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Abstract

Predictive model development is understudied despite its centrality in modern artifi-
cial intelligence and machine learning business applications. Although prior discussions
highlight advances in methods (along the dimensions of data, computing power, and
algorithms) as the primary driver of model quality, the tools that implement those
methods have been neglected. In a field experiment leveraging a predictive data sci-
ence contest, we study the impact of tools by restricting access to software libraries
for machine learning models. By only allowing access to these libraries in our control
group, we find that teams with unrestricted access perform 30% better in log-loss error
— a statistically and economically significant amount, equivalent to a 10-fold increase
in the training data set size. We further find that teams with high general data-science
skills are less affected by the intervention. In contrast, teams with high tool-specific
skills significantly benefit from access to modeling libraries. Our findings are consis-
tent with a mechanism we call ‘Tools-as-Skill,’ where tools automate and abstract some
general data science skills but, in doing so, create the need for new tool-specific skills.
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1 Introduction
Recent breakthroughs in artificial intelligence1 (henceforth predictive modeling) have changed
how businesses operate. Most visibly, predictive models are at the heart of new technologies
like the optimized search and recommendation systems developed by Google, Amazon, and
Netflix. But, as illustrated in a rich case literature, predictive models have also enabled op-
erating model innovations for businesses in traditionally non-digital industries like finance,
manufacturing, and retail (Iansiti & Lakhani, 2020; Greenstein, Myers, & Mehta, 2022; Fer-
reira et al., 2016). However, these celebrated applications may be more of an exception
than the rule. Recent surveys of business executives suggest that, while almost all firms are
investing in some form of data analytics or AI capabilities, less than a quarter deploy these
technologies in production (Ransbotham et al., 2020; New Vantage Partners, 2022). Why
are some businesses better than others at developing predictive models at scale, especially
given that the underlying methods are broadly known and accessible?

The literature on information technology (IT) productivity has shown that across an
enormous range of applications2, new technologies only realize their full value when they are
accompanied by complementary, co-invented factors (Bresnahan et al., 1996). The recent
literature especially emphasizes the role of worker skills in driving the adoption and effective
deployment of new technologies like Hadoop – especially as transmitted through the channel
of inter-firm hiring networks (Tambe, 2014; Tambe & Hitt, 2014; Wu et al., 2018). More
specific to AI, recent literature has emphasize the role of data as a key complementary factor
to algorithm development (Iansiti & Lakhani, 2020; Bessen et al., 2022; Gregory et al., 2021;
Varian, 2018).

However, there is a gap in the literature in explaining a key concern in improving pre-
dictive model development: internal technological infrastructure, or tools3. Yet practitioner
emphasis on the value of tools is widespread: almost every leading company invests sig-
nificantly in their internal data platforms, including centralized data warehouses, CRMs,
customer support systems, reporting dashboards, and more ‘internal’ tools that facilitate
data science and other operations (Budibund, 2022; Spotify, 2021). Due to the importance
of tools, consulting firms are routinely employed to reorganize a firm’s internal data and

1By artificial intelligence (AI), we refer to applications of machine learning (ML) or “Weak AI” rather
than the broader AI problem of constructing a general intelligence machine (Iansiti & Lakhani, 2020).

2For example, researchers have shown that the adoption of IT only increases productivity and profits
when accompanied by an appropriate shift in complementary changes to the organization, such as team-based
work organization, distributed decision-making authority, or specific skills in the labor force (Bresnahan et
al., 2002; Wu et al., 2019; Brynjolfsson et al., 2021)

3A key component of our argument will be to introduce a conceptual distinction between tools and
methods. However, for completeness, defer introducing our definitions until Section 2.2.
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reporting infrastructure (McKinsey, 2022; BCG, 2023), and integrating open-source tools is
seen as a key first step in developing AI capabilities (Greenstein, Yue, et al., 2022). However,
tools, even free open-sourced ones, are unevenly adopted because adoption requires firms to
make costly infrastructure investments to integrate them into their technology stacks (BCG,
2021). Furthermore, some businesses restrict the use of these core tools for regulatory or
security purposes (Amgen, 2022) or because they are simply unsure how to apply them to
drive business value. Taken together, the case studies and anecdotal evidence suggest that
tools may help explain why some businesses are better at developing predictive models at
scale. Yet there is almost no prior quantitative evidence on the impact of tools on predictive
model development or productivity, more generally.

To address this gap, we ran a field experiment. Specifically, we conducted a prediction
competition based on a binary classification problem, described in Section 3. Our treatment
restricted access to machine learning modeling functions in Python (such as those imple-
mented by the popular package sci-kit learn (Pedregosa et al., 2011)); the control group
had no such restrictions. Crucially, teams were blocked from using tools (software library
implementations of methods) but not the methods themselves; therefore, our experiment
isolates the causal effect of the tools rather than the methods (allowing methods to vary
endogenously).

Our experimental results suggest two new reasons why firms may differ in the success
of their predictive modeling efforts. First, firms may fail in predictive model development
because of their restricted use of tools. Our main effect, presented in Section 4, shows that
access to library implementations improves model accuracy by an average of 12 percentage
points over baseline — corresponding to a 50 percent relative improvement over treatment
relative to the baseline. This economically and statistically significant impact is equivalent
to reducing the training data size by a factor of 10 (to 10% of its original size).

Second, firms may fail in predictive model development because their workforce lacks the
necessary skills to leverage the tools. To show this, we collect data on the skill backgrounds
of participating teams to study the mechanism behind our main effect. In our analysis, we
distinguish between specific and general skills — where specific skills denote prior experience
with related tools and methods, and general skills denote broad knowledge of statistics and
computer science. Our results show that these two types of skills interact differently with the
availability of tools: specific skills are complementary to software libraries, whereas general
skills are substitutable. This is consistent with a mechanism we call ‘Tools-as-Skill,’ where
tools automate and abstract some general data science skills but, in doing so, create the need
for new tool-specific skills. We detail this mechanism and rule out alternatives in Section 5.

To the best of our knowledge, this is the first paper in the management literature to
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conceptualize or empirically study predictive model development. Beyond the novelty of our
research question, conceptual framework, and experimental approach, our results contribute
to the literature by showing how tools can lead to dramatic differences in predictive model
development in firms. First, we show that access to appropriate tools dramatically affects
the model quality— at a magnitude comparable to collecting a data set that is ten times as
large. Second, we show that tools change the skills needed for a team to successfully develop
predictive models. Although general data science skills are necessary to solve prediction
problems, tools automate some of these general skills, enabling teams to focus on the specific
skills needed to apply the tools. Thus, by investing and integrating the proper tools, firms
can intentionally change the amount and type of skills needed for their data scientists to be
effective.

Our paper proceeds as follows. We first contextualize our study by reviewing the lit-
erature on AI in firms and the drivers of predictive model development, introducing the
testable hypotheses that guide our subsequent study. We then present our research design
and core results. Third, we show that our main effect is best explained by a mechanism
where tools (in the form of software libraries) acts as a substitute for general data science
problem-solving skills. Fourth, we extend this model and our analysis to explain why the
availability of tools causes shifts in teams’ problem-solving approaches to the contest prob-
lem. Finally, we conclude by framing our contributions to the literature on IT Productivity
and the Economics of AI, as well as highlighting key managerial implications of our results.

2 Literature Review
In this section, we first contextualize predictive model development by reviewing the litera-
ture on the economics of AI, and second introduce our core conceptual framework.
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2.1 The Economics of AI and AI Production: Contextualizing
Predictive Model Development

The recent explosion in interest in AI4 ignited a large, multidisciplinary literature focused
on the economic impact of AI. From a macroeconomic perspective, AI is synonymous with
automation — the impact of AI can be thought of as the automation of specific tasks, and
the subsequent creation of newer, higher-value tasks for humans to take on (Acemoglu &
Restrepo, 2018) Yet this perspective assumes an automation production function, with scarce
evidence microfounding how automation of older tasks or creation of new tasks works in
general. From a more microeconomic perspective, the literature has made strong headway
on demonstrating how ML can be applied to specific business problems (Ferreira et al.,
2022; Senoner et al., 2022) and illustrating the broader systematic impact of AI technologies
(Babina et al., 2021; Rock, 2021). However, this literature does not develop a perspective
on the factors that may help firms better develop and deploy predictive models.

Both perspectives motivate the need to develop work focusing on AI production that
explains variation in a firm’s ability to successfully develop and apply machine learning
technologies to create value. Such work would contribute to our understanding of the macroe-
conomics of AI by identifying AI production with the automation production function, the
microeconomics of AI by explaining how AI drives firm performance and competitive ad-
vantage, and the operations of AI by providing guidance on how to develop, deploy, and
integrate AI into a firm’s operations. We conceive of AI production as a five-step process
wherein firms have to:

1. Find valuable problems to solve; we call this problem selection. A key observation
from this literature is that the most economically relevant applications of AI in business
are based on solving prediction problems, especially supervised learning problems5

(Agrawal et al., 2018; Iansiti & Lakhani, 2020; Greenstein, Myers, & Mehta, 2022;
Snapdocs, 2022).

2. Solve the selected problem by developing a model; we call this predictive model
4Over the past five years, there has been exponential growth in the use of data science and AI/ML in

businesses. The 2021 Stanford AI Index reported that since 2016, the number of AI job postings has doubled
and that corporate investment in AI has tripled (Zhang et al., 2021). This matches the trend reported on by
consulting and government organizations. In a 2021 global survey of AI adoption, McKinsey found that 56%
of responding firms employed AI in at least one function, a 50% growth compared to the result from 2020
(McKinsey, 2021). Similarly, PwC reported in 2021 that a quarter of respondent firms reported widespread
AI adoption, and fifty-two percent of respondents stated they had accelerated their plans for AI adoption
due to the COVID-19 crisis (PricewaterhouseCoopers, 2022). The Bureau of Labor and Statistics projects a
growth of 31.5% in data science employment from 2020 to 2030 (BLS, 2022).

5Supervised learning is a subset of AI/ML problems focused on predicting a label/outcome variable from
covariates after training a model on pairings of labels and covariates.
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development6. The literature here is underdeveloped, and is our core focus in this
paper.

3. Model evaluation on real users through experimentation7 (Bojinov & Gupta, 2022;
Kohavi & Thomke, 2017; Thomke, 1998, 2020). The growing literature on business ex-
perimentation has primarily focused on the general use of techniques like “A/B testing”
to measure the impact of an innovation and have shown that there is a measurable
positive impact on business metrics and performance (Koning et al., 2022; Mao &
Bojinov, 2021).

4. Integrate the solution into firm operations; we call this solution deployment. This
literature covers issues related to technical constraints ((Huyen, 2022)), ethical con-
straints (Mattu et al., 2022; Hidalgo et al., 2021), and behavioral constraints (Hoffman
et al., 2018; Doshi-Velez & Kim, 2017).

5. After deployment, companies need to monitor the model for drift, bias, or other perfor-
mance depredations and unintended consequences (Luca et al., 2016). This literature
has primarily been developed by practitioners and focuses on the technical implications
(Oladele, 2021).

We summarize our framing of the literature on the Economics of AI and AI Production in
Figure 1, which is elaborated on in our subsequent discussion. To the best of our knowledge,
our paper is one of the first to directly frame AI production as an economic activity of
interest or directly study predictive model development8.

2.2 Predictive Model Development

Having contextualized predictive model development in the broader literature, we now de-
velop our conceptual framework and testable hypotheses. Although the predictive model
development process has not been directly studied from an academic perspective, a number
of other works provide a starting point for identifying the factors that drive the process and
are described in Table 1.

6Most applications of AI involve predictive modeling, and so we exclusively focus on predictive model
development (Agrawal et al., 2018). We acknowledge that generative models may create value in business
applications, but they falls outside of the scope of the categorization presented here.

7We distinguish between model evaluation on real users and test-holdout split. The latter is a standard
technique for assessing the model’s fit and is generally part of predictive model development—it also provides
little information on the real-world impact of using the model.

8Cowgill et al. (2020) use a prediction contest to study how engineers’ demographics and training data
quality affect the occurrence of errors in predictive models, but do not explicitly consider the overall quality
of the models being developed.
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Figure 1: An outline of our literature review on the economics of AI, to help contextualize our
paper. In this figure, each row outlines a more granular breakdown of the sub-components
of the parent literature (node) above that row. Our paper frames the problem of predictive
model development and describes the key factors that drive the process and their relationship.
Understanding Predictive Model Development serves to deepen our understanding of the the
drivers of AI production in firms more generally.

The starting point for Table 1 is a standard taxonomy of drivers of predictive model
development (see, for example, Iansiti & Lakhani (2020)), listed along the columns. These
include data (how an empirical reality is represented), compute (how computational resources
are structured and employed), and algorithms (how algorithms and models are structured
to capture empirical regularities in the data). While this taxonomy is helpful as a way to
remember the necessary ML system components needed for developing algorithms, we find
it less conceptually useful as an analytic tool to explain the core barriers to deploying AI
within companies.

To develop a more useful conceptual tool, we apply the distinction of technology and
associated worker skills, taken from the literature on IT productivity (Tambe, 2014; Tambe
& Hitt, 2014; Wu et al., 2018), listing these concepts along the rows of Table 1. Our main
innovation is to further separate technology into methods and tools and distinguish skills into
general and specific skills. To illustrate that the methods-tools-skills framework is useful and
orthogonal to the data-compute-models framework, we provide examples familiar to working
data scientists at the intersection of each of these concepts. Further, as will be shown, by
applying and extending this methods-tools-skills framework from IT productivity to the
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Data Compute Models

How an empirical
reality is represented.

How computational resources
are structured an employed

How models are structured
so as to capture empirical
regularities in the data.

Methodology
Split Apply Combine
One-hot encoding
More Observations

Backpropagation / AutoDiff
Accelerators (GPUs / TPUs)
Infrastructure-as-a-Service

Random Forest
BERT (Language Models)
AutoML

Tools
R’s dplyr
Python’s pandas
PostgreSQL

PyTorch
NVIDIA’s CUDA
Google Cloud Platform

Sci-kit Learn
Hugging Face Transformers
AWS SageMaker AutoPilot

Skill Domain-Specific Skill Computer-Specific Skill Modeling-Specific Skill
General Skill

Table 1: The Drivers of Predictive Model Development. The tables provides examples of the
various drivers of predictive model development, organized by data, compute, and models
(columns) along the dimensions of methods, tools, and skills (rows).

problem of predictive model development, we are able to develop testable hypotheses that
guide the development of our experiment.

2.2.1 Technology as Methods and Tools

Our first extension to the technology-skills framework is to distinguish technology into two
component parts: methods and tools. In the context of predictive model development, we de-
fine methods as abstract, conceptual knowledge of how to solve a predictive problem, distinct
from tools as specific implementations and integrations of known methods. For example, a
data method refers to the existence of a data set that describes an empirical setting we wish
to study; a computing method refers to the existence of efficient computational techniques
that could be applied on the data to store, transform, and clean it at scale; an algorithmic
method refers to the existence of models and algorithms that could take the stored data and
generate suitable predictions.

