictor of customer value, and customer behavior more generally.

Little research has been done on capturing routines and understanding their impact on con-

1While weekly routines capture much of the richness of recurring consumption, there are also routines that exist over
longer periods, like getting a haircut the first Friday of a month, or biweekly Sunday dinners at one’s parents’ house,
which will not be captured by focusing on weekly routines. Our approach could be easily extended to cyclicalities other
than a week, as we describe later.
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sumer behavior and firm profitability. In this work, we focus on the implications of routines for

customer relationship management (CRM). In particular, we hypothesize that, given equal trans-

action rates, customers who interact with the company as part of their routine may be higher

value customers, in terms of more future purchasing and lower rates of churn, relative to cus-

tomers with no routine. Routine customers may also be better customers in other ways, including

having lower price sensitivities, and higher resilience to service disruptions. We hypothesize that

the effect of a routine exists over and above a mere tendency to repurchase the same product,

as is already captured in many existing customer relationship management (CRM) frameworks

like the recency-frequency-monetary value (RFM) model (e.g., Blattberg, , and Kim 2008; Neslin,

Taylor, Grantham, and McNeil 2013). In other words, given two customers with identical purchas-

ing summary statistics — that is, they both purchased recently, they both made the same number

of purchases historically, and they both spent the same amount on each purchase occasion — we

predict that the customer whose purchase timings exhibited a higher routineness will be a better

customer in the future.

To measure customer routineness, we develop a statistical model that allows us to identify

the routine of each individual customer, if it exists, and isolate the share of the consumption that

can be attributed to that routine. This model enables us to differentiate between, for instance,

one customer who typically rides during weekday commute hours, for a total of 10 routine trips

per week, and another customer who rides twice a week to Yoga class on Tuesday and Thurs-

day afternoons. Specifically, our model is an individual-level, inhomogeneous Poisson process

that captures individual-specific patterns in consumption across periods, with a unique Bayesian

nonparametric specification of its rate. The individual-specific rate of consumption is decomposed

into a component that captures potentially dynamic levels of idiosyncratic or “random” consump-

tion, and a “routine” component that captures individual-level consistencies in consumption tim-

ing, which is modeled using a Gaussian process prior with a unique kernel structure. This kernel

structure incorporates intuitive aspects of consumption over time — specifically, that certain days

exhibit similarities in consumption (e.g., a Tuesday might be more similar to a Thursday than to

a Sunday) and that consumption within days exhibits a 24-hour cycle (e.g., 12:05am is similar to

11:55pm) — to precisely estimate individual-specific variation in routine behavior. Using the rou-

3

Electronic copy available at: https://ssrn.com/abstract=3982612



tine component of the Poisson rate parameter, we construct an individual-specific “routineness”

metric that measures to what degree an individual’s behavior is structured around a routine. In

addition to the routineness metric, the model infers the form or temporal “shape” of the routine

for each consumer (e.g., whether a consumer has a Monday through Thursday AM routine, or a

Tuesdays evening routine).

We apply our model and routineness metric to data from Via, a leading New York City-based

ridesharing company, to estimate consumer routines in requesting rides. Ridesharing is a particu-

larly rich setting for studying routines, as travel is often an integral part of many daily and weekly

routines. We identify various patterns in using the ridesharing service across users, including

predictable commuting routines, as well as more complex, idiosyncratic routines. More impor-

tantly, we show that, as hypothesized, users who are more routine in their behavior are also more

valuable to the firm, in terms of both higher future usage and higher rates of remaining active,

even after controlling for past usage patterns such as recency, frequency, or clumpiness. Having

established the value of routineness in customer value, we then show that routines also play a

role in driving and moderating other aspects of the customer-firm relationship, including price

sensitivity and customer response to service failures.

The rest of the paper is organized as follows: we start by discussing the prior literature on

habits and routines, and the connections between routineness and other extant metrics of trans-

action timing in CRM. We then present our model for capturing and measuring customer-specific

routines. Moving next to our empirical application, we describe the ridesharing data and the re-

sults of applying our model: we first apply the model on synthetic data that mimics the real data,

validating the model’s ability to recover different types of routines. We then apply the model on

the ridesharing data, characterizing the types of routines exhibited by riders, and validating the

model’s fit. Finally, we explore the idea of routineness more deeply, by highlighting the relevance

of routines for CRM, exploring how customer-level outcomes vary by the type of routine, and by

comparing routineness to other constructs. We conclude with discussion and directions for future

research.

4

Electronic copy available at: https://ssrn.com/abstract=3982612



2. Conceptual Foundations

While research on routines is relatively scant, the closely related topics of habits and repeat be-

haviors have been studied extensively, both in marketing and in related disciplines. Early work in

marketing used the term repeat buying habit to simply indicate repeatedly buying the same product

or repeatedly buying from the same company, without considering the more psychological con-

struct of a habit or habit formation (Ehrenberg and Goodhardt 1968). Predicting repeat purchasing

has subsequently been the focus of many models in customer base analysis, including popular

buy-till-you-die models (e.g., Schmittlein, Morrison, and Colombo 1987) and more general RFM-

based specifications (e.g., Dew and Ansari 2018). Repeat buying is also central to other important

marketing constructs, including brand and store loyalty and brand inertia (e.g., Guadagni and Lit-

tle 1983), all of which can also be viewed as forms of habitual behavior. Moving beyond studying

simple repeat purchasing, Shah, Kumar, and Kim (2014) generalized the idea of habits to recurring

behaviors like returning products, purchasing on promotion, and purchasing low-margin items.

They showed that these repeat behaviors are linked to firm profitability, and that firm actions can

influence the formation of habitual behaviors.

Habit formation has also been studied in economics, often in the context of consumption and

expenditure, where it is typically defined as current expenditures depending on lagged expendi-

tures through a “habit stock.” In this literature, habits have been used to explain the smoothness

of consumption over time, even in the presence of shocks to income, although evidence for the

existence of habit formation in aggregate consumption is mixed (Dynan 2000; Fuhrer 2000).

Much of the theory behind why habits matter, how they develop, and how they can be changed

has come from the psychology and consumer behavior literatures. Habits have been studied in

psychology since as early as the 19th century (James 1890). In this literature, habits are often de-

fined as tendencies to repeat behaviors, typically automatically or subconsciously (Ouellette and

Wood 1998; Wood, Quinn, and Kashy 2002), and sometimes in a goal-directed manner (Aarts and

Dijksterhuis 2000), or triggered by contextual cues (Neal, Wood, Labrecque, and Lally 2012). Es-

pecially relevant for our empirical application of ridesharing, habits have recently been identified

as a primary driver of travel mode choice (e.g., Verplanken, Walker, Davis, and Jurasek 2008),

which is of particular interest for developing more sustainable consumer choices (White, Habib,
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and Hardisty 2019). A noteworthy finding in this literature is the habit discontinuity hypothesis,

which states that context changes that disrupt individuals’ habits can lead to deliberate choice con-

sideration, and habit breaking (Verplanken et al. 2008). This phenomenon has also been observed

in the CRM literature. For example, Ascarza, Iyengar, and Schleicher (2016), show that customers

who continue to transact with the firm out of habit may be driven to churn by company retention

efforts, even when those retention efforts are intended to save the customer money, simply by

means of disrupting their inertia.

2.1. Routines and Habits

In one sense, routines can be viewed as a specific type of habit, where the automaticity of behavior

is related to time: if, every day, at a certain time, a consumer carries out an action, then time

can be considered the context that triggers that behavior. Thus, many of the predictions made

elsewhere in the literature about habitual behavior and customer loyalty (e.g., Ascarza, Neslin,

Netzer, Anderson, Fader, Gupta, Hardie, Lemmens, Libai, Neal et al. 2018) carry over to routines:

we postulate, for instance, that routines can lead to nearly automatic choices, and will thus be more

difficult to break, resulting in stickier long-run behavior, and lower likelihood to react negatively

to price increases or service failures. However, we hypothesize that routines are more predictive of

customer value than mere habit. The key distinction between habits and routines is that, whereas

habits simply imply automatic, repeated behaviors, a behavior is routine only if it additionally

has a recurring, temporal structure. Intuitively, such behaviors are likely embedded in a consumer’s

daily life, and thus, may be even more automatic, and indicative of long-run value, than habitual

behaviors that lack such a temporal structure. Thus, a customer who is routinely consuming a focal

product or service may be even more valuable than one who is merely habitually (i.e., repeatedly)

consuming the product, but not in a routine manner.

2.2. Clumpiness, Regularity, and Routines

Our work is also related to the growing literature on extending traditional RFM frameworks to

incorporate information about usage and purchase timing. RFM-based frameworks, while use-

ful predictive tools, discard much of the richness of a customer’s transaction history, and simply
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Figure 1: Clumpy and Regular Routines
Illustration of the conceptual links between routineness, regularity, and clumpiness.

summarize a customer’s likelihood of repeat purchasing by how recently they purchased, and

how often they purchased in the past. Recent work has shown that there is incremental value in

moving beyond these simple statistics. A notable contribution in this stream is Zhang, Bradlow,

and Small (2015), who defined the clumpiness of customer transaction times. Their metric cap-

tures the customer-level entropy of intervisit times and is higher when a customer exhibits more

temporally clustered behavior, or “clumpy,” behavior. They show that, in many empirical con-

texts, especially contexts with bingeable content, this measure of clumpiness is a key (positive)

predictor of customer lifetime value. Another key contribution comes from Platzer and Reutterer

(2016), who defined the concept of transaction regularity. In particular, they introduced a buy-

till-you-die model, the Pareto-GGG, where the regularity of transactions is modeled by relaxing

the standard exponential-distributed intertransaction time model common to many customer base

models, allowing for customer-specific gamma-distributed intertransaction times. They find that

incorporating regularity can improve customer-level predictions.

Routineness is conceptually distinct, but related to, these two metrics. In particular, routines

can generate clumpy or regular behavior, or even regular clumpy behavior, depending on the type

of routine. For example, a customer who takes multiple rides club-hopping every Saturday night

exhibits a routine that is clumpy, while a “workaholic” customer who takes a ride to work 7 days

a week exhibits very regular behavior. We illustrate these ideas in Figure 1. On the other hand,

a customer who commutes only on Mondays and Wednesdays may have a routine that is neither

clumpy nor regular. In other words, the measures are distinct: not all routines are clumpy or

regular, and not all clumpy or regular behaviors are routine.2

2We also demonstrate these connections empirically in our “quasi-simulation” analysis, described later.

7

Electronic copy available at: https://ssrn.com/abstract=3982612



That routines can generate clumpy and regular behavior is a key advantage of our framework,

for several reasons. First, routines add additional nuance to the possible “types” of clumpiness

that can be observed, thereby partly answering a call from Kumar and Srinivasan (2015) to explain

the origins of clumpiness in transactions. Relatedly, this link between routines, clumpiness, and

regularity also sheds light on when clumpy and regular transaction times, which intuitively seem

at odds, may both be predictive of higher customer value, insofar as both may be manifestations

of routines. More broadly, the interpretability of routines makes routineness a valuable metric for

marketers looking to build interpretable yet accurate CRM models, thus addressing an on-going

need for new advances in this space (Neslin, Gupta, Kamakura, Lu, and Mason 2006). Finally,

our novel approach of identifying and isolating routines using transaction data and relating them

to the customer value is consistent with Du, Netzer, Schweidel, and Mitra (2021)’s call to move

toward a richer characterization of behavior, and toward relating such behaviors to firm growth

through customer value.

3. Model

In this section, we specify a model of usage that yields a natural metric for how routine a cus-

tomer’s behavior is, and what weekly routine the customer exhibits. By “usage,” we mean the

consumer interacting with the firm in some way, and by “weekly routine,” we mean the struc-

ture of usage within a given week, which is the main focus of this research. Before describing the

model, we first review its methodological underpinnings.

3.1. Methodological Background

The model we propose merges an inhomogeneous Poisson process with a Bayesian nonparametric

Gaussian process. While the basis of many customer base analysis models is a homogeneous Pois-

son process (Schmittlein, Morrison, and Colombo 1987), inhomogeneous Poisson process trans-

action models have been employed to capture more complex dynamics in usage or transaction

behavior (e.g., Ho, Park, and Zhou 2006; Ascarza and Hardie 2013). An inhomogeneous Poisson

process is a point process over some space, S , where the rate of observing events, λ(s), depends
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on position in the space, s ∈ S , such that the number of events in any bounded region of the space,

Y(B), B ⊆ S , is distributed:

Y(B) ∼ Poisson
(∫

B
λ(s) ds

)
.

In many marketing applications, the space S is time (i.e., S = R), such that the process simply

captures that events are not uniformly likely over time. Poisson processes enjoy a number of useful

properties, including the superposition property, which says, if Y1 and Y2 are Poisson processes with

rates λ1 and λ2, then Y1 +Y2 is also a Poisson process with rate λ1 + λ2 (Kingman 1992). We make

use of this property in our model specification to separate routine from non-routine transactions.

In our model, the time-varying rate parameter of the Poisson process is modeled using a Gaus-

sian process, or GP (Williams and Rasmussen 2006). In marketing, GPs have seen increased use in

recent years, in both aggregate-level and individual-level CRM and brand choice contexts (Dew

and Ansari 2018; Dew, Ansari, and Li 2020; Tian and Feinberg 2021). Regarding our research ob-

jective, GPs offer an ideal solution to modeling routines because, unlike other flexible function

estimation methods, they enable us to flexibly model customer-level rates of usage, while also al-

lowing us to encode prior knowledge about the structure of time. We elaborate more on this point

as we describe our model below. In the broader literature, our model aims to capture time-varying

purchasing or usage patterns, and is thus related to a long line of dynamic models in marketing

(e.g., Kim, Menzefricke, and Feinberg 2005; Du and Kamakura 2012).

3.2. Model Specification

We propose a model of customer usage of a focal product or service. The key dependent variable,

denoted yit, captures how many times customer i interacts with the company during time period

t. In later sections, when we apply this model to ridesharing data, the dependent variable will be

requesting rides. However, our model is fully general, and can be applied using timing data from

any context and at various time intervals, and for myriad customer behaviors of interest (e.g.,

using a mobile app, making purchases with the firm, visiting the firm’s website).

We model a customer’s observed usage yit as the amalgamation of two individual-level, in-

homogeneous Poisson processes over time (t): a routine process yRoutine
i (t), which captures how

often consumption needs arrive as part of the customer’s routine, and a non-routine or “random”
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process, yRandom
i (t), which captures how often consumption needs arrive outside of the customer’s

routine. Throughout the paper, we will use the words “non-routine” and “random” interchange-

ably. The idea here is that usage outside of the routine is likely due to random needs arising, from

the point of view of the customer, not that this process is totally random (i.e., white noise). Each

of these processes has its own customer-specific rate, λRoutine
i (t) and λRandom

i (t). As the analyst,

we do not observe whether a given transaction is routine or not; we only observe the collection of

all transactions, yi(t) ≡ yRoutine
i (t) + yRandom

i (t). By the superposition property described above,

we have that yi(t) is also a Poisson process, with rate given by λRoutine
i (t) + λRandom

i (t). Meaning-

fully decomposing overall usage into routine and non-routine parts thus requires specifying these

rates.

To specify these rates, we first simplify our setting, by assuming the analyst only cares about

time on a discrete grid, such that we only consider the number of uses that occur within fixed

intervals. Slightly abusing notation, we use t to refer to this fixed time grid. Given our intuition

that routines are customer-level behaviors that are consistent in terms of when they occur, week

over week, the relevant grid to consider consists of weeks (w), days within weeks (d), and hours

within days (h), the collection of which gives us t = (w, d, h). We will assume w indexes weeks

since the start of the data, d indexes days of the week starting with d = 1 = Sunday, and h =

0, . . . , 23 indexes the 24 hours of a day. To simplify notation even further, we will use the unit of

“day-hours,” which we denote as j = 1+ (d− 1)× 24+ h, such that j = 1, . . . , 168, captures all the

hours in a week. Under this time structure, the dependent variable yit = yiwj captures the number

of interactions customer i has with the firm in week w at day-hour j.

