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Firms are increasingly interested in developing targeted interventions for customers with the best response,

which requires identifying differences in customer sensitivity, typically through the conditional average treat-

ment effect (CATE) estimation. In theory, to optimize long-term business performance, firms should design

targeting policies based on CATE models constructed using long-term outcomes. However, we show that such

an approach may fail to improve long-term performance, and can even harm it, when the outcome of interest

(e.g. repeated purchases or CLV) accumulates unobserved individual differences over time. Our theoretical

analysis demonstrates that unexplained variations in the outcome variable can lead to inaccurate CATE

estimates and incorrect targeting policies. To address this issue, we propose using a surrogate index that

leverages less noisy short-term purchases for long-term CATE estimation and policy learning. Furthermore,

we introduce the separate imputation strategy to handle the non-separable nature of churn and purchase

in marketing contexts. This involves constructing two distinct surrogate models, one for the observed last

purchase time and the other for purchase frequency. Our simulation and real-world application show that (i)

using short-term signals instead of the actual long-term outcome significantly improves long-run targeting

performance, and (ii) the separate imputation technique outperforms existing imputation approaches.

Keywords : long-run targeting, heterogeneous treatment effect, statistical surrogacy, customer churn, field

experiments
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1. Introduction

Recent advancements in business experimentation and artificial intelligence have revo-

lutionized the way companies perform targeted interventions. By leveraging controlled

experiments, businesses can infer causal relationships between their marketing offerings

and customers’ responses. Rather than simply measuring the average impact across all

customers, companies can further identify differences in customer sensitivity, commonly

referred to as the conditional average treatment effect (CATE). This allows firms to target

customers who are predicted to respond in a way that aligns the most with their goals

(such as profits or purchases)— those with the highest predicted CATEs—and achieve
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their objectives more effectively. This approach has gained significant popularity among

organizations, and some tech companies, such as Microsoft (Oprescu et al. 2019) and Uber

(Chen et al. 2020), have taken a step further by making their software packages for CATE

estimation open-source. This has enabled more companies to adopt this approach and

develop highly precise targeted marketing interventions at scale.

The test-to-target approach has proven effective in various marketing contexts, such

as customer retention (Guelman et al. 2012, Ascarza 2018, Lemmens and Gupta 2020),

membership subscription (Simester et al. 2020, Yoganarasimhan et al. 2022), and catalog

mailing purchases (Hitsch et al. 2023). Despite its popularity, it remains untested whether

this approach can effectively optimize long-term outcomes, such as customer lifetime value

(CLV) or repeated purchases, which are typically the top-line metrics for a firm. In theory,

the observation window should not alter the way firms optimize their resource allocation—

if the business goal is to maximize long-run customer values, firms should target customers

based on their long-term sensitivity to the intervention, measured as the causal impact of

the intervention on the long-term business outcome.

However, our research shows that the conventional test-to-target approach can be inef-

fective and even harmful for optimizing long-term customer response, such as repeated

transactions over an extended period following the intervention. Unlike short-term out-

comes (e.g., immediate purchases after the intervention), long-term outcomes accumulate

individual customer behaviors, such as unobserved heterogeneity, state dependence, or

habit persistence, that cannot be explained by the observed customer characteristics. As a

result, long-term outcomes not only carry information about the treatment effect (which

is what CATE models aimed to capture), but also accumulate unexplained variations that

persist over time. This presents a significant and understudied challenge in CATE estima-

tion, as existing models may generate unstable and high variance CATE predictions when

unexplained variations are large. Targeting customers based on such high-variance models

can result in an ineffective and potentially harmful targeting strategy for desired long-term

outcomes.

This paper has two main objectives. First, we examine the issue of CATE estimation

when the outcome variable is noisy. We provide theoretical analyses that demonstrate the

relationship between unexplained variations in the outcome variable and the predictive
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accuracy of a CATE model. Our analyses demonstrate that the variance of most exist-

ing CATE models increases when there is greater unexplained variation in the outcome

variable. This problem is particularly severe when the outcome variable captures repeated

customer behaviors over an extended period of time, which is often the case in marketing

contexts. As we demonstrate, long-term marketing outcomes tend to accumulate unex-

plained customer behaviors over time. This may appear to contradict the expectation that

long-term outcomes are less noisy because idiosyncratic shocks would eventually cancel out

over time. However, unexplained variations in customer behaviors are often serially corre-

lated due to unobserved heterogeneity and customer attrition, making long-term outcomes,

such as repeated purchases or customer lifetime value, intrinsically noisy.

Secondly, we present a solution that enables firms to implement more effective targeted

interventions and achieve better long-term performance. We suggest that firms use a noise-

reduced proxy as the outcome variable for CATE estimation, instead of relying solely on the

actual long-term outcome. This approach, although counter-intuitive, has the potential to

reduce unexplained variations while capturing the heterogeneous impact of the intervention

from short-term signals. To construct this proxy, we adopt the surrogate index approach

(Athey et al. 2019a, Yang et al. 2022), which leverages historical data that is readily

available to the firm to infer the relationship between short-term purchases and the actual

long-term outcome. In addition to valid CATE estimation as described in Yang et al.

(2022), we formally show that the unexplained variations in the surrogate index are smaller

than those in the actual long-term outcome, leading to more accurate CATE estimation.

As a result, this approach enables firms to effectively target customers based on their long-

term sensitivity to the intervention and mitigate the problem caused by the unexplained

variation in the long-term outcome.

Furthermore, we highlight that the conventional approach to constructing surrogate

indices, as proposed in Athey and Wager (2019), Yang et al. (2022), may not be the

most effective in situations when customer attrition exists, which is often encountered in

marketing contexts. Therefore, we propose a novel imputation technique to address this

issue. Our approach involves developing two separate models using historical data: one for

predicting the time of a customer’s last observed purchase (i.e., the proxy for lifetime) and

another for predicting the average purchase frequency when a customer is still alive. We

then combine the predictions of both models to estimate expected future purchases. This
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approach, which we call the separate imputation strategy, is distinct from other imputation

methods in the literature on statistical surrogacy as it addresses the challenge of estimating

long-term outcomes resulting from the non-separable nature of churn and purchase. This

technique enables firms to construct more accurate and robust surrogate indices, leading to

improved CATE estimation and more effective targeting strategies for optimizing long-term

outcomes.

Through simulation analyses and a real-world marketing campaign, we demonstrate the

effectiveness of leveraging “short-term signals” for CATE estimation rather than relying

on the actual outcome. We compare the performance of CATE models based on differ-

ent outcome variables and show that targeting using short-term signals, whether using

short-term outcomes or surrogate indices, consistently outperforms the approach of directly

targeting based on CATE models for the long-term outcome. Our findings are surprising

as they suggest that to maximize long-term outcomes, firms should ignore the actual long-

term outcome and instead rely on short-term outcomes and historical data. Furthermore,

we demonstrate that our separate imputation approach achieves the best targeting per-

formance. In the real-world application, targeting customers using the proposed solution

can yield a 6% increase in profits compared to directly rolling out the best action to all

customers, while targeting based on the long-term outcome results in a 3% profit loss.

There are several compelling reasons for firms to implement our proposed solution.

Firstly, in addition to its targeting effectiveness, this solution is ideal because firms no

longer need to wait for the long-term results to be observed, which can significantly delay

decision-making (Athey et al. 2019a, Yang et al. 2022). With our approach, firms can

simultaneously improve the profitability of targeted marketing and make faster decisions.

Secondly, it can be easily implemented using standard machine learning models and existing

software packages, enabling firms to quickly and efficiently deploy the model that gener-

ates the highest profit. Thirdly, the separate imputation approach is widely applicable to a

variety of business settings, including retailers, e-commerce, apparel, and non-profit orga-

nizations. Finally, our approach does not require collecting additional experimental data

and instead leverages readily available historical customer data. This means that firms can

adopt our solutions without incurring the additional costs of increasing experiment size,

making it a cost-effective solution for enhancing the effectiveness of targeted interventions.
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Our research contributes to the literature in four stands. First, we identify practical

challenges in designing and implementing targeting policies, and highlight how existing

test-to-target approaches (e.g., Ascarza 2018, Simester et al. 2020, Yoganarasimhan et al.

2022, Ellickson et al. 2022) may be ineffective when firms aim to optimize customers’

long-term outcomes. Our real-world application shows that interventions can have a com-

bined effect on both churn and purchase frequency, and thus, it is crucial to consider both

the short-term impact (increased purchase frequency) and potential long-term benefits

(improved customer retention). However, unexplained variations in long-term purchases

can significantly impact the predictive performance of CATE models, resulting in ineffec-

tive targeting. To tackle this issue, we propose a new targeting paradigm where firms reduce

noise in the outcome variable before estimating any CATE models. Although ignoring the

actual outcome of interest may seem counter-productive, we demonstrate how creating the

“right” proxy using the surrogate index approach with proper imputation methods results

in more effective targeting.

Second, we address a critical issue in estimating heterogeneous treatment effects. While

significant work has focused on developing methods for estimation (Imai and Strauss 2011,

Imai and Ratkovic 2013, Guelman et al. 2015, Grimmer et al. 2017, Chernozhukov et al.

2018, Künzel et al. 2019, Athey et al. 2019b, Kennedy 2020, Nie and Wager 2021) and

policy learning (Manski 2004, Kitagawa and Tetenov 2018, Athey and Wager 2021, Mbakop

and Tabord-Meehan 2021), this paper is the first, to the best of our knowledge, to formally

establish the relationship between unexplained variations and the predictive accuracy of

CATE models. Additionally, we bring behavioral insights from the marketing literature

to understand why the high variance problem is prevalent in many different contexts.

Our study provides important insights into the limitations of existing CATE models and

highlights the need for robust solutions to estimate heterogeneous treatment effects.

Third, our study contributes to the literature on statistical surrogacy and long-term

treatment effect estimation (Prentice 1989, Athey et al. 2019a, Yang et al. 2022, Qian

et al. 2021, Imbens et al. 2022). This literature has traditionally assumed that firms use

short-term signals because of the cost of waiting to observe long-term outcomes. We further

demonstrate, using formal theory and empirical evidence, the value of leveraging short-term

proxies even when the actual long-term outcome is observed. Furthermore, past research
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has primarily constructed surrogate indices using standard regression models, while our

work highlights the importance of considering the data generating process for such indices.

Lastly, our work contributes to the literature on treatment effect estimation for low-

sensitivity experiments (i.e., experiments with outcome variance much larger than the

treatment effect). Our approach differs from previous research (e.g., Deng et al. 2013, Guo

et al. 2021, Jin and Ba 2021) in a critical way—we do not reduce variance by eliminating

variations that can be explained by customer observables. Instead, we suggest only using

the information that short-term signals and pre-treatment covariates can explain for tar-

geting. This is essential to our solution as our objective is to overcome inaccurate CATE

estimates caused by unexplained variations rather than high variance due to observed

heterogeneity.

The paper is organized as follows. In the next section, we provide a motivating example

that highlights the issue of ineffective long-term targeting. Section 3 provides a theoretical

analysis of the impact of unexplained variations on CATE estimation and targeting and

explores the behavioral mechanisms that drive the high levels of unexplained variations

encountered in many long-term marketing outcomes. Section 4 introduces the surrogate

index approach as a solution to identify the long-term treatment effect and reduce unex-

plained variations, along with the proposed strategy to address customer attrition when

building the surrogate index. In Section 5, we validate our solution through simulation

analyses and explore the potential trade-off between information gain and noise accumula-

tion. We demonstrate the superiority of our approach in a real-world marketing campaign

in Section 6. Finally, we conclude in Section 7 and suggest several research directions for

future work.

2. Motivating Example
2.1. Identifying Sensitive Customers

We first use the data from our empirical application (described in detail in Section 6)

to illustrate the challenge of long-term targeting. The data is from a food-tech company

that sells fresh, pre-cooked meals through their vending machine network. The company

distributes promotional coupons to newly acquired customers, with the goal of encouraging

repeat purchases. The company is considering sending extra coupons to specific customers

who respond positively to the intervention, meaning they will (hopefully) end up purchasing

more due to the additional coupons. All coupons are sent at the same time, right after a
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newly acquired customer makes their first purchase, and have an effective period of two

weeks, automatically applied to the customer’s subsequent purchase. To develop a targeting

policy that achieves this goal, the company conducted an A/B test. A randomly selected

group of users received the additional incentive, while the control customers were in the

“business-as-usual” group.

Let us examine a scenario in which the focal firm seeks to find a targeting policy that

optimizes the average purchase counts of a customer within the first week after the inter-

vention (Yi,1). This situation is comparable to most literature on coupon targeting (e.g.,

Gubela et al. 2017, Dubé et al. 2017), where the objective is to maximize the immedi-

ate purchase after the intervention. To identify the customers who should receive extra

coupons, we construct a CATE model based on Yi,1 and evaluate the model’s performance

using a bootstrap validation method similar to that used in Ascarza (2018).1 Briefly, we first

estimate a CATE model (τ̂Y1) using the training set and predict CATEs for the validation

customers. We then sort validation customers based on their predicted CATEs and group

them into quintiles, with Qτ̂Y1
1 containing customers with the highest predicted CATEs

(i.e., those who are predicted to increase purchases the most because of the intervention),

and Qτ̂Y1
5 containing those with the lowest predicted CATEs.

Finally, we evaluate the model’s ability to identify the “right targets” by computing the

group average treatment effect (GATE) for each quintile. We compute GATEs using two

measures: (i) the predicted CATEs (Prediction), and (ii) the actual outcome Yi,1 (Data).

If these two values are similar, a targeting policy derived from the CATE model would be

effective for the firm. Specifically, the target segment recommended by the model (Qτ̂Y1
1 )

would include customers for whom the intervention is beneficial (i.e., high actual GATE),

while the do-not-touch segment (Qτ̂Y1
5 ) would include customers for whom the intervention

does not generate additional transactions. Figure 1a reports both predicted and actual

GATEs for customers in the validation data.2 The proximity between predicted and actual

GATEs suggests that the prediction provided by the CATE model is close to the actual

treatment effect. This implies that the model can effectively rank customers according

to their sensitivity to the intervention, allowing the firm to create targeted policies that

maximize customer transactions within one week of the intervention.