One key finding from the literature on methods is that advances along each dimension,
holding the others fixed, exhibits diminishing marginal returns. Consider the example of
data set size: as a general rule from statistics, model accuracy typically improves with the
inverse of the square root of the sample size (Iansiti, 2021). This has been demonstrated
across a wide range of model architectures, including decision trees (Frey & Fisher, 1999),
support vector machines (Juntu et al., 2010), convolutional neural networks (Cho et al.,
2016), and architectures specialized to natural language processing tasks (Banko & Brill,
2001). Similarly, even though neural networks were developed decades ago (Rumelhart et
al., 1986), breakthroughs in deep learning appeared only when there was sufficient comput-
ing power available to train models with a million times more parameters than what was
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previously possible (Sevilla & Villalobos, 2022).
A second finding is that methods generally apply across use cases and are becoming stan-

dardized. For example, consider the recent shift in computing norms, where companies have
largely moved away from on-premise computing centers towards using commoditized cloud
computing for hosting and training machine learning models (LinkedIn, 2022). Furthermore,
most practical applications of machine learning revolve around a small set of foundation mod-
els (either ensemble or neural-net-based models), leading to further computing specialization
through the creation of chips specifically designed for running the backpropagation algorithm
(Bommasani et al., 2022).

Methods are important to predictive model development (as anyone developing these
models necessarily interacts with each of these methods), and identifying them as the central
factors of AI production is useful for management theory and practice. From a theoretical
perspective, one implication is that differential access to these methods is regarded as a
source of competitive advantage when evaluating firm AI strategies. For example, in 2012,
Baidu, Google, Microsoft, and DeepMind famously competed in an auction to hire Geoff
Hinton and his two Ph.D. students, resulting in an acquisition cost of $44MM paid by
Google. The acquisition was motivated by the belief that deep-learning methods would
provide a competitive advantage to the firm (Metz, 2021). More systematically, Bessen et
al. (2022) surveyed AI startups and found a positive correlation between venture capital
funding and access to proprietary training data. Additionally, the authors found a similar
relationship between funding and using more sophisticated ML algorithms. From a practical
perspective, some firms pursue strategies to develop new proprietary methodologies. For
example, beyond acquisitions, Google, Meta, and Microsoft invest heavily in developing
novel algorithmic methods (Hartmann & Henkel, 2020; CSET, 2022).

However, while the focus on methods is important, the lack of research examining other
factors might lead us to conclude that differential access to methods is the only explanation
of variation in AI production across firms. Theoretically, this limits our understanding
of firm performance in the digital age. Practically, this may lead firms to conclude that
there is only a limited number of options for improving model accuracy — and feel stuck if
traditional approaches like increasing data set size or changing the modeling algorithm fail
to deliver better performance. While there have been calls for attention to other levers to
improve models, they tend to still focus on method changes such as building better data
tools (DeepLearningAI, 2021). This is reasonable but not enough; we argue that other
further factors beyond methods drive predictive model development and should get greater
attention.

We propose that tools, defined as the hardware and software used to implement and inte-
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grate specific methods, are an important factor that impacts predictive model development.
Examples of such tools include database management software like MS SQL Server, Cloud
Computing services like Amazon Elastic Compute Cloud (EC2), and software libraries for
building machine learning algorithms like scikit-learn or pytorch.

While these tools have not previously been proposed as drivers of predictive model de-
velopment, we know that only a small set of AI tools are leveraged across a broad set of AI
applications (LinkedIn, 2022; Bommasani et al., 2022). One reason for this follows directly
from the aforementioned commoditization of methods: as the methods are standardized,
the tools that implement them are also standardized. For example, since almost all NLP
or Computer Vision models are converging on the use of deep neural networks, almost all
AI researchers implement their models using either higher-level neural-network oriented li-
braries (like PyTorch or TensorFlow) or lower-level scientific computing libraries (like Jax),
because of their superiority in automatically differentiating through arbitrary model archi-
tectures and in allocating computational resources to different types of accelerators (e.g.
GPUs, TPUs). A second reason for the concentrated usage of a small set of tools is the
prevalence of open-source technologies in the ML space. Because of the advantages of open-
source in its transparency, community resources, and free use, almost all ML applications
use open-source implementations of methods either directly or indirectly (through an ML
product that provides a wrapper of open-source implementations). A final reason is that AI
human capital is indirectly distributed across companies in the economy, so smaller firms
must rely on the tools developed by larger firms to take advantage of new developments.

Beyond its ubiquity, we expect tools to have a positive impact on predictive model de-
velopment because they codify and abstract away a tremendous amount of methodological
and technical knowledge, lowering the cost of discovering and applying any given method.
For example, while many data scientists may have learned the theory of maximum likelihood
estimation or variational inference, few have actually written software that solves the opti-
mization problems associated with those techniques. Our observation is that in many cases,
if there is no library implementation of a new method, then most data scientists simply will
not use it. This motivates the central hypothesis of our paper: that tools are at least as
important as advances in methods in determining predictive model development.

Hypothesis 1 Access to tools (such as a new software library) improves the quality of
predictive models. Moreover, its effect will be on the same order of magnitude as that of
increases to gains to other key factors like data set size.

If tools are so vital, why have technical factors been overlooked in practitioner discussions
of predictive model development? The core argument against the explanatory value of this
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factor is its availability: if everyone has access to the same tools, then there is no variation,
so it cannot explain predictive model development outcomes. If there are differences in tools
due to ignorance, then these differences should be short-lived and should disappear in the
medium term as firms adjust to the new tools. For example, cloud computing is equally
available on the market, and eventually, most firms will shift over to cloud-based computing
architectures.

We disagree with this argument for three reasons. First, not all AI tools are available
on the market or via open-source technology. The large technology companies compete over
the top AI researchers not only to have access to novel methods but also to turn those
methods into tools that can drive usage of those methods privately within the firm before
they become publicly accessible; indeed, this was the origin of TensorFlow (Abadi et al.,
2016). Second, even given the availability of tools, some firms restrict the usage of certain
tools due to technical, business, or ethical reasons or simply because they are unaware of
their existence. Finally, although many tools are open source, it takes special skills to use
these tools. Firms must commit to integrating these tools into their technology stack and
may have variations in their ability or willingness to do so. For all three of these reasons,
we expect considerable variation in access to AI technology, motivating its study as a factor
driving predictive model development.

2.2.2 Skills as General or Specific

Our second extension to the methods-tools-skills framework is to nuance the concept of skills
with guidance from the literature on skill-biased technical change. By skills, we refer to the
knowledge needed to execute aspects of predictive model development, including knowledge
of specific software, familiarity with modeling tools, statistical knowledge, quantitative anal-
ysis skills, and domain expertise (Smaldone et al., 2022). The foundational elements of these
skills are regularly taught in standard statistics and data science curricula across universities.

To motivate our theoretical analysis of skills as a driver of predictive model development,
we note that our preceding argument regarding the effect of tools on predictive model devel-
opment suggests two possible but opposing mechanisms for how tools and skills may interact.
On the one hand, we argued that tools codify and abstract skills — suggesting that tools
and skills are substitutable. On the other hand, special skills (including methodological and
technological knowledge) are needed to effectively use the tools in the first place and may
accelerate problem-solving with tools — suggesting that tools and skills are complements.
Is skill a complement or substitute to tools in this setting?

The answer depends on the type of skill in question. For instance, the literature on
skill-biased technical change (SBTC) (Chari & Hopenhayn, 1991) provides a useful theoret-
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ical distinction based on whether the skill can be codified. This is because tools automate
low-level tasks, enabling greater focus on high-level problem-solving. This argument was orig-
inally developed when applying SBTC to the study of IT productivity; for example, Autor
et al. (2003) proposed that computer capital serves as a substitute for workers perform-
ing common (general) tasks that follow explicit rules but complements workers performing
non-routine problem-solving. Similarly, Bresnahan et al. (2002) summarize evidence on the
positive correlation between IT use and problem-solving skill at the worker, firm, and in-
dustry level. Borrowing this conceptual framework, we call these higher-level skills needed
to solve problems tool-specific (or just specific) skills — the skills needed to apply tools to
focal problems. In contrast, we call the skills that are able to be codified in our setting
general-task (or just general) skills.

How can we apply this concept of skill types to our setting of predictive model develop-
ment? One key challenge is that, in the broader SBTC literature, general skills are those
common to the broader population (e.g., data input, summation, reporting), and specific
skills are those associated with knowledge of IT tools (namely, the ability to use computers)
and problem-solving skills more generally. By contrast, in our predictive model development
setting, the skills of interest are typically known only by those with knowledge of data sci-
ence and are thus fairly rare across the broader population. Indeed, a naive application of
the specific/general skill distinction to predictive model development might imply that all
data science problem-solving is specific; that is, the data problem-solving process cannot be
automated. Thus, we should conclude that skills are inherently complementary to tools.

However, a closer look at the typical data scientist’s workflow reveals that there is a more
insightful way to apply the concept. We observe that data scientists do not typically engage
in the implementation details of models in their problem-solving process but rather reason
conceptually about the problem and implement it by manipulating tools through their de-
signed interfaces. Thus, we hypothesize that, in this setting, general skills are statistical
knowledge (e.g., knowledge of probability theory, ability to reason about substantive data,
ability to wrangle data) and computer science knowledge (e.g., efficiently using computa-
tional resources, writing bug-free code), as these are abstracted over by tools. Similarly, we
hypothesize that specific skills are experience with or knowledge of the interfaces of specific
tools (e.g., cloud computing and modeling libraries) used to solve predictive problems. With
this application of general and specific skills, we can hypothesize an answer to our motivating
question.

Hypothesis 2 In predictive model development, statistical and computer science knowledge
are general skills; that is, they substitute with access to tools that automate them. By contrast,
experience with various tool interfaces is a specific skill; that is, it is complementary to those
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tools.

To summarize our preceding discussion, we developed a framework of the factors driving
predictive model development. In particular, we distinguished between methods and tools and
argued that tools used to implement methodologies have been neglected in prior discussions
of predictive model development. Further, we distinguish between general and specific skills,
identified what these are in the context of predictive model development, and argued that
they have different complementary behavior with respect to tools. While there may be more
factors that drive predictive model development9, we leave their consideration to future work
and turn instead to an empirical examination of our hypotheses.

3 Research Design

3.1 The Setup

In the ideal experimental setting to estimate the impact of the drivers of predictive model de-
velopment, data scientists would independently work on the same problem under exogenously
imposed resource constraints and training, leading to variation in final model performance.
To approximate this ideal experiment, we designed and ran a prediction contest, similar to
public competitions run on Kaggle or TopCoder10. In this section, we focus on communi-
cating the facts of our contest design, and delay describing the benefits of this design (in
terms of measurement, external, and internal validity) until Section 3.4. Full details on the
implementation of the contest are given in Appendix A.

For our competition, we chose a binary classification problem focused on predicting the
operational status of water pumps in Tanzania based on data on their installation con-
text11,12. Specifically, participants were tasked with predicting whether a pump’s operational

9For example, work in IT productivity has shown that for organizations to derive value from IT products,
they must undergo an extensive redesign of business processes to adapt to new technologies (Broadbent et
al., 1999). However, our paper does not consider complementary business processes in this paper, although
we acknowledge that they are likely important in this context.

10Data science competitions have been leveraged in prior literature to study questions about open inno-
vation and contest design (Jeppesen & Lakhani, 2010; Boudreau & Lakhani, 2013; Lemus & Marshall, 2021).
Our idea here is to use these competitions as a way to study predictive model development, rather than
studying contests as a focal phenomenon in itself.

11We adapted this problem from a problem provided by DrivenData, a non-profit that coordinates data
science competitions focused on problems with high social impact. Despite this problem being used for a
public competition before our contest, none of our participants had seen the problem before. Furthermore,
we took steps to nullify any benefit of prior experience on the original DrivenData problem by converting
the problem from multivariate classification to binary and de-identifying the pump data by removing ids and
injecting small amounts of statistical noise into possible identifying data like latitudes and longitudes.

12Beyond being a realistic problem, we chose this problem because it was inherently socially impactful.
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status (a “label”) given covariates including the date of a report, the pump’s installation de-
tails (installation year, original funder, installing organization), the management (managing
organization, payment structure), and location details (water source, region, lat/long, alti-
tude, local population). As is typical in supervised prediction contests, participants were
given a “training” data set of covariates and labels, as well as a “test” data set of covariates
without labels. During a fixed competition timeframe, they developed algorithms to predict
the operational status (i.e., the likelihood of needing repair) of the test data. At the end of
the contest timeframe, the contest rankings were determined based on each team’s prediction
accuracy on the test data.

The contest was implemented as a remote 48-hour datathon13 over a weekend in Winter
202214. We recruited contest teams of one or two participants from leading USA universities.
We marketed our contest through emails on the primary mailing lists managed by each uni-
versity’s statistics and data science departments, as well as specific club mailing lists when
possible. We clearly stated the prior knowledge requirements for the contest, which helped
to ensure that our final participant pool was qualified to work on the problem. Our exper-
iment had participants from over 20+ distinct universities, including MIT, CMU, Harvard,
Columbia, JHU, University of Washington, and many other leading data science schools in
the USA. Students spanned undergraduate and postgraduate programs, as well as several
recent graduates.

We incentivize participation by offering prizes for accurate models: $1000 for first place,
and monetary prizes of decreasing value for those finishing within the top-10 (see Table A1).
Due to the need to generate treatment variation, we implemented two separate tracks of
the contest (one for our test group and one for our control), awarding prizes for each track
separately.

Contest participants began their work by filling out a pre-contest Qualtrics survey, after
which they were given access to our contest Colab15 notebook and details of the contest
problem. We required participants to work entirely within the provided Colab notebook
during the contest, allowing us to enforce rules compliance and collect detailed measures of
code development throughout the contest. In addition, contest participants could submit
intermediate predictions on our private online Kaggle contest and receive intermediate feed-
back based on 10% of the available data. We also collected data with a post-contest survey.

This made the contest problem intrinsically interesting for participants, leading to them putting more effort
into the contest. Many contest participants commented through emails and our post-contest survey on how
they enjoyed the specific choice of problem.

13“Datathon” is a typical term used to describe prediction contests of the type that we implement here.
14Our experimental design was reviewed and approved by an Institutional Review Board (IRB21-1421).
15Colab notebooks are Google’s online version of a Jupyter Notebook.
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See Figure 2 for a summary of the recruitment and contest participation pipeline.

Figure 2: The prediction contest recruitment and participation pipeline.