Under this discrete time assumption, our model likelihood can be specified as:

yit ∼ Poisson(λRoutine
it + λRandom

it ), (1)

where λRoutine
it =

∫
τ∈t λRoutine

i (τ)dτ, and likewise for λRandom
it . We denote the overall usage rate

as λit ≡ λRoutine
it + λRandom

it . We then break each of the overall usage rate terms into two dynamic

parameters:

λit = exp(γiw + ηij) + exp(αiw + µj). (2)
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In each term, there is one parameter that varies over weeks (w), and one that varies over day-

hours (j). Our substantive focus is primarily on variation over day-hours. Thus, noting that λit

could be rewritten as λit = exp(αiw) exp(µj) + exp(γiw) exp(ηij), we will refer to the terms with j

subscripts (i.e., µj and ηij) as day-hour rate terms, reflecting the rate of usage across day-hours, and

refer to the terms with w subscripts (i.e., αiw and γiw) as weekly scaling terms, as these terms scale

up or down each of the rate terms over customers and weeks.

We now explain how this structure maps onto the idea of routines as week-over-week consis-

tencies in time of use. In the first term, the routine rate, λRoutine
it = exp(γiw + ηij), the day-hour

rate parameter, ηij, has an i subscript. Thus, ηij captures patterns of day-hour usage that are spe-

cific to customer i. If the weekly scaling parameter, γiw, is large for many subsequent weeks, it

suggests that the customer is expected to use the service consistently at the same day-hours each

week, following the pattern determined by ηij. On the other hand, in the second term, the non-

routine or “random” rate, λRandom
it = exp(αiw + µj), the day-hour rate parameter does not have

an i subscript. Instead, this term captures general patterns of day-hour usage that are common

across customers and across weeks. For example, in our empirical application, µj captures that,

on average, customers tend to take rides during the day, but not in the middle of the night. Said

differently, if any given user were to randomly have need of the service, µj captures when we

might expect that random need to arise, and how the distribution of random needs may deviate

from a uniform distribution over day-hours. If this term’s weekly scaling parameter, αiw, is high,

it suggests that the customer is expected to make many requests that week, but that the day-hour

pattern of those requests is not consistent with that customer’s week-over-week patterns. It is this

tension between consistently using the service at the same (individual-specific) day-hours, versus

using the service in a way that is “random” (up to the typical usage patterns in the population),

that implicitly defines what our model detects as a routine: if the usage follows a customer-specific

day-hour pattern that is consistent over weeks, over and above the general consistency implied

by the customer base as a whole, that usage will be captured by the first term, and is what our

model defines as routine usage.

Recall that the superposition property implies that our model can be equivalently expressed
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as the sum of two count processes, yit = yRoutine
it + yRandom

it , such that:

yRoutine
it ∼ Poisson(exp(γiw + ηij)), (3)

yRandom
it ∼ Poisson(exp(αiw + µj)). (4)

This decomposition allows for a natural definition of the levels of random usage and routine us-

age, through the expectation of Poisson random variables. Specifically, we define two metrics,

ERandom
iw and ERoutine

iw , which are the expected number of random and routine interactions, respec-

tively, within a single week w, for customer i, such that:

ERoutine
iw = ∑

j
exp(γiw + ηij), (5)

ERandom
iw = ∑

j
exp(αiw + µj). (6)

In plain English, these two terms capture how often a user is expected to interact with the firm

in a given week, decomposing the total number of interactions into the expected number of inter-

actions happening at random, and the number of interactions stemming from the user’s routine.

These metrics allow us to identify how routine customers’ behaviors are, and are at the heart of

the paper’s focus and intended contribution. We call ERoutine
iw the routineness of customer i in week

w, and will use this metric and terminology throughout our analysis.3

3.3. Specifying the Components of the Usage Rates

Our model captures individual-level, time-varying usage through two count processes, each of

which has a rate (λRoutine
it and λRandom

it , respectively) that comprises two parts: scaling terms (αiw

and γiw) and day-hour rates (µj, and ηij). To model these parameters, we first recast the problem

as estimating latent functions, αi(w), µ(j), γi(w), and ηi(j), respectively. This switch from sub-

script notation to functional notation is merely a conceptual pivot: by recasting the problem of

estimating rates as a problem of estimating unknown functions, we can capture uncertainty over

3Note that it is the Poisson assumption together with the superposition property that allows us to interpret these
quantities in this way. Thus, even if the number of interactions within a time period is close to binary it is useful to
model it using the Poisson process. This approach has been frequently used in the literature (e.g. Gopalan, Hofman,
and Blei 2015).
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those rates using Gaussian processes. As we show below, this in turn allows us to encode prior

knowledge and assumptions about these parts of the model in a natural way, beyond those that

could be incorporated in other specifications (like, for example, state space models).4

GPs provide a way of specifying prior distributions over spaces of functions. With this prior,

we can encode structural information about the functions in that space, like the smoothness and

differentiability of the functions, or other a-priori knowledge about their shape. In this way, GPs

allow for flexible estimation of functions, while optimally leveraging both information sharing

and a-priori knowledge, to improve the efficiency of those estimates. A GP is a distribution over

functions, f (x) : Rd → R, defined by two other functions: a mean function, m(x), which captures

the a-priori expected function value at inputs x, and a kernel function k(x, x′), which captures

a-priori how similar we expect the function values f (x) and f (x′) to be, for two inputs x and x′.

Modeling f (x) using a GP is denoted f (x) ∼ GP(m(x), k(x, x′)). For a finite, fixed set of inputs,

x = (x1, . . . , xN), f (x) ∼ GP(m(x), k(x, x′)) is equivalent to:

f (x1, . . . , xN) ∼ N(m(x1, . . . , xN), K), (7)

such that element (n1, n2) of K is given by Kn1,n2 = k(xn1 , xn2). Mathematically, the matrix K is

the kernel k(x, x′) evaluated pairwise over all inputs, and is called the kernel matrix. Intuitively, a

GP specifies a multivariate Gaussian prior over the outputs corresponding to any combination of

inputs, by means of its mean function and kernel. Thus, these two objects are the primary source

of model specification in GP-based models. In practice, it is common to set the mean function m(x)

to be zero or a constant and let the dependencies between the outputs be solely captured by the

kernel (Williams and Rasmussen 2006). The primary restriction in specifying the kernel is that the

corresponding kernel matrix be positive definite. The mean function and kernel themselves are

typically parameterized through an additional set of parameters referred to as hyperparameters.

4We note that there are many links between GPs and state space models, a discussion of which is beyond the scope
of this paper (see, e.g., Loper, Blei, Cunningham, and Paninski 2020). There are also links between GP models and
time series models. For example, spectral analysis in time series is closely linked to Bochner’s theorem for kernel
methods (like GPs), which establishes that every kernel function can be expressed equivalently as a spectral density.
This connection has been explicitly used in many GP methods to derive new kernels (e.g. Wilson and Adams 2013).
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Returning to our specification, we model:

γi(w) ∼ GP(γ0i, kExp(w, w′; ϕγ)), (8)

αi(w) ∼ GP(α0i, kExp(w, w′; ϕα)), (9)

ηi(j) ∼ GP(0, kDH(j, j′; ϕη)), (10)

µ(j) ∼ GP(0, kDH(j, j′; ϕµ)). (11)

Here, kExp(·, ·) is the exponential kernel, and kDH(·, ·) is a novel-day hour kernel, both of which we

define subsequently. In γi(w) and αi(w), we allow for individual-level constant mean functions,

γ0i and α0i, capturing the mean level of routine and non-routine usage for each customer. The ϕs

are kernel hyperparameters.

The kernel used for both of the weekly terms is the exponential kernel (e.g. Dew, Ansari, and

Li 2020), given by the general form,

kExp(w, w′; ϕp = {σp, ρp}) = σ2
p exp

[
−|w − w′|

2ρp

]
, (12)

where the p subscript corresponds to the hyperparameters of parameter p. For this kernel, p

is either γ or α.5 The exponential kernel is a special form of the more general Matérn kernel,

a popular kernel often used to model functions that may exhibit smooth fluctuations over time

(Williams and Rasmussen (2006); Dew, Ansari, and Li (2020)).6 The smoothness of the underlying

process is captured by the kernel’s lengthscale parameter, ρ. The higher this parameter, the more

covariance is expected between function values, given fixed inputs. We illustrate the effect of the

lengthscale parameter on smoothness of the function draws in Figure 2. In the context of routines,

we expect that the routine weekly scaling parameter, γi(w), will be smoother than the non-routine

parameter, αi(w). This additional smoothness mathematically corresponds to our intuition that

a routine should be consistent week over week. We embed this a priori expectation by defining

different priors for ργ, the lengthscale of γi(w), and ρα, the lengthscale of αi(w), as we discuss in

5Note that the same kernel hyperparameters are used for all customers, for a given parameter. That is, there is no i
subscript within p.

6Here, we mean smoothness in the lay sense of the word, as illustrated by Figure 2. We do not mean smoothness in
the functional analysis sense of the word in terms of differentiability. For additional discussion of these two forms of
smoothness, see Dew, Ansari, and Li (2020).
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Figure 2: Draws from a GP prior.
The effect of the lengthscale parameter on draws from a GP with the exponential kernel. Each panel represents a different
lengthscale (ρ). Each line is an independent draw from a GP prior with an exponential kernel with that lengthscale. In our
application, our prior for ρ encourages relatively low smoothness for non-routine usage, and relatively high smoothness for
routine usage, consistent with the idea of routines being somewhat (but not absolutely) sticky.

the next section.

The other kernel, kDH(j, j′; ϕ), is a novel kernel which we term the day-hour kernel. This kernel

has a functional form designed to capture the a priori structure we know exists within weeks,

specifically that hours follow a 24-hour cycle, and that certain days are more similar to other days

(e.g., weekends versus weekdays, or workdays versus days off). To capture these properties, we

fuse a periodic kernel (Williams and Rasmussen 2006, Chapter 4) with an unstructured estimate

of the correlation between different days of the week. Specifically, we define:

kDH(j, j′; ϕp = {σp, ρp, Ωp}) = σ2
p × Ωp[d, d′]× exp

{
1

2ρ2
p

sin2
(

π|h − h′|
24

)}
, (13)

where, again, p indexes a particular parameter, which in this case, can be either µ or η. The matrix

Ωp is a correlation matrix over days of the week, and the notation Ωp[d, d′] stands for the (d, d′)

entry of that matrix (i.e., the correlation between days d and d′). This correlation matrix can be seen

as an unstructured kernel that allows the model to detect, in a fully flexible way, the correlation

structure that exists between function values across different days. The third term in this product

is the periodic kernel with a 24-hour cycle, denoted kPer(h, h′; ρp) for short. It captures the smooth

but cyclic variation we expect to see over hours within a day, with smoothness ρp. Thus, our

day-hour kernel is a specific form of the more general class of multiplicative kernels, formed by

specifying kernels separately on input dimensions (in this case, days and hours), then multiplying

those kernels together. Crucially, for our day-hour kernel to be valid, the kernel matrix formed
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by evaluating our kernel pairwise at all input values must always be positive (semi)definite. The

kernel matrix (for parameter p) implied by our DH kernel is given by,

KDH = σ2
pΩp ⊗ KPerp , (14)

where, analogous to previous kernel matrices, KPerp is the matrix formed by evaluating the peri-

odic kernel kPer(h, h′; ρp) pairwise at all hours. To see that this matrix is positive definite, first, note

that we restrict Ω to be a correlation matrix, and thus, Ω is positive definite. KPer is guaranteed

to be positive definite, since kPer(h, h′; ρp) is known to be a valid kernel (Williams and Rasmussen

2006). Thus, since the Kronecker product of two positive definite matrices is also positive definite,

we see that kDH(j, j′) is a valid kernel.

Intuitively, this day-hour kernel allows us to place a prior over functions that exhibit two

natural properties when dealing with weekly usage data: we allow for arbitrary relatedness of

days through the unstructured correlation matrix Ωp, and for a natural 24-hour cycle through

kPer(h, h′; ρp), which accounts for the fact that usage at h = 0 (12 AM) will be similar to usage

at h = 23 (11 PM). Finally, through its multiplicative structure, it assumes that these two forces

operate together: if day d is similar to day d′, as captured by Ωp, and hour h is similar to hour

h′, a GP modeled with this kernel is expected to have similar function values at (d, h) and (d′, h′).

By encoding this natural prior information into our model structure, we facilitate the efficient

inference of the mean and individual-level rate functions, µ(j) and ηi(j).

3.4. Hyperparameter Priors

To complete our fully Bayesian specification, we now briefly describe the priors for the hyperpa-

rameters of our GP kernels, the most important of which are the length-scale parameters, ρα and

ργ. Recall that these hyperparameters control the smoothness of the weekly scaling parameters,

and that we expect, a priori, that ργ will be larger than ρα. To encode that in our model, we draw

on the suggestions by Betancourt (2020) and use weakly informative inverse-gamma priors.7 The

7This prior has two desirable properties: first, it has support over the positive reals, and second, it “avoids” values
that are close to zero. Too small lengthscale values can be problematic when the inputs to the function of interest are
only observed on a coarse grid, as the smoothness between the observed inputs is unidentified.
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inverse-gamma distribution, given by,

f (x | a, b) =
βa

Γ(a)
x−a−1 exp

(
−β

x

)
,

has a shape parameter a and a scale parameter β. For both ρα and ργ, we set the shape parameter

a = 5, which implies a 1% quantile of around 1.8 The value of b is set differently for ρα and ργ

and may depend on the empirical application. In short, b can be thought of as scaling the inverse-

gamma distribution, effectively changing the magnitude of the draws. Thus, higher values will

allow for higher lengthscales, corresponding to higher smoothness. In our application, we set

b = 5 for ρα and b = 11 for ργ.9 This setting encourages higher values for ργ, corresponding

to higher smoothness of γi(w) over weeks, which is exactly what our definition of routineness

entails. Meanwhile, the relatively lower prior expectation for ρα does not enforce any a priori

smoothness, which corresponds to allowing random needs to arise at any time.10

To estimate the correlation matrix Ω, in the day-hour kernel, we use a Lewandowski-Kurowicka-

Joe (i.e., LKJ) prior for correlation matrices (Lewandowski, Kurowicka, and Joe 2009), such that

Ω ∼ LKJ(2), which puts a weak prior toward the identity matrix (Barnard, McCulloch, and Meng

2000). Intuitively this prior is setting a (weak) expectation that different days will not be related to

each other, essentially imposing no prior assumptions about how strongly days will be related to

one another, or which days will be related to each other. This flexibility is a key advantage of this

approach over a parametric kernel.11

Finally, for the individual-level constant mean functions, γ0i and α0i, we specify these in a

hierarchical way, such that γi0 ∼ N(0, σγ0), and analogously for αi0. For all other parameters, we

use standard, weakly informative normal or half-normal priors.12

8This value is important, because our inputs are defined on a unit grid, so values lower than 1 will not be identified
from one another.

9These exact values were arrived at following an optimization procedure, similar to that suggested by Betancourt
(2020), where the objective was to find an inverse-gamma distribution with a 1% quantile of 1, and a 99% quantile of
either 38/4 (for γ) or 38/8 (for α), where 38 is the range of our calibration data. A similar procedure can be used in
other empirical settings.

10The model is quite robust to these values; for instance, the results are nearly identical if we set b = 5 for both.
However, we think the b = 11 setting for routines is more consistent with our definition of consistent purchasing, week
over week.

11A parametric kernel, using, e.g., the day index 1-7 as its input, typically implies some smoothness over adjacent
days.

12Our full implementation can be found at <GitHub repository to be included after review>, and in our Web
Appendix A.10.