1 See Section 6.2 for the details.

2 Figure 1 shows the results when using X-learner for CATE estimation. All results in this paper are replicated if
using different CATE models, including Causal Forest, T-learner, and S-learner. See Appendix C.3
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Figure 1 Predicted and Actual GATEs by Predicted CATE Levels When (a) the Outcome Variable is Yi,1 and

(b) the Outcome Variable is Yi,10.
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Note. Groups Qτ̂·
1 , · · · ,Qτ̂·

5 are categorized based on the decreasing order of treatment effect predicted by CATE

models for (a) Yi,1 and (b) Yi,10. Hence, the predicted GATEs (gray line) are monotonically decreasing by definition.

Actual GATEs (blue line) are computed from the observed outcomes. For example, the predicted and actual GATE

on Yi,1 for Qτ̂Y1
1 in Figure 1a are 0.046 and 0.038, respectively.

2.2. Targeting for the Long-term Outcome

The primary objective of the focal firm, however, is not to increase transactions in the

immediate future but to encourage purchases over a more extended time frame, such as ten

weeks after the intervention.3 In theory, the same approach for targeting should work, with

the only difference being that Yi,10 (i.e., cumulative number of purchases during the next

10 weeks) is used as the outcome when estimating CATEs and when comparing predictions

with actual GATEs. Consequently, we repeat the same analysis, but now focus on purchase

counts over the ten weeks following the intervention.

Figure 1b reports the predicted and actual GATEs on Yi,10 for validation customers.

The U-shaped curve of actual GATEs indicates that the CATE model cannot identify the

correct rankings of treatment effects on Yi,10. Specifically, if the company decided to target

customers in Qτ̂Y10
1 (i.e., those predicted to have the greatest effect), the impact of targeting

that group would only be 0.41 additional purchases, instead of the 0.58 predicted by the

model. The discrepancy between predicted and actual effects is even more pronounced for

3 We use ten weeks to align with the time frame used by the focal firm when considering future purchases for newly
acquired customers. However, this duration may differ among companies.
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customers with the least favorable predicted CATEs (i.e., those in Qτ̂Y10
5 ), the difference

between predicted and actual effects is even more pronounced—the predicted treatment

effect for this group is almost zero, whereas targeting this group would actually increase

transactions by 0.63, a much higher value than the result of targeting Qτ̂Y10
1 .

Why is the test-to-target approach ineffective for Yi,10 while it works well for short-

term outcomes? We argue that long-term outcomes, especially those that involve repeated

interactions with users/consumers, are consistently impacted by high levels of noise, which

can significantly reduce the accuracy of existing CATEmodels. Therefore, targeting policies

based on the predictions from these models can lead to suboptimal outcomes and even

reduce the profitability for the firm than not using any targeting at all.

3. The Problem: Unexplained Variations in Long-Term Outcomes

We now delve into the challenges associated with estimating CATEs for marketing out-

comes over a long-term horizon. Our theoretical investigation first examines the influence

of unexplained variations in the outcome variable on the effectiveness of standard CATE

estimators. Specifically, we highlight how the presence of high levels of noise in long-term

outcomes can significantly reduce the accuracy of existing CATE models, rendering them

ineffective for targeting. Next, we characterize the data generating process of typical long-

term marketing outcomes and demonstrate that the unexplained variance of such outcomes

is increasing in the length of the observational period. (The proofs for all theoretical results

are available in Online Appendix A).

3.1. The Firm’s Problem

In targeting, companies aim to construct a treatment prioritization rule that optimizes a

desired outcome, such as maximizing long-term transactions, through personalized treat-

ment assignment. The most recent best practices (Athey 2017, Ascarza 2018, Hitsch et al.

2023) suggest companies to target customers based on the “incremental effects” of an

intervention, which is characterized as the CATE on the outcome variable. Specifically,

assume that the company performed a marketing intervention on their customers with two

treatment conditions (Wi ∈ {0,1}). Then, the CATE is defined as

τY (Xi)≡E[Yi(1)|Xi]−E[Yi(0)|Xi],
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where Yi(Wi) is the potential outcome (Rubin 1974, Holland 1986) of customer i’s response

given the treatment condition Wi, and Xi includes the pre-treatment customer covariates

capturing the treatment effect heterogeneity.

To identify the CATE from an experimental data, we impose the following assumptions

on the treatment assignment mechanism.

Assumption 1. [Intervention] The treatment assignment in the experimental data

satisfies the following assumptions:

1. (Randomization) The treatment assignment is independent of the potential outcome,

i.e., Yi(1), Yi(0)⊥⊥Wi.

2. (Overlap) The probability of receiving a treatment should be positive for all individuals

in the population regardless of their covariate values, i.e., 0< P[Wi = 1|Xi]< 1.

3. (No Interference) The potential outcome of a customer is not affected by the treatment

assigned to other customers.

In this paper, we assume complete randomization in the treatment assignment for simplic-

ity. However, the theoretical results presented herein are readily extended to observational

studies under the unconfoundedness assumption.

3.2. The Role of Unexplained Variations in CATE Estimation

We now present a theoretical framework to investigate the impact of unexplained variations

in the outcome variable on the predictive accuracy of common CATE models. We define

unexplained variations as the residual variations in the outcome variable that cannot be

explained by Xi and Wi, i.e.,

εi(Xi,Wi)≡ Yi(Wi)−E[Yi,T (Wi)|Xi].

We assume a zero mean and finite variance for εi(Xi,Wi), and by construction its variance

is identical to Var[Yi(Wi)|Xi].

In the theoretical analysis, we consider a wide range of CATE estimators including

Causal Forests and other learners widely used in practice. Specifically, we assume the the

following class of CATE estimators:

Assumption 2. [Class of CATE Estimator] For a given test customer with covari-

ates xtest, the CATE predictor τ̂Y (xtest) = µ̂1
Y (xtest)− µ̂0

Y (xtest) induces two weighted esti-

mators of the residualized outcomes (µ̂0
Y and µ̂1

Y ) of the following form:

µ̂w
Y (xtest) =

∑
i∈D:Wi=w

ℓ̂wi (xtest)[Yi− m̂w
Y (Xi)],
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where D denotes the set of customers used to generate the prediction. We further impose

the following assumptions about the estimation process:

1. [Honest Estimation] The weight function ℓ̂w(xtest) is independent of Yj, ∀j ∈ D.

This assumption suggests that ℓ̂w(xtest) is constructed either only using the covariates

or using a sample that is independent of D.

2. [Cross Fitting] The adjustment function m̂w
Y (·) is either equal to zero (i.e., no resid-

ualization) or created using a different sample that is independent of both D and the

data employed to construct the weight function.

Essentially, we examine a class of CATE estimators that predicts CATEs by computing

the weighted average of (residualized) outcomes of customers in the training set, with

the weight and residual functions constructed using the state-of-the-art sample splitting

techniques such as cross-fitting (Newey and Robins 2018) and honest estimation (Athey

et al. 2019b). Note that, as we show in Online Appendix A.1, this class of estimators

include a wide range of popular models, such as Causal Forest (Wager and Athey 2018),

S-learners and T-learners with different outcome models (Künzel et al. 2019), as well as

R-learners with a variety of second-stage estimators (Nie and Wager 2021, Kennedy 2020).

The following theorem formally establishes the relationship between the amount of unex-

plained variation and the bias and variance of common CATE estimators:

Theorem 1. [Bias and Variance of CATE Prediction] Suppose Assumption 1

holds and the CATE estimator τ̂Y (xtest) belongs to the class described in Assumption 2.

Then, for a test customer with covariates xtest,

1. The bias of the predicted CATE, Bias [τ̂Y (xtest)]≡E[τ̂Y (xtest)−τ(xtest)], is not affected

by the unexplained variations in the outcome variable (i.e., εi(Xi,Wi)).

2. The variance of the predicted CATE is increasing in the variance of unexplained vari-

ations in the training set. Specifically, the variance is

Var [τ̂Y (xtest)] =E

(∑
i∈D

[
ℓ̂Wi
i (xtest)

]2
Var[Yi(Wi)|Xi]

)
. (1)

Theorem 1.1 implies that consistent estimators, such as Causal Forest (Wager and Athey

2018) or R-learners with linear regression as the second-stage estimator (Semenova and

Chernozhukov 2021), can be used to achieve zero bias for a large experimental sample,

even when there exist substantial unexplained variations in the outcome variable. However,
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Theorem 1.2 highlights the significant impact that unexplained variations on the variance

of a CATE estimator. This finding is particularly relevant for practitioners who aim to

optimize long-term outcomes, as the accumulation of noise over time can dramatically

increase the variance of the CATE estimator, leading to suboptimal targeting policies.

To illustrate the impact of unexplained variation on targeting performance, we compare

the targeting decisions based on the CATE model to the optimal targeting policy, which

targets customers with positive true CATEs. The result in Theorem 1 leads to the following

proposition:

Proposition 1. [Mistargeting] Consider a scenario in which a company obtains a

consistent CATE model τ̂Y (·) (e.g., Causal Forest) and implements a policy whereby

only customers with positive (expected) treatment effect will receive the intervention.4

Then, the probability of the learned CATE model deviating from the optimal policy, i.e.,

P [τY (xtest) · τ̂Y (xtest)< 0] , is increasing in the variance of unexplained variations for cus-

tomers in the training set (i.e., Var[Yi(Wi)|Xi]).

Proposition 1 shows that the discrepancy between the learned policy and the optimal

targeting policy increases as the amount of unexplained variations in the training set grows.

Consequently, regardless of the business context, organizations are bound to encounter

difficulties in CATE estimation when the outcome variable is noisy.

It is important to note that alternative methods exist for targeting customers beyond

directly targeting those with positive CATEs. For instance, rather than building a CATE

model and targeting individuals with positive predicted CATEs, Kitagawa and Tetenov

(2018) and Athey and Wager (2021) first derive a proxy variable for CATE using inverse

probability weighting or a doubly robust estimator, then develop a policy (usually employ-

ing machine learning models) to determine which customers the firm should target. These

methods are conceptually similar to the targeting approach examined in our study and

encounter the same issue, as large unexplained variations in the outcome variable also

increase the variance of the CATE proxy variable. (We provide additional empirical evi-

dence in Section 6.3.2.)

4 This proposition also holds in the case where the firm aims to target customers with treatment effects larger than
a certain threshold. See Online Appendix A for details.
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3.3. Unexplained Variations in Long-term Marketing Outcomes

Having established the relationship between unexplained variations and targeting perfor-

mance, we now examine the prevalence and severity of this problem in situations where the

objective is to maximize long-term marketing outcomes such as customer lifetime value or

repeated purchases. At first glance, one might expect that aggregating purchasing patterns

over time would result in a less noisy measurement compared to a single observation for

the same customer, as it would cancel out unexpected behaviors across multiple periods.

However, as we demonstrate in this section, the presence of factors such as unobserved

heterogeneity or customer attrition introduces strong temporal correlation in purchase

behaviors. In such scenarios, aggregating purchase outcomes over time amplifies the unex-

plained variations caused by these factors, rather than cancelling out idiosyncratic shocks.

To better understand and characterize this phenomenon, we now present a formal theory

on long-term marketing outcomes .

3.3.1. Formalizing Transaction Behavior. Let us assume that a company aims to

design a targeted intervention with the objective of increasing customer purchases, denoted

as Yi,T , within a specific time frame T following the intervention. Based on the literature

on probabilistic models for repeated purchasing behaviors (Schmittlein et al. 1987, Fader

et al. 2005, Abe 2009, Bachmann et al. 2021), we make the following assumptions on the

customer behaviors.

Assumption 3. [Data Generating Process] Let Wi denote the treatment assignment

and Xi the customer covariates. We denote t= 0 as the time when the intervention takes

place and Xi is recorded. The customer behavior is characterized by the following assump-

tions:

1. A customer i is in the “alive” state with the firm during a period of time (namely the

customer lifetime) and transitions to a “permanently dead” state thereafter.

2. At the beginning of each period t, each customer decides to stay alive with the company

or not. The relationship state δi,t ≡ 1(Lifetimei ≥ t) can be written as

δi,t = θt(Xi,Wi)+ εθi,t,
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where θt(Xi,Wi)≡E [δi,t|Xi,Wi] = P [Lifetimei ≥ t|Wi,Xi] is the conditional mean alive

probability5 for period t, and εθi,t ≡ δi,t −E [δi,t|Xi,Wi] represents the mean-zero varia-

tion that cannot be explained by Xi and Wi.

3. The realized number of transactions made by customer i during an alive period t can

be characterized as

Si,t = λt(Xi,Wi)+ ελi,t,

where λt(Xi,Wi)≡E[Si,t|Wi,Xi] is the conditional mean transaction counts in period

t, and ελi,t denotes the mean-zero unexplained variation. After becoming inalive, the

customer no longer makes any purchase with the firm, and the realized transaction

counts is zero for all the following periods.

4. Unexplained variations in churn and purchase have non-negative serial correlations,

i.e., Cor
(
εθi,t1, ε

θ
i,t2

)
≥ 0 and Cor

(
ελi,t1 , ε

λ
i,t2

)
≥ 0, for all t1, t2 > 0, and the unexplained

variations in the two processes are independent, i.e., {εθi,t}Tt=1 ⊥⊥ {ελi,t}Tt=1.

Note that our framework is highly general and can be applied to both contractual and non-

contractual settings (Fader and Hardie 2010, Fader et al. 2010). The distinction between

the two lies in whether δi,t is directly observable or not. Furthermore, our assumptions

correspond to the setting of a generalized linear model (if θt and λt are linear functions)

and a generalized nonlinear model (if θt and λt are non-linear function) for the relationship

state δi,t and realized transactions Si,t. While many probabilistic models for purchasing

behaviors do not explicitly include additive errors (e.g., the Beta-Geometric model for

customer lifetime and the Gamma-Poisson model for purchase counts), our framework can

be applied to such cases by assuming specific distributions for εθi,t and ελi,t.

3.3.2. Unexplained Variations in Long-term Marketing Outcomes. We now examine

the quantity the company aims to maximize, namely the number of actual transactions

in the first T periods following the intervention, Y T
i (Wi) =

∑T
t=1Si,t(Wi) . Building on

our prior assumptions, the realized transaction counts in a particular period t, denoted as

Si,t(Wi), can be expressed as:

Si,t(Wi) = δi,t · Si,t +(1− δi,t) · 0 = δi,t · Si,t =
[
θt(Xi,Wi)+ εθi,t

]
·
[
λt(Xi,Wi)+ ελi,t

]
.