3.2 The Treatment

Our treatment restricted half of our participants from using machine learning modeling
functions from software libraries16. Our rule specifically stated: “the list of banned modeling
functions includes (but is not limited to): linear/quadratic discriminant analysis, support
vector machines, k-nearest neighbors, naïve Bayes, CART/decision trees, random forest,
gradient boosted trees, and neural networks.” However, treatment participants could use any
library model functions from the family of generalized linear models (GLM), techniques like
regularization, and any functions in software libraries associated with non-modeling tasks,
such as exploratory data analysis or feature engineering. Beyond standard GLM approaches,
treatment participants were also free to implement algorithms manually, using more low-
level scientific computing libraries like scipy (Virtanen et al., 2020) and numpy (Harris et
al., 2020). We enforced compliance with this restriction through automated scanning of
participant notebook code, looking for banned libraries and functions. We also did manual
spot-checking for our contest winners. Participants in either track were aware that the other
track existed but were unaware of the specific constraints faced by the other track.

The comprehensiveness of the treatment eliminates the possibility of teams substituting
between specific tools implementing the same methods, allowing us to clearly interpret our

16By contrast, control participants were free to use any publicly available software library as they saw fit.
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treatment effect as the impact of restricting access to advanced machine learning modeling
tools. Our treatment also removes noise arising from idiosyncrasies in participant education
or experience. A less comprehensive ban may have arbitrarily advantaged or disadvantaged
participants based on the specific tools that they may be familiar with. For example, ban-
ning a specific implementation of neural networks would only disadvantage participants that
are familiar with that tool but not those familiar with another implementation. Second,
the comprehensiveness of our treatment eliminates the possibility of participants learning a
new tool in response to having a particular tool banned. Thus, our treatment emphasizes
skills participants already have versus skills they can learn on the fly – improving the in-
terpretability of our skill measures. Lastly, our treatment suggests a clear alternative path
forward to solve the problem: working more carefully with the provided data17. In that
sense, treatment changes the relevance of the type of skills that participants have, increasing
the relevance of general data-analysis skills and decreasing the importance of tool-specific
skills. We explore these effects in our subsequent analysis.

Our design is specifically optimized to estimate the effect of access to software libraries
on model quality. We do this because software libraries are a quintessential example of a
tools — their existence often follows the creation of a methods but is independent of the
methods’s existence. Although we present estimates of the association of other factors (such
as time available or team skills) with model quality, we leave the careful causal study of
other factors driving model quality to future work.

3.3 Measurement

3.3.1 Data Sources

As discussed in Section 3.1, we collect several sources of data, including pre- and post-contest
Qualtrics survey, contest Colab notebook, and submissions to our online Kaggle competition.
Each of the data sources provides insight into a different aspect of the contest problem-solving
process.

The Kaggle data is perhaps the most straightforward to understand: it provides us
with an objective measure of performance. In particular, we collect the log-loss score18 and
time-stamp of each submission by participating teams, where teams can submit many times
throughout the contest — this score forms the basis of our primary outcome variable.

17Although participants were free to manually implement algorithms, we did not observe participants do
this in practice. This is perhaps illustrative of the value of tools over methodologies.

18Log-loss is a standard error metric used for binary classification models. See any stats reference for the
formal definition of log-loss; for example, the Scikit-Learn documentation provides details on the specific
way log-loss is calculated (Pedregosa et al., 2011).
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We leverage our Qualtrics survey to ask questions related to participants’ skills. For each
participant, we collect standard educational information, including their school, program
level (Undergrad / Master’s / Ph.D.), graduation year, and major. We also collect informa-
tion on general data analysis and tool-specific skill. For general data analysis, we measured
the participants’ skill working with data (e.g., through research experiences or SQL skills)
and general programming ability (e.g., asking about prior software developer experience and
coursework in operating systems). For tool-specific skill, we included measures of direct
experience with tools and methods relevant to the contest: familiarity with tools like Scikit
Learn and SciPy, as well as familiarity with techniques like regularization, feature engineer-
ing, or model building. To improve the usability of the survey, we ask participants to respond
based on a three (None, One, Two or More) or four option (Never Used, Heard of, Used,
Comfortable) scale, as we found this most closely matched pilot participants’ understanding
of their prior experiences. Finally, the time-stamp on the qualtrics survey corresponds to the
moment that the participants started the contest. We use this information in our analysis of
the effect of time on contest scores (see the following section). For full details on the survey,
see Appendix B.

The Colab notebook provided detailed measures of team code development throughout
the contest, which we used to explore the core mechanism behind our main results around
tools. Specifically, Colab records a time-stamped “version” of teams’ contest notebook every
few minutes. The contest notebook was split into specific subsections related to the problem-
solving process: Exploratory Data Analysis, Feature Engineering, Model Building, Model
Evaluation, and Submission. Our chosen subsection labels match the way that prediction
problem solving is taught in standard data science curricula and seem to fit quite naturally
with the problem-solving approach taken during pilot tests of the contest. As a result, contest
participants organized their code according to these sections as they worked; for example,
participants would place visualizations of the raw data in the Exploratory Data Analysis
section and put model estimates into the Model Building section. This effectively meant
that participants labeled their work as they went, allowing us to reconstruct the time teams
spent on different problem-solving phases and providing us with extremely granular data.
In addition, because versions are created via frequent time intervals rather than participant
control, this is a more granular measure of code development than prior measures used in
the literature, such as from git repositories.

3.3.2 Primary Outcomes

Transformed Log-Loss Score (Score). We chose each team’s best submission based on its
associated log-loss score as evaluated on our (hidden to participants) holdout set. In order to
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increase the interpretability of this score measure, we transformed the score as follows. First,
we calculated the “baseline” score obtained from naively predicting the average proportion
of pumps that needed repairs for all test entries19. If a score was worse than the baseline,
we replaced it with the baseline score20. The transformation ensures that variation in the
results is driven by meaningful improvement in the algorithm, rather than an improvement
on a meaningless margin of the problem. Second, we took the best score across both contest
tracks and applied an affine transformation to all scores such that the best score has a value
of 1.0, the benchmark score has a value of 0.0, and all other scores fall between 0.0 and
1.0. In this way, the score is interpretable as being “percent of possible improvement over
baseline” while only linearly scaling the variation of the original log-loss measure.
Accuracy for Top 30% of Predictions (Percent Accuracy). Although the log-loss score is a
standard objective function for binary classification models, it is harder to interpret improve-
ment in log-loss in terms of its economic value. To complement log-loss, we thus compute an
additional “percent accuracy” score, computed as follows. Recall that each team produced
predictions for a fixed “test” sample (in our case, of size N ≈ 12000). We take each team’s
predictions, order them by the model’s predicted likelihood of needing repair, and filter to the
top 30% of predictions (∼3600 predictions)21. We then compute the percent of those pumps
that did need repair—according to the hidden true label—and call this Percent Accuracy.
We conceptualize this variable as the percentage of pumps visited by a hypothetical repair
engineer that actually needed repairs. We believe this process of computing percent accuracy
mimics how classification models are developed and practically used by firms. Further, as
we detail in Section 3.4.3, improvement in percent accuracy is proportional to improvement
in business outcomes in many cases; therefore, changes in percent accuracy provide insights
into the economic magnitude of our estimated effects.

3.3.3 Contest Measures

Treatment (Unrestricted). We define our treatment variable as having unrestricted access
to software libraries during the contest. Note that this is the inverse of our “treatment”
described above (which describes the specific restriction). We choose this definition so as to
conceptually align our treatment with the other outcome variables (where 1 encodes more
and 0 encodes less). When used in regressions, we center this variable (e.g. subtract the

19This is a standard benchmark for binary classification tasks, and represents the score one would receive
if they had no additional information about each pump apart from the labels themselves.

20We did not exclude these below-baseline participants altogether because we expect that below-baseline
performance is likely and meaningful in general business settings – in the sense that there are genuine
prediction projects where teams do not make progress over baseline performance.

21Note that the choice of 30% is arbitrary, but that our results around Percent Accuracy are robust to
changes to this choice.
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mean of the variable) in order to improve the interpretability of our interaction effects (this
allows us to measure interactions at the center rather than the ‘edge’ of our data). We follow
this practice for all other dummy variables used in this analysis.
Number of Team Members (Team Is Pair). We encode the number of team members as a
dummy variable: 1 if the team had two members, and 0 if the team was an individual.
Team Participation (Participated). For teams that were randomly allocated to treatment
or control but did not end up submitting a score, we mark them as 0. For those that did
submit a score, we mark them as 1. This measure is used to test for selective attrition and
rule it out as an explanation of our results.
Time Spent On Contest (Work Hours, Contest Hours). We use the Colab Notebook data
to form measures of the time each team spent working on the problem overall, as well as by
subsection (e.g., Feature Engineering or Model Building). We also convert our version-level
notebook data into team-level effort measures:

1. For each version, we compute the difference between that version and the prior version
(a “notebook difference”). We then calculate the number of lines of code modified in
each notebook section, as well as the overall time between notebook versions.

2. Each notebook difference is labeled as “active” if there was more than one change
made. This allows us to exclude the time when the team was not actively working,
but the Colab created a version. We mark notebook differences that are “inactive” as
having zero overall time spent.

3. For each notebook difference, we attribute overall time to specific notebook subsec-
tions22 by multiplying the overall time by the proportion of lines modified in a given
section. For example, suppose we observed a notebook difference of 10 minutes where
the team added two lines of Exploratory Data Analysis and three lines of Feature
Engineering. In that case, we attribute 10(2

5
) = 4 minutes to the Exploratory Data

Analysis and 10(3
5
) = 6 minutes to the Feature Engineering section.

4. We then sum across active notebook differences to create a measure of time spent
by subsection. For interpretation purposes, we aggregate subsections into categories:
feature engineering (comprising Exploratory Data Analysis and Feature Engineering)
and modeling (comprising Model Building, Model Evaluation, and Submission).

5. Finally, for each team, we sum these two subsection measures to create a measure of
the overall time spent by the team during the contest.

22We describe these subsections in greater detail above under Section 3.3.1“Data Sources”.
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Our proposed measure is more insightful than simply computing the difference between
the start time of the contest and the timestamp of each notebook version because it captures
active work time, not just elapsed time (where the participant may have been doing something
other than working on the contest). We use this measure to develop tests to explore the
mechanism behind our main effect.

3.3.4 Skill Measures

Individual Skill Measures (Scikit-learn, Feature Engineering, SQL, Had Prior DS Job).
To operationalize our survey data, we convert each question’s survey responses into binary
(dummy) variables. For some variables like Had Prior DS Job, this was already the natu-
ral representation of the data. For responses with more than two ordinal values, we chose
combine in order to maximize variance in the variable. For example, we asked participants
their comfort level with the library Scikit-Learn. Participants could respond with one of four
options: “Never heard of it”, “Heard of it but unfamiliar”, “Used / Done Before”, “Comfort-
able.” Because a clear majority (66%) were “Comfortable” with Scikit-Learn, we defined a
new binary variable taking a value of “high” if the participant was “comfortable,” and “low”
otherwise. We followed this procedure for all of our variables from our survey. However, in
our analysis, we choose highlight variables like comfort with feature engineering or SQL, and
whether they had a data science job or internship before in order to illustrate the different
types of skills that we measure through our survey (comfort with data science processes,
programming languages, libraries, and work experience).
Skill Indices (Total Skill, General Skill, Specific Skill). Our interest in testing Hy-
pothesis 2 means we need to combine our individual skill measures into an aggregate index.
We define our skill index by aggregating our Qualtrics survey responses, as follows:

1. Aggregate skills to team level. For teams of two, we aggregate each participant skill
measure into a team-level measure23 because our primary outcome (Score) occurs at
the team level. Our aggregation is based on a maximal approach; that is, we chose
the max of the two team members’ skill for each measure, where the max implies more
relevance to the contest. For instance, if one had ‘Heard of Scikit-Learn but unfamiliar’,
but the other was ‘Comfortable’ with it, then we marked the team as ‘Comfortable’;
and if a team had a STEM and Data Science major, we marked it as Data Science.

2. Binarize individual skill measures. Following the same procedure as taken with skill
measures (above), we transformed questions with ordinal response into binary measures

23For teams of one, there is no ambiguity and we just directly use the one participant’s skill as the team
measure.
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(“high” or “low”) so as to maximize variation. In practice, this meant turning the three-
part measures into binary “yes” or “no”, and the four-part measures into “comfortable”
or “not comfortable”. (See Appendix B for the details of the raw survey measures.)

3. Remove statistically invalid measures. We assessed whether each variable was statis-
tically useful, according to two criteria. First, we eliminated variables with significant
ex-post differences between our two treatment conditions (which only eliminates two
variables). Then, we eliminated variables that had responses that had more than 75%
of responses as the modal response. This is done to increase variation in our measure.
For example, almost 80% of our participants had taken two or more statistics courses,
so we discarded that variable from consideration due to low variation.

4. Code variables by skill type. We marked each variable as specific, general, irrelevant, or
unknown, according to our definition provided in Section 2.2.2. Recall that we define
specific skills as those related to knowledge of predictive model development process
and specific tool-interfaces for solving those processes. We define general skills as those
associated with more general statistical and computer science skills. Irrelevant skills
are ones that may be general or specific, but do not have to do with the tools relevant
to the problem we study in our experiment. Unclear means that the measure could be
capture either/both specific and general skills, and are therefore hard to interpret given
our theory. We did not include irrelevant or unclear variables in our aggregate skill
measure due to their lack of theoretical interpretability. For example, we discarded
our pytorch experience measure because it was a specific tool skill, but was unrelated
to the specific problem at hand (pytorch is not generally useful on the tabular data
that characterize our problem and was not used by any team).

5. Aggregate into indices. We sum across our specific and general skill dummies to form
our Specific Skill and General Skill indices, and across both types of skills to
form our Total Skill index. Our specific skill index aggregates whether the team
majored in data science, whether they are comfortable with Scikit-learn, whether they
are comfortable with SciPy, whether they are comfortable with linear regression, and
whether they are comfortable with R. Our general skill measure aggregates prior em-
ployment as a data scientist, whether they were a STEM major, prior employment as a
software developer, comfort with SQL, or significant prior coursework with Operating
Systems.

6. Convert to Binary Indicators. We then convert our three indices into binary indicators
by splitting it into high and low, choosing the median as the cutoff.
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Variable Count Mean Standard
Deviation Minimum 25th Quartile Median 75th Quartile Maximum

Score 68 0.55 0.33 0.00 0.32 0.61 0.81 1.00

Percent Accuracy 68 0.83 0.12 0.46 0.80 0.86 0.91 0.95

Unrestricted 68 0.46 0.50 0.00 0.00 0.00 1.00 1.00

Team is Pair 68 0.47 0.50 0.00 0.00 0.00 1.00 1.00

Work Hours 63 6.96 5.96 0.00 2.16 4.89 11.26 23.15

Contest Hours 68 42.54 9.64 4.72 43.71 46.77 47.58 47.93

Comfortable with sklearn 68 0.75 0.44 0.00 0.75 1.00 1.00 1.00

Comfortable with Feature
Engineering 68 0.59 0.50 0.00 0.00 1.00 1.00 1.00

Comfortable with SQL 68 0.46 0.50 0.00 0.00 0.00 1.00 1.00

Had Prior Data Science Job 68 0.57 0.50 0.00 0.00 1.00 1.00 1.00

High Experience (Total) 68 0.49 0.50 0.00 0.00 0.00 1.00 1.00

High Experience (Specific) 68 0.57 0.50 0.00 0.00 1.00 1.00 1.00

High Experience (General) 68 0.40 0.49 0.00 0.00 0.00 1.00 1.00

Table 2: Summary Statistics on Participating Teams.