17

Electronic copy available at: https://ssrn.com/abstract=3982612



3.5. Inference

We estimate the model parameters in a fully Bayesian fashion using NUTS, a gradient-based

MCMC sampler. To improve the scalability of the framework, we use the NUTS sampler im-

plemented in NumPyro, and code our model in PyMC . This implementation of NUTS can be run

on a GPU, which is significantly faster than CPU-based implementations.

In its simplest form, the above model can be computationally difficult: while discretizing the

arrival times into hourly buckets makes defining the kernel and estimating the GPs easier (due to

the limited number of inputs and natural structure between days, weeks, and hours), it also forces

the model to do likelihood computations over many time periods in which nothing happened.

That is, customers often interact with the firm sparsely, yet our likelihood function is specified

as a count variable over all time periods t = (w, d, h), which forces us to consider all the zeroes.

To help facilitate inference in this set up, we draw on a property of Poisson variables described in

Gopalan, Hofman, and Blei (2015). Specifically, the log-likelihood of our model for all observations

from a single customer i can be decomposed into two terms:

log p(yi | λi) = ∑
yit ̸=0

yit log(λit)− ∑
t

λit + C, (15)

where C is a constant with respect to λit. The first term in this expression depends only on the non-

zero values of yit, while the second term is a simple sum over all λit. In this way, the likelihood

can operate only on the non-zero values of yit, circumventing the potentially problematic sparsity.

3.6. Parameter Recovery, Model Scalability, and Data Applications

We conducted simulations to test the model’s ability to recover the data generating process and

the model’s performance under a number of different data settings. Specifically, we investigated

three questions: (1) For data generated from the model, i.e., with known routines and stochastic

transaction process, how well can the model’s parameters be recovered? (2) How well does the

model perform with varying degrees of data (i.e., number of customers, and number of time pe-

riods)? (3) How robust is the model’s performance in the presence of customer churn? Here, we

briefly summarize the results, and refer interested readers to Web Appendix A.1 for more details.
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Even with relatively little data (e.g., 100 customers over 20 weeks), the model can recover the

data generating process: correlations between true and estimated (posterior median) parameters

ranged from 0.96 for population parameters (like µ(j)) to 0.74 for individual-level parameters (like

ηi(j)).13 More importantly, if we look at the estimated number of routine and random requests, the

correlation between simulated and estimated values is as high as 0.98. These results hold in the

presence of churn, although model performance is best when churn rates are low, in which case

churn is relatively rare, or fairly high, in which case most customers churn during the calibration

period.

3.7. Model Extensions

The framework introduced above is quite general and only requires the analyst to have access to

transactional data. In some cases, we may wish to incorporate covariates in the model specification

to understand how other events, like firm interventions, or past service quality, may relate to

routine and random usage. Such covariates can be included by expanding the rate specification

in Equation 2 to include covariate effects. We give an example of such an extension, and describe

the potential complexities that emerge when trying to meaningfully incorporate covariates in our

model, in Web Appendix A.2.

Another potential extension of interest is modeling routines over different periods. The mul-

tiplicative structure of the day-hour kernel, combined with the additive structure of the overall

routine rate, can be easily adjusted to handle such cases. For example, if the model were aimed

at capturing yearly routines, with the main unit of analysis being weeks (i.e., routines in terms of

which weeks of the year a person uses the service, year over year), the day-hour kernel introduced

above could be changed to a single periodic kernel over weeks (with period 52), and the “weekly”

kernel could be specified instead as a yearly kernel, capturing how the strength of the routine

changes over years. If, in the same case, daily data were also available, one could decompose

usage into days and weeks, specifying a periodic kernel for weeks, and a kernel for days (e.g., the

unstructured approach suggested above), multiplying them together in a similar fashion to our

own day-hour kernel. In short, the proposed structure is flexible enough to capture many types of

13Note that this lower correlation for these parameters is expected: as we illustrate in the appendix, an individual’s
routine is only recovered if there are sufficient requests from that routine.
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data granularities and routines, over many different time periods.

4. Application: ridesharing

4.1. Data

We apply our model to data from Via, a popular NYC-based ridesharing company. The data

contain detailed records on a sample of 2,000 customers who joined the platform between 2017-

2018. Our specific data contain information on their interactions with Via over a 48 week period

between January 2018 and November 2018. For each customer, we observe their acquisition date,

though churn, if present, is unobserved. We discard the first three weeks of data after acquisition

for each customer.14 Of the 48 weeks, we use the first 38 weeks for calibration, and reserve the

final 10 weeks for holdout validation.

Like most ridesharing platforms, Via uses a system for matching riders with rides. Specifically,

when a customer uses the company’s app to request a ride, their request generates a proposal,

assuming a match can be found. The rider can then accept or reject that proposal. Unlike Uber

or Lyft, however, Via operates primarily as a ride-sharing service, where customers typically share

their ride with other customers, and often need to walk short distances from request locations

to pick-up locations, and from drop-off locations to requested destinations. Thus, each proposal

includes standard information like the cost of the ride, how long the driver will take to get there,

and information about how far the user will have to walk to meet the driver.15 Occasionally, a

rider makes a request and then rejects it, possibly multiple times, looking for a better proposal.

To handle situations like this, the company uses a unit of analysis called a session, which is a

grouping of back-to-back requests. Following the company’s lead, the dependent variable we

focus on in our analyses is the number of sessions a given user has in a given hour.16 Summary

statistics for our session data are presented in Table 1 and in Figure 3. Most riders have either zero

or one session per hour, and most users have less than 10 sessions per week. However, hours with

14Some customers’ acquisition dates are within our calibration window; for these customers, their activity does not
enter the model likelihood until 3 weeks after their acquisition.

15Our data also include these covariates, which we describe and use in a later section to understand how routineness
moderates likelihood of accepting proposals, and making requests conditional on past trip quality.

16Throughout the paper, we will use the terms “request,” “transaction” and “session” interchangeably, always refer-
ring to sessions.

20

Electronic copy available at: https://ssrn.com/abstract=3982612



Table 1: Summary statistics.
Summary statistics for our ridesharing data, summarized over the training data, unless otherwise noted.

Total Customers 2,000
Total Weeks (Training) 38
Total Weeks (Holdout) 10
Number of Sessions 86,952
Sessions / Customer 43.48
Sessions / Customer / Active Week 3.10
Active Weeks in Data / Customer 14.02
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Figure 3: Distributions of summary statistics.
Distribution of three summary statistics in our training data: (1) the total number of sessions per customer; (2) the number
of sessions per customer per active week; (3) the number of active weeks per customer.

more than one session are also observed.

Importantly, a user can have a session without actually taking a ride if they decline all of the

proposals. We focus on requests and not whether the ride was eventually accepted or completed

because it is the most granular level of engagement with the company. A request means the rider

was interested in using the service at that time. That said, we further leverage the information

about acceptance and rejection of proposals when we subsequently investigate the implications of

routines for customer behavior and customer management.

4.2. Quasi-simulation Case Studies

To illustrate in more detail how our model works, we performed what we term a “quasi-simulation,”

combining real and synthetic customers. The goal of this simulation is to show that the model

can recover meaningful patterns of behavior, under realistic data conditions,17 even when those

patterns are not explicitly generated by the model. To that end, we simulated the usage of 32

hypothetical customers, with rates of usage typical of customers in our data, and whose usage

follows pre-specified, managerially meaningful patterns. These patterns include different types of

17By including real transaction data alongside hypothetical cases, we ensure that the model’s population parameters
and hyperparameters will be estimated at realistic values.
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routines and different patterns of overall usage, including switching between random and routine

usage, and churning from the platform. We merged the data from these 32 synthetic customers

with a sample of 500 real customers and estimated the model on this partly synthetic dataset. Be-

cause the usage patterns of the 32 synthetic customers were not generated from the model itself,

they allow us to highlight the the model’s ability to meaningfully estimate routine behavior for a

range of data patterns, and illustrate how the model parameters capture phenomena not explic-

itly included in the model, like customer churn. Combining these simulated cases with a much

larger set of real customer data ensures that the population-level parameters are consistent with

reality. For the sake of brevity, the remainder of this section presents the individual-level model

results from two of these simulated customers — one exploring the model’s ability to detect rou-

tines separately from random usage, and the other illustrating how the model captures churn in

the data. The results for the remaining simulated customers, including cases with noisy, clumpy,

and regular behavior, are reported in Web Appendix A.3.

Case 1: Random then Routine In Figure 4, we plot the key model estimates for a simulated

individual for whom routine behavior emerges over time. Specifically, this individual was sim-

ulated by drawing day-hour request times in two ways: for the first half of the data (i.e., before

week 19), each week, we drew five day-hours completely at random, and assumed the individual

makes one request at each of these five day-hours. Since the five day-hours are drawn anew each

week, there is no pattern to this user’s usage, and thus the model should capture this as random

activity. Then, at week 19, we simulate this user suddenly adopting a routine. To simulate routine

usage, we first drew a set of five random day-hours (e.g., Sunday at 2pm, Tuesday and Wednesday

at 8pm, and Thursday at 8am and 6pm), and then assumed the user requests a ride at these same

five day-hours each week. Since the user is making requests at the same times, week over week,

the model should detect that a routine has emerged around week 19.

There are five panels in Figure 4: at the top left, we plot the posterior median estimates of

ERandom
iw (black/solid) and ERoutine

iw (red/dashed). To the right of the decomposition, we show the

posterior median estimates of the random scale parameter, αi(w), and the routine scale parameter,

γi(w). Finally, below those, we show the posterior median estimate of the routine rate ηi(j), plot-
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ted as an intensity over day-hours, and below that, the model’s expectations for when this user

will request rides during the last week of the training data (w = 38).

Figure 4: Simulated Case: Random then Routine.
Model estimates for a simulated individual who first uses the service randomly, then adopts a routine.

From Figure 4, we see the model is correctly able to parse this user’s behavior: in the De-

composition panel, we see the random component ERandom
iw is high at the start, capturing around

5 rides per week. We can also see this reflected in the relatively high value of the random scale,

αi(w). Then, in the middle, we see a sudden shift, with ERandom
iw falling to zero, and ERoutine

iw ris-

ing to around 5, corroborating the model’s ability to detect routines. The times that the user is

expected to request a ride are captured in the user’s routine rate, ηi(j), for which we can see there

are five peaks in usage, and these peaks, when combined with the routine scale γi(w) in week 38,

translate exactly to five expected requests at exactly the hours simulated: Sunday at 2pm, Tuesday

and Wednesday at 8pm, and Thursday at 8am and 6pm.
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Case 2: Routine then Churn In Figure 5, we see the results for a different simulated user,

who first exhibited routine behavior (generated analogously to the last 19 weeks of the simulated

customer in case study 1), but then stopped using the service altogether. Although our model is

not explicitly designed to detect churn, inactivity can be captured in our framework when both

scaling terms become very negative, implying zero expected requests. Indeed, we see that this is

exactly how the model behaves: we see in the first panel that the decomposition correctly captures,

at first, a high level of routine usage, which then dips to zero at the midpoint, when the user

churns. Looking at the model components, we see this pattern of routine requests is driven by

the routine scale parameter, γ, which starts out relatively high (when the user is active), but then

plummets and stays low until the end of the data. Again, the routine rate, η, can recover the

correct routine for this user, with five peaks (Fri at 1pm, Sat at 3pm, and so forth). However, as

reflected in the bottom figure, when that routine rate is combined with a very negative routine

scale, we see that the model predicts essentially no requests for the last week of the data, when the

customer becomes inactive.18

5. Results

Having established the model’s ability to separate routine behavior from random behavior, and

its ability to accurately recover routines across different data settings, we now turn to describing

the results from the real data, estimated on the full sample of 2,000 customers over the period of

38 weeks used for model calibration.

5.1. Model Estimates

We first describe some of the population-level parameter estimates which characterize usage pat-

terns broadly; for example, what days and times exhibit the highest level of usage across cus-

tomers, and how often users exhibit random vs. routine behavior. We then describe some in-

dividual case studies, exploring the degree of routineness and the specific routine patterns for

18One may also notice that there is an apparent pattern in the random scale, where there seems to be a decrease
in transactions around week 30: this decrease is an artifact of scale. When combined with the estimate for µ and
exponentiated, all these very negative numbers still suggest zero requests. We sometimes observe random fluctuations
like this, purely due to this lack of identification between negative values, especially when the random process is zero
throughout.
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Figure 5: Simulated Case: Routine then Churn
Model estimates for a simulated individual who uses the service in a routine pattern, but then churns.

individual consumers.

5.1.1. Population Patterns

There are two main population-level parameters of interest: the population-level rate parameter,

µ(j), which governs when users tend to take rides (randomly), and the correlation matrix Ω from

the day-hour kernel, which describes how different days are related to one another. We plot the

posterior means of these quantities in Figure 6.

Some intuitive patterns emerge: first, from the posterior mean of µ(j) (at left), we see that

random needs tend to arise during all times, except in the middle of the night (i.e., hours 2-5, or

2 AM to 5 AM). This pattern is moderated somewhat on the weekends, when travel times shift

a bit later, and when there is a noticeable drop in usage at 4 AM, corresponding to the closing

time of many bars in New York City. On weekdays, we also observe a slight increase in usage
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Figure 6: Posterior means of µ(j) and Ω.
At left, the posterior mean of µ(j), the common rate of usage across individuals at the day-hour level. At right, a visualiza-
tion of the posterior mean of Ω, the correlation matrix across days for routines. Darker colors indicate higher correlation.

of the service in the evenings, but the daytime variation is much less stark than the variation

between day and night. Similarly, the correlation matrix (at right) captures the expected pattern

that weekdays tend to be more similar to one another than to weekends. Saturday and Sunday

are correlated, as are Friday and Saturday.

Another key output of our model is the decomposition of usage into routine and random

requests. Figure 7 shows the joint distribution of the two parts ERoutine
iw and ERandom

iw in the last

week of our data. We find an L-shaped distribution, suggesting that heavy usage customers are

either primarily routine or primarily random but rarely both. Most customers fall in the lower left

part of the figure, with few requests per week, balanced between random and routine. Although

Figure 7 shows the decomposition pattern for the last week of the data, we also find similar weekly

decompositions throughout the data period.

Finally, the combination of routine and random usage, ERoutine
iw +ERandom

iw , should capture over-

all usage (i.e., E(yiw)). Indeed, we find that to be true: in-sample, the correlation coefficient be-

tween expected usage and actual usage is r = 0.947, p < 0.001, reflecting very good fit.

5.1.2. Individual Customers’ Routines

We now zero in on the individual-level parameters, to illustrate the insights provided by the

model. Relative to the simulated examples, the results on real users are less clean cut in their

interpretation, but still offer valuable customer-level insights. In Figures 8 – 9, we show the same

posterior estimates and decompositions for two real customers, as we did for the simulated case
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Figure 7: Joint distribution, ERoutine
iW and ERandom

iW .
The joint distribution of the posterior medians of ERoutine

iW and ERandom
iW , where W = 38, the last week of the data.

studies in Figures 4 – 5.

In Figure 8, we show an example of a very common type of routine: commuting. As shown

in the decomposition, this customer is a fairly heavy user, making roughly 14 ride requests per

week, with a high-level of routine usage. This routine usage tends to cluster around commuting

hours, 8am and 5pm, as can be seen both in the routine rate and in the expected numbers of

requests. In contrast, in Figure 9, we show a customer with a random pattern of usage, who

we might characterize as a “casual” rider. This customer transacts less frequently than the first

customer. In the decomposition, we see the random component trending upward toward the

end of the calibration window, driven by the increase in this customer’s random scale. That the

model captures this increase in usage with the random scale suggests the day-hour pattern of those

interactions is not consistent, week over week. While the model does still estimate a routine rate,

ηi(j), when combined with the customer’s very low routine scale γi(w), we see that the customer’s

expected day-hour pattern of usage is very diffuse, very much resembling the population pattern

shown in Figure 6.