5 Note that we can write θt(Xi,Wi) =
∏t

k=1 [1− pt(Xi,Wi)], where pt(Xi,Wi) is the expected churn probability of
customer i in period t given the treatment Wi and covariates Xi.
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Therefore, the total transactions from t= 1 to T can be written as

Y T
i (Wi) =

T∑
t=1

[
θt(Xi,Wi)+ εθi,t

]
·
[
λt(Xi,Wi)+ ελi,t

]
. (2)

The formulation in Equation (2) highlights when and why the noise of a long-term

marketing outcome can be substantially large. For example, unexpected customer churn

(whether silent or not, as discussed in Ascarza et al. (2018)) can result in large nega-

tive values of εθi,t =−θt(Wi,Xi) for all periods after churn, leading to significant negative

unexplained variations in Yi,T (Wi). Similarly, “binge-buying” behavior (Zhang et al. 2013,

Lu et al. 2019) can cause large positive values of ελi,t for multiple periods, resulting in

substantial positive unexplained variations in Yi,T .

Consequently, when individual behaviors accumulate over time, the unexplained varia-

tions in the outcome variable will be larger as the firm extends the observation length for

the business outcome. This property is formally shown in the following theorem:

Theorem 2. [Unexplained Variation in Long-term Outcomes] Assume the data

generating process described in Assumption 3. Then, the unexplained variations in Yi,T (Wi)

is increasing in T , i.e.,

Var [Yi,T2(Wi)|Xi]−Var [Yi,T1(Wi)|Xi]> 0, ∀ T2 >T1.

Combining Theorem 2 with Theorem 1, it can be inferred that the variance of standard

CATE estimators will increase as the observation window becomes longer, resulting in

larger prediction errors and less effective targeting policies. This observation leads to the

following corollary:

Corollary 1. [Mistargeting for Long-Term Outcomes] Suppose that Assump-

tion 1, 2, and 3 hold. Also, assume that the intervention directly affects the purchases up

to period T1. Then, for a consistent CATE estimator, the mistargeting probability is higher

for the policy based on τ̂YT2
than τ̂YT1

if T2 >T1, i.e.,

P
[
τYT2

(xtest) · τ̂YT2
(xtest)< 0

]
>P

[
τYT1

(xtest) · τ̂YT1
(xtest)< 0

]
.

Corollary 1 highlights the challenge associated with targeting based on long-term CATE

models. Specifically, the probability of mistargeting increases when using a long-term
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CATE model compared to a short-term CATE model, particularly when there is no addi-

tional signal of treatment effects in later periods. This is due to the higher uncertainty in

CATE estimation due to the noise associated with long-term outcomes, which can lead to

less accurate CATE estimation.

3.3.3. Discussion of the Data Generating Assumptions in Marketing Contexts.

Before we develop a solution to this problem, it is important to examine to what extent the

assumptions of our theoretical framework hold in marketing applications. A key condition

for Theorem 2 to hold is the presence of non-negative serial correlation in unexplained

variations (i.e., Assumption 3.4). Hence, a natural question to ask is, how realistic are

these data patterns in marketing contexts?

In line with prior research on choice persistence over time (e.g., Guadagni and Little

1983, Fader and Lattin 1993, Roy et al. 1996), we argue that this phenomenon is common

in real-world marketing contexts. In particular, the prevalence of unobserved heterogeneity

and customer attrition drives positive serial correlation in the unexplained variations,

leading to an accumulation of noise over time.

First, positive serial correlation in unexplained variations in the purchase processes

occurs due to variations in customers’ intrinsic purchase tendencies towards the company

(i.e., unobserved heterogeneity), commonly accounted for via individual fixed effects (e.g.,

Jones and Landwehr 1988, Gonul and Srinivasan 1993). The following proposition shows

that individual fixed effects result in a positive serial correlation in purchase tendencies:

Proposition 2. [Autocorrelation of Unexplained Purchase Variations] Let us

assume that the unexplained variation in the purchase process can be expressed as

ελi,t = ελi + ηλi,t,

where ελi represents the time-invariant individual purchase tendency, and ηλi,t denote the

i.i.d per-period shock that is independent of ελi . Then, the serial correlation of ελi,t is positive,

i.e., Cov(ελi,t1, ε
λ
i,t2

)> 0.

This proposal emphasizes that when observable characteristics (Xi,Wi) are insufficient to

capture customer heterogeneity, unobserved variations in the purchase process will exhibit

positive autocorrelations. Other customer behaviors, such as state dependence and habit
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persistence (Roy et al. 1996, Seetharaman 2004), can also contribute to positive correla-

tions. Conversely, stockpiling behavior (Tulin et al. 2002) may lead to negative correlation.

The severity of noise accumulation will depend on the extent to which these behavioral

drivers are present in the data and not captured by the observables. In our empirical study,

unobserved heterogeneity is likely present since pre-treatment behaviors collected by the

company may not fully account for outcome variations driven by customer preferences. On

the other hand, stockpiling behavior is unlikely given that the company mainly sells fresh

meals with a short shelf life.

Second, the serial correlation of unexplained variations in the churn process is, by defini-

tion, positive. When a customer churns in period t (resulting in a negative value of εθi,t), all

subsequent unexplained variations for that customer should also be negative. Conversely, if

a customer remains alive at time t (resulting in a positive value of εθi,t), then all of the prior

unexplained variations should also be positive for this customer. The following proposition

provides formal proof for this property:

Proposition 3. [Autocorrelation of Unexplained Churn Variations] Under the

data generating process as described in Assumption 3, we have

Cov
(
εθi,t1, ε

θ
i,t2

)
= θt2(Xi,Wi)[1− θt1(Xi,Wi)]≥ 0.

Finally, our theoretical framework assumes that the unexplained variations in churn and

purchase processes are independent, i.e., they reflect distinct types of individual prefer-

ences—one for retention and another for purchase frequency. This assumption simplifies

our proofs and is supported by previous studies (Abe 2009) that found no significant

correlation between the noises in churn and purchase processes. However, even if there

were a positive correlation between these noises, our findings would remain unchanged.

We acknowledge that our framework’s robustness to those assumptions should be further

explored in future research.

In conclusion, the state-of-the-art “test-to-target” approach is inadequate when there is

noise accumulation in the outcome of interest, a problem that exacerbates as the length of

the observation period increases. Consequently, it is imperative to develop a new approach

that enables firms to design targeting policies that can effectively maximize long-term

outcomes.
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4. The Solution: Surrogate Index with Separate Imputation

Our proposed solution involves using a “noise-reduced proxy” as a substitute for the out-

come variable when estimating CATEs. This approach aims to improve targeting policy by

reducing unexplained variations that are not relevant to the intervention, without altering

the firm’s objective (i.e., the firm is still optimizing the long-term outcome). Although

using a proxy instead of the actual outcome may seem counterproductive as it contains

less information, we demonstrate that a “well-specified proxy” can effectively eliminate

irrelevant variations, resulting in superior targeting policy.

To be effective, this proxy should meet three key requirements. Firstly, it should eliminate

unexplained variations in the outcome variable to reduce the variance of the CATE model.

Secondly, it should capture long-run treatment effect heterogeneity to ensure that the

resulting targeting strategy is optimized for the desired long-term outcome. Finally, it

should account for behavioral patterns present in the data, such as customer attrition.

We propose a novel imputation approach that satisfies these requirements and improves

long-term targeting precision.

4.1. Identification and Variance Reduction Using Surrogate Index

Our proposed solution builds upon the surrogate index approach (Athey and Wager 2019,

Yang et al. 2022) for long-term treatment effect estimation. The surrogate index refers to

the predicted value of the long-term outcome, based on the observed short-term outcomes

and pre-treatment covariates. To construct a surrogate index, we model the relationship

between short-term and long-term outcomes using historical data obtained from previously

acquired customers prior to the start of the experiment. One desirable feature of the

proposed solution is that these data are readily available for most firms.

More formally, let us assume that the company has access to two datasets: the exper-

imental data with the intervention (denoted as E), and the historical data without the

intervention (denoted as H). The surrogate index is defined as follows:

Definition 1. The surrogate index is the expected long-term outcome (Yi,T ) of cus-

tomers in H, conditioned on their short-term behaviors (Si,T0 = {Si,1, · · · , Si,T0} for some

T0 <T ) and pre-treatment covariates (Xi). Mathematically, it can be represented as:

ỸT (ST0,Xi)≡EH [Yi,T |ST0,Xi] .
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There are two additional requirements for the identification of CATE on Yi,T through

ỸT (ST0,Xi) (Athey et al. 2019a):

Assumption 4. [Surrogacy] The short-term outcomes can fully mediate the treatment

effect of Wi on Yi,T ; that is, Wi ⊥⊥ Yi,T | Si,T0,Xi , ∀i∈ E .

Assumption 5. [Comparability] The experimental and historical data are comparable

in distribution; that is, Yi,T | Si,T0,Xi , i∈ E d∼ Yi,T | Si,T0,Xi , i∈H.

When these conditions are met, the surrogate index representation enables identification

of the CATE. As a result, a targeting policy based on the surrogate index is effective in

optimizing the long-term outcome. Moreover, since the surrogate index is based on short-

term outcomes, it contains less unexplained variation compared to the actual long-term

outcome and therefore reduces the variance of CATE predictions. More formally, we state

the theorem as follows:

Theorem 3. [Identification and Variance Reduction Using Surrogate Index]

Suppose that Assumption 1, Assumption 4, and 5 hold.

1. The CATE of the intervention on the long-term outcome is equal to the CATE on the

surrogate index, that is,

τYT
(Xi) = ỸT (Si,T0(1),Xi)− ỸT (Si,T0(0),Xi),

where Si,T0(Wi) denotes the potential outcome of the short-term outcomes given the

treatment status Wi.

2. The variance of the surrogate index is smaller than the variance of the actual long-term

outcome, that is,

Var
[
ỸT (Si,T0(Wi),Xi)

]
<Var[Yi,T (Wi)|Xi].

Altogether, Theorem 3.1 and Theorem 3.2 imply that estimating the CATE on the sur-

rogate index leads to smaller variances for the same class of CATE model compared to

estimating it on the long-term outcome while still maintaining valid estimation of the

long-term treatment effect.
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4.1.1. Discussion of the Surrogacy Assumption in Marketing Contexts. The surro-

gate index approach is a powerful tool, but its effectiveness relies on two key prerequisites.

Firstly, it requires the existence of short-term signals that can accurately predict long-

term treatment effects. This condition is easily met for long-term outcomes associated with

relatively frequent behaviors (e.g., repeated purchases or continuous product usage) that

accumulate or recur over time, as seen in the retail, subscription-based media, food service,

or transportation industries. However, it can be challenging to find valid short-term surro-

gates in industries with long purchase cycles (e.g., the automotive sector). In such cases,

our solution may be less relevant as short-term signals may be more difficult to identify.

Secondly, the surrogacy assumption requires that short-term outcomes can fully medi-

ate the long-term treatment effect. If this condition is not met, discrepancies may arise

between the actual CATEs and those identified using the surrogate index (Yang et al.

2022), resulting in significant mistargeting errors. One way to ensure that the surrogacy

assumption is satisfied is to include a large number of surrogates (Athey et al. 2019a).

When dealing with long-term outcomes such as CLV or repeated transactions, including

more periods in the surrogate index may be the most natural way to satisfy the assump-

tion. However, adding more periods can also increase unexplained variations, which may

decrease the effectiveness of targeting policies. This issue is formally characterized in the

following proposition:

Proposition 4. [Noise Accumulation of Surrogate Indices] If we construct two

surrogate indices using different periods of short-term outcomes T0 and T ′
0, then we have

Var
[
ỸT (Si,T0(Wi),Xi)

]
>Var

[
ỸT (Si,T ′

0
(Wi),Xi)

]
.

Proposition 4, along with the surrogacy assumption, highlights the trade-off that firms

must balance between information gain and noise accumulation to achieve optimal tar-

geting performance. Essentially, including more (short-term) periods as surrogates helps

satisfy the surrogacy assumption but also introduces unexplained variations that increase

mistargeting errors. Determining the optimal number of periods for constructing surrogate

models requires empirical investigation. In this paper, we address this question through

simulations and real-world data. Our findings suggest that in cases where there are sub-

stantial unexplained variations in the long-term outcome, using fewer periods in the surro-

gate model, despite violating the surrogacy assumption, can still result in better targeting

performance.
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4.2. Separate Imputation Approach

Creating a surrogate index in situations with customer attrition can be a challenging task.

To illustrate this, consider a scenario where a firm observes short-term outcomes from

t = 1 to T0 and pre-treatment covariates, which will be used to construct the surrogate

index. Let us consider two quantities: the posterior mean lifetime (TT (Xi|Si,T0)) capped

at period T , and the purchase rate per alive period (Λ(Xi|Si,T0)) over the TT (Xi|Si,T0)

periods.6 Similar to Assumption 3, we express the observed lifetime and purchase rate as

the posterior mean plus the unexplained variation. Then, the total purchase counts over

T periods for customers in the historical data:H can be written as follows:

Yi,T =
[
TT (Xi|Si,T0)+ εTi,T

]
·
[
ΛT (Xi|Si,T0)+ εΛi,T

]
= TT (Xi|Si,T0) ·ΛT (Xi|Si,T0)︸ ︷︷ ︸

=EH[Yi,T |ST0
,Xi]≡ỸT (ST0

,Xi)

+ TT (Xi|Si,T0) · εΛi,T +ΛT (Xi|Si,T0) · εTi,T + εTi,T · εΛi,T︸ ︷︷ ︸
=εi,T (Xi,Si,T0

)

,

(3)

where εTi,T and εΛi,T denotes the unexplained variations in lifetime and purchase rate, respec-

tively. In this case, regressing Yi,T on Si,T0 andXi, as done by Athey et al. (2019a) and Yang

et al. (2022), could result in inaccurate estimation of ỸT (ST0,Xi) due to the dependence

of the unexplained variation term (εi,T (Xi,Si,T0)) on Si,T0 and Xi.

We propose a separate imputation strategy to address this issue. Our method involves

developing two distinct surrogate indices: one for customer lifetime (TT (Xi|Si,T0)) and

another for transactions (ΛT (Xi|Si,T0)), and combining them to produce the proxy that

will serve as the outcome variable for CATE estimation or policy learning. The separate

imputed outcome possesses the key characteristics of a proper surrogate index. First, it is

less noisy than the actual long-term outcome as it excludes unexplained variations that

occur during T0 +1 to T . Second, it provides valid inference for the long-term treatment

effect when Assumption 4 holds. Finally, the use of separate models for churn and purchase

processes addresses the estimation challenge arising from the non-separable nature of churn

and purchase in the long-term outcome.7

6 For simplicity, we focus on the average churn and purchase behaviors over the first T periods. However, our argument
can be easily extended to cases with time-varying survival probability and purchase rate.