We summarize the results of this process in Appendix C, Table A2. Although we label
our aggregate skill index measures based on the type of variables they include, we concede
that they provide a one-dimensional, approximate measure of skill — an otherwise extremely
high-dimensional concept. Nevertheless, we believe these provide a reasonable approximation
of the different types of skills needed for predictive model development, and that variation
in this measure captures meaningful variation in participant skills. Furthermore, while this
procedure necessarily introduces a degree of arbitrariness in constructing the indices, we show
that our key results based on this index measure are robust to alternative constructions in
Appendix C.

We present team-level summary statistics for our primary measures in Table 2, ordered in
the same sequence described above. All non-outcome variables are dummy variables encoded
as 0 or 1, except for Work Hours and Contest Hours. 47% of our teams were individuals,
while the rest were pairs. We include specific skill measures (such as Scikit-learn and
SQL) to illustrate the data underlying our aggregated skill indices (Total Skill, Specific
Skill).

3.4 Estimation

3.4.1 Estimating the Effect of Unrestricted Access to Libraries

We leverage ordinary least squares (OLS) regression at the team-level as our workhorse spec-
ification, although our results are robust to alternative analysis such as non-parametric and
logistic regression. For attrition analysis, we estimate our model using the entire pool of
participants assigned to treatment or control. For our main effect, to estimate the relation-
ship between the quality of models produced by teams and the treatment of being restricted
in the use of software libraries, we restrict our sample to teams that submitted scores. In
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either, the main model used is as follows:

Yi = α + β1Unrestrictedi + β2Xi + ϵi (1)

for outcome Yi (Participation, Score, or Percent Accuracy), team i, and controls Xi

such as our Skill Measures and Indices. To explore heterogeneity in our effect arising from
participant skill, we add interaction terms associated with each of our skill indices:

Yi = α + β1Unrestrictedi + β2High Skilli + β3High Skilli × Unrestrictedi + ϵi (2)

where High Skilli may be total, specific, or general skill. In our most complete specification,
we include both general and specific skill, their interactions with treatment, and a three-
way interaction between treatment, general, and specific skill. As noted above, when using
dummy variables in these interactions, we use ‘centered’ versions of these variables to improve
the interpretability of the interaction term.

3.4.2 Internal Validity of Estimates

The experimental setup allows us to interpret the difference between the two treatment
conditions as the causal effect of software libraries on model building. Specifically, our
design enables us to fix the contest problem and infrastructure while implicitly controlling
for problem difficulty, data, and computational resources, three of the most challenging
sources of endogeneity in observational settings. Note that in our heterogeneity analysis,
our skill measures are endogenous, and therefore β3 should only be interpreted as causal
heterogeneity with respect to treatment, not the direct effect of skill.

Due to our uncertainty over the total experiment population before the contest, we
assigned teams to treatment or control via Bernoulli randomization; that is, each unit was
independently assigned to either treatment or control with equal probability. One danger of
a Bernoulli assignment mechanism is the possibility of getting unbalanced numbers of tests
and control in a way that reduces the statistical power; however, we ended up with roughly
equal size treatment and control (62 vs. 60).
Attrition Analysis and Balance Checks A total of 122 teams took our pre-contest survey and
were assigned to a contest track. In Table 3, we present a balance check for all signed-up
teams. The results confirm that our randomization worked well, achieving balance across
almost all of our covariates.
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Track Overall, N = 122 Restricted, N = 60 Unrestricted, N = 62 p-value
Participated 56% (68) 62% (37) 50% (31) 0.2
Team is Pair 35% (43) 37% (22) 34% (21) 0.7
Contest Hour 45.5 (41.5, 47.6) 47.0 (43.6, 47.6) 44.3 (40.1, 47.3) 0.028
Comfortable with sklearn 66% (80) 73% (44) 58% (36) 0.076
Comfortable with Feature Engineering 48% (59) 52% (31) 45% (28) 0.5
Comfortable with SQL 39% (48) 45% (27) 34% (21) 0.2
Had Prior Data Science Job 56% (68) 55% (33) 56% (35) 0.9
High Skill (Total) 52% (64) 57% (34) 48% (30) 0.4
High Skill (Specific) 54% (66) 62% (37) 47% (29) 0.10
High Skill (General) 39% (48) 37% (22) 42% (26) 0.6

Table 3: Balance Check for All Teams.

Unfortunately, the experiment was subject to some attrition: only 56% (68 of the 122
teams) submitted Kaggle submissions, with 37 submitting predictions in the Restricted Track
and 31 submitting predictions in the Unrestricted Track. Intuitively, we expected that the
attrition rate would be higher amongst teams assigned to the restricted track because these
teams might feel discouraged after being blocked from using popular, leading to only the more
talented participants completing the contest. However, we observed the opposite effect—
participants were more likely to submit a score if they were assigned to the restricted track.
Because our participants were mostly students, we expect that most of the attrition from
the contest was competing priorities faced by the participants, such as problem set deadlines
or other extramural opportunities, in a way that is balanced in expectation across treatment
conditions.

To explore the possibility of selective attrition more quantitatively, we present balance
checks for our post-attrition (“participating”) sample in Table 4. We were reassured to find
that the post-attrition sample looks even more balanced than the pre-attrition sample. We
then formalize the question of differential attrition across treatment conditions as a statistical
test in Table 5. First, we show that we cannot reject a null hypothesis that the difference
in participation was driven by statistical noise (Model 1, t = 1.3). This null relationship is
robust to adjusting for raw skill measures (Model 2), our total aggregate skill measure (Model
3), or our separated specific and general skill measure (Model 4). While we observe that our
general and specific skill measures are positive predictors of participation, these measures are
not statistically significant. The only statistically significant driver of participation we find
is whether the team is a pair, which associates with a 23% higher likelihood of participating.

Finally, given the binary nature of our Participated dependent variable, we also ex-
plored other non-parametric methods of adjusting for covariates while testing for selective
attrition. Specifically, we implement the methods described in Lin (2013) and Guo & Basse
(2021), which provide better statistical guarantees when estimating an ATE under model
misspecification (such as in our case of a binary DV). We find these methods also unable to re-
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Track Overall, N = 122 Restricted, N = 60 Unrestricted, N = 62 p-value
Team is Pair 47% (32) 43% (16) 52% (16) 0.5
Contest Hour 46.8 (43.7, 47.6) 46.9 (44.7, 47.6) 46.7 (41.3, 47.5) 0.4
Comfortable with sklearn 75% (51) 78% (29) 71% (22) 0.5
Comfortable with Feature Engineering 59% (40) 57% (21) 61% (19) 0.7
Comfortable with SQL 46% (31) 43% (16) 48% (15) 0.7
Had Prior Data Science Job 57% (39) 54% (20) 61% (19) 0.5
High Skill (Total) 60% (41) 59% (22) 61% (19) 0.9
High Skill (Specific) 65% (44) 68% (25) 61% (19) 0.6
High Skill (General) 47% (32) 41% (15) 55% (17) 0.2

Table 4: Balance Check for Participating Teams.

Model 1 Model 2 Model 3 Model 4

Unrestricted -0.1167
(0.0900)

-0.0816
(0.0877)

-0.1054
(0.0867)

-0.0964
(0.0895)

Team is Pair 0.2648*
(0.1030)

0.2497**
(0.0924)

0.2447*
(0.0947)

Comfortable with sklearn 0.0677
(0.1219)

Comfortable with Feature Engineering 0.1685
(0.1220)

Comfortable with SQL 0.0389
(0.1035)

Had Prior Data Science Job -0.1362
(0.1002)

High Skill (Total) 0.1319
(0.0906)

High Skill (Specific) 0.0731
(0.1007)

High Skill (General) 0.0878
(0.0959)

(Intercept) 0.6167***
(0.0633)

0.4402***
(0.1001)

0.4570***
(0.0814)

0.4411***
(0.0918)

Observations 122 122 122 122

R2 0.01379 0.13509 0.10539 0.10474

Adj. R2 0.00557 0.08997 0.08265 0.07414

Table 5: OLS Results for Attrition Analysis. We also present the results of non-parametric
tests of attrition in the body of the paper. For all models, the dependent variable is
Participated and the number in parentheses are Huber-White Robust Standard Errors.
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ject the null hypothesis that our restriction did not drive changes in participation (t-statistics
of 0.74 (Lin, 2013), 1.2 (Guo & Basse, 2021), and 1.3 (Guo & Basse, 2021), respectively).
We conclude that attrition did not meaningfully affect our ability to interpret differences
across treatment conditions as causal effects.
Independence of Experimental Units Despite the above advantages, the prediction contest
setting introduces one key empirical challenge that guided our experimental design: given
the competitive, simultaneous nature of the competition, one may be concerned about the
independence of experimental units. We do not believe this to be relevant for our setting
for several reasons. First, we designed the contest to minimize interference between teams.
Our contest was run online, and participants did not know each other’s contact information.
Second, participants were incentivized not to help each other. If others did better in the
contest, that would hurt their chances of winning. Lastly, one may be concerned that
effort effects passed through the contest leaderboard may drive differences in contest results
independently of our treatment. As presented and discussed in our results (Section 4.1),
Table 7 shows that effort, as measured in terms of hours spent on the contest, does not differ
across treatment conditions; furthermore, it only minimally correlates with the final contest
score.
Outcome Distribution To further describe these variables, we present distribution plots of
the Score and the Time Spent on the problem in Figure 3. In the Score distribution, we
observe that distribution is bimodal, with about 1

4
of teams at or just above baseline, and 1

5

of teams close to the best performance. In the Time Spent distribution, we observe another
bimodal distribution, with modes around 8 and 16 hours spent actively working. Interest-
ingly, the Score and Time Spent were not very correlated — simple analysis (presented
later in Table A5) implies that each additional hour only improves participant Scores by
a value of 0.006, a statistically insignificant amount (t=1.07)). Overall, we conclude that
the teams spent an ecologically meaningful amount of time solving the problem, resulting in
meaningful variation in the Score measure.

3.4.3 External Validity of Estimates

Our experimental setup was informed by our observations of data scientists and was designed
to mimic their typical workflow. Specifically, the problem, outcome measures, and sample
population were all designed so as to maximize the generalizability of the results.
Problem Choice We intentionally selected our contest problem because it is similar in its
economic structure to many problems faced by modern organizations. For example, binary
classification algorithms can be leveraged in maintenance or manufacturing operations (most
obviously), sales, document search, and even resource exploration problems such as searching
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Figure 3: The distribution of (normalized) Score and Time Spent during the contest, at
the team level. Score is well supported over all possible scores. Teams spent an average of
8 hours working on the contest, with significant variation in overall time spent.

for gold or oil (Toffel & Aal, 2022; Salesforce, 2022; Snapdocs, 2022; Nagaraj, 2022).
Further, the problem was non-trivial and could be approached through different problem-

solving methods (as in the case of most realistic problems). Most obviously, participants
could try many different modeling approaches to solve the problem. But the problem also
lent itself to substantial engagement with the provided data. Specifically, the data was
interpretable by a generally knowledgeable participant, which allows them to leverage sub-
stantive knowledge and “common sense” in developing their algorithms. Indeed, significant
gains could be made on the problem through even superficial data cleaning. For example,
many of the data were categories with too many fields, and one column provided dates
marked as 0 CE rather than NA when the date was missing.
Sample Population While the ideal population for our study would be employed data scien-
tists, it is challenging to recruit such highly skilled participants at reasonable costs. (The
alternative of paying data scientists by the hour is infeasible given the necessary hours to
solve the problem and the relatively high salaries of data scientists in the USA.) Instead, we
opted to recruit for our contest through schools, resulting in a larger population of students.

Nevertheless, we believe this is a representative population of many data scientists. To
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argue this, we present summary statistics on the backgrounds of our participants24 in Table 6,
and benchmark them to the 2021 Kaggle Data Science Survey (Kaggle, 2022). We find that
over 71% of our participants had or were working on graduate degrees; Kaggle finds that
63% of working data scientists have graduate degrees, with over 50% of data scientists falling
between the ages of 22 and 34. Our sample also skewed slightly male (57%), reflecting a
broader gender bias in STEM fields and data science in general (the Kaggle Survey find
that 80% of responding data scientist identify as male). Most importantly, while 83% of our
sample was enrolled as a student as of the time of the contest, about 80% of participants had
relevant internship or full-time work experiences such as software development or research –
and over 47% had significant prior work experiences in data science specifically. Based on
the fact that a significant portion of the data science workforce includes recent graduates
at our participants’ level of education and work background, we infer that our sample is at
least approximately representative of data scientists in organizations.
Problem Solving Environment Our contest provides fixed tabular data and problem defini-
tion, limits work on the contest problem to fixed time constraints, and incentivizes partic-
ipation by offering prizes in a contest structure. None of these factors generally appear in
realistic business settings, where data scientists develop their own data, continually work
on improving models and are paid via salary rather than tournament-style awards. Never-
theless, we argue that these differences do not significantly limit the generalizability of our
results.

Our argument has three parts. First, our study focuses only on one aspect of data
scientist work – algorithm development. We intentionally fix other aspects of the problem
(such as the provided data, team structure, and computing resources) to isolate our variation
of interest: the availability of software libraries. Thus, this abstraction is a feature of our
design, not a bug. Second, despite the ability to continually improve models without explicit
time limits, data scientists in businesses also work under time constraints. There are many
demands on data scientist attention – including data work, communicating with their team
and management, and working on other models for other parts of the business. Thus, while
the specific time constraint imposed by the contest is arbitrary, the fact that there is a time
constraint is realistic. Further, our contest duration was long enough that many teams were
experiencing diminishing returns on time spent – indicative that teams had sufficient time to
solve the problem. Finally, a threat to external validity arises only if the contest incentives
distort team behavior or effort in a way that significantly differs from data scientists in
businesses. However, conditional on participation, we do not believe the contest incentives
changed the way that participants solved the problem. We observe that team motivation for

24Note that, because some of our teams were pairs, there are more participants than teams.
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Variable N = 100
Year Finished Undergrad 2021 (2016, 2022)
Current or Most Recent Degree
    Undergraduate 29%
    Masters 49%
    PhD 22%
Undergraduate Major
    Data Science 27%
    Physical Science or Engineering 56%
    Social Science 17%
Current Employment Status
    Student (full-time) 83%
    Employed (full-time) 11%
    Other 6%
Prior Jobs in Software, Research, or Data Science
    None 21%
    Internship 43%
    Full Time Work 36%
Prior Jobs in (Only) Data Science
    None 53%
    Internship 32%
    Full Time Work 15%
Gender
    Male 57%
    Female 42%
    Prefer Not to Say 1%

Table 6: Background Information on Participants. We see here that our participant popula-
tion matches the general population of data scientists. This includes the experience level of
our participants – the Kaggle 2021 Data Scientist Survey notes that 55% of data scientists
have less than 3-years experience in work.
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continuing to work on the problem was derived from intrinsic interest in the problem. Many
of our participants commented on how they participated despite not actually expecting to
win a prize and that their main motivation was to test their data science skills and have fun.
We believe this intrinsic intellectual motivation matches the motivation that data scientists
in businesses have when they engage in their work – similar to how contests have been
used to illuminate aspects of problem solving in other domains (Jeppesen & Lakhani, 2010;
Boudreau & Lakhani, 2013).
Percent Accuracy Outcome measure The percent accuracy (for a given visit fraction) out-
come provides insight into the economic significance of our observed effects because it is
proportional to productivity or revenue outcomes in many applications. Specifically, we de-
signed the measure under the following thought exercise. Imagine that a company employs
repair engineers to fix water pumps in rural areas of Tanzania. The main constraint in fixing
pumps is not the work to fix a pump, given that it is broken, but rather the limited time to
travel to different pumps in different areas. The main benefit of an accurate machine learning
algorithm is that it can proactively identify pumps that are likely to fail while reducing the
number of wasted visits to pumps that are still functioning correctly. One realistic way that
organizations use model predictions is to sequentially visit the pumps in decreasing order
of likelihood of needing repair (as predicted by the model). The Percent Accuracy of the
model, then, would depend on the number of pumps that you were able to visit overall (what
we call the Visit Fraction r). While this thought exercise may seem stylized, it matches the
economic structure of how binary classification models are used in many organizations. Some
analogous problems include:

• A plane mechanic decides which parts to replace without knowing (before taking the
plane apart) whether the part is in need of repair.