5.2. Heterogeneity in Routines: Uncovering Routine Types

While the case study in Figure 8 captures an intuitive and common routine, other users might have

different routines. To understand the typical types of routines present in our data, we clustered
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Figure 8: Real User: Commuting Routine.
Model estimates for an individual who uses the service in a routine, typically in commuting hours.

our posterior median estimates of customers’ routines, ηi(j). Specifically, we focused on those

customers who had at least 5 routine rides in total over the calibration period (i.e., ∑38
w=1 ERoutine

iw ≥

5). This filtering ensures that the ηi(j) parameter captures a meaningful routine,19 and resulted

in 1,042 customers. Then, we performed K-means clustering on the estimated ηi(j) parameters

and uncovered 7 distinct routine types in ridesharing behavior, which we labeled according to the

routine pattern and summarize in Figure 10.20

We see that, while commuting is a common routine type, there are also other common rou-

tines. We find two types of likely leisure-oriented routines: the “Nights and Weekends” (14% of

customers) customers primarily make requests at night, especially on the weekends. The “Work

19Per our discussion in the preceding sections, the model always estimates ηi(j), but for consumers who have no
actual week-over-week consistency, γi(w) will be very negative, and ηi(j) will be meaningless.

20The number 7 was selected based on standard K-means metrics, specifically by examining the scree plot of the
weighted mean absolute error (WMAE) of the clustering solution.
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Figure 9: Real User: Random Usage.
Model estimates for an individual who mostly uses the service at random.

Hard, Play Hard” (17% of customers) cluster exhibits weekend usage that peaks between mid-

night and 4am (the closing time of most bars in NYC), and weekday morning and nighttime usage.

There are also two clusters that use the service only during one part of the day, either just in the

morning (“At Dawn,” 10%), or just in the evening (“Evenings,” 9%). Understanding this diver-

sity of routines is a key benefit of our individual-level model. For example, in this case, realizing

the magnitude of the number of “half commuters,” like the “At Dawn” and “Evenings” clusters,

spurred our partner company to try to understand how they can capture the full commute for

these groups of customers. We will return to these routine types, and explore their differential

value to the company, in a later section.
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Figure 10: Heterogeneity in Routines: Routine Cluster Centroids
Average values of ηi(j) per cluster, with cluster labels in the facet titles, along with cluster sizes as a percentage of cus-
tomers.
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5.3. Model Validation

Before exploring the implications of routineness for customer relationship management, we first

validate the model, by examining its ability to predict our holdout data. Mechanically, making

predictions from the model is straightforward. Since µ(j) and ηi(j) do not vary over weeks, the

only two components of the model that need to be projected forward are αi(w) and γi(w). To do so,

we utilize the fact that GPs are marginally Gaussian to derive the posterior predictive values, given

what we previously observed. Here, we focus on doing this for γi(w), but the math is analogous

for αi(w). Let w∗ indicate a new week that we want to make a prediction for, having observed

weeks w = (w1, . . . , wW), with estimated function values γi(w). Then γi(w∗) ∼ N(m∗, s∗), where,

m∗ = γ0i + K(w∗, w)K(w, w)−1[γi(w)− γ0i], (16)

s∗ = k(w∗, w∗)− K(w∗, w)K(w, w)−1K(w, w∗), (17)

and where K(w, w) is the kernel matrix (on the training data), K(w∗, w) is the vector formed by

evaluating the kernel k(w∗, w) for all w ∈ w, and likewise for K(w, w∗). Examining this equation

closely reveals an important feature of GP models with stationary kernels, like our exponential

kernel: when forecasting far away from observed data, GPs revert to the mean. This reversion is

driven by K(w∗, w) going to zero when the inputs are far apart.

Using this forecasting machinery, we focus on two types of predictions: first, we predict how

many sessions someone will have in the future. Second, and more pertinent to our research ob-

jective, we predict when someone will request rides, in terms of day-hours of a particular future

week. We compare the predictive performance of the model to four benchmarks:

• Non-routine Usage (NR): A version of our model with the routine term set to zero, equiv-

alent to a Poisson model with rate λNR
it = exp [αi(w) + µ(j)]. Comparing the performance

of the full model to this benchmark gives a sense of what the routine part of the model

captures.21

• No Day-Hour Variation (NDH): A version of our model with all j terms eliminated, equiv-

21Note that the Non-Routine model is a separately estimated model. We are not just zeroing out the non-routine term
from the full model.
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alent to a Poisson model with rate λNDH
it = exp [αi(w)]. Comparing the full model to this

model gives a sense of what adding day-hour variation captures.

• Pareto-GGG: The Pareto-GGG model of Platzer and Reutterer (2016), as implemented in the

BTYDPlus package.

• LSTM: An LSTM deep learning model trained to predict which times a user will request a

ride. Specifically, for each individual in the data, we train an LSTM with the full 38 week

calibration data, then use a sliding window of data to predict, in the subsequent weeks,

which day-hours are most likely to have a ride request.22

5.3.1. Predicting Volume of Requests

First, we consider the task of predicting how many sessions each customer will have during the 10-

week holdout period, ignoring the actual timing of those sessions. A priori, the accuracy of these

forecasts for our models will depend on how representative past usage rates are of future usage

rates, given the mean reversion property of GPs described previously. We also expect the Pareto-

GGG, and BTYD models more generally, to do quite well at this task, as predicting a cumulative

number of transactions during a holdout window is often the main use-case for these models.

For our LSTM, the loss and training procedure were focused on classifying and ranking request

timing (i.e., our next prediction task), not on predicting request volume. It is not a priori obvious

how well the LSTM will perform on the distinct (but related) task of forecasting request volume.

Table 2: MAE: Predicting Number of Requests
Mean absolute error across customers for the number of sessions during our 10-week holdout period. Intervals are 95%
confidence intervals.

Proposed Model NR NDH P-GGG LSTM

MAE 7.73 8.30 8.31 7.51 26.13
[7.17, 8.28] [7.64, 8.96] [7.65, 8.97] [6.97, 8.05] [19.45, 32.80]

In Table 2, we show the mean absolute errors in forecasting the number of requests, where

the mean is computed across customers, with their corresponding 95% confidence intervals. We

can see that the forecasting results match our intuition: the Pareto-GGG and our proposed model

22For details of this model see Web Appendix A.4.
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achieve statistically indistinguishable performance. The other versions of our model also perform

well, which makes sense, as we have removed sources of day-hour variation but left the week-

over-week variation components intact. The fact that these versions perform marginally worse

is suggestive of the additional predictive benefit of including day-hour information. Finally, the

LSTM performs quite badly. As we describe in more detail in the appendix, this poor performance

is likely the a result of two aspects of how the LSTM was trained: first, its loss is focused on the

probability that a request occurs in a given day-hour. Second, the LSTM uses a sliding window

to make “one week ahead” forecasts, which, in the holdout period, requires assuming predictions

are true to forecast more than one week ahead. To get good performance on the (subsequent) day-

hour prediction task, we found it necessary to set the threshold for predicting a request would

materialize to be relatively small, which, in this case, leads to overforecasting the actual volume

of requests.

5.3.2. Predicting Request Timing

Beyond just predicting how many requests a user will make each week, our model also captures

when a request will occur within that week, by estimating day-hour rate terms µ(j) and ηi(j).

When considering an appropriate metric for validating our model, it is important to consider the

continuous nature of time. Imagine a case where a customer takes a ride at 9am, but the model

thought the most likely time for such a ride was in the 8am hour. In well-calibrated models that

consider the continuity of time, the expected rate of transacting at 8am and 9am should be similar,

given 8:59am and 9:00am are a mere minute apart. Yet, standard classification metrics like hit

rates fail to take such continuity into account. Thus, a better way to measure the quality of timing

predictions is through metrics for rankings, wherein the model produces a ranking of the most

likely request times, and success is measured by how highly ranked the actual request times are.

In our running example, the well-calibrated model should give similar rankings to the 8am and

9am times, and thus, would score similarly well in terms of predictive ability even if the customer

happened to use the service at 9:00am, rather than 8:59am.

We use two ranking metrics to measure how well the model predicts request times: mean av-

erage precision (MAP), and conditional precision (CP). For both metrics, higher values represent

33

Electronic copy available at: https://ssrn.com/abstract=3982612



better rankings. These metrics are both standard in the literature on recommendation systems,

where they are used to evaluate the relevance of a ranked list of recommended items.23 To calcu-

late these statistics for both our model and the nested non-routine version, we look at the ranking

implied within each week by the estimated transaction rate (i.e., λit and λNR
it ). Because the no

day-hour model implies a uniform rate across all day-hours, the ranking statistics are undefined

for this model, and we do not include its results in this section. For the Pareto-GGG, we compute

the rankings implicitly, using predictions. For each customer, we use the BTYDPlus package to

draw from the posterior predictive distribution of transacts for each customer. This distribution

is cumulative, reflecting the total number transactions we expect to see by time t. Thus, to get an

estimated transaction rate for each hour, we evaluate the cumulative predicted transactions for

each hour of the holdout period, and compute cumulative differences. We then rank these hours

in each week. Finally, for the LSTM, similarly to our proposed model, we form a ranking by rank-

ing the model’s day-hour estimated probabilities within each week. The results for the 10-week

holdout period are shown in Table 3.

Table 3: Holdout Ride Timing Metrics
MAP and CP statistics for predicting ride timing in the holdout period. Intervals are 95% confidence intervals.

Proposed Model NR P-GGG LSTM

MAP 0.131 0.069 0.043 0.110
[0.124, 0.139] [0.064, 0.074] [0.041, 0.045] [0.076, 0.102]

CP 0.072 0.029 0.016 0.089
[0.066, 0.079] [0.025, 0.033] [0.013, 0.018] [0.076, 0.102]

First, our full model dramatically improves ride time predictions compared to the model with

no individual-level routines (NR). This is not surprising: the only part of the NR model that pre-

dicts ride times is µ(j). In that sense, the NR model is assuming the same day-hour ranking across

all customers, or just one “population routine,” corresponding to the day-hours that customers,

in general, are likely to call rides. By comparing the full model with this baseline, we corroborate

that there is rich variation in the data in terms of when individual customers request rides, high-

lighting the predictive validity of the routine component of the model. Our model also improves

23See Web Appendix A.5 for details of calculating MAP and CP in our application. For excel-
lent expositions of MAP and recommender systems, see http://sdsawtelle.github.io/blog/output/

mean-average-precision-MAP-for-recommender-systems.html and https://nlp.stanford.edu/IR-book/html/

htmledition/evaluation-of-ranked-retrieval-results-1.html.
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Figure 11: MAP by Number of Routine Rides.
Points on the plot represent customers. On the x-axis, we plot the estimated routineness, summed over the holdout period,
per person. On the y-axis, we plot the estimated MAP for that customer. A LOESS smoothing is overlaid, showing the
generally increasing pattern.

considerably on the Pareto-GGG, a model that captures regularities in transaction timing, but is

not specifically designed to predict day-hour patterns. While, in the extreme, such regularities

could theoretically predict transaction timing down to the day-hour, capturing regularity in ride

times in our application is not sufficient to predict ride timing accurately. Finally, the LSTM, which

was trained specifically for this task, performs on par with our model.

It is noteworthy that the statistics in Table 3 are modest in magnitude. For instance, the CP

metric suggests that we are only able to accurately predict roughly 10% of the out-of-sample ses-

sion times. An important caveat here is that these metrics ignore that some trips are routine, while

others are not. By definition, we only expect to be able to predict the routine trip times. In Figure 11,

we show evidence of this phenomenon: the more routine a person is, the higher their MAP. The

plot for CP is nearly identical. These results suggest that our model does, indeed, capture session

timing within weeks, when that timing is predictable.

6. Routineness and Customer Management

Having established the validity of the framework, we now return to one of the central questions

of the paper: Can routineness help firms better understand and manage their customers? One

crucial advantage of being able to distill transaction timing to a single metric — routineness — is

that we can subsequently explore how routineness relates to many outcomes of interest, without

the need of building new models. In this section, we start by showing that routineness is a key

predictor of customer value, over and above other transaction characteristics. We then explore
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how routineness moderates consumers’ reactions to different aspects of the ridesharing service,

and how customer value varies by routine type.

6.1. Routineness and Customer Value

Overall, routine customers comprise a significant part of the value in our sample: the 20% of

customers who, during the calibration period, had on average one routine request per week (or

at least 38 routine requests) make 53% of all sessions and 51% of the total revenue in the holdout

period. Alone, these statistics are suggestive, but limited: is it these customers’ routineness that

explains their high out-of-sample value, or merely their high overall request rates? To understand

whether routineness explains value over and above other summaries of transaction behavior, we

turn to regression analysis. Specifically, we consider the routineness of each user at the end of the

calibration period (i.e., ERoutine
i38 , as estimated by the model) and relate it to: (1) # Requests, defined

as the number of requests a customer makes in the holdout period, and (2) Active, defined as

whether a customer is active at all in the holdout period (i.e., a measure of 10-week retention).

When modeling requests as the dependent variable, we use simple OLS; for modeling activity,

we use logistic regression. In each of these regressions, we control for observable characteristics

that strongly predict future value, including the number of requests the customer made in the last

week of the calibration data, and the commonly used recency and frequency variables that capture

how recently a customer last made a request and how many requests the customer has made

previously. Moreover, to see if routineness explains behavior over and above extant summaries

of transaction timing, we also include the calibration period clumpiness (Hp) and regularity (as

estimated by the Pareto-GGG’s ki parameter) as predictors.24

Before describing the results, we note two important aspects of these regressions: first, rou-

tine requests are part of the total number of requests. As high usage can result from either random

needs or routines, this specification allows us to understand whether having a higher routine com-

ponent is incrementally valuable, over and above controlling for just the level of usage. In other

24The connections between these metrics and routineness described previously may raise concerns about multi-
collinearity in this analysis. However, in our data, we do not find these metrics to be problematically correlated: as
expected, clumpiness and regularity are negatively correlated (r = −0.21, p < 0.0001), whereas clumpiness and rou-
tineness are very weakly negatively correlated (r = −0.08, p = 0.0005), and regularity and routineness are modestly
positively correlated (r = 0.42, p < 0.0001).
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words, by controlling for the number of requests in w = 38, we are trying to determine whether

the “shape” of within-week usage, in terms of request timing, matters for explaining future cus-

tomer value. Second, the inclusion of recency and frequency metrics is especially important here:

a litany of models in customer base analysis have shown that these metrics are key summary

statistics for predicting repeat purchasing (e.g., Schmittlein, Morrison, and Colombo 1987; Fader,

Hardie, and Lee 2005; Blattberg, , and Kim 2008). If mere habit (in the “buying habit” sense of the

word) were the primary driving force behind customer value, we would expect these two statistics

to explain much of the variation in future transactions. Thus, by incorporating these measures in

the model, we can establish whether routineness matters, beyond what mere habit would already

predict.

Table 4: Relationship between Customer Value and Routineness
Regressions of future activity – either number of future sessions (models 1-3), or a binary measure indicating any activity at
all (models 4-6) – on customer-level summary statistics, including regularity, clumpiness, and routineness. The dependent
variable is measured either over our entire holdout period (10 weeks), or just in the last 5 weeks of the holdout period.
Standard errors are in parentheses.