7 Many other behavioral processes generate a non-separable nature of the error terms. For example, if a customer
needs to open an email in order to purchase, or to preview a product page before deciding how much to spend, these
behaviors might also present challenges if generating the proxy by directly regressing the final outcome (e.g., purchase
or not or total spend) on customer covariates and surrogate variables. Our separate imputation approach is also valid
for those cases.
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Constructing two separate models is straightforward in a contractual setting where cus-

tomer lifetime and average purchase rate are directly observed. However, in non-contractual

settings like the one we examine in this empirical application, customer attrition is no

longer observable. Therefore, we address this issue by leveraging the information from

widely-used recency and frequency measures. Specifically, we use observed last purchase

time until T (denoted as Ti,T ) as a proxy for customer lifetime, and the average purchase

counts per period until Ti,T (denoted as Λi,T ) as a proxy for average purchase rate per alive

period. By using the time of the last purchase as an approximation for the time at which

the customer churns, we can construct two surrogate models from the historical data H:

T̂T (Xi|Si,T0) = Êi∈H [Ti,T |Si,T0 ,Xi] , Λ̂T (Xi|Si,T0) = Êi∈H [Λi,T |Si,T0,Xi] ,

where Ê can be any regression or machine learning models. In practice, we can compare

the targeting performance of different models empirically and select the one that provides

the best result.

After constructing two surrogate models using historical data, we predict the lifetime

and purchase rate for customers in the experimental data using their observed short-term

outcomes Si,T0(Wi) and Xi. We then combine these predicted values by multiplication to

create the surrogate index for CATE estimation and policy learning, i.e.,

̂̃
Y

Sep

T (Xi|Si,T0(Wi)) = T̂T (Xi|Si,T0(Wi))× Λ̂T (Xi|Si,T0(Wi)) , i∈ E .

In summary, when there is customer attrition or other behavioral patterns that create

a multiplicative error structure, regressing the long-term outcome on the observed short-

term outcome and pre-treatment covariates directly may lead to inaccurate estimation

of the surrogate index. To address this issue, we propose a separate imputation strategy

that involves constructing two distinct surrogate models for customer lifetime and aver-

age purchase rate. As demonstrated in Section 5 and Section 6, the proposed surrogate

index yields superior targeting performance compared to other alternatives used by firms,

including existing imputation methods.

5. Empirical Performance: Simulation Evidence
5.1. Simulation Setting

We first conduct simulations to validate our argument and solution. Our simulations involve

a company executing a marketing intervention aimed at maximizing the total purchase
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count (Yi,T , where T = 10) over a ten-week period post-intervention. Using the customer

behavior assumptions outlined in Assumption 1 abd Assumption 3, we generate exper-

imental data (E) with unexplained variations in both attrition and purchase behaviors.

We provide details about the simulation setup in Online Appendix B.1. In particular, we

assume that the intervention has a direct and heterogeneous impact on churn probability

and purchase frequency during the first three weeks, and no impact after the fourth week.

The unexplained variations in the churn process have a positive autocorrelation by design,

as customers cannot become alive again once they have churned. For simplicity, we assume

that the unexplained variations in the purchase process are independent across time.8 More

details regarding the simulation setting can be found in Online Appendix B.1.

We also generate historical data (H) of 5,000 customers using the data generating process

for the control group, which reflects the company not implementing the intervention in

the past. The data will be used to construct the surrogate indices. We select T0 = 3 for

the main analysis to ensure that the surrogacy assumption (Assumption 4) is satisfied. We

then adjust the number of periods used in the analysis to examine the trade-off between

information gain and noise accumulation. The model specifications of surrogate indices are

described in detail in Online Appendix B.3.

5.2. Comparison Methods

5.2.1. Alternative Imputation Methods. We compare our solution to various impu-

tation methods for constructing surrogate indices. The first technique we examine is the

single imputation approach proposed by Athey et al. (2019a) and Yang et al. (2022). This

method directly regresses the outcome variable (Yi,T ) on the pre-treatment covariates (Xi)

and the short-term signals (Si,1, · · · , Si,T0) to reduce unexplained variations in the long-term

outcome. This imputation technique does not consider the multiplicative noise structure

that results from customer churn, making it less precise for CATE estimation than the

separate imputation method.

The second imputation method we consider is based on the BG/NBD model (Fader

and Hardie 2007). While this model has not been previously proposed used as imputation

method in surrogacy models, we believe that it can be a reasonable candidate in our

context for two reasons. First, the model assumes a similar data generating process to

8 Essentially, we assume that there is no individual fixed effect for the purchase rate, which means that there is no
time-invariant individual preference towards the company that affect the purchase process.
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the one described in Section 3.3 and utilizes flexible probability distributions to capture

unobserved heterogeneity in churn and purchase behavior. Second, the model has been

shown to generate accurate transaction forecasts at the aggregate level across a variety of

contexts.

We utilize historical data to estimate the BG/NBD model (with covariates) and utilize it

to predict expected future transactions for each customer in the experimental dataset based

on their pre-treatment covariates and short-term purchases. However, the accuracy of the

model, along with similar variants like the Pareto/NBD model, heavily depends on the

likelihood specification, the distributional assumptions, and the assumed functional forms

of the relationship between customer covariates and key parameters of those distributions.

Thus, when the relationship between the observed covariates and the treatment effect

heterogeneity is complex, we anticipate that it may be less effective compared to the

separate imputation approach.

5.2.2. Alternative Variance Reduction Methods. Aside from utilizing alternative

imputation methods to obtain the surrogate index, we also investigate other techniques

to reduce the variance in CATE estimation. One such technique is to simplify the CATE

model by regularizing the CATE function. In our simulation, we utilize R-lasso as the

regularized CATE model (Nie and Wager 2021). Although regularization can reduce the

variance of CATE models, it can also introduce significant underfitting bias (Hastie et al.

2009). The penalty term from regularization may cause the model to overlook crucial data

patterns, which can be particularly problematic when dealing with a small training sample

size and/or high noise level.

Another (obvious) alternative to reduce variance is to increase the sample size. While

this could be an effective solution, in principle, we argue that it is not practical and not the

most efficient way to improve targeting policies. First, the number of customers who qualify

for the intervention is often limited, and therefore, the sample size available to most firms

is also limited.9 Second, even in cases where the company can increase the experimental

sample size, the rate at which the variance of CATE decreases with respect to sample size

may be considerably slower compared to when employing imputation methods.

9 Simester et al. (2022) propose an approach to calculate the sample size required to train and certify targeting
policies.
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5.2.3. Baseline Methods. Finally, we examine two baseline methods commonly used in

practice. First, we consider targeting based on the actual long-term outcome Yi,T (default

approach). As demonstrated earlier, this approach is likely to be ineffective due to the

substantial unexplained variations in Yi,T . Second, we consider a myopic approach, which

involves targeting customers based on short-term performance Yi,T0 =
∑T0

t=1Si,t (i.e., based

on their behavior right after the intervention). While this approach can avoid noise accu-

mulation (as there is less unexplained variation in behavior up to T0), it may not yield

optimal performance because it disregards the disparities between short-term and long-

term treatment effects.

5.3. Evaluation Procedure

We assess targeting performance through 200 bootstrap replications and report the mean

and standard deviation of key metrics. In each replication, we first create a training and a

validation set. Then, for each of the approaches considered, we construct a CATE model

τ̂Ÿ (Xi) using Ÿ as outcome variable (e.g., Ÿ = Y10 for the default approach, Ÿ =
̂̃
Y

Sep

T

for the proposed approach, etc.), and calculate the area under the targeting operating

characteristic curve (AUTOC) (Yadlowsky et al. 2021) using the actual long-term outcome

(Yi,T ). The AUTOC is a useful metric for evaluating the effectiveness of a CATE model

because it quantifies how well the model ranks units based on their treatment effect, with

a high AUTOC indicating an effective sorting mechanism.

Specifically, AUTOC is constructed as follows. Given the predicted CATEs τ̂Ÿ (Xi), the

targeting operator characteristic (TOC) for Yi,T is defined as

TOC(ϕ; τ̂Ÿ ) =E
[
Yi,T (1)−Yi,T (0)|Fτ̂Ÿ

(τ̂Ÿ (Xi))≥ 1−ϕ
]
−E [Yi,T (1)−Yi,T (0)] , (4)

where Fτ̂Ÿ
is the cumulative distribution function of the predicted CATEs. The TOC

measures the incremental gains from targeting the top ϕ×100% customers, as the difference

in ATE between customers in the top ϕ×100% CATE group and all customers. Then, the

AUTOC is defined as

AUTOC(τ̂) =

∫ 1

0

TOC(ϕ; τ̂)dϕ. (5)

Note that a model τ̂Ÿ is better than another model τ̂Ÿ ′ in identifying customers in the

top ϕ× 100% CATE group if TOC(ϕ; τ̂Ÿ ) > TOC(ϕ; τ̂Ÿ ′). Thus, a higher AUTOC value

suggests that the CATE model is more effective in identifying customers who exhibit the

strongest response to the intervention.10

10 In the empirical application we also evaluate targeting on the basis of expected profitability.
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5.4. Results

Table 1 shows the AUTOC values of different CATE models. Each row corresponds to

CATE models for a specific outcome variable, while the columns indicate different methods

for CATE estimation (e.g., S-learner, Causal Forest).11 By default, we train the models

using 1,000 customers (500 per condition) and evaluate the AUTOC using 10,000 validation

customers (5,000 per condition). To compute the results of increasing sample size (last row

if Table 1), we increase the training sample from 1,000 to 50,000 customers.

Table 1 Comparison of AUTOC Values for Different Outcomes and CATE Models.

Sample Size Outcome Ÿ
CATE Model

S-GRF T-GRF Causal Forest R-lasso

N = 1,000

Separate Imputation 0.76 (0.15) 0.73 (0.18) 0.87 (0.10) 0.28 (0.41)

Myopic 0.71 (0.14) 0.69 (0.13) 0.82 (0.07) 0.27 (0.42)

Single Imputation 0.68 (0.15) 0.64 (0.15) 0.82 (0.11) 0.24 (0.4)

BG/NBD Imputation 0.67 (0.19) 0.63 (0.14) 0.79 (0.14) 0.25 (0.41)

Default (Small Sample) 0.37 (0.25) 0.36 (0.25) 0.53 (0.31) 0.26 (0.41)

N = 50,000 Default (Large Sample) 0.62 (0.05) 0.56 (0.04) 0.71 (0.04) 0.90 (0.02)

Higher AUTOC reflects better prioritization rule and therefore superior targeting performance. We average the results

over 200 replications and show in parentheses the standard deviation. The performance of different outcomes when N =

50,000 is provided in Online Appendix B.4

There are several findings to highlight. First, all approaches that use short-term proxies

as outcome variables in the CATE estimation exhibit higher AUTOCs than those that

use the actual long-term outcome Yi,T . This result supports that using short-term signals

can considerably enhance the targeting performance. Notably, the separate imputation

method consistently achieves the highest AUTOC values across all CATE models. This

finding highlights the value of separating churn and purchase when creating a surrogate

index. On a related note, while the BG/NBD method performs better than using the actual

outcome, it performs worse than that of the other methods. As previously discussed, this

approach may be less effective in situations where the relationship between the observed

characteristics and the key parameters is complex, which is the case in our simulation.

Second, we highlight the sample size efficiency of our proposed solution. Specifically,

we compare the performance of using short-term proxies (top rows in Table 1) to that

of using the actual outcome, but trained on a much larger sample—50 times more cus-

tomers. Despite being trained on a much smaller sample, CATE models for short-term

11 We use several CATE models to corroborate that our findings are not driven by a particular method for CATE
estimation.
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outcomes (except R-lasso) exhibit higher mean AUTOC and lower standard deviations

than models for Yi,T that are trained using a much larger sample. This finding highlights

the cost-effectiveness of our solution in terms of sample size, as companies do not need to

conduct large-scale experiments to improve targeting performance. Instead, they can rely

on existing information on historical customer behaviors in their database.

Finally, we find that applying regularization to CATE models for Yi,T , specifically with

R-lasso and hyperparameters selected through cross-validation, results in poorer targeting

performance when the sample size is small. This result appears to be driven by R-lasso’s

tendency to underestimate treatment effect heterogeneity, especially for smaller sample

sizes. 12 On the other hand, we find that the R-lasso outperforms other CATE models for

Yi,T when the sample size is sufficient. However, it is worth noting that even with a large

sample size, utilizing separate imputation in conjunction with R-lasso still produces higher

AUTOC values. (See Online Appendix B.4 for the complete results.)

5.5. The Trade-off between Information Gain and Noise Accumulation

As discussed in section 4.1.1, our method assumes that the short-term outcomes can fully

mediate the treatment effect of the intervention on the desired long-term outcome. While

increasing the number of periods in the surrogate model is one way to meet this assumption,

it can also increase unexplained variations and therefore reduce the targeting performance.

Therefore, firms that implement our solution would need to balance the trade-off between

acquiring more information and accumulating more noise. To investigate this trade-off, we

expand upon the analyses presented in Table 1 by varying the number of periods used to

construct surrogate indices (ranging from T0 = 1 to T0 = 6). Note that the intervention in

our simulation only affects customer behavior directly for the first three periods, which

means that the surrogacy assumption holds when T0 ≥ 3. We create 200 bootstrap replica-

tions and present the means and standard deviations of the AUTOC for surrogate indices

with separate imputation, constructed using varying numbers of periods of short-term

signals, in Figure 2.

The inverted U-shaped relationship in Figure 2 reflects the inherent trade-off between

information gain and noise accumulation. As we increase T0 from one to three periods,

12 In fact, we find that R-lasso produces the same predicted CATE for all customers (indicating no treatment effect
heterogeneity) in about 60% of the bootstrap replications, regardless of the outcome variables used for CATE esti-
mation.



28

Figure 2 Trade-off between Information Gain and Noise Accumulation: An Analysis of Causal Forest AUTOCs

with Surrogate Index Constructed Using Different Periods.
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Note. Each point reports the average over 200 simulation replications together with the one standard deviation

interval. We used 1,000 customers in the training set. The larger the AUTOC, the better targeting performance. We

present here the results of using Causal Forest but our findings are robust across different CATE models. See Online

Appendix B.5 for the results of different CATE models.

the AUTOC improves because the intervention has a direct impact until the third week.