• A sales associate chooses which clients to take meetings with and which ones to pass
on.

• A gold mining company decides which regions to seek out possible gold repositories.

For these cases, although the economic magnitude of the decision varies, we observe that
the percent accuracy of the model is directly proportional to the productivity or revenue of
the operator.
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Model 1 Model 2 Model 3

Dependent Var.: Score Percent Accuracy Work Hours

Unrestricted 0.2949***
(0.0719)

0.1237***
(0.0250)

-0.5745
(1.519)

(Intercept) 0.4171***
(0.0479)

0.7691***
(0.0227)

7.237***
(0.9974)

Observations 68 68 63

R2 0.20372 0.24746 0.00236

Adj. R2 0.19166 0.23606 -0.01400

Table 7: Main Effect Tests (OLS Regression of Score on Unrestricted). For all models, the
number in parentheses are Huber-White Robust Standard Errors.

4 Results

4.1 Results: Tools Factor

We beign our presentation of results by demonstrating and quantifying our main effect. Fig-
ure 4 presents a density plot of Score by Track (treatment condition). This simple plot
provides clear non-parametric evidence of the main effect, corresponding to a difference of
0.30. Because we randomized treatment, we can interpret this difference as an estimate of
the causal effect of machine learning libraries on participant’s scores. Figure 4 also provides
evidence that our effect is not driven by outliers. We observe that the distribution of scores
is roughly similar across both treatments, except that the unrestricted condition bunches at
the top of the score distribution. Both treatment conditions had visible variation in scores,
including individuals with low scores. To go beyond visual evidence, we apply several differ-
ent statistical tests. First, to test for differences in distribution, we conduct a KS test and
find that the difference between the Score distribution of each track is statistically signifi-
cant (D = 0.56, p = 6e-5), providing completely non-parametric evidence of distributional
impact from our treatment. To test for differences in group means, we present regression
estimates in Table 7, with the first two models estimating our main effect. We find that the
Restricted Track averaged 0.2949 in absolute Score less than the Unrestricted Track (Model
(1)), and that the effect is statistically significant (t = 4.1, p=1e-4).

To better understand the economic significance of our main effect of treatment on score,
we estimate the effect of treatment on percent accuracy in Models (3) and (4). Our treatment
leads to an average absolute increase in percent accuracy of about 12 absolute percentage
points. Given the baseline percent accuracy of 50% and average percent accuracy of 74%
(Intercept from Model (3)), 12% improvement corresponds to a relative percentage increase
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Figure 4: This provides visual evidence of our treatment effect. We find the average difference
in Score between tracks of 0.30.

of 50% over baseline. This increase in percent accuracy is economically significant — a com-
parable order of magnitude to the improvement sought in the famous Netflix Prize (Lakhani
et al., 2014) and some of the best incentive-based interventions found in the organizational
economics literature (see (Gibbons & Roberts, 2012), chapter by Lazear and Oyer). Re-
call that our definition of percent accuracy seemingly arbitrarily chose to calculate accuracy
within the top 30% of predictions. We justify this choice in Figure 5, which shows a box plot
of the percent accuracy by treatment condition, varying the size of the sample within which
accuracy is calculated (what we call ‘visit fraction’). Here, we observe that our treatment
condition affects the percent accuracy of teams’ models no matter the choice of visit fraction.
Further, while the specific treatment effect varies by visit fraction, we find that for a large
range (< 40%), the effect is relatively stable, justifying our choice of the top 30%.

As a second approach to benchmarking the economic significance of our main effect, we
compare our main effect to the effect of data set size on our outcomes. While we did not
randomize the size of the data, we can directly estimate the quality of the participant’s
models as a function of training data by taking advantage of the fact that we have the code
for each team. Specifically, fixing the holdout “test” data set, we randomly sampled down
the original “training” data set to successively smaller sizes, retrained the teams’ original
models, and measured their predictive performance. This allows us to directly compare the
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Figure 5: Each column shows the team-level distribution of Percent Accuracy by track,
when calculated based on the top Visit Fraction amount of predictions (as explained in
Section 3.3.3 and Section 3.4.3). Concretely, our contest evaluated each team’s model based
on 12000 predictions, the left-most column takes the top 1200 most-confident predictions
from each team’s model and evaluates the percentage of those predictions that actually
need repair for each team. By contrasting the Unrestricted (Blue) and Restricted (Red)
distributions, we see that the treatment effect has an effect no matter the choice of Visit
Fraction. As such, for our regression, we elect to use Visit Fraction = 3/10 to quantify our
treatment effect.
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Figure 6: We quantify the effect of data set size (x-axis) on Score (y-axis) by rerunning each
team’s model, trained on specified percentages of the original training set size. Here, we plot
the average scores for the top three performing teams in the Restricted track, and two of the
top three teams in the Unrestricted track. The dashed-line denotes the value of 1 − ATE
based on our ATE estimate from Table 7. We find that the unrestricted teams perform as
well with just 15% of the original training set as the restricted teams do with the full 100%
of the original training data. Note: The missing model from the Unrestricted track could
not be fit with less than 5% of the data due to model parameters that required a minimum
number of observations to train.

marginal effect of tools (operationalized as software libraries) and data set size.
We present a plot of normalized log-loss scores top 3x performing teams in each track as

a function of training data set size in Figure 6. As expected, the log-loss score worsens as
less training data is available. Surprisingly, the Unrestricted teams still perform reasonably
well with restricted data. In the dashed-lined labeled ATE, we show the model score equal
to 1 − ATE, which corresponds to how well the teams would have performed if they were
restricted from using modeling libraries. By inspecting where this 1− ATE value intersects
the Score of the unrestricted teams under successively smaller training set sizes, we find that
not having access to modeling libraries is equivalent to a reduced training set size of 10% of
the original training set — a large amount. We take this as evidence in favor of Hypothesis
1.
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4.2 Results: Skill Factors

In order to test Hypothesis 2, Table 8 presents tests for heterogeneity captured along our
aggregated skill indices. In Model (1), we show that High Skill (Total) does not predict
Score, nor does it interact with our treatment to predict Score in a economically or sta-
tistically significant way. Model (2) separates total skill into High Skill (General) and
High Skill (Specific), but similarly finds no evidence of either measure’s direct effects
on the outcome. However, in Model (3), we present a fully saturated model where we in-
clude interaction terms (including the triple interaction effect) – given the binary nature of
our predictors, this model estimates a fully non-linear conditional expectation function for
Score. Here, we find our main heterogeneity result: that the null-effect of skill interacted
with treatment (from Model (1)) was the result of two competing effects: a negative in-
teraction with specific skills and a positive interaction with general skills. For those with
high general skills, we find that dropping the library restrictions has a much smaller effect
on them than on those with low general skills (coef= -0.3028, p=0.018). By contrast, for
those with high specific skills, we find that the effect of lifting the restriction is strengthened
(coef=0.3309, p=0.009). In Appendix Table A4, we show that these interaction terms are
robust to alternative constructions of the skill measure and to use of continuous rather than
binary skill indices. Most importantly, our main interaction of interest are on the same order
of magnitude as the direct effect, and are therefore also economically significant by the same
argument as above.

Using variation in sign-up time, we are able to estimate the direct causal effect of time
on final model quality (see Appendix D). Unsurprisingly, we find the effect to be positive.
Unfortunately, our design does not allow us to test interaction between skill factors and
time available, as we did not exogenously vary the time available to teams in our contest;
therefore, the study of the interaction of skill and time must be left to future work.

5 Mechanism
In this section, we propose a mechanism to explain why restrictions on software libraries
influence the model quality, which we call “tools-as-skill”. Understanding this mechanism
is valuable as it demonstrates why model libraries lead to improved predictive model de-
velopment, enabling extrapolation and generalization of our results. First, we define our
primary model and assemble the evidence in favor of it. Second, we consider four alternative
mechanisms that may explain some of our results and present additional tests to rule them
out.

34



Model 1 Model 2 Model 3

Unrestricted 0.2936**
(0.0732)

0.3134**
(0.0670)

0.2295**
(0.0622)

High Skill (Total) -0.0359
(0.0732)

Unrestricted x High Skill (Total) -0.0803
(0.1463)

High Skill (General) -0.0876
(0.0815)

-0.0784
(0.0622)

Unrestricted x High Skill (General) -0.3028*
(0.1243)

High Skill (Specific) 0.0645
(0.0842)

0.0499
(0.0622)

Unrestricted x High Skill (Specific) 0.3309**
(0.1243)

High Skill (General) x High Skill (Specific) -0.2656*
(0.1243)

Unrestricted x High Skill (General) x High Skill (Specific) 0.5071*
(0.2487)

(Intercept) 0.5639**
(0.0366)

0.5642**
(0.0421)

0.5770**
(0.0311)

Observations 68 68 68

R2 0.20996 0.26470 0.34072

Adj. R2 0.17293 0.21801 0.26380

Table 8: Heterogeneity analyses: OLS Regression of Score on Unrestricted interacted with
Skill Indices. For all models, the dependent variable is Score and the number in parentheses
are Huber-White Robust Standard Errors.
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5.1 The Tools-as-Skills Model

Our model comprises the following three assumptions.

Assumption 1 Model quality is determined by a standard concave production function with
a single input: the product of skill and effort.

The intuition behind Assumption 1 is that to solve the prediction problem, teams must
determine what to do / how to do it (skill) and then exert the effort necessary to do it
(effort). The concavity assumption is justified by the observation that almost all prediction
problems are capped in how well they can be solved, and experience diminishing marginal
returns to skill and effort. We interpret effort in our model as something analogous to
“focused time” but choose the term effort to emphasize that we are not taking a stance on
the precise functional form through which time enters the production function.

Assumption 2 A restriction to software libraries additively reduces the effective “stock” of
general skill.

Assumption 2 formalizes the intuition that software libraries substitute for skill (how to
reason about data and how to implement analysis approaches) by codifying the relevant
knowledge. This is the key assumption in the model that drives our main results.

Assumption 3 General skill adds directly to the stock of skill, but tool-specific skill moder-
ates the amount of change induced by restrictions to software libraries.

As discussed in the literature review, general and specific skills have different roles. Our final
assumption is justified by the intuition that skill with model libraries enables one to benefit
more from having them available.

Note that this model does not describe behavior but captures the technological structure
of the algorithm production function. The core constraints in the model that limit the
ultimate effectiveness of algorithms are the concavity of the production function and the
limited amount of effort dedicated to the problem25.

Formally, we model each team’s algorithm quality q as a function of skill (general skill g
and tool-specific skill s), library availability l, effort spent e, and noise ϵ:

q = f(g, s, l, e) + ϵ (3)
25This constraint could be captured by a convex cost function, though we omit this and instead assume

that effort is a fixed quantity for simplicity.
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where f is some generic function and ϵ is independent of other variables. Combining As-
sumption 1-3 implies the following restrictions:

f(g, s, l, e) = m([βgg + βslsl]e) + ϵ (4)

where the β’s are real parameters and m is a generic one-input production function with
standard concavity behavior (i.e., m > 0, m′

> 0, m′′
< 0). Intuitively, we would expect

that the β’s are positive, meaning that more skill leads to better final model quality; we
make this assumption in our following analysis.

The comparative statics of our model rationalize our prior results from Table 8. The
derivations follow simply taking derivatives and applying the chain rule, and we present
them in Section E.1; here, we illustrate how our model helps us to interpret our empirical
results in our discussion here.

First, we find that algorithm quality is increasing in all factors: library availability, skill,
and effort (∂lf > 0, ∂gf > 0 and ∂ef > 0). This is not surprising given Assumptions 1 and
2. However, the more interesting takeaway is the interpretation given by the model – that
restrictions to software libraries impact final model quality because less modeling skill makes
modeling effort less efficient, leading to lower overall efficiency of time spent.

Second, we find that specific skills and library availability interact positively under mild
conditions (∂s∂lf > 0 when f

′
+Cf

′′
> 0) 26. This result follows directly from our inclusion

of the interaction sl in the production function (Assumption 3). We observe a positive inter-
action between library availability and specific skill because libraries are irrelevant without
the skill needed to use them properly.

Finally, we find that general skills interacts negatively with library availability and with
specific skills (∂g∂lf < 0 and ∂g∂sf < 0). We observe a negative interaction between library
availability and general skills because of Assumption 2 and the concavity assumption from
Assumption 1. We observe heterogeneity for library restrictions and general skill because
libraries and general skill additively contribute to the same stock of knowledge, and that
stock of knowledge influences model quality with diminishing marginal returns. The negative
interaction between general and specific skills occurs for the same reason.

We note that while the interaction effects of our model are identified in our experiment,
none of the β parameters in the tools-as-skill model are identified. Consequently, we make
no attempt to estimate them. The comparative statics exercise here merely confirms that

26Taking derivatives reveals this additional mild condition, where C = βslsle. What this condition shows
is that the interaction is positive in situations where the marginal progress made by participants sufficiently
exceeds the loss in progress due to concavity in the production function. Since our contest participants were
working in a situation where they were clearly making improvements on the model, we find this assumption
to be reasonable in our setting.
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our empirical results are consistent with the three assumptions made to derive our model.
The primary purpose of this Tools-as-Skills model is explaining the main heterogeneity

results in Table 8, which allows us to generalize and apply our results to other settings where
tools and skill may manifest differently. However, our model is also useful for investigating
empirical questions related to how teams go about solving the predictive model development
process. In Section E.2.1, we illustrate an application of the model to explaining how access
to modeling libraries leads to difference in how teams allocate effort across tasks during the
contest. Specifically, we find that access to modeling libraries leads team to spend more
time on modeling tasks and less time on feature engineering and exploring the data. While
this result may be otherwise unintuitive (access to modeling libraries should free up time to
work on feature engineering), our model clarifies why would expect this effort-substitution
pattern – because libraries make time spent on modeling more efficient.