Dependent variable:

# Requests Activity

OLS Logistic

(1) (2) (3) (4) (5) (6)

Weeks of Test Data All 10 All 10 Last 5 All 10 All 10 Last 5

Requests (w = 38) 3.838∗∗∗ 1.614∗∗∗ 0.375∗∗ 0.611∗∗∗ 0.461∗∗∗ 0.203∗∗∗

(0.184) (0.241) (0.154) (0.103) (0.106) (0.056)

Recency −0.238∗∗∗ −0.284∗∗∗ −0.157∗∗∗ −0.140∗∗∗ −0.134∗∗∗ −0.123∗∗∗

(0.045) (0.043) (0.028) (0.010) (0.010) (0.010)

Frequency 0.130∗∗∗ 0.097∗∗∗ 0.052∗∗∗ 0.0003 −0.002 0.002
(0.008) (0.008) (0.005) (0.002) (0.002) (0.002)

Regularity (k) 10.533∗∗∗ 4.511∗∗ 2.401∗ 0.313 0.005 0.407
(1.986) (1.952) (1.244) (0.463) (0.484) (0.395)

Clumpiness (H) 9.269∗∗∗ 8.443∗∗∗ 4.845∗∗∗ −1.491∗∗∗ −1.520∗∗∗ −0.628∗

(1.918) (1.836) (1.170) (0.380) (0.381) (0.326)

Routine (w = 38) 5.216∗∗∗ 2.685∗∗∗ 1.035∗∗∗ 0.262∗∗

(0.385) (0.245) (0.328) (0.124)

Observations 2,000 2,000 2,000 2,000 2,000 2,000
R2 0.540 0.579 0.429

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Intercept omitted for clarity.
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The results of these regressions are shown in Table 4. We estimate each model three times:

omitting the routineness metric (columns 1 and 4), measuring the dependent variable using the

entire holdout sample of 10 weeks (columns 1-2 and 4-5), and measuring the dependent value

using the last month of the holdout data (i.e., the last 5 weeks,columns 3 and 6). The intent be-

hind splitting the DV in this way is to assess how robust routineness is in explaining short- and

mid-term customer behavior. We find that higher routineness is positively and significantly asso-

ciated both with the number of requests a customer makes, and with the customer being active

at all. Furthermore, in comparison to the simpler models (columns 1 and 4), routineness not only

improves model fit, but is the only metric among all transaction timing metrics considered that

positively and significantly explains customer activity levels, even in the mid-term. In sum, even

after controlling for the number of requests a customer made at the end of the training data, stan-

dard recency and frequency measures from the CRM literature, and clumpiness and regularity, we

find that number of routine requests is positively, significantly, and incrementally associated with

higher request rates, and a higher tendency to remain active, suggesting customers with routines

are more valuable.

6.2. Routines and Other Customer Behaviors

Next, we consider whether understanding customers’ routines can be useful for customer man-

agement in ways beyond predicting activity levels. In particular, we consider two related ques-

tions: first, do highly routine customers interact with the firm’s service differently than non-

routine customers? And second, do customers behave differently during their routines? We

hypothesize that customers whose usage stems primarily from a routine may not only be more

likely to engage in activities that are directly valuable to the firm, but may also react differently

to various aspects of the firm’s service, like pricing and service failures (e.g., pick-up and drop-off

delays). There may also be differences between routine and non-routine users in terms of which

aspects of the service are more important to them. For instance, users who routinely rely on the

service may place higher importance on things like convenience of trips. Such effects may not exist

just across customers, but also within customers. For example, if a price change or service failure

is associated with a trip that is part of a customer’s routine, the customer may react differently
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than if the price change or service failure was associated with a non-routine trip. The direction of

these within-customer effects is not a priori obvious: while the automaticity of routines implies

that usage is stickier regardless of variability in service, suggesting that customers may be less

sensitive to service quality during their routines, it is equally plausible that the high degree of fa-

miliarity customers have with service during their routines may exacerbate their reactions to any

deviations from normal service.

To explore these hypotheses, we need to be able to quantify the overall routineness of a given

customer, and the degree to which a given trip is part of that customer’s routine. Both quantities

are easily derived from our model. The former is what we previously referred to as (weekly)

routineness, measured by ERoutine
iw . The latter we will refer to as trip routineness: given an observed

trip occurs during week w, day-hour j, the trip routineness is the expected number of routine

requests estimated by the model at that time, ERoutine
iwj = exp[γi(w) + ηi(j)].

To understand how these two aspects of routines connect to the company’s service, recall

that our data include information about the rides that users requested. Some of these variables are

characteristics of the proposal, including the cost to the user (Price), the time until the driver can pick

the customer up (Driver ETA), how long the customer will have to walk to get the ride (Pickup

Walking Dist.), the expected time and total distance of the trip (from which we compute Speed),

and the number of passengers for that request (# Passengers). We observe these characteristics

for all the requests in the data. Moreover, for rides that were realized — that is, requests that ended

up in a trip — we observe variables that capture the quality of the ride. These include whether the

driver picked up the rider on time (Pickup Delay, which we measure in minutes), whether there

were delays in the trip (Dropoff Delay), how far the rider had to walk from their drop-off to their

final destination (Dropoff Walking Dist.), and whether there were other passengers in the car

during the trip (# On-board (Pickup), # On-board (Dropoff), and Max On-board).25 Based on

this data, we ask two questions: (1) how likely is a customer to accept a proposal, and, particularly,

a less favorable proposal, and (2) given a customer accepts a proposal (i.e., takes a ride), how likely

is that customer to request a ride again within 7 days, particularly after a service failure? More

importantly, we explore how the two types of routineness explain and moderate these dependent

25The full data is summarized in the web appendix.
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variables.

To answer these questions, we run four separate OLS regressions, the results of which are

shown in Table 5.26 The dependent variable in each regression is either accepting a proposal or

requesting again within a week. In the first two regressions (models 1-2), the key independent

variable of interest is the routineness of each customer at the end of our calibration window, and

the unit of analysis is rides requested or taken during our holdout window. This setup allows us to

address the “between customers” question: does a customer’s current period routineness explain

their subsequent behavior? In these regressions, we include customer-level random effects, to

control for other unobserved differences across customers. In the second two regressions (models

3-4), the key independent variable of interest is trip routineness, and the analysis is done at the

level of requests within our calibration period. We focus here on in-sample rides, to ensure our

routineness metric is accurately characterizing the nature of each request. This setup allows us to

address the “within customers” question: do customers behave differently when a trip is part of

their routine? Since trip routineness is measured at the request-level, we use customer-level fixed

effects to control for potential customer-specific unobservables. In all four regressions, we also

include variables describing the proposal. In the “request again” analyses, which condition on a

customer actually having completed the trip, we include variables describing the completed trip.

Finally, to understand the potential moderating role of routines in explaining these outcomes,

we include interactions of all of proposal and trip-related variables with the focal measure of

routineness.

Focusing first on the between customer results, we see that highly routine customers, as mea-

sured by week 38 routineness, are indeed different in their holdout behavior. Such customers are

more likely to accept proposals in general, and more likely to make requests within a week of

any given completed trip. In terms of accepting proposals, while longer driver ETA is associated

with lower acceptance rates, there is a positive interaction with routineness, suggesting routine

customers are more willing to wait for their rides to come. On the other hand, more routine cus-

tomers appear to be more sensitive to the speed and walking distance of proposals. This pattern of

moderation is consistent with routine customers caring more about convenience-related variables

26We use OLS for these regressions, as opposed to logistic regression, to aid in the interpretability of interaction terms.
However, the results remain consistent if we use logistic regression.
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Table 5: Modeling Accepting a Proposal and Request Again in 7 days as a function of Rou-
tineness
Customer Routineness measured as predicted routineness at the end of the calibration period (week 38). All models include
a user-level random effect and control for the properties of the focal ride. The full set of control variables can be found in
Table A-3. The variables above the horizontal line are characteristics of a proposal; below the line are variables associated
with only realized trips. R2 values are projected R2, meaning the variance explained beyond the customer effects. The
predictors in both models were standardized to improve readability.

Customer Routineness Trip Routineness
(Between Customers) (Within Customers)

Accept Proposal Request Again Accept Proposal Request Again

(1) (2) (3) (4)

# Requests (Week 38) −0.019 0.089∗∗∗

Routineness 0.077∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.020∗∗∗

Price −0.031∗∗∗ −0.014∗∗∗ −0.071∗∗∗ −0.022∗∗∗

Driver ETA −0.050∗∗∗ −0.0004 −0.089∗∗∗ 0.001
Speed 0.083∗∗∗ −0.010 0.048∗∗∗ −0.006
Pickup Walking Dist. −0.041∗∗∗ −0.002 −0.021∗∗∗ 0.001
# Passengers −0.003 0.006 0.009∗∗∗ 0.012∗∗∗

Routineness x Price −0.005 0.014∗∗∗ 0.018∗∗∗ 0.016∗∗∗

Routineness x Driver ETA 0.011∗∗∗ 0.001 0.003 −0.0001
Routineness x Speed 0.142∗∗∗ −0.021 0.086∗∗∗ −0.013
Routineness x Pickup Walking Dist. −0.009∗∗∗ 0.0003 0.002 −0.001
Routineness x # Passengers −0.0004 0.003 −0.003 0.004∗

Pickup Delay −0.007∗∗∗ −0.0002
Dropoff Delay −0.002 −0.002∗

Dropoff Walking Dist. −0.003 −0.002∗

# On-board (Pickup) −0.004 −0.003∗

# On-board (Dropoff) 0.001 0.001
Max On-board 0.003 −0.002
Routineness x Pickup Delay 0.005∗∗ 0.001
Routineness x Dropoff Delay 0.001 0.001
Routineness x Dropoff Walking Dist. 0.001 0.001
Routineness x # On-board (Pickup) 0.003 0.002
Routineness x # On-board (Dropoff) −0.0002 0.00003
Routineness x Max On-board −0.002 −0.001

Customer Effects Random Random Fixed Fixed
Other Controls Yes Yes Yes Yes

Observations 38,166 14,704 113,042 73,630
R2 0.051 0.093 0.070 0.015

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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like pickup walking distance and speed. In part, this could be driven by self-selection: customers

do not adopt a routine if rides are inconvenient for them. In terms of requesting again within a

week, we see a prominent effect of week 38 routineness on two very important service variables:

price and pickup delay. While higher prices and longer delays are both associated with lower like-

lihood of returning to the service, routineness again moderates these negative effects, suggesting

that the stickiness of routines makes these customers more resilient to these negative aspects of

service. Taken together, these between customer results suggest that cultivating routine customers

may be valuable for the firm in myriad ways.

Turning to trip routineness — that is, the within customer results — we again find positive

and significant effects of routineness. This main effect suggests that, for trips that are part of a

customer’s routine, the customer is more likely to accept the proposal, and more likely to request

again within a week of the completed trip. We also see that the routineness of a trip appears to

moderate the negative effect of price: while customers are less likely to accept higher-priced pro-

posals, and to ride again after taking a higher-priced ride, these effects appear to be dampened

when that ride is part of someone’s routine. There is also a positive interaction between the rou-

tineness of a trip and the speed of the proposal: when a customer requests a routine trip, they

are more likely to accept the proposal if the speed is high. Intuitively, customers are familiar with

trips in their routine, and thus more sensitive to the details of those trips. This pattern of effects

suggests ways that the firm can explore optimizing service around customers’ routines, by, for

example, offering faster service at premium prices for customers during their most routine times.

6.3. Segmentation by Routine Types

Recall that a key benefit of our framework is that it not only yields an overall metric of routineness

(of a ride, or a customer, as we leveraged in the previous analyses), but also enables us to uncover

common routines in the data. In our application, we found there are 7 common routine types,

which we summarized in our section on model results. Given these different routine types, we

now consider whether customers with different routines differ in other significant ways. We find

that not only do these routine types differ in when they typically take rides, but also in many other

behaviors and typical ride characteristics. For instance, the more casual routine types (i.e., “Work
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Figure 12: User Behaviors, by Routine Type
The average value of 4 behavior variables, by routine type. Holdout value is the total amount spent over the holdout period.
Error bars represent standard errors, and the vertical line represents the overall mean.

Hard, Play Hard” and “Nights and Weekends”) tend to take longer and more expensive trips

(higher ETA). Commuters, on the other hand, tend to take cheaper, solo trips.27 More interestingly,

though, we also find that users with different routines systematically differ in their value to the

company. In Figure 12, for each routine type, we show means and standard errors of that type’s:

(1) proposal acceptance rate; (2) future value, as measured by the total amount spent during our

holdout period; (3) proportion of (holdout) rides that came from non-routine usage, as estimated

by our model; and (4) number of requests made during the holdout period. We find quite striking

differences across the routines. For example, the casual clusters had a much lower probability of

accepting rides and generated significantly lower value during our holdout period. In contrast,

the “Evenings” routine appears to be the most valuable: these customers had a higher probability

of accepting rides, took more rides, and spent more money during that same period. Interestingly,

a higher share of their overall usage was also attributed to their routine. Commuting clusters also

appear more valuable, especially those that also incorporate evening usage. In sum, these results

suggest that not only is there significant heterogeneity in routine types, but that these routine

types are associated with substantially different behaviors, suggesting a role for routines to play

in segmenting and targeting customers.

6.4. Additional Analyses: Who and What

Until now, our analyses have proceeded by first identifying routines in terms of when customers

interact with the firm, then linking those temporal routines to relevant outcomes. This approach

27In Web Appendix A.7, we include a figure that shows how six key behaviors differ across our routine types.
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raises two questions: first, can we predict who tends to develop routines? And second, beyond

timing, is there any value in considering routines in terms of what customers do during those

interactions? In our context, ridesharing, the “what” of interest is where customers are traveling:

customers may always request a ride at the same time, but may go to the same place or different

places.

To answer the “who?” question, we examined whether any proposal characteristics, averaged

over the calibration period, are predictive of high customer routineness at the end of the training

period (week 38). We find several suggestive patterns: first, routine customers tend to have taken

lower-priced rides, with fewer other passengers, and shorter walking distances. These results may

be indicative of causality, whereby riders develop routines because they are given cheap, conve-

nient trips, or selection, wherein riders with routines happen to take rides during lower-priced,

high-supply times. Interestingly, these rides also tended to be longer rides, with higher driver

ETAs, which is consistent with travel during peak times, and the presence of many commuters in

our data. These results are described in more detail in Web Appendix A.8.

To answer the “what?” question, we used trip location data to derive two metrics of location

consistency, which capture how often each rider travels between the same locations. We then ana-

lyzed the relationship between location consistency, (temporal) routineness, and customer value.

We find that location consistency is neither particularly predictive of (timing) routineness, nor pre-

dictive of customer value after controlling for routineness. These results suggest that, at least in

the context of ridesharing, understanding consistencies in when someone uses the service is more

important than understanding consistencies in where they are going. These results are described

in more detail in Web Appendix A.9.

7. Discussion

Summary and Contribution Our work makes two primary contributions: first, from a method-

ological point of view, to the best of our knowledge, this is the first paper to model customer-level

routines. To do so, we leverage a Bayesian nonparametric Gaussian process with a unique kernel

structure aimed at estimating temporal routines, nested within a Poisson process. This model can

flexibly capture varying routines across customers with high accuracy. Additionally, it yields a
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customer-level decomposition of usage into a part that is routine and a part that is random, allow-

ing us to quantify the degree of a customer’s routineness. Substantively, we apply the model to

data from Via, a ridesharing company, and show that we can capture managerially interesting rou-

tines. We show that our model-based routineness metric is strongly predictive of customer value,

insofar as it is a positive and significant predictor of both future usage and retention. Moreover,

this effect is robust, even over longer time horizons, and after controlling for the level of usage,

other typical CRM controls, and extant transaction timing metrics. Said differently, this result is

noteworthy because it suggests that the temporal shape of usage matters: highly structured usage

is more valuable than random usage. While we apply our model in the context of ridesharing,

the model we propose is general, and can be applied to usage or purchase data in many business

settings.

Beyond our focus on the relationship between routineness and customer value, we also present

results that both validate routineness as a construct and establish its more wide-ranging impor-

tance in customer management. We show that routine customers are better customers in ways

that stretch beyond just lifetime value: they appear to be generally less price sensitive, and more

robust to some types of service disruptions. Our results suggest that firms that understand their

customers’ routines can optimize the provision of services around those routines. Conceptually,

we differentiate routineness from constructs like clumpiness and regularity. Finally, we show that

routines represent an important source of heterogeneity which can be useful for segmentation and

targeting.

Limitations and Future Research We view our work as an initial foray into the topic of mod-

eling and measuring customer routines, and establishing their importance for customer manage-

ment. As such, there are several limitations of our work, which represent promising directions

for future research, to expand both our modeling capabilities, and our understanding regarding

when and why routines matter.