However, the AUTOC starts to decline once we include behaviors beyond the third period

(i.e., after satisfying surrogacy). This pattern is anticipated by and aligns with the advice

of Athey et al. (2019a) and Yang et al. (2022), which suggest that companies should use

the smallest set of short-term outcomes to create surrogate models, provided that the

surrogacy assumption holds.

Interestingly, models using only two periods of information (where the surrogacy assump-

tion is violated) outperform those utilizing four or more periods of information. This result

suggests that the benefits of noise reduction (proposed in this research) can outweigh the

drawbacks of information loss. In other words, if the outcome of managerial interest (in

our case, long-term cumulative purchases) has significant unexplained variations, violat-

ing Assumption 4 may not be a major concern because firms can still improve targeting

performance by using fewer short-term outcomes in the surrogate models.

6. Empirical Performance: Real-world Application

In this section, we demonstrate the effectiveness of our proposed solution in a real-world

marketing application with the data from a retail-technology company in Taiwan. This

company deploys self-serving fridges in various locations within a city, including depart-

ment stores and office buildings. Customers can conveniently grab food and beverages from
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the fridge, and the machine will automatically count items using RFID technology and

charge customers through their pre-registered payment methods. The company utilizes a

third-party messaging app (i.e., LINE) to manage customer profiles and send marketing

messages. To use the service, customers must join the company’s messaging app channel

and register their payment methods using the app.

6.1. The Marketing Intervention

As part of their customer activation process, the company sends a coupon offering a 15%

discount in the next purchase to every newly acquired customer. The coupon is automati-

cally applied to the (first) next purchase made within 14 days and expires after then. The

company is considering increasing the number of coupons offered to some newly acquired

customers, but only if doing so would increase total purchases in the following months.

In order to develop a targeting policy, the company conducted a randomized controlled

experiment to identify customers for whom the new intervention would lead to increased

purchases during their first ten weeks.13 The variable of interest, Yi,10, is defined as the

sum of customer i’s transactions during the first 10 weeks, where Si,t denotes the number

of transactions made by customer i during week t.

In the experiment, the company selected customers who had just made their first pur-

chase and randomly assigned them to one of two groups. The treatment group (Wi = 1)

received three coupons offering a 15% discount for each their next three purchases, while the

control group (Wi = 0) received only one coupon (the business-as-usual case). All coupons

expired after 14 days. The experiment involved 1,853 customers, with 889 in the treatment

group and 964 in the control group. Pre-treatment covariates, including purchase behaviors

and referral status, were used to control for differences between the two groups. Online

Appendix C.1 shows that the randomization was executed properly.

The study found that the average treatment effect on total purchases over the ten-

week period was 0.3153, with a p-value of 0.028. This corresponds to a 15% increase in

the average number of purchases made by customers in the treatment group compared

to the control group (the average Yi,10 for the control group was 1.99). Furthermore, the

intervention had a lasting impact on customer churn and purchase frequency that extended

beyond the coupon effective period (Figure 3). The leftmost figure depicts the weekly

13 No below-the-line campaigns were conducted within the first ten weeks after acquisition, so there are no post-
treatment confounders until this point.
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retention rate across the two experimental groups, with the retention rate representing the

percentage of customers who made a purchase on a given week or after, up to a maximum of

fifty weeks after their initial acquisition. The findings reveal that the intervention reduced

customer churn as the retention rate was consistently higher for the treatment group than

the control group. Furthermore, the difference in retention rates between the two groups

was 2.3% in the first week and increased to 2.7% in the tenth week. These results suggest

that the intervention had both short-term and long-term effects on customer attrition.

Figure 3 Retention and Purchase Rates After the Intervention.
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Note. Customers are labeled as “alive” in a week if they made at least one purchase in that week or later (cap in week

50). The purchase rate when alive is the total purchases in a specific week divided by the number of alive customers.

We report the mean and two standard errors confidence intervals. The retention measure used here reflects a lower

bound estimate of the true retention rate.

The rightmost figure in Figure 3 shows the weekly purchase counts per alive customer,

which is measured as the average purchase counts per alive customer in a week. The results

suggest that, for the first seven weeks, the retained customers in the treatment group

made more purchases, on average, than the retained customers in the control group. This

implies that the intervention had a long-term impact on purchase frequency, as the retained

customers in the treatment group continued to make more purchases than the retained

customers in the control group beyond the effective period of the coupons.

6.2. Empirical Analysis

6.2.1. Comparison Methods The primary objective of our study is to evaluate the

effectiveness of the proposed targeting approach in comparison to several alternatives.

Unlike the simulation study (Section 5), it is not feasible to increase the sample size in this

scenario, and the size of the intervention is limited by the number of customers obtained
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over time. Besides, we do not present the outcomes of R-lasso since it invariably produces

identical CATE predictions for all customers, which is anticipated given the limited training

sample size and significant unexplained variations in the data. As a result, we compare our

approach to alternatives that utilize the same sample size, including the default and myopic

approaches, as well as two alternative imputation methods (i.e., single and BG/NBD). To

construct the surrogate indices, we use historical data from customers who were acquired

at least ten weeks before the start of the experiment, which totals 4,031 customers, and

use the first-week short-term outcome (i.e., Si,1) to estimate the surrogate indices.14 Online

Appendix C.8 conducts an empirical analysis to determine the optimal number of periods

to be used in this application and provides the complete set of results.

6.2.2. Validation Approach and Key Metrics To assess the targeting performance of

each approach, we utilize a bootstrap validation scheme similar to that of Ascarza (2018).

Specifically, we generate B = 200 data splits consisting of training (70%) and validation

(30%) sets. For each split, we estimate CATE models that use distinct outcome variables

(Ÿ ) as the dependent variable using the training set. We then predict CATEs (τ̂Ÿ ) on

different outcomes for customers in the validation set.

Using the predictions for validation customers, we evaluate the effectiveness of each tar-

geting approach based on two widely used metrics: the group average treatment effects

(GATEs) across predicted CATE quintile groups, and the expected profit gained by tar-

geting customers with positive predicted CATEs.

GATEs by Predicted CATE Levels. Similar to the analyses presented in Section 2, we start

by dividing validation customers into quintile groups based on their predicted CATEs

(τ̂Ÿ ), with Qτ̂Ÿ
1 having the highest predicted CATEs and Qτ̂Ÿ

5 having the lowest predicted

CATEs. Next, we calculate the group average treatment effect (GATE) for each quintile

group using the actual long-term outcome (Yi,10):

ĜATEY10(Q
τ̂Ÿ
k ) =

∑
i: i∈Q

τ̂
Ÿ

k ,Wi=1
Yi,10∣∣∣{i : i∈Qτ̂Ÿ

k ,Wi = 1}
∣∣∣ −

∑
i: i∈Q

τ̂
Ÿ

k ,Wi=0
Yi,10∣∣∣{i : i∈Qτ̂Ÿ

k ,Wi = 0}
∣∣∣ .

14 We use Random Forest and BG/NBD to construct those surrogate models, which are described in detail in Online
Appendix C.4
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Expected Profitability of Targeting Policies. To evaluate the profitability of each CATE

model, we consider targeting customers with positive predicted CATEs (policy πτ̂Ÿ ) and

calculate the expected purchase counts in the next ten weeks using the inverse-probability-

weighted (IPW) estimator (Horvitz and Thompson 1952):

V̂ (πτ̂Ÿ ) =
1

|Validation Set|
·

∑
i∈Validation Set

(
1[Wi = πτ̂Ÿ (Xi)]

P̂[πτ̂Ÿ (Xi) =Wi]

)
Yi,10, (6)

where P̂[πτ̂Ÿ (Xi) =Wi] is the (estimated) propensity score for customers who are assigned

the same treatment by πτ̂Ÿ as in the actual data.15 While the treatment assignment in the

data is random and independent of the derived targeting policy, we utilize IPW adjustment

to account for any possible imbalances between treated and non-treated customers, as the

sample used for profit evaluation (i.e., validation customers who were assigned the same

treatment in the actual data as πτ̂Ÿ assigns for policy evaluation) is relatively small. The

IPW adjustment is also frequently employed in other marketing literature that utilizes

randomized controlled experiments for learning targeting policies (e.g., Hitsch et al. 2023,

Yoganarasimhan et al. 2022).

We then calculate the expected profit under policy πτ̂Ÿ using the following formula:

Profit
(
πτ̂Ÿ
)
=AOV · p · V̂ (πτ̂Ÿ )−AOV · d ·

(∑N
i=1 π

τ̂Ÿ (Xi)

N

)
·UW=1

−AOV · d ·

(
1−

∑N
i=1 π

τ̂Ÿ (Xi)

N

)
·UW=0,

(7)

where AOV is the average order value (in dollars)16, p is the average profit margin, d= 15%

is the discount the coupon provided, UW is the average number of coupons being used

under the treatment condition W , and
∑N

i=1 π
τ̂
Ÿ (Xi)

N
calculates the proportion of customers

being treated under policy πτ̂Ÿ .

6.3. Empirical Results

6.3.1. GATEs by Predicted CATE Levels. Figure 4 presents the GATEs by predicted

CATE groups. As discussed in Section 2, the U-shaped curve generated by the default

method indicates that the CATE model for Yi,10 is unable to identify customers with the

15 We estimate this quantity in each iteration using the probability forest implemented by the grf package.

16 Note that we did not observe a significant difference in AOV between the treatment and control groups (Mean
difference = 0.05 with a p-value of 0.88).
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highest or lowest incremental effects. In contrast, all models that employ short-term signals

to estimate CATEs are more effective in ranking customers’ long-term treatment effect

than the default method.

Figure 4 Actual GATEs by Predicted CATE Levels for Different Outcome Variables.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the two standard

error confidence interval. Groups Qτ̂
Ÿ

1 , · · · ,Qτ̂
Ÿ

5 are categorized based on the decreasing order of treatment effect

predicted by the CATE model for various outcome variables. GATEs are computed on the actual long-term outcome

(Yi,10). We present the results from T-learner as it gives the best targeting profitability. Our findings are robust across

different CATE models. See Online Appendix C.7 for the results from other CATE models.

Of all these models, the separate imputation method produces the best targeting per-

formance as it generates the steepest curve. Specifically, the GATE for Qτ̂Ÿ
1 (representing

the most sensitive customers identified by the method) is much larger than that of Qτ̂Ÿ
2 ,

larger than that of Qτ̂Ÿ
3 , and so on. Conversely, the BG/NBD model yields the least favor-

able result among all the proxies. This finding aligns with our intuition that the BG/NBD

approach is likely to be ineffective when the parametric specifications of key parameters are

different from the actual relationships, as seems to be the case in this empirical application.

6.3.2. Profitability of Targeting Policies. To evaluate the profitability, we compare

the expected profits of a targeting policy that targets customers with positive predicted

CATEs (πτ̂Ÿ described in Section 6.2.2) with a uniform policy (denoted as π0) that rolls out

the best intervention to all customers. In our case, since the ATE is positive, π0 corresponds

to sending three coupons to all customers. We calculate the profit improvement (PI) as

PI(πτ̂R) =
Profit(πτ̂R)
Profit(π0)

− 1, where Profit(π0) is calculated in the same way as Profit(πτ̂Ÿ ).

Table 2 presents the profit improvement from targeting policies based on different out-

comes. The first column demonstrates the outcomes when we target customers based on
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the predicted CATEs from T-learner, expanding on the results exhibited in Figure 4.

The second to fourth columns show the results when using other CATE models. In the

last column, we extend our analysis to include the emerging field of policy learning (e.g.,

Swaminathan and Joachims 2015, Kitagawa and Tetenov 2018) and focus on the doubly

robust policy learning technique (DR-PL) introduced by Athey and Wager (2021), which

has strong theoretical guarantees. We apply this approach to our analysis as follows: first,

we estimate the doubly robust (DR) scores to proxy the CATEs using different outcome

variables (Ÿ ). We then create policies (πŸ ) by building cost-sensitive classifiers based on

the DR scores using the Probability Forest algorithm implemented in the grf package.

Finally, we calculate the expected profit improvement using Equation (7). (Please refer to

Online Appendix C.6 for details on the implementation of this approach.)

Table 2 Expected Profit Improvement: Targeting Based on Different Models.

Outcome Variable T-learner S-learner X-learner Causal Forest DR-PL

Separate Imputation 5.81% (0.58%) 5.66% (0.58%) 3.98% (0.54%) 1.64% (0.57%) 4.57% (0.58%)

Single Imputation 4.06% (0.62%) 4.45% (0.62%) 2.29% (0.59%) 1.06% (0.61%) 3.66% (0.59%)

Myopic 3.34% (0.57%) 3.08% (0.54%) 2.96% (0.54%) 1.09% (0.57%) 3.51% (0.60%)

BG/NBD Imputation 0.95% (0.49%) 1.61% (0.47%) 1.93% (0.42%) −1.44% (0.53%) −0.26% (0.50%)

Default −3.52% (0.46%) −1.75% (0.40%) −0.89% (0.41%) −4.21% (0.46%) −3.44% (0.46%)

We average the profit improvement over 200 replications and show in parentheses the bootstrapped standard errors.

Several key results are worth highlighting. Firstly, consistent with our simulation anal-

yses, the separate imputation method (first row) produces the highest expected profit,

regardless of the models used for CATE estimation. In contrast, the default approach (last

row) results in negative profit improvement regardless of the targeting method. These

results highlight that the noise accumulation problem have severe consequences in terms

of profitability, as personalizing the intervention can cause the firm to lose money.

Secondly, the profit loss incurred by high noise levels can be alleviated by using a myopic

approach (the third row). This finding is both important and counterintuitive: using less

information (i.e., fewer observed periods) can be more beneficial for the firm to maximize

long-term outcomes. In turn, looking at all results collectively, targeting based on short-

term proxies improves profitability in almost all cases (except when using the Causal Forest

for BG/NBD imputation).

Thirdly, the relatively poor performance of the Causal Forest is noteworthy. While the

Causal Forest performs relatively well in the simulation, this is not the case in the empirical
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application. This result is consistent with previous work finding that meta-learners can be

superior to direct methods in targeting (Yoganarasimhan et al. 2022). Finally, we found

that the profit improvement achieved by the doubly robust approach is lower than that

achieved by targeting policies based on T-learner and S-learner. This could be because the

doubly robust scores are less accurate than the predicted CATEs obtained from T-learner

and S-learner.