5.2 Ruling Out Alternative Models

Importantly, our results also help us to rule out other potential models of the impact of
our software library restriction. In particular there are four other candidate models that
may potentially explain our main effect: Discouragement, Unidimensional Skill, Libraries as
Effort Saved, and Tools and Skill as Partial Substitutes.

5.2.1 Discouragement

The Discouragement explanation argues that having access to libraries makes the process
of working more enjoyable, such that teams without the restriction spend more time on the
problem. To rule out a discouragement model – that teams work less because they have a
preference to work with libraries – we refer to Model (3) in Table 7, where we show that
restrictions to ML libraries did not drive a statistically or ecologically significant difference
in the amount of time spent.

5.2.2 Unidimensional Skill

This model assumes that there are no distinctions between skill types. Then, libraries enter
the production function multiplicatively, with functional forms like f = m([βgg + βss]le)

or f = ml(l)me([βgg + βss]e). We can use Table 8 to rule out an explanation involving
unidimensional skill that does not distinguish general and tool-specific skill. Specifically,
the Total Skill coefficient in Model (1) does not interact significantly with Unrestricted,
and the heterogeneity results of Models 3 and 4 cannot be explained without making such a
distinction.
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5.2.3 Tools as Effort Saved

In this alternative model, the effect of our libraries would provide a better starting place, by
functioning as effort rather than skill. The intuition here is that libraries act like a partner
who already started the analysis, and passed it off to a team only partially completed. This
would imply a functional form like f = m(βgge+ βslsl]).

The effort-saved model, however, would imply the same results as our skill substitution
model. How can we distinguish these models? To rule out this competing explanation,
we disaggregate our score measure into two components: “initial” score, and then “improve-
ment”. We define the initial score as the best submitted Score within the first thirty minutes27

of any submissions for that team, and the improvement as the difference between the final
score and the initial score. We present OLS regressions exploring variation in these new
outcomes measures in Table 9. In Models (1) and (2), we present the main effects of our
restriction for First Score and Improvement respectively; in Models (3) and (4), we present
the regressions including interactions with skill variables. We find that First Score and
Improvement explain a similar amount of overall score we observe – with comparable inter-
cepts. However, we find that restrictions primarily affect the improvement achieved by teams
– teams with library restrictions improve less than 0.22 absolute score, over 2

3
of the total

effect (Model 3). By contrast, the restrictions do not have any statistically significant effect
on the initial score28. Turning to our skill measures, we find that, similarly, the interaction
effects are only noteworthy for explaining variation in the improvement. This implies that
the specific skills are specifically useful for problem-solving after the teams have started to
work on the problem. These results rule out the effort-saved model, where software libraries
simply help teams start from a better place. They show that improvements to models are
driven by progress throughout the contest, rather than initial starting place.

5.2.4 Tools and Skill as Partial Substitutes

A final alternative model is to argue that while tools and skill do substitute on average, there
is some amount of skill that can never be substituted for by tools (e.g. software libraries).
This alternative model captures the idea that human intuition has ‘insight’ into data in a
way that algorithmic thinking and probabilistic models simply cannot represent. Such a
model would justify the idea that data scientists should ‘think more carefully about the

27We chose thirty minutes to allow for teams to make corrections to formatting that may be associated
with initial submission, though the results are robust to changes in this threshold.

28We find it reassuring that the separate effects from each model tend to add up to the overall effect that
we find in the overall test of experience presented in Table A5. This seems to indicate that our results are
reliable, even if they are not statistically significant on their own.
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Model 1 Model 2 Model 3 Model 4

Dependent Var.: Score First Improvement Score First Improvement

Unrestricted 0.0784
(0.0827)

0.2195**
(0.0809)

0.1587
(0.1431)

0.0826
(0.1361)

Unrestricted x High Skill (Specific) 0.0016
(0.1515)

0.3048
(0.1596)

High Skill (Specific) 0.1273
(0.0924)

-0.2070*
(0.0934)

Unrestricted x High Skill (General) -0.0925
(0.1613)

-0.1546
(0.1641)

High Skill (General) -0.1465
(0.0898)

0.1413
(0.0817)

(Intercept) 0.2262***
(0.0468)

0.1916***
(0.0419)

0.1995*
(0.0839)

0.2742**
(0.0811)

Observations 67 67 67 67

R2 0.01440 0.10915 0.11543 0.17491

Adj. R2 -0.00077 0.09544 0.04292 0.10728

Table 9: First Scores and Incremental Gain. For all models, the number in parentheses are
Huber-White Robust Standard Errors.

data’ rather than just plugging the data into a model blindly.
In our setting, we would infer from this model that the features that were manually

engineered by our teams in the restricted track have predictive power beyond the features that
were ‘discovered’ by the random-forest-based methods that dominated our unrestricted track.
Heuristically, we have qualitative evidence that teams that were restricted did think more
carefully about the data at hand, and engineered variables using that intuition. Specifically,
we asked teams that won each of the tracks of our contest to describe their solution approach.
The leading example of careful data thinking this comes from our restricted track winners,
where the team explained that they combined latitude and longitude data into ‘bins’ rather
than using each of the variables separately, in order to capture the notion of locality intrinsic
to that data (the team’s process is illustrated in Figure 7). Further excerpts from these
winner blog posts are presented in Table A6, and highlight the plug-and-chug approach of
Unrestricted Track teams as they sought to test out different type of models rather than
think carefully about the data at hand.

We cannot statistically test this alternative model, but we develop a different style of
test by combining the features from teams in the Restricted track, with the models of the
teams in the unrestricted track. Our logic is that, if this alternative model were true and
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Figure 7: An illustrative graph from a Blog Post of a winning team in the Restricted Track.
Here, the team used their intuition to devise a binned measure of latitude and longitude that
captures the non-linear notion of locality.

Outcome: Score Feature Source
Model Source Original Team Restricted (1st) Restricted (2nd) Restricted (3rd)
Unrestricted (1st) 1.00 0.92 0.90 0.91
Unrestricted (2nd) 0.99 0.70 0.66 0.85
Unrestricted (3rd) 0.98 0.96 0.90 0.92

Table 10: Summary of Simulation Exercise.

teams in the Restricted track had extra predictive insight embedded in the features that they
engineered, then these composite models would do even better than the original Unrestricted
Team’s performance. A detailed account of this simulated combined model is detailed in
Section E.2.2, with our results presented in Table 10. We find that models that combine the
features of the Restricted Track with the Models of the Unrestricted track do worse than
the Unrestricted Track models with their original feature sets. While we cannot rule out
statistically that these combined models are worse than the original Unrestricted models,
this does provide some evidence against this alternative model of Tools and Skill as partial
substitutes.

6 Discussion
Why are some businesses better than others at developing predictive models at scale? In
this paper, we answer a key component of this question: What factors drive predictive
model development? We develop and apply a methods-tools-skills conceptual framework and
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demonstrate that tools are as necessary as the methods they codify in explaining predictive
model performance. Our results are based on a field experiment demonstrating the impact
of library availability on model quality for 68 teams of data scientists. We find that teams
that were unrestricted in their access to modeling libraries produced models that were 30%
better in log-loss improvement over baseline — corresponding to a 50% relative increase in
accuracy improvement over baseline, equivalent to an increase in data set size of 1000%.
However, access to libraries does not have the same impact on all teams. For example, we
find that teams with high specific modeling-specific skills significantly benefit from model
library access, whereas teams with high general data-science skills do not. This is consistent
with a mechanism we call ‘Tools-as-Skill,’ where tools codify and abstract some general
data-analytic skills but simultaneously create the need for new tool-specific skills to use
them effectively.

6.1 Contributions

Our paper contributes to the literature on IT Productivity and the broader economics of AI.
Regarding IT Productivity, we apply a conceptual framework from that literature to a novel
technological setting: AI production, particularly predictive model development. Our core
contribution is further extending the technology-skills distinction (Tambe, 2014; Tambe &
Hitt, 2014; Wu et al., 2018) by distinguishing technology into methods and tools. Addition-
ally, we conceptualize the mechanism by which tools drive predictive model development
(‘Tools-as-Skill’) and present experimental evidence supporting that mechanism. More gen-
erally, our contribution is to take ideas from the literature on Skill-biased Technical Change
(the distinction between general and specific skills) and use them to guide our empirical
study. Beyond this study, this conceptual framework provides a new way to think about
other theoretical questions about tools: for example, Teodoridis (2018) notes that it needs
to be clarified ex-ante how tools may influence team formation. Our conceptual framework
suggests that the impact of tools on team formation depends on the cost of acquiring the
specific skills necessary to leverage the tools and the benefit of the general skills that are
being replaced by the tool. Finally, we note that the tools that we study here are open-
source tools. This study is a step towards quantifying the value of these tools to the broader
economy. Given the significant effects found in this paper, this paper contributes to the
growing body of evidence arguing that open-source tools are crucial to the modern economy
yet under-accounted for (Greenstein & Nagle, 2014; Nagle, 2019; Langenkamp & Yue, 2022).

Regarding the Economics of AI, our core contributions are first conceptualizing AI pro-
duction as an economic activity worthy of research and second experimentally characterizing
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the drivers of a critical component of AI production: predictive model development. The-
oretically, prior literature suggests the importance of advances in methods, including data,
computing, and algorithms (Bessen et al., 2022; DeStefano et al., 2020) to predictive model
development; we contribute by expanding this into a framework of factors that includes
tools and skills. Empirically, we contribute a novel method for studying this question — a
prediction contest, similar to (Cowgill et al., 2020). Furthermore, our method provides a
way to measure the effect of tools across teams of varying skill levels, unlike AI Benchmarks,
like ImageNet or GLUE, that only capture improvement in methods for the expert teams at
the bleeding edge. Our results highlight that tools are a key complementary29 factor that is
co-invented alongside methods, which plays a critical role in the adoption of AI methods in
the broader economy.

An important managerial implication of our results is that tools are a key lever managers
can adjust to improve predictive model development rather than something that is exoge-
nously ‘out there’ and available to all firms. Therefore, tools and tool infrastructure at firms
is something to actively manage and optimize. We highlight two applications of this impli-
cation. First, managers should actively consider the tradeoffs encountered when designing
internal tools. Specifically, ML systems commonly have requirements for interpretability,
security, or usability that lead to simplifications reducing the available functionality and
richness of the available analytic approaches for a specific problem. For example, Amgen
can make limited use of black-box algorithms due to regulatory requirements (Amgen, 2022).
As another example, some companies offer ‘no-code’ or ‘low-code’ solutions that lower the
skills needed to access analytic solutions. Our results serve as a way to understand the costs
of limiting access to tools (e.g., due to regulatory requirements), or, equivalently, the bene-
fits of adding tools (e.g., in the form of no-code or low-code solutions). This implication is
particularly important for firms who find that other levers for improving predictive models
(such as data or compute infrastructure) are producing diminishing returns on investment;
firms seeking to integrate AI into their operating model should make the investments neces-
sary to couple their internal infrastructure to AI tools (especially open source technologies).
As a second application, firms should intentionally develop the skill sets of their data scien-
tists to be optimized around those tools. For organizations with low restrictions on available
tools, the most effective model for a center of excellence is to focus on developing tools and
infrastructure that codify analytic techniques in a relevant way for the organization. Given

29We do not show complementarity by demonstrating the interaction of methods and tools in our empirical
analysis; instead, we show the economic and statistical significance of a tools factor juxtaposed with a
methods factor. However, we justify the use of the term complementary as follows: the existence of a
method is necessary for a tool to implement it. Therefore, the tool has zero value without the method, so
methods and tools are complementary.
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a sufficient basis of statistics knowledge, the center of excellence can focus on spreading
the tool-specific skills needed to leverage that infrastructure rather than investing in further
expensive general education. For organizations with more substantial constraints (arising
from regulatory or ethical considerations) or for companies that have not had time to invest
in robust analytic infrastructure, it’s worth investing in fewer extremely high general-skill
individuals (such as those with advanced degrees) who can solve important problems inde-
pendently of available tools.

6.2 Limitations and Future Work

We also acknowledge there are limitations in our approach, which are opportunities for fu-
ture work. First, although our study is comparable to many published experimental studies
(and some observational studies), our sample size is modest. This limits our ability to draw
stronger conclusions about mechanisms – especially when analyzing noisier secondary out-
comes, such as time allocation. However, we emphasize that our main effects are conclusively
demonstrated, with statistical significance due to the large effect size.

Second, we recognize that algorithm production is only one part of a broader process of
data science in organizations. For example, our paper does not study the process of choosing
problems to work on, nor the process of conceiving of, creating, and maintaining relevant
data assets. Skills and tools may play a different role in those processes, and we hope there
will be more research on these topics in the future.

Finally, we conceive skill as falling into two types (general and specific), which could be
enriched. First, it is possible to collect more granular measures; for instance, at the topic
level rather than the class level. Second, it would be interesting to explicitly consider a third
type of skill — domain-specific experience. Whereas our experimental design effectively
controls for domain-specific experience (by choosing a relatively obscure problem context),
it would be particularly informative to experimentally vary domain-specific experience and
study its impact on the complementary between feature engineering and modeling. This is
also where we expect our results have the least external validity. We acknowledge that while
our experiment was designed with external validity in mind, it is only a single problem in a
specific context. While we expect that our tool-as-skill mechanism will generalize to other
contexts, we do not expect that our finding regarding the substitutability between feature
engineering and modeling will hold in all other contexts.
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A Contest Overview

A.1 Recruitment & Pre-Contest Logistics

Qualified undergraduate and graduate students were recruited for the contest from leading
universities in the United States, including Harvard, MIT, CMU, Columbia, JHU, and the
University of Washington. We marketed the contest by sending emails to professors, program
directors, and on-campus organizations active in the fields of statistics, computer science,
data science, and related disciplines. We explained that the contest would require familiarity
with the Python programming language, and knowledge of data science, machine learning,
and statistical modeling. Our contacts at these universities forwarded information about
the contest (including our website30) to relevant class mailing lists and posted a flyer we
created (Figure A1) around their campuses. To entice students to participate, these materials
emphasized that the contest would allow students to (i) grow their data science skills, (ii)
win cash prizes and recognition from the data science community, and (iii) contribute to
the science of data science. The monetary prizes advertised for the competition are given
in Table A1. These prizes were awarded within each track (meaning the top scorer in the
restricted and unrestricted tracks were each awarded $1,000).

After these marketing materials were distributed, over 400 students from 50 universities
registered to participate in the datathon. One month before the competition, we sent the
email shown in Figure A2 to all who registered. This email included a calendar hold and
provided logistical details about the competition. On February 1, two weeks before the
datathon, we sent an additional email shown in Figure A3 with additional details about the
competition and a video encouraging everyone who registered to participate.