From a methodological perspective, scalability of our framework is a limitation. While the

runtime of the framework is feasible, estimating our model in a fully Bayesian fashion on a large

sample of customers can be costly, as the runtime is superlinear in the sample size (see the simu-
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lations in Web Appendix A.1). In practice, our partner company implements our model on a large

sample of data. Our simulation results suggest estimating the model on a sample of consumers

is a reasonable solution: the quality of insights from small batches is equivalent to larger data

sizes. Thus, running the model in parallel with 10 compute nodes for 1 million customers using

20 weeks of data would take approximately 14 hours, which we argue is quite feasible for most

companies with established data science tools. Alternatively, future research may examine new

avenues for improving scalability, including variational Bayesian methods for inference (Hoff-

man, Blei, Wang, and Paisley 2013), or stochastic gradient HMC methods (Dang, Quiroz, Kohn,

Minh-Ngoc, and Villani 2019).

From a substantive perspective, an area we leave unexplored is the emergence of routines:

while we show suggestive results about which customers and trips are more likely to be rou-

tine, these patterns are merely suggestive. Our analysis is not causal, and thus cannot establish

whether these are indeed drivers of routines. However, given our findings that routine customers

are better customers, cultivating routines may be of key interest to companies, and understanding

how to do so promises a fruitful area for future research. Likewise, while we show suggestive

evidence that routine customers are less price sensitive, price endogeneity is an important issue

that we cannot fully resolve with our data. Price experiments should ideally be run to better un-

derstand how price sensitivity varies by routineness. We leave a more complete understanding

of the relationship between price sensitivity and routines to future studies. Additionally, in this

paper we focused primarily on temporal routines. While we provide some evidence that consis-

tency in terms of what customers do is less important, there may still be value in jointly modeling

“when” and “what.” We leave building such a joint model for future research. Finally, our under-

standing of routines more generally is limited by the fact that we only observe ride-share usage by

a single company: more comprehensive panels featuring more alternatives may shed additional

light on customer routines, and how they drive consumer choice. We hope these limitations spur

additional study of customer routines, and their importance for marketing practice.

46

Electronic copy available at: https://ssrn.com/abstract=3982612



References

Aarts, Henk and Ap Dijksterhuis (2000), “Habits as Knowledge Structures: Automaticity in Goal-
directed Behavior,” Journal of Personality and Social Psychology, 78 (1), 53–63.

Ascarza, Eva and Bruce G. S. Hardie (2013), “A Joint Model of Usage and Churn in Contractual
Settings,” Marketing Science, 32 (February), 570–590.

Ascarza, Eva, Raghuram Iyengar, and Martin Schleicher (2016), “The Perils of Proactive Churn
Prevention Using Plan Recommendations: Evidence from a Field Experiment,” Journal of Mar-
keting Research, 53 (1), 46–60.

Ascarza, Eva, Scott A Neslin, Oded Netzer, Zachery Anderson, Peter S Fader, Sunil Gupta,
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A.1. Additional Details of Simulations

We conducted a number of simulations to evaluate the performance of the model under different

data conditions. In the first set of simulations, we examined parameter recovery and scalability

under different data settings, assuming the data was generated by our model. In the second set of

simulations, we added a churn process to the data generating process, to examine how the model

performed in the presence of customer churn. In both studies, the data (without churn) were

generated by the following process:

• µ(j) was drawn from a GP with a constant mean of 0, and the day-hour kernel with length-

scale 5, amplitude 2, and LKJ scaling parameter 2.

• ηi(j) was drawn (hierarchically) from a GP with the same parameters as µ(j)

• γi(j) was drawn (hierarchically) from a GP with a common mean of −8, and an exponential

kernel with amplitude 1.5, and lengthscale 5, implying somewhat less smoothness than that

found in our empirical setting.

• αi(j) was drawn (hierarchically) from a GP with the same parameters as γi(j), but with a

lengthscale of 3.

The key features of this simulation are: (1) the means of −8 for γi(j) and αi(j) imply a rate of usage

similar to that observed in our true data; and (2) the amplitude values imply a rather high amount

of variation across people, such that some customers will be very random and not routine, while

others will be routine but not random (and some will be in between).

A.1.1. Simulation Study 1: Scalability and Parameter Recovery

To assess both parameter recovery and scalability, we varied the number of customers from 100 to

5,000 (assuming 20 weeks of data), and we varied the number of weeks from 10 to 320 (assuming

200 customers). In each case, we then estimated the model, and measured parameter recovery and

runtime.

Parameter Recovery Across all the simulations, we found that the quality of parameter recov-

ery was nearly identical, regardless of the number of customers, and the number of weeks. Thus,
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in this section, we focus on the results from the simulation with the least data: 100 customers, 20

weeks. As reported in the main body of the manuscript, parameter recovery for the focal model

parameters is excellent: for population-level parameters like µ(j), the correlation between true

and estimated values is 0.96. For the individual-level parameters, that correlation is slightly lower

but still quite high, with a correlation of 0.74 for ηi(j), and 0.80 for αi(w).

While these correlation is quite high, especially for an individual-level parameter, they are

imperfect. Much of this imperfection stems from a feature of the model: if most of a customer’s

transactions were generated from a routine, then estimating the parameters of that person’s ran-

dom process will be difficult to capture, and vice versa. In general, there are many (very negative)

values of the parameters that can generate zero transactions. Hence, beyond evaluating the corre-

lation between simulated and estimated values, we explore two additional aspects of parameter

recovery: first, for people who actually had routine requests, is the estimated routine correct?

And second, is the estimated number of routine requests recovered correctly? Figures A-1 and

A-2 show both of these comparisons, respectively. Specifically, in Figure A-1, we show that the

correlation between true and estimated values of ηi(j) approaches 1 as the (log) number of routine

requests grows, becoming very accurate even for a modest number of routine requests (e.g., for

more than 20 total routine requests, or, on the log scale, for values above log 20 ≈ 3). In Figure A-

2, we see that the total number of routine requests over the calibration period is very accurately

recovered. Together, these results give strong evidence that our model is statistically identified,

even for small amounts of data.

Scalability Figure A-3 shows the runtime (in seconds) of the model as we increase the number

of customers and the number of time periods. We see that the scaling of the model is superlinear

across both dimensions, though the number of customers is the biggest bottleneck. The superlin-

ear scaling is interesting: it suggests that running minibatches of data is much more efficient than

running all the data at once. For example, going from 100 customers to 200 customers increases

the computation time by approximately 10 minutes, whereas going from 100 customers to 1000

customers increases the computation time by approximately 3.5 hours (∼200 minutes).

As described above, the model can recover the true data generating process accurately, even

with very few customers. Practically, this suggests that, if the goal is to compute routineness and
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Figure A-1: Correlation Between True and Estimated ηi(j)
We plot the correlation between the true and estimate values of ηi(j), as a function of the logged number of (true) routine
requests the person made.
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We plot the true versus estimated number of requests coming, in total, from a customer’s routine.
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Figure A-3: Scalability Results
Runtime in seconds for estimating the routines model on simulated data.

estimate each customer’s routine pattern, leveraging all customers together in one hierarchical

model is not essential. Rather, the analyst can split the data into batches that include the full

history of different groups of customers, and obtain the desired results in an effective manner.

For example, estimating the routines of 1,000,000 customers over 20 weeks of data following this

estimation strategy, assuming 10 compute nodes in parallel, would take approximately 14 hours,

which we argue is quite feasible for most companies with established data science tools.

Alternatively, relatively recent advances in Bayesian computation, including stochastic gradi-

ent HMC (Dang et al. 2019) or, in the approximate case, stochastic variational inference (Hoffman

et al. 2013), could also likely remedy this bottleneck, given those methods can compute computa-

tionally demanding parts of the inference algorithm, like the gradient of the log posterior, using

only mini-batches of data (in this case, customers). The degree to which those approaches might

reduce the total compute time would depend on how much of the total compute time is dominated

by calculating the gradient.
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A.1.2. Simulation Study 2: Churn and Forecasting

In our second study we simulated data for 200 customers, for 142 weeks in total. This number

of weeks was set by taking the number of calibration weeks in our true data, 38, and assuming

we want to forecast 2 years into the future, an additional 104 weeks. Unlike in the previous study,

where the data generating process is the same as the model, in this case, we added a churn process

that is not part of the model, to understand how different rates of churn may affect the reliability

of the model and its ability to forecast future spending. We ran three simulations, varying the

propensity at which customers churn from the service. Specifically, we assumed that, each week,

each customer has a certain probability of churning, which we set to be either 0 (i.e., the same

as in the previous study), 0.004 (a moderate rate), or 0.02 (a high rate). If a customer churns, it

means their number of transactions is zero from that point forward. We estimate the model using

38 weeks of calibration, and test forecasting over 104 weeks.

Parameter Recovery First, although it was not the focus of this study, we did examine parame-

ter recovery just as in Study 1. As described in the main body of the paper, if customers churn, this

can be accommodated in our framework by setting αi(w) or γi(w) to low values. Hence, we do

not expect these parameters to be “recovered,” given our addition of a churn process. However,

importantly, the day-hour rate parameters should be relatively unaffected. Indeed, we find this to

be true: across all three simulations, the correlation between true and estimated parameters was

around 0.95 µ(j), and (on average) 0.75 for ηi(j).

Fit and Forecasting Next, we look at how the rate of churn affects the ability of the model to

explain and predict the data. In-sample, across all three simulations, the model performs well.

Again, the model can address churn by setting the weekly scaling terms to be negative. However,

out-of-sample performance depends on the overall propensity to churn. In the case of no churn,

the out-of-sample performance is decent, and moreover, does not deteriorate over time. This is

as predicted, given the model assumes stationary transaction processes; the forecasted GPs for

the weekly scaling terms revert to their means over time, predicting future spending will occur

at the historical average rate. Interestingly, when churn is high, the model also performs well: in

this case, many people churn early, leading the weekly scaling terms to be very low throughout
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Figure A-4: MAE of Three Simulations with Varying Degrees of Churn
The mean absolute error over the entire 142 weeks (38 calibration, 104 holdout), for the three simulations.

the calibration period, resulting in essentially a forecast of zero usage. In the middle case, with a

modest rate of churn, the model’s out-of-sample performance somewhat deteriorates: in this case,

as people churn out-of-sample, the model’s forecast of stationary usage rates cannot match reality,

leading to larger errors in forecasting usage rates. We illustrate the week-over-week MAE of the

three models together in Figure A-4.
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A.2. Model with Covariates

The model presented in the main manuscript is general as it can be applied to a wide range of

contexts and only requires transactional data, which are easily available to essentially any analyst.

In some cases, the analyst might also have access to information such as firm interventions or

other shocks in the service, and might be interested in exploring to what degree these changes

relate to, and possibly drive, routine and non-routine usage. As a general model of usage timing,

our framework is fairly flexible, and can be extended to incorporate covariates, in a number of

ways.

A.2.1. Model Specifications

Let us denote the available covariates as xit. These covariates could be at the weekly level (xiw),

or at the more granular week-day-hour level (i.e., xiwj), or just at the customer level (i.e., xi). For

example, xit could be an indicator capturing a promotion run by the company during week w, or

a lagged variable capturing the quality of service the customer received during their last trip, or

has received, on average, until that point.

First, recall the rate of our overall usage request process:

λit = exp(γiw + ηij) + exp(αiw + µj). (A-1)

We can incorporate covariates in both terms, linearly or nonlinearly. For now, we focus on the

linear case, and on incorporating covariates into the routine term. Intuitively, this specification

corresponds to “covariate-driven routines”: covariates may affect the degree to which customers

adopt routines. To simplify the subsequent discussion, we also assume that the covariates are

available at the weekly level, xiw, although the same modeling approach can be taken for any type

of covariate. With this assumption, the covariate-driven routines model is given by:

λit = exp(γiw + β′
Rxiw + ηij) + exp(αiw + µj). (A-2)

In this covariates-driven routine model, the degree to which the day-hour rate ηij governs behavior

during week w is determined by both the weekly scaling parameter, γiw, and by the value of the
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covariates. In this sense, γiw captures the “residual” routine variation, week-over-week, modulo

the covariate effect β′
Rxiw. While this specification is intuitive, it also changes how we think about

smoothness and γiw: in this specification, γiw may be highly non-smooth, given it can only be

interpreted relative to the covariate effect.

A.2.2. Caveats and Implementation

We now discuss important caveats to using the covariates model as well as details of its imple-

mentation, which might be helpful to analysts hoping to use this model in practice. First, as

mentioned, the covariates extension of our basic model can be estimated with covariates that vary

along any dimension. An alternative formulation could specify that covariates drive the degree to

which random needs arise, rather than routines. Given our focus in this paper on understanding

routines, we found the covariate-driven routines specification more natural.

Another caveat is that estimating the effects of covariates requires more data per-person: to

achieve satisfactory convergence on real data, we had to restrict the data to customers who made

at least five requests during the calibration period. While is not particularly onerous, it is more

limiting than the no-covariates model presented in the main body of the paper, which typically

does not have convergence issues, even in the presence of infrequent users.

Finally, forecasting with the covariates model is non-trivial. All of the estimated parameters

are estimated modulo to the covariates. Given many covariates of interest will be dynamic, the

analyst is thus forced to make forecasts for the value of the covariates, too. Practical strategies for

doing so may include using simple lagged or average values, but these assumptions may be far

from reality.

A.2.3. Application: Past Service Quality and Routineness

We estimated the covariate-driven routines model on the same data described in the main body

of the paper. For the covariates, we used the lagged, standardized values of several proposal-level

variables, in particular, the cost per mile, expected wait time, trip time per mile, and walking

distance of the previous proposal (or, the average of all proposals in the previous session). As

noted previously, to achieve satisfactory convergence, we limited the data to customers who had
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Table A-1: Estimated Covariate Effects
Posterior summary of the estimated covariate effects. The mean and SD refer to the estimated posterior distribution. HDI
refers to highest (posterior) density intervals.

Variable Mean SD HDI 2.5% HDI 97.5%

Cost Per Mile 0.010 0.013 -0.014 0.033
Expected Wait Time -0.049 0.012 -0.075 -0.028
Trip Time Per Mile -0.004 0.014 -0.032 0.020
Walking Distance -0.007 0.010 -0.025 0.012

at least five sessions during the calibration period, resulting in 1,841 total customers. Given the

use of lagged variables, we also only included trips for which we could observe the previous value

of the covariates of interest. The benefit of using proposal-level variables is that they are recorded

for (nearly) every session.1

First, the population-level parameters were estimated to be quite similar to the main model.

This finding, by and large, makes sense: covariates should not alter, for instance, that behavior on

weekdays tends to be more similar to behavior on other weekdays, and likewise for weekends.

Nor does it seem to alter the general day-hour patterns and types of routines recovered by the

model.

Recall that the new parameter of interest in this model is βR, the effect of the covariates on

the routineness term. We give the estimated values of βR in Table A-1, specifically reporting pos-

terior means, standard deviations, and 95% highest (posterior) density intervals (HDI). We see

that, while most of the covariates have posterior means in sensible directions, the only covariate

whose HDI excludes zero is expected wait time. The negative effect here suggests that higher past

wait times are a key predictor of lower routineness in the future. This finding is reasonable: the

company notes that long wait times are among the biggest factors driving customer satisfaction.

Wait time is such a significant variable for Via, that they often use wait time as a focal unit of anal-

ysis, by, for example, computing “wait time elasticities (of demand),” and thinking of the effects

of different potential interventions, like discounts, in terms of “effective wait time.”

1Every session, barring occasionally technical glitches.
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A.3. Additional Case Studies from the Quasi-Simulation

In this section, we present additional analyses for the 32 synthetic case studies in our quasi-

simulation. We present them in three parts: first, we present a set of illustrative cases that highlight

the model’s ability to meaningfully decompose transactions. Then, we analyze the links between

routine, clumpy, and regular behavior. Finally, we analyze data drawn from the Pareto-GGG

(Platzer and Reutterer 2016) under our model.