7. Conclusion and Future Directions

Firms often use targeted interventions to increase the long-term profitability. An increas-

ingly popular approach to designing targeting policies combines experimentation (or A/B

testing) and customer data to estimate heterogeneous responses to the intervention using

CATE models. This paper demonstrates, both theoretically and empirically, that this

approach can become ineffective, and even harmful, when the outcome variable accumu-

lates unexplained variations. Therefore, we propose a new targeting paradigm where firms

are encouraged to reduce the noise in the outcome variable, particularly when it is a long-

term outcome, before estimating any CATE model.

Specifically, we present the separate imputation approach as a solution to overcome

the challenge of long-term CATE estimation in the presence of unexplained variations

in the outcome variable. By utilizing short-term behavioral changes to predict long-term

responses, this method provides substantial improvements over existing solutions and effec-

tively reduces the impact of unexplained variations when estimating CATE for long-term

outcomes. Our solution can be easily implemented using widely available machine learning

algorithms, making it practical for businesses across various industries, including those

with both contractual and non-contractual relationships. By capitalizing on their histor-

ical purchase data, businesses can enhance their marketing efforts and boost long-term

profitability without incurring additional costs of increasing the experiment size.

Our proposed solution has been rigorously evaluated using both simulation analyses

and real-world marketing data, demonstrating superior targeting performance compared

to existing methods. Additionally, our results highlight the trade-off between information

gain and noise accumulation, emphasizing the importance of balancing these factors when

determining the optimal number of short-term outcomes to include in a surrogate model.

In particular, we find that when substantial noise exists in the long-term outcome, utilizing
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fewer short-term outcomes, even if that violates the surrogacy assumption, can still yield

superior targeting performance compared to targeting based on predicted CATE on the

actual long-term outcome or not targeting at all. In practice, companies can perform

empirical validation to identify the optimal number of short-term outcome periods to

incorporate into surrogate models, thereby achieving the best targeting performance.

While our research provides valuable insights and solutions, there are limitations that

suggest directions for future research. Firstly, our proposed solution directly addresses the

issue of unobserved heterogeneity in customer attrition and purchase propensity, which is

prevalent in various marketing contexts. However, other dynamics can cause more unex-

plained variations in the outcome variable, such as customer inertia and variety-seeking

(Bawa 1990), state dependence (Roy et al. 1996), or consumer learning (Erdem and Keane

1996). Incorporating these behaviors explicitly into surrogate models may further mitigate

unexplained variations and enhance targeting performance. Furthermore, there are dif-

ferent modeling approaches available to connect the relationship between short-term and

long-term outcomes, especially when we have multiple points in time for interventions. For

example, Mazoure et al. (2021) proposes an innovative reinforcement learning framework

that optimizes long-term customer engagement by combining immediate rewards with an

estimate of residual value derived from future product usage. Thus, future research could

explore the integration of these dynamics and develop new modeling approaches for sur-

rogate index construction to enhance targeting performance.

Secondly, in situations where the long-term outcome is a repeated purchase measure, it

is natural to use short-term purchases after the intervention for surrogate index construc-

tion. However, when firms have different long-term objectives, there may not exist obvious

short-term signals to use as surrogates. Hence, it is essential to develop a general surro-

gate selection procedure and document potential surrogate outcomes for various marketing

applications. For instance, Han et al. (2021) proposes an estimation method to quantify

the percentage of the long-term treatment effect that short-term surrogates can explain.

Additionally, Yoganarasimhan et al. (2022) provides evidence that short-run conversion

on subscription can be an effective low-variance proxy for long-run revenue. Furthermore,

Wang et al. (2022) documents potential surrogate outcomes for the long-term user experi-

ence in the context of content recommendation. Future research could focus on identifying
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appropriate surrogate outcomes for different marketing contexts and developing methods

to evaluate the effectiveness of these surrogates in improving targeting performance.

Thirdly, there may be scenarios where no surrogate variable is available for noise reduc-

tion, such as when the objective is to directly optimize a short-term outcome with signifi-

cant unexplained variations. In such cases, future research could explore the development

of new CATE models that are more resilient to noise in the outcome variable. Addition-

ally, it would be worthwhile to investigate how to incorporate the estimation uncertainty

of CATEs into the targeting strategy and determine whether it can further enhance the

profitability of a marketing campaign.

Finally, the proposed imputation strategy relies on state-of-the-art machine learning

methods to predict future purchases based on observed short-term behaviors. However,

machine learning models may also overfit large unexplained variations in historical data,

resulting in inaccurate long-term outcome predictions. Future research could explore alter-

native imputation strategies that are more robust to data noise. For instance, Padilla

et al. (2019) proposes a Bayesian approach to predict purchase likelihood by incorporating

information from intermediate stages in the customer journey. It would be worthwhile to

investigate whether their approach can further mitigate the impact of unexplained varia-

tion in historical data.
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Online Appendix

A. Proofs

In this appendix we present the proofs of the theoretical results presented in Section 3 of

the main document.

A.1. Class of Weighted-outcome CATE Estimators

First, we show that the class of CATE estimators studied in Section 3 include a wide

variety of commonly-used CATE models, such as S-learner, T-learner, Causal Forest, and

R-learner.

Proposition 5. The following CATE estimators belong to the class described in

Assumption 2:

1. S-learners and T-learners Künzel et al. (2019) with the outcome models being OLS

regressions, ridge regressions, k-nearest neighbors, or random forests with honest esti-

mation

2. R-learners (Nie and Wager 2021) with second-stage models being OLS regressions,

ridge regressions, k-nearest neighbors, or random forests with honest estimation

3. Causal Forest with honest estimation

Proof: Let D= {(Xi,Wi, Yi)}Ni=1 be the training set for CATE prediction.

1. We provide a proof for S-learners using (a) high-dimensional ridge regression (the

proof for OLS estimators is similar), (b) k-nearest neighbors, and (c) random forests

with honest estimation as the outcome model. We omit the proofs for T-learner as

they are similar to the proofs for S-learner.

(a) High-dimensional Ridge Regression:

Consider the ridge regression model Yi = ϕ(Xi,Wi)
′β+ εi, where ϕ(Xi,Wi) is a high-

dimensional feature transformation function used to construct a ridge regression esti-

mator.

Let Φ = [ϕ(X1,W1) · · ·ϕ(XN ,WN)]
′ denote the feature matrix. Then, the closed-form

solution of the ridge coefficient with regularization term λ can be written as:

β̂= (Φ′Φ+λI)−1Φ′y.
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Denote pi be the i-th row of the matrix (Φ′Φ+λI)−1Φ′. Then, the predicted CATE

for xtest can be written as

τ̂Y (xtest) =
∑
i∈D

[ϕ(xtest,1)−ϕ(xtest,0)]
′piYi

=
∑

i∈D: Wi=1

[ϕ(xtest,1)−ϕ(xtest,0)]
′pi︸ ︷︷ ︸

ℓ̂1i (xtest)

Yi−

∑
i∈D: Wi=0

[ϕ(xtest,0)−ϕ(xtest,1)]
′pi︸ ︷︷ ︸

ℓ̂0i (xtest)

Yi.

(b) k-nearest neighbors:

LetNk(xtest,w) represent the set of the k-nearest neighboring customers in the training

set for a test customer with covariates and treatment assignment (xtest,w). Then, we

can express the predicted CATE as:

τ̂Y (xtest) =
∑

Xi∈Nk(xtest,1)

Yi

k
−

∑
Xi∈Nk(xtest,0)

Yi

k

=
∑

i∈D: Wi=1

1[Xi ∈Nk(xtest,1)]−1[Xi ∈Nk(xtest,0)]

k︸ ︷︷ ︸
ℓ̂1i (xtest)

Yi−

∑
i∈D: Wi=0

1[Xi ∈Nk(xtest,0)]−1[Xi ∈Nk(xtest,1)]

k︸ ︷︷ ︸
ℓ̂0i (xtest)

Yi.

(c) Random Forest with Honest Estimation:

Db
1,Db

2 be the divided samples for the b-th tree (b = 1, · · · ,B), where Db
1 is used to

construct the regression tree and Db
2 is used to generate predictions. Define Lb(xtest,W )

be the leaf in the b-th tree to which customer (xtest,W ) belongs. Using this notation,

we can express the predicted CATE as follows:

τ̂Y (xtest) =
N∑
i=1

1

B

B∑
b=1

[
1[Xi ∈Lb(xtest,1), i∈Db

2]

|{i∈Db
2 : Xi ∈Lb(xtest,1)}|

− 1[Xi ∈Lb(xtest,0), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xtest,0)}|

]
Yi

=
∑

i∈D:Wi=1

1

B

B∑
b=1

(
1[Xi ∈Lb(xtest,1), i∈Db

2]

|{i∈Db
2 : Xi ∈Lb(xtest,1)}|

− 1[Xi ∈Lb(xtest,0), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xtest,0)}|

)
︸ ︷︷ ︸

ℓ̂1i (xtest)

Yi−
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∑
i∈D:Wi=0

1

B

B∑
b=1

(
1[Xi ∈Lb(xtest,0), i∈Db

2]

|{i∈Db
2 : Xi ∈Lb(xtest,0)}|

− 1[Xi ∈Lb(xtest,1), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xtest,0)}|

)
︸ ︷︷ ︸

ℓ̂0i (xtest)

Yi.

Note that ℓ̂Wi (xtest) is independent of Yi for i∈Db
2 as the honest estimation only uses

customers in Db
1 to construct the tree.

2. We only present the scenario where high-dimensional ridge regression is used in the

second-stage estimation, as the derivations for k-nearest neighbors and random forests

with honest estimation are similar, using the weights derived in 1.(b) and 1.(c).

Let D1
train, · · · ,D

Q
train be the sample splits of the training set. Define D(−i)

train =

∪q: i/∈Dq
train

Dq
train as the training set that excludes the subsample that includes the i-th

sample. Also, denote êD
(−i)
train(Xi) (for propensity scores) and m̂D(−i)

(Xi) (for conditional

means) as the nuisance models trained using the data set D(−i)
train. Then, the Robinson’s

transformation for each customer is

τ̃i =
Yi − m̂D(−i)

train(Xi)

Wi− êD
(−i)
train(Xi)

.

Now, consider the ridge regression model

τ̃i = ϕ(xi)
′β+ εi,

where ϕ(x) is the high-dimensional feature transformation function. Let Φ =

[ϕ(x1) · · · ϕ(xN)]
′ be the feature matrix. Then, the closed-form solution for the ridge

coefficient is

β̂ = (Φ′Φ+λI)−1Φ′τ̃ .

Denote pi be the i-th row of the matrix (Φ′Φ+λI)−1Φ′. Then, the predicted CATE

for xtest can be written as

τ̂Y (xtest) =
∑
i∈D

ϕ(xtest)
′pi

(
Yi − m̂D(−i)

train(Xi)

Wi − êD
(−i)
train(Xi)

)

=
∑

i∈D:Wi=1

(
ϕ(xtest)

′pi

1− êD
(−i)
train(Xi)

)
︸ ︷︷ ︸

ℓ̂1i (xtest)

[Yi − m̂D(−i)
train(Xi)︸ ︷︷ ︸
m̂1(Xi)

] −

∑
i∈D:Wi=0

(
ϕ(xtest)

′pi

1− êD
(−i)
train(Xi)

)
︸ ︷︷ ︸

ℓ̂0i (xtest)

[Yi − m̂D(−i)
train(Xi)︸ ︷︷ ︸
m̂0(Xi)

].
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Note that the cross-fitting and honest estimation assumptions imply that (i) ℓ̂Wi
i (xtest)

is independent of Yi and (ii) m̂w(Xi) is independent of Yi and ℓ̂Wi
i (xtest).

3. Let Db
1,Db

2 be the divided samples for the b-th tree (b= 1, · · · ,B), where Db
1 is used

to construct the causal tree and Db
2 is used to generate predictions. Define Lb(xtest be

the leaf in the b-th tree to which customer (xtest,W ) belongs. Using this notation, we

can express the predicted CATE as follows:

τ̂Y (xtest) =
∑

i∈D:Wi=1

1

B

B∑
b=1

1[Xi ∈Lb(xtest), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xtest)}|︸ ︷︷ ︸
ℓ̂1i (xtest)

Yi−

∑
i∈D:Wi=0

1

B

B∑
b=1

1[Xi ∈Lb(xtest), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xtest)}|︸ ︷︷ ︸
ℓ̂0i (xtest)

Yi.

Note that ℓ̂Wi
i (xtest) is independent of Yi due to honest estimation.

A.2. Proof for Theorem 1

Let X be the set of customer covariates, W the set of treatment assignments, and Y

the set of outcomes for customers in the training set, which includes the data used to

construct weights, adjustment functions, and predictions. We denote D as the index set

for customers being used to generate CATE predictions. Define µY (Xi,Wi) =E[Yi(Wi)|Xi]

and σ2
Y (Xi,Wi) =Var[εi(Xi,Wi)] =Var[Yi(Wi)|Xi].

Proof for Theorem 1.1:

First, the conditional bias for each induced outcome model, given X , W, and D, can be

expressed as:

BiasY|X ,W,D [µ̂w
Y (xtest)] =EY|X ,W,D [µ̂w

Y (xtest)]−µY (xtest,w)

=EY|X ,W,D

[ ∑
i∈D: Wi=w

ℓ̂wi (xtest) [Yi − m̂w
Y (Xi)]

]
−µ(xtest,w) =

=
∑

i∈D: Wi=w

EY|X ,W,D

[
ℓ̂wi (xtest) [µ (Xi,w)+ εi (Xi,w)− m̂w

Y (Xi)]
]
−µ(xtest,w).

(App-1)
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Since ℓ̂wi (xtest) is independent of Yi (by the honest estimation assumption) and m̂w
Y (Xi) (by

the cross-fitting assumption), we have

EY|X ,W,D

[
ℓ̂wi (xtest) [µ (Xi,w)+ εi (Xi,w)− m̂w

Y (Xi)]
]
=

EY|X ,W,D

[
ℓ̂wi (xtest)

]
·EY|X ,W,D [µ (Xi,w)+ εi (Xi,w)− m̂w

Y (Xi)] .