Placement Prize
1st Place $1,000
2nd Place $500
3rd Place $250
Top 10 $50
Above Baseline $10 Amazon gift card

Table A1: Prizes awarded in each track of the competition.

On the day of the competition, the kickoff email in Figure A4 was sent to everyone who
registered. This email instructed registrants to complete a pre-contest survey on Qualtrics
(detailed in Appendix B), which collected basic information about the registrants and allowed
us to monitor how many registrants were actually competing. There were 191 responses to

30https://www.datathonatlish.com/home
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Figure A1: The marketing flyer used to recruit contest participants.

Figure A2: The initial registration email sent one month before the competition.
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Figure A3: The second email sent two weeks before the competition.

this survey. After registrants completed the survey, they were automatically sent the final
email in Figure A5, which described the details of the prediction problem and included a link
to the code notebook for the competition. Half of the registrants who completed the pre-
contest survey were sent the email with a link to the code notebook for the restricted track,
and the other half were sent a link for the unrestricted track. This is how we implemented
our randomization procedure.

A.2 Colab Notebooks

All resources and information the participants needed to participate in the competition were
contained in the Colab notebook they were sent after completing the pre-contest survey.
Half of the participants were sent a notebook labelled ”Track Lagrange”31 (our internal
coding for the unrestricted track), while the other half were sent a notebook labelled ”Track
Euler”32 (our internal coding for the restricted track). The two versions of the notebooks
were almost completely identical, with the exception of the section within the rules that
described package usage. The notebooks were divided into the following sections:

• Competition Rules and Submission Process for the Datathon@LISH - This
section defined the rules for the competition and provided instructions for participants

31https://colab.research.google.com/drive/1vvTstNGRvBMiPXEmcWODhT-KLrNUCb1a?usp=sharing
32https://colab.research.google.com/drive/1jnD0yP3JxXG9lOkRnvj-WfJVi-21XWZO?usp=sharing
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Figure A4: The kickoff email sent on the day of the competition.

Figure A5: The email sent after registrants completed the pre-contest survey.
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to submit their models to Kaggle. This section was identical across the two versions
of the notebooks except for an additional rule in the ”Track Euler” notebook, which
stated that participants could not import any machine learning modeling functions
from open-source software libraries like sklearn or pytorch.

• Data Challenge Overview - Pump it Up: Data Mining the Water Table -
This section provided some background on the prediction problem and included a data
dictionary that defined each of the features in the data set.

• Your Contest Code - This section provided space for the participants to work on
the problem. It was broken into separate sections for exploratory data analysis (EDA),
feature engineering, model building, and model evaluation. We intentionally divided
the notebook into these sections so we could track how much time participants spent
on each task.

The Colab notebooks were set to auto-save every 60 seconds. This allowed us to track how
much time the participants spent on each part of the problem throughout the competition.
See Figure A6 for an image of the notebook from the restricted track. See the Supplement
for the complete notebooks from the two tracks.

Once a participant was satisfied with their model, the next step was to submit the model’s
predictions on the test set to our competition on Kaggle (described in the next section). The
link to the appropriate Kaggle competition was provided within each notebook.
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Figure A6: A screenshot of the contest Colab notebook.
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Figure A7: The home page of the Kaggle competition for the Lagrange track.

A.3 Kaggle Competition

We created a separate competition on Kaggle for each of the two tracks (see Figure A7). To
submit to Kaggle, participants would generate a file with their model’s predictions on the test
set, then upload this file to Kaggle to be scored. 50% of the test set was used to automatically
calculate the model’s log loss on the ”public” leader board, which all participants could see
throughout the competition. The remaining 50% of the test set was reserved for the ”private”
leader board (see Figure A8). This is the leader board that was used to determine the winners
of the competition, and the participants’ performance on this leader board was not revealed
until the contest was over.

B Survey Details
The pre-contest survey was administered on Qualtrics and allowed us to collect basic informa-
tion from each participant for identification purposes (their Google account name, Kaggle
username, affiliated university, etc.) We also asked information about their educational
background and prior experience, including:

• Their undergraduate concentration, and coursework in specific areas (Data Science,
Machine Learning, Statistics & Probability, etc.);
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Figure A8: The private leader board of the Kaggle competition for the Lagrange track.

• Their familiarity with different programming languages;

• Their familiarity with different statistical modeling techniques and machine learning
algorithms;

• Their familiarity with different software libraries in Python.

The pre-contest survey also asked respondents to answer the hypothetical question shown
in Figure A9. This question asks participants to estimate the extent to which their success
in the competition would be impacted by a restriction in their access to relevant software
libraries.

The short post-contest survey asked participants to re-evaluate the degree to which li-
brary restrictions impacted (or would have impacted) their success now that they contest
was over. It also asked them to describe their general problem-solving process, and reflect
on what other approaches they might have taken if they had been given more time.

The full pre- and post-contest surveys can be found in the Supplement.

C Skill Analysis
Construction of Indices. Of the 39 variables that we constructed from our Qualtric Survey
(detailed in Appendix B), we coded them according to our conceptual framework in Section
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Figure A9: A hypothetical question asking respondents to estimate the impact of libraries
on their work.

2.2.2, and then removed a variables according to the rules outlined in Section 3.3.4. We list
the results of this exercise in Table A2. Ultimately, 16/39 (41%) of our originally measured
variables were included our skill indices. 3x variables were removed because they were not
balance between treatment and control conditions. 7x were removed because they did not
vary sufficiently (they were either 1 or 0 for over 75% of respondents). 8x were specific skills
that were removed because they were skills for tools that were not relevant to our problem.
Lastly, 6x were removed because our specific/general distinction couldn’t be applied clearly
to those variables – they refer to prior experience with the predictive model development
process and could be taken as measures of both specific or general skills.

Robustness of Skill Heterogeneity Results. Our results in Table 8 show the eco-
nomic and statistical significance of the interaction of our skill indices with our treatment.
Here, we present slightly modified tests to show the robustness of this result to alternative
specification.

1. First, to better illustrate the main way we interpret results, we show the same speci-
fication, but using (selected) individual measures rather than our aggregate measure,
in Table ??. Specifically, we chose 1) whether the team had worked as a software
developer, 2) whether they majored in a STEM major, and 3) whether they were com-
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Skill Variable Skill Type Reason Removed
prioremploy_research_any General Difference between Tracks
priorcourses_programming_gte2 General Low Variation
priorcourses_stats_gte2 General Low Variation
priorlanguages_python_comfortable General Low Variation
priorlibraries_numpy_comfortable General Low Variation
is_MajorStem General
priorcourses_algorithms_gte2 General
priorcourses_datascience_gte2 General
priorcourses_os_gte1 General
prioremploy_softwaredev_any General
priorlanguages_sql_comfortable General
priorstatmodels_glms_comfortable Specific Difference between Tracks
priorlanguages_julia_comfortable Specific Irrelevant to Problem
priorlanguages_matlab_comfortable Specific Irrelevant to Problem
priorlanguages_stata_comfortable Specific Irrelevant to Problem
priorlibraries_tensorflow_comfortable Specific Irrelevant to Problem
priorlibraries_pytorch_comfortable Specific Irrelevant to Problem
priorlibraries_xgboost_comfortable Specific Irrelevant to Problem
priormlmodels_ensemble_comfortable Specific Irrelevant to Problem
priormlmodels_neuralnet_comfortable Specific Irrelevant to Problem
priormlmodels_svms_comfortable Specific Irrelevant to Problem
priorstatmodels_linreg_comfortable Specific Low Variation
priorstatmodels_logreg_comfortable Specific Low Variation
priorlibraries_pandas_comfortable Specific Low Variation
is_MajorDatasci Specific
priorcourses_ml_gte2 Specific
prioremploy_datascience_any Specific
priorlanguages_r_comfortable Specific
priorlibraries_matplotlib_comfortable Specific
priorlibraries_scipy_comfortable Specific
priorlibraries_sklearn_comfortable Specific
priormlmodels_randomforest_comfortable Specific
priorstatmodels_regul_comfortable Specific
priormlstages_featureengi_comfortable Unclear Theory Unclear
priormlstages_modelbuild_comfortable Unclear Theory Unclear
priormlstages_modeleval_comfortable Unclear Theory Unclear
priorcontests_official_gte1 Unclear Theory Unclear
priorcontests_unofficial_gte1 Unclear Theory Unclear
priormlstages_edas_comfortable Unclear Theory Unclear

Table A2: A list of all variables collected in our Qualtrics survey, and whether they were
included in construction of skill indices that we describe in section 3.3. If variable was
removed from the index, the reason is given. If no reason is listed, then the variable was
included in our index. 16/39 variables were included in the final indices.
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fortable with SQL as our examples of general skills. We chose 1) whether they were
comfortable with sklearn, 2) whether they were comfortable with regularization, and
3) whether they had taken prior courses on data science as our examples of specific
skills. Here we can see that our results directionally extend to the individual variable
level, albeit with varying magnitudes and levels of statistical significance. The defining
feature of our result – that the size of the interaction exceeds that of the direct effect of
skills – also extends to the individual variable level. The point here is that our notion
of general and specific skills provides our conceptual framework for organizing these
individual-measure specifications into a coherent and consistent framework.

2. Second, one may be concerned with the specific variable we removed from our skill
indices. We argue that each of our filters outlined in 3.3.4 (low variation in vari-
able, differences between tracks, irrelevance to contest problem, or unclear theory)
strengthen the interpretability of our result. The only purely statistical reason to
remove variable was the first reason: low variation in variable. In Table A4, Model
(2), we run an alternative specification where we include the Low Variation variables
into the indices. We find that our results are robust in both economic and statistical
significance to inclusion of these variables.

3. Lastly, one may be concerned that our results rely on a binary index. We run the same
specification, but leveraging a standardized, continuous measure of our skill measures,
presenting the results in Table A4, Model (3). Here, we show that our results are con-
sistent in terms of direction, economic, and statistical significance with this alternative
specification. Further, this alternative specification provides a sense of magnitude of
our interaction effect – it can be interpreted as saying that a 1-standard-deviation in-
crease in general skills over average negatively interacts with Unrestricted, with nor-
malized Score an average of −0.21 lower than those with average general skills. By con-
tract, a 1-standard-deviation in specific skills positively interacts with Unrestricted,
with a normalized Score an average of 0.22 higher than those with average specific
skills. We prefer our binary indicator specification because the precise meaning of
‘1-standard-deviation’ requires an assumption that all the skills we measure are of
equal importance, which is unjustified a priori. Our binary indicator better represents
our assumption that we can capture a direction change in skill, but not an accurate
absolute measure.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Dependent Var.: score score score score score score

unrestricted 0.2688**
(0.0730)

0.3243**
(0.0638)

0.2908**
(0.0709)

0.2152**
(0.0802)

0.2549**
(0.0762)

0.2990**
(0.0756)

had_prior_softwaredev_job -0.0553
(0.0730)

had_prior_softwaredev_job x unrestricted -0.2760^
(0.1460)

is_MajorStem -0.1586*
(0.0638)

is_MajorStem x unrestricted -0.2331^
(0.1277)

sql_comfortable -0.0997
(0.0709)

sql_comfortable x unrestricted -0.2203
(0.1418)

sklearn_comfortable 0.0374
(0.0802)

regularization_comfortable 0.1075
(0.0762)

prior_datasci_courses 0.0313
(0.0756)

(Intercept) 0.5682**
(0.0365)

0.5809**
(0.0319)

0.5632**
(0.0355)

0.5615**
(0.0401)

0.5411**
(0.0381)

0.5594**
(0.0378)

Observations 68 68 68 68 68 68

R2 0.25090 0.28333 0.25119 0.25550 0.23182 0.20661

Adj. R2 0.21578 0.24974 0.21609 0.22060 0.19581 0.16942

Table A3: Individual Skill Measures - Interaction Effects.

Model 1 Model 2 Model 3

Test: Original Add Low Variation Measures Continuous Skill Variable

Unrestricted 0.2812**
(0.0593)

0.2359**
(0.0609)

0.2749**
(0.0599)

High Skill (General) -0.0980
(0.0617)

-0.0694
(0.0611)

-0.0767*
(0.0341)

Unrestricted x High Skill (General) -0.2655*
(0.1233)

-0.2516*
(0.1225)

-0.2133**
(0.0682)

High Skill (Specific) 0.0772
(0.0603)

0.0488
(0.0606)

0.0474^
(0.0282)

Unrestricted x High Skill (Specific) 0.2787*
(0.1205)

0.3345**
(0.1218)

0.2190**
(0.0563)

High Skill (General) x High Skill (Specific) -0.2656*
(0.1243)

-0.2657*
(0.1210)

-0.0557
(0.0339)

Unrestricted x High Skill (General) x High Skill (Specific) 0.5071*
(0.2487)

0.5443*
(0.2452)

0.1296^
(0.0678)

(Intercept) 0.5908**
(0.0296)

0.5979**
(0.0307)

0.5872**
(0.0300)

Observations 68 68 68

R2 0.34072 0.29993 0.42513

Adj. R2 0.26380 0.21825 0.35806

Table A4: Robustness of Heterogeneity Measure.
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D Time-Spent Analysis
As time spent on the contest is not random, we cannot directly measure its effect on our
outcomes of interests. Instead, leveraging the observation that our contest had a variable
start-time but a fixed end-time, we use an instrumental variable (IV) approach. Specifically,
we develop an instrument based on the intuition that teams with a later start-time will
exogenously spend less time on the contest. As the contest spanned a 48-hour period over
three days (starting at day 1 at 5PM and ending on day 3 at 5PM), participants were allowed
to complete the pre-contest survey any time after 5PM on day 1, after which they were given
details of the contest problem. However, some teams did not complete the survey and start
work until as late as the morning of day 3. Regardless of team start-time, the contest ended
at 5PM on for all teams. We, therefore, define a variable Contest Time that measures the
amount of time left in the contest when the team completes the survey and starts working
on the contest. This variable satisfies the necessary IV assumptions for estimating the causal
effect of Work Hours on score.

• First Stage (Relevance). Less overall time to work on the contest problem reduces the
amount of time that a team spends working on the problem.

• Exclusion Restriction. Less time to work on the problem affects the team’s final score
only through the way that it limits the amount of time that teams can spend on the
problem. It does not affect the nature of the problem or the resources teams have
available to solve the problem.

• Exogeneity (Random assignment of the instrument). Teams did not know anything
about the details of the contest problem or the treatment restriction until they filled
out the pre-contest survey. So, any variation in start-time must be independent of
the details of the problem itself, or participant’s expectation of winning conditional
on the problem details. Therefore, we argue that this variable is driven by participant
busyness on day 1 and day 2 (recall our participants are largely students in the middle of
an academic semester) – in a way that is exogenous to participant skills or motivation.

• Monotonicity. All else equal, having less overall time to work on the contest problem
can only reduce a team’s score. If a team were (counterfactually) granted more time,
they are unlikely to do worse.