Illustrative Cases Table A-2 describes the set of illustrative cases, in terms of how each simu-

lation was generated, and Figure A-5 shows the model-based decomposition for each case. The

figures are interpreted analogously as the “Decomposition” figures in the main manuscript. We

corroborate that, in general, the correct insights are well recovered by the model. The only excep-

tion occurs in cases where usage is purely random. There, the model may attribute some of that

random usage to a routine (e.g., cases 1 and 2). Also of note are cases 6 and 7, where the true data

generating process was a mix of two routines: one routine in the first half, and a new routine in

the second half. We see that even though the model has no mechanism to learn multiple routines

it still classifies these customers as fully routine. However, the routine it learns is a mixture of the

two, which is a limitation of our model.

Note that, for all of the simulations in Table A-2, the data generating process was deterministic.

These same patterns can be recovered, even in the presence of noise. To illustrate, we included

two additional cases, which mimic cases 3 and 4 from Table A-2 (i.e., high and low frequency

routines), but where at each routine time, the customer uses the service probabilistically: with

probability 0.5, they do not make a request; with probability 0.4, they make one request; with

probability 0.095, they make two requests; and with probability 0.005, they make three requests.

We plot the full results for these customers in Figures A-6 and A-7. As we can see, the model

accurately parses both routines, although there is some fluctuation in the level of routineness,

following the stochastic request process. In both cases, the model also accurately recovers the

number of request times (5 and 2). For the expected requests, these are now fractional, again

following the stochastic request process. In short: even in stochastic settings, the model has no

issue meaningfully decomposing behavior.
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Table A-2: Illustrative cases.
Descriptions of the simulated customers.

Case Label Simulation procedure

1 Random (High) Customer makes a request at 5 day-hours each week,
randomly sampled each week from the empirical
distribution

2 Random (Low) Customer makes a request at 2 day-hours each week,
randomly sampled each week from the empirical
distribution

3 Routine (High) Randomly sample 5 day-hours; customer makes a request
at these times, every week

4 Routine (Low) Randomly sample 2 day-hours; customer makes a request
at these times, every week

5 Commuter Customer rides every weekday at 8 AM, and 5 PM
6 Two Routines (High) For the first 19 weeks, the customer follows a routine,

generated as in Case 1; then the customer abruptly shifts
to a new routine for the remaining 19 weeks, redrawing
the times at which she requests rides

7 Two Routines (Low) For the first 19 weeks, the customer follows a routine,
generated as in Case 2; then the customer abruptly shifts
to a new routine for the remaining 19 weeks, redrawing
the times at which she requests rides

8 Random then Routine (High) For the first 19 weeks, the customer follows the Random
(High) procedure; for the last 19 weeks, the customer
follows the Routine (High) procedure

9 Random then Routine (Low) For the first 19 weeks, the customer follows the Random
(Low) procedure; for the last 19 weeks, the customer
follows the Routine (Low) procedure

10 Routine then Random (High) For the first 19 weeks, the customer follows the Routine
(High) procedure; for the last 19 weeks, the customer
follows the Random (High) procedure

11 Routine then Random (Low) For the first 19 weeks, the customer follows the Routine
(High) procedure; for the last 19 weeks, the customer
follows the Random (High) procedure

12 Random then Dead (High) For the first 19 weeks, the customer follows the Random
(High) procedure, then stops making requests

13 Random then Dead (Low) For the first 19 weeks, the customer follows the Random
(Low) procedure, then stops making requests

14 Routine then Dead (High) For the first 19 weeks, the customer follows the Routine
(High) procedure, then stops making requests

15 Routine then Dead (Low) For the first 19 weeks, the customer follows the Routine
(Low) procedure, then stops making requests
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Figure A-5: Full simulation results.
The model-based decomposition for all 15 simulated cases, as described in the main body o f the paper and in Table A-2.
The red dashed line is routine usage, while the black solid line is random usage. We see that, by and large, the model can
correctly parse the correct data-generating pattern.
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Figure A-6: Noisy version of Case 1
The model-based decomposition and associated parameters for a noisy version of Case 1, i.e., a high frequency routine.
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Figure A-7: Noisy version of Case 2
The model-based decomposition and associated parameters for a noisy version of Case 2, i.e., a low frequency routine.
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Comparisons to Clumpiness and Regularity In addition to the cases shown previously, we

also generated customers with clumpy and regular behavior. We now zero in on several examples

of those cases, to illustrate the connections between routines, clumpiness, and regularity. In par-

ticular, we first focus on the synthetic cases that inspired Figure 1 (in the main body). As described

in the paper, routines can also generate clumpy or regular behavior. In fact, they can also exhibit

regular clumps. To illustrate these patterns, we generated several additional customers, featuring

clumpy and/or regular behavior. The first is a customer who does not use the service during the

week, but always makes requests on the weekend, at 10am, 5pm, and 11pm — this user is high

on clumpiness. Then, we generated another user who always transacts at 8am, every day — very

regular. To validate that these cases are clumpy and regular, for clumpiness, the first customer

has a clumpiness score of 0.17 versus almost zero for the second. In terms of regularity, the first

customer always has identical intertransaction times, while the second does not. Figures A-8 and

A-9 show our model’s estimation of these customers’ behavior, respectively. The model identifies

that both of these cases have high routineness: the decomposition attributes all of their behavior to

a routine. In short, this illustrates that routines can generate both clumpy and regular behavior.2

Perhaps more interestingly, we can also generate regularities that are not, exactly routine.

Imagine, for instance, a customer who makes a clump of transactions every 40 hours. Now, this is

admittedly rather strange transaction behavior, but it is interesting to see how our model decom-

poses such a pattern. The 168 day-hours in a week are not evenly divisible by 40, so this behavior

does not lead to a consistent week-over-week behavior. However, it is, in some sense, equivalent

to a probabilistic routine, at all hours that are divisible by 40. We see that is exactly what the

model recovers, presented in Figure A-10. Similarly, we can also generate clumpy behavior where

the timing of the clumpy behavior is totally random. In this case, the model correctly parses that

the behavior is not routine at all, and attributes the majority of usage to the non-routine process.

2We have additional case studies that are variations on this theme, including stochastic timing, and lower transaction
rates, which have results consistent with these case studies, and which all can be shared upon request.
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Figure A-8: Routine and Clumpy
The model-based decomposition and associated parameters for a case where behavior is routine and clumpy.
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Figure A-9: Routine and Regular
The model-based decomposition and associated parameters for a case where behavior is routine and regular.
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Figure A-10: Clumpy with a 40 hour cycle.
The model-based decomposition and associated parameters for a case where a clump of transactions occurs roughly every
40 hours.
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Figure A-11: Six Pareto-GGG Case Studies
The model-based decompositions for six customers generated from the Pareto-GGG model (with no churn). Similar to prior
plots, the red dashed line is the routineness, while the black solid line is the non-routine (“random”) process.

Pareto-GGG Finally, we generated a set of customers from the Pareto-GGG model with no

churn. In essence, this is equivalent to gamma-distributed interarrival times, with individual-

specific rates ki, following the specification given in Platzer and Reutterer (2016). Specifically, we

generated six synthetic customers, varying ki = 0.1, 0.2, 0.5, 2, 5, 10, ranging from very clumpy to

very regular. Intuitively, we would hypothesize that, for most values of k, the model would clas-

sify these consumers as non-routine. Only when k grows very large, and the interarrival times

become extremely regular, should we see some routineness emerge. Figure A-11 shows the results

of the decomposition, applied to our six synthetic cases. The results are consistent with our hy-

pothesis: as k rises, more usage is attributed to a routine, especially in the case of k = 10 which

corresponds to very regular transaction patterns, akin to our “every day at 8am“ consumer from

before. For values lower than k = 10, we find that much of the usage is attributed to the random

process. Occasionally, we see a bit of routine usage: this can be attributed mostly to stochasticity

producing similar weekly transaction times.
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A.4. Details of the LSTM Benchmark

As a benchmark, we trained long-short term memory deep learning models (Goodfellow, Bengio,

and Courville 2016) with the goal of predicting in which day-hours a customer would request a

ride. We evaluated two LSTM modeling frameworks: one in which we trained one LSTM per

user, and one in which we trained a single LSTM to predict across all users. With appropriate

tuning of the architectures, we found the individual-level models performed better, and thus, we

focus on that framework below, and include its statistics in the paper. In all cases, the loss function

was a binary cross-entropy loss, focused on predicting, for a given-day hour, if there would be a

ride request during that day-hour. As training data, we used the same 38-week window as the

other models. The specific architecture fed a sequence of 3-weeks of data through an LSTM layer

with 32 hidden units and tanh activation functions, the output of which was flattened and fed

through a dense layer, again with 32 hidden units. The output is a sequence of probabilities over

the subsequent week, predicting the likelihood of seeing a ride during each day-hour.

To forecast with this architecture, we need to use the same sliding window (three weeks in,

one week out). Thus, the forecasting task is slightly different than in the other models, which

forecast 10 weeks ahead, given 38 weeks of data. In the LSTM, while the parameters are learned

using the full 38 weeks of training data, to actually make a prediction, we use the prior 3 weeks of

data to predict what the subsequent week will look like. Using this mechanism to forecast more

than one week ahead thus requires us to assume the predictions are true, and feed them back

in as part of the subsequent input sequence. In turn, this requires assuming a threshold for the

forecasted probabilities, above which we will assume a ride takes place. The threshold we chose

is a probability of 0.2. We chose this relatively low threshold for two reasons: first, on the training

data, we observed that probability predictions were rarely above the more standard cut-off of

0.5. Moreover, as shown in the paper, the choice of 0.2 gave good performance on our focal task,

which again was ranking likely day-hours for rides. Note, though, that the combination of this

forecasting mechanism and this threshold choice leads to a high number of forecasted requests:

uncertainty is propagated through the sliding window, as prior predictions are treated as truth,

and there is a relatively low threshold for assuming a ride occurs. It may be possible to further

optimize this choice of threshold to achieve good performance on both tasks, or to change the loss
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in a way that naturally captures both volume and timing. We put a reasonable amount of effort

into carefully building this architecture to do a good job at the day-hour ranking task, to ensure

we are comparing our model to a properly developed benchmark. We view further optimizations

as beyond the scope of this work.
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A.5. Calculating CP and MAP

In our discussion of our model’s ability to predict ride times, we employed the conditional preci-

sion (CP) and mean average precision (MAP) statistics. We now describe how to compute those

statistics. The basis of both of CP and MAP is the top-k precision, denoted p(k), which is computed

as follows: Let T denote the set of day-hours that a customer requested rides in a given week,

and let Rk denote a ranking of the k most likely day-hours for that customer to request a ride,

as predicted by the model. Here, we are ignoring i and w subscripts for notational simplicity: in

our application, this ranking would be computed on a per-customer, per-week basis. With this

notation, top-k precision is given by p(k) := |Rk ∈ T|/k, which, simply put, captures the fraction

of the day-hours in Rk in which the customer actually requested a ride. As a running example,

let us consider a person who took four rides, i.e., y = |T| = 4. Suppose those rides happened

at day-hours T = {11, 22, 33, 44}. Suppose then that the model’s top-6 predicted ride times were

R6 = {11, 22, 32, 33, 45, 44}. Then p(1) = 1 (since the top-ranked ride actually happened), p(2) = 1

(since both of the top-2 rides happened), but p(3) = 2/3 (since the rank-3 ride did not happen),

and so on.3 Having defined p(k), we can now define our two metrics of interest:

• Mean Average Precision (MAP): To define MAP, we first define the average precision (AP)

of the day-hour rankings for a given customer (again omitting the i and w subscripts):

AP =
1
y

168

∑
k=1

p(k) I(Request @ k). (A-3)

Here, I(Request @ k) = 1 if the user made a request at the day-hour ranked k and 0 oth-

erwise. The MAP is then the mean AP across all customers. To illustrate the intuition

behind MAP, let us return to our example with true ride times T = {11, 22, 33, 44}, and

R6 = {11, 22, 32, 33, 45, 44}. The average precision for this user would be 1
4 (1 + 1 + 0 + 3

4 +

0 + 4
6 + 0 + . . . ) = 0.854. The AP is always between 0 and 1, with higher values indicating

that the model is producing better rankings of the day-hours for that customer. The AP will

be 1 if all of the user’s rides happened during the highest ranked hours.

3Note that this metric does not separate adjacent mispredictions (e.g., if the true day-hour of a ride were 33, a
prediction of day-hour 34 or 14 would both count as mispredictions). However, note that our model is likely to rank
similarly adjacent day-hours due to the correlation between days and hours induced by the day-hour kernel.
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• Conditional Precision (CP): The conditional precision is similar to the classic precision met-

ric. Suppose that we know a given user rode y times in a given week; the conditional preci-

sion captures which of those y day-hours the model predicts correctly. Mathematically, CP

is equal to p(y).

Note that, while these metrics all share the word “precision” in their names, they are connected to

both precision and recall, in the classic senses of those terms. MAP, in particular, can be viewed

as measuring the area under the precision-recall curve. As an example, imagine a customer who

made two requests, one of which was expected by the model and ranked first, and another which

was unexpected and ranked last. The MAP of this scenario is 1
2 (1 +

1
168 ), which takes into account

both the successful ranking of the first request, and the very unsuccessful ranking of the second

request.
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A.6. Additional Summary Statistics

Table A-3: Additional summary statistics.
Summary statistics for the ride-related covariates. The variables above the horizontal line are variables about the proposal
itself; those below the line are about the actual trip that was taken.

Statistic N Mean St. Dev. Min Max

Requests Before 38, 305 0.9 3.0 0.0 103.0
Ride Distance 38, 305 3.3 2.5 0.1 27.9
Airport Ride 38, 305 0.03 0.2 0.0 1.0
Solo Trip 38, 305 0.9 0.3 0.0 1.0
Had ViaExpress Proposal 38, 305 0.4 0.5 0.0 1.0
Had Shared Taxi Proposal 38, 305 0.04 0.2 0.0 1.0
Sedan 38, 304 0.3 0.4 0.0 1.0
Van 38, 304 0.3 0.5 0.0 1.0
Ride Cost (Cents) 38, 167 879.1 878.1 0.0 11, 936.0
Driver ETA 38, 305 7.7 4.0 0.1 70.1
ETA Destination 38, 305 31.1 13.5 0.1 168.1
Speed 38, 305 0.1 0.7 0.01 131.1
Pickup Walking Dist. 38, 305 109.2 83.5 0.0 600.0
# Passengers Request. 38, 305 1.2 0.5 1 6
Pickup Delay 16, 159 1.1 2.7 −12.2 48.3
Dropoff Delay 16, 159 2.6 8.9 −41.4 630.0
Dropoff Walking Dist. 19, 374 88.8 70.2 0.0 577.0
# On-board (Pickup) 16, 159 0.8 1.0 0.0 5.0
# On-board (Dropoff) 16, 159 0.7 1.0 0.0 5.0
Max On-board 16, 159 2.5 1.3 1.0 7.0
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A.7. Additional Behaviors by Routine Type

In Figure A-12, we show how six different behaviors vary across our routine types. The specific

behaviors are:

• Airport Rides – whether a request is to the airport or not

• Pickup Walking Dist – how long customers have to walk to get their shared ride

• Proposed ETA – how long the customer is expected to wait until the driver arrives, as part

of the ride proposal

• Proposed Speed – calculated by looking at the requested trip length, and the proposed trip

time

• Ride Cost (cents) – how much the customer will pay for the trip

• Solo Trips – how often the customer requests a trip just for 1 passenger

Figure A-12: Request characteristics, by routine type
The average value of 6 proposal-level variables, by routine type. Error bars represent standard errors, and the vertical line
represents the overall mean.
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A.8. Which Customers Have Routines

In this appendix, we consider which types of customers, in terms of observable characteristics,

tend to develop routines. Understanding what makes for a routine customer can further validate

our routineness metric, and suggest ways in which the focal firm might consider acquiring routine

customers, or cultivating routines. To explore this phenomenon, we regress each user’s week 38

routineness on a number of variables describing that user’s activity and trip types averaged over

the training period.4 The results are shown in Table A-4.