Replacing the above term into Equation (App-1) gives

BiasY|X ,W,D [µ̂w
Y (xtest)] =

∑
i∈D: Wi=w

EY|X ,W,D[ℓ̂
w
i (xtest)][µ (Xi,w)− m̂w

Y (Xi)]−µ(xtest,w).

As a result, the unconditional bias becomes

Bias [µ̂w
Y (xtest)] =E

[ ∑
i∈D: Wi=w

ℓ̂wi (xtest)[µ (Xi,w)− m̂w
Y (Xi)]

]
−µ(xtest,w).

Finally , the bias of the predicted CATE is

Bias [τ̂Y (xtest)] = Bias
[
µ̂1(xtest)

]
−Bias

[
µ̂0(xtest)

]
=E

( ∑
i∈D: Wi=1

ℓ̂1i (xtest)[µ (Xi,1)− m̂1(Xi)]

)
−

E

( ∑
i∈D: Wi=0

ℓ̂0i (xtest)[µ (Xi,1)− m̂0(Xi)]

)
− τµ

Y (xtest).

It is worth noting that the bias does not depend on εi(Xi,Wi). As a result, the bias of the

predicted CATE is not affected by the variance of unexplained variations.

Proof for Theorem 1.2:

First, the conditional variance of τ̂Y (xtest) given X , W, and D is

VarY|X ,W,D [τ̂Y (xtest)] =VarY|X ,W,D
[
µ̂1(xtest)− µ̂0(xtest)

]
=VarY|X ,W,D

[
µ̂1(xtest)

]
+VarY|X ,W,D

[
µ̂0(xtest)

]
− 2CovY|X ,W,D

[
µ̂1(xtest), µ̂

0(xtest)
]
.

Under Assumption 1, the covariance CovY|X ,W,D [µ̂1(xtest), µ̂
0(xtest)] is equal to zero as

µ̂1(xtest) and µ̂1(xtest) are derived from two different samples (i.e., the treatment and control

group, respectively).

Now, consider the variance term for each outcome model. We first write it as:

VarY|X ,W,D [µ̂w
Y (xtest)] =EY|X ,W,D

[
(µ̂w

Y (xtest))
2]−E2

Y [µ̂
w
Y (xtest)] . (App-2)
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The first term in Equation (App-2) is

EY|X ,W,D
{
[µ̂w

Y (xtest)]
2}

= EY|X ,W,D


( ∑

i∈D: Wi=w

ℓ̂wi (xtest) [Yi(w)− m̂w
Y (Xi)]

)2


= EY|X ,W,D

 ∑
i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [Yi(w)− m̂w

Y (Xi)] [Yj(w)− m̂w
Y (Xj)]

 .

Note that we have the following decomposition for the term in the expectation:∑
i∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [Yi(w)− m̂w

Y (Xi)] [Yj(w)− m̂w
Y (Xj)]

=
∑

i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [µ (Xi,w)− m̂w

Y (Xi)] [µ (Xj,w)− m̂w
Y (Xj)]+

2 ·
∑

i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [µ (Xi,w)− m̂w

Y (Xi)] · εj (Xj,w)+

∑
i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) · εi (Xi,w)εj (Xi,w) .

The conditional expectation of the first term in the above decomposition is

EY|X ,W,D

 ∑
i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [µ (Xi,w)− m̂w

Y (Xi)] [µ (Xj,w)− m̂w
Y (Xj)]


=E2

Y|X ,W,D [µ̂w
Y (xtest)] .

By the assumption of honest estimation and cross-fitting, the conditional expectation of

the second term in the above decomposition is zero

EY|X ,W,D

 ∑
i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [µ (Xi,w)− m̂w

Y (Xi)] · εj (Xj,w)


=EY|X ,W,D

 ∑
i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) [µ (Xi,w)− m̂w

Y (Xi)]

 ·EY|X ,W,D [εj (Xj,w)]

= 0.
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The conditional expectation of the third term in the above decomposition can be written

as

EY|X ,W,D

 ∑
i,j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) · εi (Xi,w)εj (Xi,w)


=

∑
i∈D: Wi=w

EY|X ,W,D

[
ℓ̂wi (xtest)

2ε2i (Xi,w)
]
+

EY|X ,W,D

 ∑
i ̸=j∈D: Wi=Wj=w

ℓ̂wi (xtest)ℓ̂
w
j (xtest) · εi (Xi,w)εj (Xi,w)


=

∑
i∈D: Wi=w

EY|X ,W,D

[
ℓ̂wi (xtest)

2
]
σ2 (Xi,w)

since (i) ℓ̂wi (xtest), ℓ̂
w
j (xtest) are independent of εi (Xi,w) , εj (Xi,w) (by the assumption of

honest estimation and cross-fitting) and (ii) εi (Xi,w) , εj (Xi,w) are independent of each

other.

Combining all the things together, we can write the unconditional variance as

Var [µ̂w
Y (xtest)] =

∑
i∈D: Wi=w

E
[
ℓ̂wi (xtest)

2
]
σ2 (Xi,w) .

As a result, the unconditional variance of τ̂Y (xtest) is

Var [τ̂Y (xtest)] =Var
[
µ̂1(xtest)

]
+Var

[
µ̂0(xtest)

]
=E

( ∑
i∈D: Wi=1

ℓ̂1i (xtest)
2σ2 (Xi,1)+

∑
i∈D: Wi=0

ℓ̂0i (xtest)
2σ2 (Xi,0)

)
.

A.3. Proof for Proposition 1

The probability that the learned policy makes a different decision than the optimal tar-

geting policy is

P [τY (xtest) · τ̂Y (xtest)< 0] =
P

[
τ̂Y (xtest)−τY (xtest)√

Var[τ̂Y (xtest)]
< −|τY (xtest)|√

Var[τ̂Y (xtest)]

]
, if τY (xtest)> 0,

1−P
[
τ̂Y (xtest)−τY (xtest)√

Var[τ̂Y (xtest)]
< |τY (xtest)|√

Var[τ̂Y (xtest)]

]
, if τY (xtest)< 0.

Then, we can see that the probability increases as Var [τ̂Y (xtest)] increases. By Theorem 1,

the larger the variance of the outcome variable, the larger Var [τ̂Y (xtest)]. Therefore, the

mistargeting probability is also increasing in the variance of unexplained variations.
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Now, let us consider the case when the firm aims to target customers with CATEs larger

than the threshold c. The mistargeting probability is

P [(τY (xtest)− c) · (τ̂Y (xtest)− c)< 0] =
P

[
τ̂Y (xtest)−τY (xtest)√

Var[τ̂Y (xtest)]
< −|τY (xtest)−c|√

Var[τ̂Y (xtest)]

]
, if τY (xtest)− c > 0,

1−P
[
τ̂Y (xtest)−τY (xtest)√

Var[τ̂Y (xtest)]
< |τY (xtest)−c|√

Var[τ̂Y (xtest)]

]
, if τY (xtest)− c < 0.

Then, we can see that the mistargeting probability increases as Var [τ̂Y (xtest)] increases.

A.4. Proof for Theorem 2

Note that we can write the long-term outcome as

Y T
i (Wi) =

T∑
t=1

[
θt(Xi,Wi)+ εθi,t

]
·
[
λt(Xi,Wi)+ ελi,t

]
=

T∑
t=1

θt(Xi,Wi)λt(Xi,Wi)+
T∑
t=1

εSt (Wi),

where εSt (Wi) = θt(Xi,Wi)ε
λ
i,t + λt(Xi,Wi)ε

θ
i,t + εθi,tε

λ
i,t. Then, we can write the variance of

Yi,T (Wi) as follows:

Var[Yi,T (Wi)|Xi] = Var

[
T∑
t=1

εSi,t(Wi)

∣∣∣∣∣Xi

]

=
T∑
t=1

Var
[
εSi,t(Wi)|Xi

]
+2

∑
1≤t1<t2<T

Cov
[
εSi,t1(Wi), ε

S
i,t2

(Wi)|Xi

]
.

(App-3)

The first element in Equation (App-3), Var
[
εSi,t(Wi)

]
, is always positive. The second ele-

ment, Cov
[
εSi,t1(Wi), ε

S
i,t2

(Wi)|Xi

]
, can be written as

Cov
[
εSi,t1(Wi), ε

S
i,t2

(Wi)|Xi

]
= θt1(Xi,Wi)θt2(Xi,Wi)Cov

(
ελi,t1 , ε

λ
i,t2

)
+ θt1(Xi,Wi)λt2(Xi,Wi)Cov

(
ελi,t1, ε

θ
i,t2

)
+

θt1(Xi,Wi)Cov
(
ελi,t1, ε

λ
i,t2

εθi,t2
)
+λt1(Xi,Wi)λt2(Xi,Wi)Cov

(
εθi,t1, ε

θ
i,t2

)
+

λt1(Xi,Wi)θt2(Xi,Wi)Cov
(
εθi,t1 , ε

λ
i,t2

)
+λt1(Xi,Wi)Cov

(
εθi,t1, ε

λ
i,t2

εθi,t2
)
+

θt2(Xi,Wi)Cov
(
ελi,t2, ε

λ
i,t1

εθi,t1
)
+λt2(Xi,Wi)Cov

(
εθi,t2, ε

λ
i,t1

εθi,t1
)
+Cov

(
ελi,t1ε

θ
i,t1

, ελi,t2ε
θ
i,t2

)
.
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By the independence assumption ({εθi,t}Tt=1 ⊥⊥ {ελi,t}Tt=1), we have

Cov
(
ελi,t1, ε

λ
i,t2

εθi,t2
)
=E

(
ελi,t1ε

λ
i,t2

εθi,t2
)
=E

(
ελi,t1ε

λ
i,t2

)
E
(
εθi,t2
)
= 0,

Cov
(
εθi,t1, ε

λ
i,t2

εθi,t2
)
=E

(
εθi,t1ε

θ
i,t2

ελi,t2
)
=E

(
εθi,t1ε

θ
i,t2

)
E
(
ελi,t2
)
= 0,

Cov
(
ελi,t1ε

θ
i,t1

, ελi,t2ε
θ
i,t2

)
=E

(
ελi,t1ε

λ
i,t2

)
E
(
εθi,t1ε

θ
i,t2

)
=Cov

(
ελi,t1, ε

λ
i,t2

)
Cov

(
εθi,t1, ε

θ
i,t2

)
.

Therefore, the covariance term becomes

Cov
[
εSi,t1(Wi), ε

S
i,t2

(Wi)|Xi

]
=θt1(Xi,Wi)θt2(Xi,Wi)Cov

(
ελi,t1, ε

λ
i,t2

)
+

λt1(Xi,Wi)λt2(Xi,Wi)Cov
(
εθi,t1, ε

θ
i,t2

)
+Cov

(
ελi,t1, ε

λ
i,t2

)
Cov

(
εθi,t1 , ε

θ
i,t2

)
.

Since Cov
(
ελi,t1, ε

λ
i,t2

)
and Cov

(
εθi,t1, ε

θ
i,t2

)
are non-negative by assumptions, Cov

(
εSi,t1, ε

S
i,t2

)
is also non-negative.

Finally, we have the variance increase property:

Var[Yi,T+1(Wi)]−Var[Yi,T (Wi)]

=
T∑
t=1

Var
[
εSi,t(Wi)|Xi

]
+2

∑
1≤t1<t2<T

Cov
[
εSi,t1(Wi), ε

S
i,t2

(Wi)|Xi

]
> 0.

A.5. Proof for Proposition 2

The serial correlation of the unexplained variations is positive because

Cov(ελi,t1, ε
λ
i,t2

) =Cov
(
ελi + ηλi,t1, ε

λ
i + ηλi,t2

)
=Var(ελi )+Cov

(
ελi , η

λ
i,t2

)
+Cov

(
ηλi,t1, η

λ
i,t2

)
+Cov

(
ηλi,t1, η

λ
i,t2

)
=Var(ελi )> 0,

provided ηλi,t1 and ηλi,t2 are assumed to be independent of ελi and each other.

A.6. Proof for Proposition 3

The covariance of unexplained variations in churn is positive because

Cov
(
εθi,t1, ε

θ
i,t2

)
=Cov

[
θt1(Xi,Wi)+ εθi,t1 , θt2(Xi,Wi)+ εθi,t2

]
=Cov(δi,t1, δi,t2)

=E [δi,t1δi,t2]−E [δi,t1 ]E [δi,t2]

= θt2(Xi,Wi)− θt1(Xi,Wi)θt2(Xi,Wi)

= θt2(Xi,Wi)[1− θt1(Xi,Wi)]> 0.
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A.7. Proof for Theorem 3

1. By the comparability assumption, we have

ỸT (ST0,Xi)≡EH [Yi,T |ST0,Xi] =EE [Yi,T |ST0 ,Xi] .

By the surrogacy assumption, we have

EE [Yi,T (Wi)|Xi] =EE [Yi,T |ST0(Wi),Xi] .

Combining these two observations gives

τYT
(Xi) =EE [Yi,T (1)|Xi]−EE [Yi,T (0)|Xi]

= ỸT (Si,T0(1),Xi)− ỸT (Si,T0(0),Xi).

2. By the law of total variance, we have

Var[Yi,T (Wi)|Xi] =E (Var[Yi,T (Wi)|Xi,Si,T0(Wi)])+Var (E[Yi,T (Wi)|Xi,Si,T0(Wi)])

=E (Var[Yi,T (Wi)|Xi,Si,T0(Wi)])+Var[ỸT (Si,T0(Wi),Xi)]

>Var[ỸT (Si,T0(Wi),Xi)]

since E (Var[Yi,T (Wi)|Xi,Si,T0(Wi)])> 0.

A.8. Proof for Proposition 4

By the law of total variance, we have

Var[ỸT (Si,T0(Wi),Xi)]

=E
(
Var[ỸT (Si,T0(Wi),Xi)|Si,T ′

0
(Wi)]

)
+Var

(
E[ỸT (Si,T0(Wi),Xi)|Si,T ′

0
(Wi)]

)
=E

(
Var[ỸT (Si,T0(Wi),Xi)|Si,T ′

0
(Wi)]

)
+Var

(
E[Yi(Wi)|Si,T ′

0
(Wi)]

)
=E

(
Var[ỸT (Si,T0(Wi),Xi)|Si,T ′

0
(Wi)]

)
+Var

[
ỸT (S

′
i,T0

(Wi),Xi)
]

>Var[ỸT (S
′
i,T0

(Wi),Xi)]

since E
(
Var[ỸT (Si,T0(Wi),Xi)|Si,T ′

0
(Wi)]

)
> 0.
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B. Further Details about the Simulation Analyses

In this appendix, we provide details about the simulation analyses described in Section 5

of the main document.