Therefore, we can leverage contest start-time as an instrument for time-spent on the
contest. We implement this idea through a 2SLS model, where we control for the effect of
our variation in the tools.
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(1) OLS (2) First Stage (3) 2SLS
Work Hours 0.006 0.051

(0.006) (0.028)
Contest Hours 0.189

(0.077)
Unrestricted 0.289 -0.160 0.315

(0.074) (1.478) (0.102)
(Intercept) 0.377 -1.110 0.056

(0.081) (3.631) (0.221)

Num.Obs. 63 63 63
R2 0.214 0.095 -0.466
R2 Adj. 0.174 0.049 -0.540
F 5.346 2.059

Table A5: Effect Time Spent on Score (2SLS).

We explore the effect of time on model quality. Surprisingly, in Table A5, Model (1), we
find that time spent on the contest is barely correlated with final score (a coefficient of 0.006
Score improvement / hour spent). However, this result cannot be interpreted as the causal
effect of time on model quality because the time-spent is endogenous to a variety of other
factors such as skill. We present our instrumental variables model in Model (2) and (3). We
find that, leveraging our IV specification, our estimate of the effect of time-spent on score
increases an order of magnitude, to 0.05 Score improvement / hour spent (p=0.075). This
provides evidence that there is some omitted variable that increases the score but reduces
the endogenous amount of time spent working on the problem – for example, unobserved
aspects of team experience. However, we can only speculate what this might be.

Given that the median amount of time spent on the contest was 4.9 hours and our
standard deviation as 6.0 hours, a back-of-the-envelope calculator would expect that a one
standard deviation increase in time spent corresponds to an improvement of contest score
by 0.30. This implies that, on average, this score improvement is a comparable order of
magnitude to that of our treatment restriction. This is perhaps surprising – we expected the
effect of time to be larger than the effect of libraries. The magnitude estimate implies that
equipping data scientists with the right tools makes them much more effective, perhaps even
as effective as doubling the time available for them to work.
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E Tools-as-Skills Mechanism

E.1 Comparative Statics

We present here the derivation of the comparative statics highlighted in Section 5.1. They
are straightforward and simply involve repeated application of the chain rule and product
rules for derivatives. First, we assume, per our assumptions above, that all β > 0, that
m > 0,m′ > 0,m′′ ≤ 0, and that all our variables are stocks, meaning that they are positive-
valued. Then

Direct Effects:

∂lf = βslse×m′([βgg + βslsl]e) > 0

∂gf = βge×m′([βgg + βslsl]e) > 0

∂sf = βslle×m′([βgg + βslsl]e) > 0

Interaction Effects:

∂s∂lf = βsle×m′([βgg + βslsl]e) + β2
slsle

2 ×m′′([βgg + βslsl]e)

= βsle(f
′ + βslslef

′′)

=⇒ ∂s∂lf > 0 ⇐⇒ |f ′| > βslsle|f ′′|

∂g∂lf = βslβgse
2 ×m′′([βgg + βslsl]e) < 0

∂g∂sf = βslβgle
2 ×m′′([βgg + βslsl]e) < 0

E.2 Extensions to the Mechanism

E.2.1 Effort Allocation across Tasks

We now develop a simple extension of our model to explain how teams allocate their effort
in each treatment condition. The intuition captured in our model is as follows: because
productivity is driven by the product of skill and effort, and because libraries are like skills,
library availability directly affects the productivity of effort spent. Therefore, in any model
where there are multiple tasks and participants must allocate their effort across these tasks,
the allocation of effort will be affected by the available libraries for the tasks. As we restricted
software libraries for modeling but not feature engineering, we expect that the availability of
libraries for modeling purposes should shift participants’ effort allocation towards modeling.

Formally, we assume model quality q is the product of two production functions, fd

and fm, which correspond to the production functions for exploratory data analysis and
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modeling, respectively. We make the functional form of these production functions identical
to Equation 5.1 (including the same sign assumption on the derivatives), except we remove
the dependency of fe on l, to match the structure of our actual treatment (recall that our
library restrictions were only imposed on library modeling functions, not feature engineering
library functions). We assume that effort is fixed and allocated by the team between the
two tasks, where we parameterize effort modeling as the variable e. Finally, we assume that
effort is allocated so as to maximize model quality.

q = fd([βgd + βsds][1− e]) + fm([βgmg + βslmsl]e) (5)
e∗ = argmaxe q(e)

Even given relatively general assumptions, the model yields a sharp prediction about how
library availability affects how effort is spent: it predicts that as l increases, e∗ also increases.
That is, as library availability increases so does the effort. We present a proof of this in the
appendix, but the intuition is straightforward. In this model, the allocation of effort is an
explicit tradeoff between the quality of the two tasks. Therefore, the optimal effort allocation
balances the benefit of adding one infinitesimal unit of effort spent on feature engineering
to the cost of removing that unit of effort from modeling. When l increases, the marginal
benefit of effort on modeling increases – and so the effort allocation shifts towards modeling.
An alternative viewpoint might expect that removing libraries would require teams to spend
more effort on the task, but this view does not take into account that per-task effort is not
fixed and participants can choose how to allocate effort across multiple tasks.

We present three sources of evidence consistent with this prediction: content from contest
winner blog posts, results from our survey, and results from teams’ contest notebook data.
Although none of our evidence constitutes a formal statistical test, the data is convergent
on the idea that library restrictions shift effort allocation across tasks.

First, Table A6 presents excerpts from short blog posts written by our contest winners
detailing the problem-solving approaches they took during the contest. The blog posts dif-
fer across tracks both in their description of feature engineering and model building. For
feature engineering, the restricted teams focused on developing a more intuitive understand-
ing of the data. As one particularly salient example of this, each of the top three winners
in the restricted track noted the relevance of spatial clusters in predicting pump status,
in a way that directly influenced their modeling approach. One group operationalized this
understanding by choosing to use hierarchical clustering as a way to summarize relevant
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covariates and structure their logistic regression. Another group focused on constructing
grid measures that captured the inherent nonlinearity present in latitude and longitude data
(see Figure 7). Notably, these restricted teams also stated that, while intuitively-motivated
features like spatial clusters were useful, more automatically generated features based on
arbitrary interactions were not beneficial to model performance. By contrast, even though
the unrestricted top three winners did a large amount of feature engineering, they engaged
more abstractly with the data. These team primarily focused on data issues like redundancy,
missing values, grouping of categories, and systematic generation of features and feature in-
teractions. For model building, the restricted track top three winners scarcely commented on
their modeling approach, with each group settling on variations of logistic regression. They
instead allocated attention to searching for hyperparameters to guide feature selection (via
regularization). By contrast, each of the three unrestricted track winners spent a substan-
tial amount of effort and computational resources exploring the usage of different modeling
packages. After some experimentation, each group landed on some form of ensemble model,
with different forms of random forests serving as the final base model in all cases.

Second, we present evidence from the post-contest survey, where we asked teams to reflect
on their experience with the competition and describe their problem-solving approaches. We
manually coded team responses into three categories: Exploratory Data Analysis, Feature
Transformation, and Model Selection & Tuning, with each team’s response possibly falling
into multiple categories. To verify the qualitative answers with the respondents’ submitted
notebooks to ensure that their narrative was consistent with their submitted code. Our re-
sults in Table A7 show that around two-thirds of respondents emphasized only one of these
three approaches. The remaining third identified two or more approaches as vital to their
solution. Most notably, 86% of the participants in the unrestricted track emphasized the im-
portance of Model Selection & Tuning in developing their solution, with responses describing
many different algorithmic approaches (random forest, gradient boosting, neural networks,
etc.) and tuning grids of different model hyperparameters. By contrast, only 33% of the
restricted team emphasized their modeling approach, describing traditional model selection
with generalized linear models and hyperparameter tuning for regularization. Additionally,
72% of participants in the unrestricted track stressed the importance of Feature Transfor-
mation, compared to only 43% of participants in the restricted. We saw a similar difference
for Exploratory Data Analysis. These results show stark differences in how participants in
the two tracks perceived the importance of different tasks.

Finally, we develop evidence for differences in time allocation across tasks based on our
data on time spent by notebook subsection. In theory, our data can be used to directly test
for differences in effort driven by our library restrictions. However, due to our small sample

68



Track Unrestricted Restricted

Data Engineering

We found many redundant variables
that could be dropped, and we reduced
the remaining categorical variables to
their top K categories, choosing K to
be the elbow in each categorical
variable’s sorted frequency plot. …We
also found that a few variables would
benefit from some median-value imputation,
such as construction year and GPS height.

The possibility of ordinal encoding and one
hot encoding was ruled out for the
categorical variables by experimentation
due to the absence of a clear relationship
between classes and due to the presence
of a significantly high number of classes
in a feature.

For high cardinality fields, we chose a top-k
threshold based on elbow graph of term
frequency and lumped the tail terms into
”other”. We also discovered that ”lga” and
”ward” are two more informative location
variables… We learned that mal-functioning
wells usually have ”dry” for quantity and
”other” for water point type, and they tend
to cluster geospatially.

We hypothesize that there existed discrete
clusters within the data that could be used to
improve our predictive performance… We
performed “Hierarchical K-Means
Clustering” to form a tree of clusters and
performed regression on each leaf cluster.

Modeling Approach

Different tree-based and Boosting models
such as Random Forest, XGBoost,
LightGBM, CATBoost were tested and the
best model (CATBoost) was selected based
on the validation accuracy.

We did a grid search over [random forests]
and [XGBoost’s Ensembles with
Hyperparameter Tuning], beating our
previous scores. In parallel, we
attempted a massive Bayesian
hyperparameter search for an [Multi Layer
Perceptron], but after hundreds of iterations,
we never saw a validation log loss less than
0.45 and abandoned the MLP altogether.

[Every single one used logistic regression
with grid search for regularization. No one
commented on this much.]

How to Allocate Time

A lot of the time was actually spent on
figuring out how to put everything
together, researching potential pitfalls to
implementing random forests, and time
spent on ideas not working out whether
due to results (like regularizing the
model) or inability to implement on time
(like oversampling and
undersampling).

Given more time, we would explore adding
interactive terms and stacking an
ensemble layer to current models.

Table A6: Qualitative Evidence from Winner’s Blog Post.

Exploratory Data Analysis Feature Transformation Model Selection & Tuning
Unrestricted 6 (15%) 28 (72%) 13 (33%)
Restricted 2 (7%) 12 (43%) 24 (86%)

Table A7: Coded Analysis of Survey Responses. Note: Percentages are normalized within
competition track. The results sum to greater than 100% because some participants men-
tioned more than one of the approaches in their response.
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Figure A10: This boxplot compares the distribution of Time Spent between the Restricted
and Unrestricted tracks for the bottom 3/4 and top 1/4 of each track.

and large variability, we are underpowered to detect any meaningful difference. Instead, we
present suggestive but striking visual evidence of an effect in Figure A10. In this figure, we
plot the distribution of percent time spent on feature engineering for each team. We further
split our population into two subsamples based on contest score: one sample comprising
the bottom three quartiles’ score in each track and the other comprising the top quartile
by score. In the sample of the bottom three quartiles, we do not observe any differences in
the distribution of time allocation; however, in the top quartile, there is a large difference
consistent with our theoretical prediction and other qualitative findings. This suggests that
our task allocation model applies primarily to teams that are more skilled and know how
to maximize the value of their time; conversely, it suggests that less skilled participants
may not know how to best allocate their effort given the library restrictions. This result is
qualitatively robust to different cutoffs used to define the subsamples. However, we want to
emphasize that it is not statistically significant and is by no means conclusive.

These three streams of evidence suggest that library availability changed participant

70



effort allocation, causing them to spend more effort and, in turn, more focus modeling.

E.2.2 Tasks as Substitutes

The above section justifies the empirical usefulness of including two types of tasks in our
model as a way to explain effort allocation between feature engineering and modeling. How-
ever, such a choice raises a natural question: are these two types of tasks inherently comple-
mentary or substitutable? Our model does not make a prediction on this front and can be
generalized to accommodate either type of relationship between the two task types via the
functional form:

q = f(fd + fm) (6)

where have suppressed the arguments of fe and fm for notational clarity. Here, we assume
that f is positive and monotonically increasing in the input. Given the monotonicity of f ,
the model supports the theoretical predictions developed in prior sections. However, the
model exhibits complementarity or substitution between feature engineering and modeling
if f is convex or concave, respectively33.

Understanding if the two types of tasks are inherently complementary or substitutable
has significant practical implications. On the one hand, theoretical discussions describe
advanced ML techniques like deep learning models as automated “feature learning” (Yu et
al., 2013). This suggests that advanced ML models remove the need to understand the non-
linearities in the data generating model, or similarly, that understanding the non-linearities
present in the data generating model would eliminate the need for advanced ML models. On
the other hand, substantive knowledge of the problem is thought to allow data scientists to
improve their predictive model, justifying the practices of including subject matter experts
on teams of data scientists. Whether these tasks are complementary or substitutable would
thus have implications for the design of teams.

We argue that, in our context, feature engineering and modeling are substitutable with
each other – that quality modeling mitigates the benefit of feature engineering work. An ideal
statistical test of this relationship would exogenously vary the amount of effort on feature
engineering or modeling and then study the interaction effect between those quantities and
the final model score. We, unfortunately, cannot conduct this type of test given our data.
However, we can run a simulation combining the engineered data from the winners of the

33We assume q is a nested model, which could be, for example, parameterized as a nested CES model like
the ones used in energy economics (Lagomarsino, 2020)
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restricted track and the (untrained) model structure of the unrestricted track winners. The
logic of this exercise is that the restricted track focuses more on feature engineering and,
therefore, should have data features that more directly capture nonlinearities present in the
data, whereas unrestricted track teams should have better models. Consequently, we expect
this synthetic predictive model to outperform the original models of the unrestricted track
winners.

To do this, we trained synthetic models in two ways. In the first approach, we extracted
the complete set of features engineered by the top three winners of the restricted track (“the
variables”) and the final model specifications of the top winners (“the models”) of the unre-
stricted track. The models were re-trained using the variables directly, including optimizing
the hyperparameter over the same grid the top winners used to tune their final model. In
the second approach, we broadened the set of model specifications considered, rerunning
the complete grid of model specifications attempted in the actual competition by the un-
restricted track winners. For example, if a participant tested several different algorithms
and eventually chose a random forest as their final model specification, we re-trained all the
algorithms they tried using the additional data and selected the best specification.

The results of this simulation exercise are presented in Table 10. We surprisingly find
that, under every situation considered, the synthetic models did not perform better than
the best-performing models in the unrestricted track. In some cases, the synthetic model
does much worse than the original model. This is surprising because, under most models
with separate tasks, even moderate amounts of substitution between feature engineering
and modeling would result in better synthetic models. Instead, the results of our (simple)
simulation exercise suggest that feature engineering and model substitution are strongly
substitutable. This would be consistent with the idea that more advanced machine learning
algorithms used by the unrestricted teams were already capturing the non-linearities in the
data set that the restricted participants captured with extensive feature engineering.
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