Table A-4: Predictors of routineness.
Regression of week 38 routineness (DV) on average trip characteristics (IVs), where the average is taken over the whole
training window. (These results are robust if we use the average routineness as the DV instead of its week 38 value.)

Dependent variable:

Routineness

Prob. Ride | Request 0.555∗∗∗

(0.116)

First Week −0.0003
(0.001)

# Requests 0.401∗∗∗

(0.008)

Price −0.001∗∗∗

(0.0001)

ETA Driver 0.047∗∗

(0.019)

ETA Destination −0.001
(0.005)

# Passengers Req. −0.131∗∗

(0.061)

Walking Distance −0.001∗

(0.001)

Distance 0.116∗∗∗

(0.025)

Airport Ride −0.033
(0.269)

Observations 2,000
R2 0.605

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We find that high-routineness users have much in common: first, echoing our main CRM

results, we see that routine customers have a higher probability of accepting a ride, given a request.

4The results are very similar when we consider the average routineness over all weeks as a DV. We prefer using
week 38 routineness for consistency with the rest of the paper.
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We also find that customers who take longer trips, or request a ride with fewer other passengers

(i.e., are more likely to request a “solo trip,” as opposed to bringing friends along for the ride)

are more likely to have higher routineness. Partly, this may be explained by the prevalence of

commuting routines, which intuitively may be more likely to be solo trips, and may be from more

remote areas of the city to more central ones. A similar self-selection story may explain the positive

association of routineness and driver ETA: if routine customers are traveling at peak hours, it

may take longer to find a driver. More interestingly, we find that routineness is associated with

lower priced trips, and lower walking distance. While our analysis is not causal, these effects are

suggestive: customers who are consistently confronted with high prices or high walking distances

may stop using the platform, or never form routines.
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A.9. “When” versus “What”: Incorporating Location Information

In the main body of the paper, we focused exclusively on temporal routines: that is, when someone

interacts with the firm, not what they do in that interaction. In a retail setting, for instance, a

customer may come in at exactly the same time each week, but may buy either the same items

each time, or different items. In our focal context, customers may request rides at exactly the

same times each week, but may travel to either the same location each time, or different locations.

Consider, for example, two work commuters, both of whom work in the same location each day.

In the morning, both users may always go between the same locations, home and work. In the

evening, however, one of these commuters may always return home, while the other frequently

goes out for drinks or dinner. In this sense, both customers have the same “when” routine but

different “what” routines. In this section, we explore to what degree “what” routines — that is,

location choice — are predictive of “when” routines, and what gains there may be in accounting

for “what” routines, in addition to our previously defined routineness measure.

Metrics for Location Dispersion To understand the degree to which there are “what” routines

in location choice, we first need a metric of how consistent location choices are. Mathematically,

it is more natural to construct measures of how dispersed (that is, how inconsistent) trip locations

are.5 To understand location dispersion, we look at both pick-up and drop-off locations. In our

data, locations are saved as precise latitude/longitude coordinates (or, “lat/long”), measured to

five decimals. To discretize our location data to correspond to New York City street blocks, we

truncate the decimal to the nearest 300th.6 With this discretization, we then define two measures

of location dispersion:

1. Shannon Entropy: For this metric, we consider the empirical distribution of a user’s loca-

tions (both pick-up and drop-off). For instance, if a user made ten total trips, nine to location

1 and one to location 2, the empirical distribution would be (0.9, 0.1). We then compute the

Shannon entropy of that distribution, defined as:

Entropy = −
L

∑
ℓ=1

pk log pk. (A-4)

5Though each of our measures could be easily converted to a consistency measure by inversion.
6Specifically, given a raw coordinate x, we compute a truncated coordinate, x∗ = ⌊300x + 0.5⌋/300.
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where pℓ is the empirical probability of the ℓth location, and L is the total number of loca-

tions. Intuitively, entropy captures how “predictable” a user’s locations are. To illustrate,

observe that Entropy(0.9, 0.1) < Entropy(0.5, 0.5) < Entropy(0.1, 0.1, . . . , 0.1).

2. CRT Dispersion: A feature of the entropy measure is that it does not take into account the

total number of trips or locations for a given user. Hence, a user that takes 1,000 trips to the

same 10 locations is just as entropic as a user who takes 10 trips to the same 10 locations.

Hence, as an alternative to entropy, we consider a metric inspired by the Chinese Restaurant

Table (CRT) process. The CRT process is a stochastic process, derived from the better known

Chinese Restaurant Process, commonly used to model assignment to different groups (Zhou

and Carin 2013). It captures a “rich get richer” process, whereby new observations are either

assigned to existing groups, with probability proportional to the sizes of those groups, or

they are assigned to a new group, at a rate proportional to a dispersion parameter. Such a

process could be used to model the evolution of trip location choices: for a new trip, that trip

may be to an existing location, or it may be to a new location. While estimating the full CRT

model is complex and cumbersome, there exists an intuitive and easily computed estimator

of the CRT dispersion parameter, θ (Durrett 2008, Chapter 1): given L unique locations in K

total trips:

θ ≈ L
log K

. (A-5)

In plain English, this metric is the number of unique locations divided by the log number of

total trips. Contrasting this to entropy, if a user has just two unique locations in ten trips,

θ = 2/ log(10) ≈ 0.87, regardless of whether those trips were split 5/5 or 9/1. But, unlike

entropy, if a user visits 10 locations equally among 1000 trips, θ = 10/ log(1000) ≈ 1.45,

whereas if the user visits 10 locations equally among 10 trips, θ = 10/ log(10) ≈ 4.34.

Location Results Having defined metrics of location dispersion, we now ask: first, to what

degree is location dispersion related to temporal routineness? And second, is location choice also

an important predictor of customer-level outcomes? To answer the first question, we plot the joint

distribution of our routineness metric and the two metrics of location dispersion in Figure A-13.7

7For consistency, we focus on routineness as measured in the last week of our training data, but all the results are
the same if we consider average routineness over the training data instead.
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Figure A-13: Joint Distributions of Routineness and the Two Location Dispersion Metrics.
The joint distribution of routineness in week 38 (i.e., ERoutine

i38 ), and the two metrics of dispersion in location choice, entropy
and CRT dispersion, showing no relationship between the two.

We see that there is no obvious relationship between temporal routineness and location dispersion.

This is supported by simple regression analyses: alone, entropy and CRT dispersion explain less

than 5% of the variation in routineness.

When we regress routineness on both location metrics, together with other obvious individual-

level controls (e.g., number of final week requests, the week the customer was acquired), we find

CRT dispersion is a negative and significant predictor of routineness, while entropy is not signif-

icant. We report the full results from these regressions in Table A-5. Taken together, these results

suggest that location dispersion is minimally predictive of temporal routineness, albeit in an intu-

itive direction: customers with less dispersed location choices seem to be slightly more routine.

Having established that routineness and location dispersion are distinct, we now ask: does

location dispersion have an impact on customer behavior over and above temporal routineness?

Specifically, we return to the focal analyses where we explored the role of routineness in explaining

the number of future requests and the likelihood of a customer being active in the future, but now

also include our location dispersion metrics. We find that, when the location dispersion metrics

are included alongside routineness, neither entropy nor CRT dispersion is a significant predictor

of either outcome, suggesting that, from a CRM perspective, “when” matters significantly more

than “what.” We display these results in Table A-6.
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Table A-5: Explaining routineness with location dispersion.
Regression of week 38 routineness (DV) on the two measures of location dispersion, along with some standard customer-
level controls (IVs).

Dependent variable:

Routineness

(1) (2) (3)

Entropy −0.220∗∗∗ −0.128∗

(0.060) (0.071)

CRT Disp. 0.081∗∗∗ −0.036∗∗∗

(0.009) (0.014)

Sessions 0.005∗∗∗

(0.0004)

Prob. Ride | Request 0.115
(0.124)

First Week 0.002∗∗

(0.001)

# Requests (w = 38) 0.453∗∗∗

(0.010)

Observations 2,000 2,000 2,000
R2 0.007 0.036 0.684

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Intercept omitted for clarity.
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Table A-6: Regressions of location dispersion and customer activity.
Regression of future activity (DVs) on individual-level summary statistics and the two measures of location dispersion.

Dependent variable:

# Requests Activity

OLS logistic

(1) (2)

Requests (w = 38) 1.812∗∗∗ 0.398∗∗∗

(0.236) (0.104)

Recency −0.227∗∗∗ −0.141∗∗∗

(0.042) (0.010)

Frequency 0.090∗∗∗ −0.0002
(0.009) (0.003)

Routine (w = 38) 5.280∗∗∗ 1.069∗∗∗

(0.385) (0.333)

Entropy −1.848∗ 0.095
(1.082) (0.240)

CRT Disp. 0.108 −0.017
(0.197) (0.047)

Observations 2,000 2,000
R2 0.575

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Intercept omitted for clarity.
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A.10. PyMC Implementation

Here, we share an efficient implementation of the model, using PyMC, built on the Aesara library,

which we subsequently compiled to NumPyro and JAX to run on a GPU. We thank our partner

company, Via, for their help on improving this code.

# Base imports

import numpy as np

# PyMC-related imports

import pymc as pm

import aesara

import aesara.tensor as at

# Other imports

from numpy import pi as pi

# reference: https://discourse.pymc.io/t/avoiding-looping-when-using-

# gp-prior-on-latent-variables/9113/9

class FixedMatrixCovariance(pm.gp.cov.Covariance):

def __init__(self, cov):

# super().__init__(1, None)

self.cov = at.as_tensor_variable(cov)

self.input_dim = 1

def full(self, X, Xs):

# covariance matrix known, not explicitly function of X

return self.cov

def diag(self, X):

return at.diag(self.cov)

def create_model(y, nz_mask, include_obs, n_week_fore, args):

"""Creates the usage model for routines.

Args:

y: n_cust x n_week_train array of usage counts (note: this code can be adapted to only use

non-zero counts; this implementation includes zeros in y)

nz_mask: an array specifying which elements of y are non-zero

include_obs: an array that captures which columns in y happened after a customer’s

acquisition date + three weeks

n_week_fore: the number of weeks ahead to forecast

Returns:

A PyMC model corresponding to our proposed routines model.

"""

n_cust, n_week_train, n_dayhour = y.shape

n_week_total = n_week_train + n_week_fore

# inputs are always just the range of possible values, used for creating GPs later

cust_inputs = np.arange(1, n_cust + 1)[:, None]

week_inputs = np.arange(1, n_week_total + 1)[:, None]

day_inputs = np.arange(1, 8)[:, None]
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hour_inputs = np.arange(0, 24)[:, None]

routines_model = pm.Model()

with routines_model:

# Create aesara objects from data:

y_at = aesara.shared(y)

nz_mask_at = aesara.shared(nz_mask)

include_obs_at = aesara.shared(include_obs)

# This will be used several times for hierarchical GPs:

identity_matrix = at.eye(n_cust)

identity_cov = FixedMatrixCovariance(identity_matrix)

# GP model for random scaling term, alpha:

alpha0_scale = pm.HalfNormal("alpha0_scale", sigma=10)

alpha0 = pm.Normal(

"alpha0", mu=0, sigma=alpha0_scale, shape=(n_cust)

)

## Hyperparameters

alpha_amp = pm.HalfNormal("alpha_amp")

alpha_ls = pm.InverseGamma("alpha_ls", alpha=5, beta=5)

## Alpha cov

cov_alpha = alpha_amp**2 * pm.gp.cov.Exponential(input_dim=1, ls=alpha_ls)

## Alpha prior

alpha_offset_gp = pm.gp.LatentKron(cov_funcs=[identity_cov, cov_alpha])

alpha_offset = alpha_offset_gp.prior(

"alpha_offset", Xs=[cust_inputs, week_inputs]

)

alpha = pm.Deterministic(

"alpha",

alpha0.dimshuffle(0, "x") + alpha_offset.reshape((n_cust, n_week_total)),

)

# Common dayhour rate term, mu

## Day correlation term:

mu_omega_chol, mu_omega_corr, mu_omega_scale = pm.LKJCholeskyCov(

"mu_omega",

n=7,

eta=2.0,

sd_dist=pm.HalfNormal.dist(shape=7),

compute_corr=True,

)

cov_mu_day = FixedMatrixCovariance(mu_omega_corr)

## Periodic hour term:

mu_amp = pm.HalfNormal("mu_amp")

mu_ls = pm.TruncatedNormal("mu_ls", mu=0.5 * pi, sigma=0.25 * pi, lower=0)

cov_mu_periodic = mu_amp**2 * pm.gp.cov.Periodic(

input_dim=1,

period=24,

ls=mu_ls / 2, # note: /2 needed to recover original per kernel defn

)

## Combine using Kronecker structure:

mu_gp = pm.gp.LatentKron(cov_funcs=[cov_mu_day, cov_mu_periodic])
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mu = mu_gp.prior("mu", Xs=[day_inputs, hour_inputs])

# GP model for routine scaling term, gamma

## Define gamma = gamma0 + gamma_offset

gamma0_scale = pm.HalfNormal("gamma0_scale", sigma=10)

gamma0 = pm.Normal(

"gamma0", mu=0, sigma=gamma0_scale, shape=(n_cust)

)

## Hyperparameters

gamma_amp = pm.HalfNormal("gamma_amp")

gamma_ls = pm.InverseGamma("gamma_ls", alpha=5, beta=11)

## Gamma Covariance

cov_gamma = gamma_amp**2 * pm.gp.cov.Exponential(input_dim=1, ls=gamma_ls)

## Gamma prior

gamma_offset_gp = pm.gp.LatentKron(cov_funcs=[identity_cov, cov_gamma])

gamma_offset = gamma_offset_gp.prior(

"gamma_offset", Xs=[cust_inputs, week_inputs]

)

gamma = pm.Deterministic(

"gamma",

gamma0.dimshuffle(0, "x") + gamma_offset.reshape((n_cust, n_week_total)),

)

# GP model for routine rate, eta

## Day correlation term:

eta_omega_chol, eta_omega_corr, eta_omega_scale = pm.LKJCholeskyCov(

"eta_omega",

n=7,

eta=2.0,

sd_dist=pm.HalfNormal.dist(shape=7),

compute_corr=True,

)

cov_eta_day = FixedMatrixCovariance(eta_omega_corr)

## Periodic hour term:

eta_amp = pm.HalfNormal("eta_amp")

eta_ls = pm.TruncatedNormal("eta_ls", mu=0.5 * pi, sigma=0.25 * pi, lower=0)

cov_eta_periodic = eta_amp**2 * pm.gp.cov.Periodic(

input_dim=1,

period=24,

ls=eta_ls / 2, # note: /2 needed to recover original per kernel defn

)

## Combine using Kronecker structure:

eta_gp = pm.gp.LatentKron(

cov_funcs=[identity_cov, cov_eta_day, cov_eta_periodic]

)

eta_unshaped = eta_gp.prior(

"eta_unshaped", Xs=[cust_inputs, day_inputs, hour_inputs]

)

eta = pm.Deterministic("eta", eta_unshaped.reshape((n_cust, n_dayhour)))

# Compute likelihood

intensity = at.exp(

alpha.dimshuffle(0, 1, "x")[:, :n_week_train, :] + mu.dimshuffle("x", "x", 0)
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) + at.exp(

gamma.dimshuffle(0, 1, "x")[:, :n_week_train, :] + eta.dimshuffle(0, "x", 1)

)

lp1 = at.sum(y_at[nz_mask_at] * at.log(intensity[nz_mask_at]))

lp2 = at.sum(intensity[include_obs_at])

pm.Potential("lp", lp1 - lp2)

return routines_model
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