B.1. Simulation Setting

For the simulation, we consider a company that conducts a marketing intervention and

aims to maximize the total purchase counts (Yi,10) over a ten-week time-frame following

the intervention. We simulate the data based on the customer behaviors described in

Section 3.3:

1. There are two pre-treatment covariates which are drawn i.i.d. from the standard nor-

mal distribution, i.e., Xi,1,Xi,2 ∼i.i.d. N (0,1).

2. At the end of each period, a customer churns with probability pi,t.

3. The realized purchase counts in each period when a customer is alive follows a Poisson

distribution with mean purchase rate λi,t, i.e., S̃i,t ∼ Poisson(λi,t).

4. The intervention reduces customers’ churn probability (pi,t) in the first three periods.

In particular, the churn probability is

(Treatment) pi,t(Wi = 1) =

 1
exp(1.5+0.5Xi,1+0.4Xi,2)

, if t≤ 3,

1
exp(1.4+0.5Xi,1+0.4Xi,2)

, if t > 3.

(Control) pi,t(Wi = 0) =
1

exp(1.4+0.5Xi,1+0.4Xi,2)
, ∀t= 1, · · · ,10.

5. The intervention increases customers’ purchase rates in the first three periods and has

no impact on later periods. The purchase rate follows:

(Treatment) λi,t(Wi = 1) =

 exp(1+0.5Xi,1+0.5Xi,2), if t≤ 3,

exp(0.9+0.5Xi,1+0.4Xi,2), if t > 3.

(Control) λi,t(Wi = 0) = exp(0.9+0.5Xi,1+0.4Xi,2), ∀t= 1, · · · ,10.

Note that we choose the logit link function for the churn probability to ensure that it

lies between 0 and 1. Additionally, we use the exponential link function for the purchase

rate to ensure that it is non-negative.

B.2. Evaluation Procedure

The following procedure is performed to evaluate the performance of different approaches:

1. Derive the outcome variable Ÿ
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2. Generate one training set (with N/2 treated customers and N/2 non-treated cus-

tomers) and one validation set (with 5,000 customers for each condition)

3. Construct CATE models (τ̂Ÿ ) using the training set

4. Calculate the AUTOCs of τ̂Ÿ using the validation set

We generate 200 bootstrap samples and report the mean and standard deviations of each

quantity for performance evaluation.

B.3. Specification of Surrogate Indices

As discussed in Section 5 of the main document, we utilize historical data (H) to gener-

ate surrogate indices. Here, we present our model specifications for different imputation

methods:

• (Separate Imputation) We constructed two linear regressions to predict the observed

last purchase time and average purchase rate per active period:

Ti,10 = αT
0 +βT

1 Xi,1+βT
2 Xi,2+βT

3 Xi,1 ·Xi,2+

T0∑
t=1

(
γT
t ·Si,t + ξTt ·Xi,1 ·Si,t + ηTt ·Xi,1 ·Si,t

)
+ εTi ,

Λi,10 = αΛ
0 +βΛ

1 Xi,1+βΛ
2 Xi,2+βΛ

3 Xi,1 ·Xi,2+

T0∑
t=1

(
γΛ
t ·Si,t + ξΛt ·Xi,1 ·Si,t + ηΛt ·Xi,2 ·Si,t

)
+ εΛi ,

where Ti,10 is the observed last transaction time and Λi,10 denotes the average per-

period purchase counts until the observed last transaction.

• (Single Imputation) We fit the following linear regression to predict Yi,T :

Yi,10 = αY
0 +βY

1 Xi,1+βY
2 Xi,2+βY

3 Xi,1 ·Xi,2+

T0∑
t=1

(
γY
t ·Si,t + ξYt ·Xi,1 ·Si,t + ηYt ·Xi,2 ·Si,t

)
+ εYi .

• (BG/NBD) We employ a BG/NBD model with time-invariant covariates Xi,1 and

Xi,2. Linear specifications were used for all key parameters. After generating expected

future purchase counts after T0, we add it with the observed purchase counts until T0

to capture the short-term treatment effects.
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B.4. Sample Size Efficiency

We investigate the influence of training sample size on the efficiency of CATE model esti-

mation. Figure App-1 displays the AUTOC values for various CATE models and training

sample sizes. The results indicate that CATE models utilizing short-term proxies consis-

tently outperform the default approach, regardless of the training sample size. Moreover,

the separate imputation method persistently surpasses other methods in terms of AUTOC

for the same CATE model and training sample size. These findings suggest that incorpo-

rating short-term outcomes is a viable strategy for enhancing targeting performance, as

it enables more accurate CATE estimation without requiring substantially larger sample

sizes.

Figure App-1 Area-under-TOC Curves: CATE Models with Different Training Sample Size.

S−GRF T−GRF R−lasso Causal Forest

1k 2k 4k 10k 50k 1k 2k 4k 10k 50k 1k 2k 4k 10k 50k 1k 2k 4k 10k 50k
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0.6

0.8

1.0

Training Sample Size

A
U

TO
C

Separate Myopic Single BG/NBD Default

Dash Line = AUTOC of Oracle

AUTOC for Different Models

Note. Each point reports the average over 200 simulation replications. The larger the AUTOC, the better targeting

performance.

B.5. Trade-off between Information and Noise Accumulation

We reproduce the analyses described in Section 5.5 for different approaches and CATE

models. Figure App-2 shows the results of AUTOCs for various CATE models and the

number of periods used for surrogacy construction. Our results indicate that (i) using

short-term proxies consistently leads to higher AUTOC compared to using the actual

long-term outcome (except for R-lasso), (ii) the separate imputation method outperforms

other short-term proxies regardless of the CATE models used for estimation, (iii) the

separate imputation method shows higher robustness to noise, as the AUTOC declines



App-14

more slowly, and (iv) using T0 = 3 (i.e., the minimal number of periods such that the

surrogacy assumption is satisfied) generally yields the most effective targeting performance.

Figure App-2 Area-under-TOC Curve: CATE Models for Outcomes Using Different Periods of Information.
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Note. Each point reports the average over 200 simulation replications together with the two standard error interval.

The larger the AUTOC, the better targeting performance.
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C. Further Details for the Empirical Application

In this section, we provide additional analyses for the empirical application presented in

Section 6 of the main document.

C.1. Randomization Checks

Table App-1 compares treated and non-treated customers on a set of pre-treatment covari-

ates—variables easily observed by the focal company, which are used for CATE estimation

and targeting. We standardized all variables to preserve the company’s confidentiality.

Table App-1 suggests that the randomization was correctly executed as there is no statis-

tically significant difference detected across the two groups of customers.

Table App-1 Randomization Check: Comparison of Pre-treatment Covariates under Two Experimental Conditions.

Variable
Three Coupons

(N = 889)

One Coupon

(N = 964)

Difference

p-value

log(Sales) in the first transaction −0.021 0.018 0.601

log(Quantity) in the first transaction 0.018 0.040 0.930

Was the first-visit fridge open to public? 0.0035 −0.0031 0.859

Did the first purchase include any side-dish item? 0.0023 −0.0020 0.865

Did the first purchase include any dessert item? 0.0002 −0.0002 0.990

Did the first purchase include any beverage item? 0.0191 −0.0169 0.332

Did the first purchase include any main-dish item? 0.0128 −0.0114 0.461

Did the first purchase include any item from other categories? 0.0036 −0.0032 0.697

Was the customer referred by another customer? −0.0016 0.0015 0.916

All continuous variables were first standardized then summarized across conditions. All binary variables were first subtracted by

the mean of all customers. We use the log scale for sales and quantity to create CATE models, as outliers in these variables may

impact the performance of tree-based models. However, there is no significant differences for the two variables in the original scale
as well.

C.2. Specification of CATE Models

Given an outcome variable Ÿi, we construct four types of CATE models to show robustness

of our findings, including:

1. S-learner : we predict E[Ÿi|Wi,Xi] by regressing Ÿi on Wi,Xi using random forest and

perform the automatic hyperparameter tuning using the method implemented in the

grf package.

2. T-learner : we construct two random forests of Ÿi on Xi, one for treated customers and

another for non-treated customers. We perform the automatic hyperparameter tuning

using the method implemented in the grf package.
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3. X-learner (Künzel et al. 2019): all the outcome models in X-learner are estimated using

the random forest with automatic hyperparameter tuning. We estimate the propensity

score using the probability forest implemented in the grf package.

4. Causal Forest (Wager and Athey 2018): we use the causal forest function implemented

in the grf package with automatic hyperparameter tuning.

C.3. Replication results for the motivating example

In this appendix, we reproduce Figure 1a and Figure 1b in the main document using the

CATE models outlined in Appendix C.2.

C.3.1. Targeting for Short-term Outcome. In the motivating example (Section 2 of

the main document), we show that the focal company can develop an effective CATE

model when the outcome variable is Yi,1. Figure App-3 presents the Group Average Treat-

ment Effects (GATEs) on Yi,1 across quintiles based on predicted CATE. This chart is

constructed similarly to Figure 1a, now presenting the results for the different CATE mod-

els. While the actual CATE curves are not perfectly decreasing for all models, they are

still effective in distinguishing customers with high CATEs from those with low CATEs,

as Qτ̂Y1
1 ,Qτ̂Y1

2 ,Qτ̂Y1
3 have higher treatment effects than Qτ̂Y1

4 and Qτ̂Y1
5 have.

Figure App-3 CATE Models for Yi,1.

S−learner T−learner X−learner Causal Forest
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Validation GATEs: CATE Models for Yi, 1

Note. Each point represents the mean of bootstrap results. Groups Qτ̂Y1
1 , · · · ,Qτ̂Y1

5 are defined by decreasing order

of predicted treatment effects on Yi,1. Hence, the predicted GATEs (the gray line) are, by definition, monotonically

decreasing. Actual GATEs (the blue line) are computed from the actual response.
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C.3.2. CATE Models for Long-term Outcome. Similarly, Figure App-4 illustrates the

predicted and actual GATEs when using Yi,10 as outcome variable. Notably, all CATE

models produce the same V-shaped curve, indicating that the firm would overlook a signif-

icant proportion (e.g., the bottom quintile group Qτ̂Y 10
5 ) of the “should-target” customers

when the targeting policy is based on these models.

Figure App-4 Targeting for Yi,10.
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Note. Each point represents the mean of bootstrap results. Groups Qτ̂Y10
1 , · · · ,Qτ̂Y10

5 are defined by decreasing order

of predicted treatment effects on Yi,10. Hence, the predicted GATEs (the gray line) are, by definition, monotonically

decreasing. Actual GATEs (the blue line) are computed from the actual response.

C.4. Model Specification of Surrogate Indices

To construct the surrogate indices, we gathered historical data of customers who were

acquired at least ten weeks before the experiment started (4,031 in total) and imputed

different outcome variables as follows:

• Ỹ Single
10 (Si,1,Xi): we fit a random forest model (Athey et al. 2019) of Yi,10 on the first-

week purchase (Si,1) and customer covariates (Xi), reported in Appendix C.1. We

perform automatic parameter tuning using the function provided by the grf package.

• Ỹ Sep
10 (Si,1,Xi): we fit two random forests, one for the observed last purchase week

(Ti,10) and another for the purchase counts per period until the last purchase week

(Λi,10 ≡ Yi,10/Ti,10), on Si,1 and Xi. We perform automatic parameter tuning using the

function provided by the grf package.

• Ỹ BTYD
10 (Si,1,Xi): we fit a BG/NBD model with Xi as time-invariant covariates.
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C.5. Forecasting Accuracy of Surrogate Indices

Table App-2 reports the Pearson’s correlation coefficients between the surrogate indices and

the actual long-term outcome. Note that the correlation increases as T0 increases, but the

targeting performance becomes worse (as shown in Appendix C.8) since ST0 accumulates

more unexplained variations as T0 increases.

Table App-2 Pearson’s Correlation Between Short-term Proxies and Long-term Outcome.

Outcome Variable T0 = 1 T0 = 2 T0 = 3 T0 = 4

Ỹ Sep
10 (Si,T0

,Xi) 0.4943 0.6714 0.7740 0.8521

Ỹ Single
10 (Si,T0

,Xi) 0.4920 0.6687 0.7665 0.8579

Ỹ BTYD
10 (Si,T0

,Xi) 0.4455 0.6097 0.7526 0.8419

Yi,T0
0.5075 0.7276 0.8241 0.8860

C.6. Details for Policy Learning Using Doubly Robust Scores

In this section, we provide a detailed explanation of how we implement doubly robust policy

learning, as proposed by Athey and Wager (2021). Specifically, for each training-validation

split, we learn the policy by the following steps:

1. Compute the outcome variable Ÿ for the training set (Dtrain).

2. Compute the (honest) doubly robust score for i in the training set:

Γ̂i =
[
m̂1(Xi)− m̂0(Xi)

]
+

Wi − ê(Xi)

ê(Xi)

[
Yi − m̂Wi(Xi)

]
.

We use grf and policytree packages (Sverdrup et al. 2020) to derive the doubly

robust scores for each customer.

3. Derive the targeting policy π̂ by solving the optimization problem:

π̂= argmax
π

∑
i∈Dtrain

[2π(Xi)− 1] Γ̂i,

where we constrain π in the class of probability forest in the grf package.
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C.7. Replication Results for the GATE Analysis

Figure App-5 displays the GATEs by predicted CATE levels of different outcome variables.

Notably, regardless of the methods used, the separate imputation method consistently

produces the steepest CATE curve, suggesting the superiority of targeting based on our

proposed solution. Note that both Single and Myopic approaches also result in reasonably

good performance when compared to models based on Yi,10.

Figure App-5 Actual group average treatment effects by predicted CATE levels on different outcome variables.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the two standard
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C.8. How Many Periods Should the Focal Firm Use?

Figure App-6 compares the expected profit improvement from targeting based on surrogate

indices constructed using different periods of outcomes. The result suggests that using

one-period outcome in surrogate models gives the highest profit, and targeting based on

short-term signals consistently outperforms or is as good as targeting based on the actual

long-term outcome.

Figure App-6 Expected Profit Improvement: Comparison of Different Periods Used for Surrogate Models.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the two standard

error interval (the errorbar). The dashed line reports the expected profit improvement when the targeting policy is

based on predicted CATEs on Yi,10.
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