
 

Working Paper 23-009 

Innovation on Wings: 

Nonstop Flights and Firm 

Innovation in the Global 

Context 
  

Dany Bahar 

Prithwiraj Choudhury 

Do Yoon Kim 

Wesley W. Koo 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Working Paper 23-009 

 

 

Copyright © 2022 by Dany Bahar, Prithwiraj Choudhury, Do Yoon Kim, and Wesley W. Koo. 

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may 

not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.  

Funding for this research was provided in part by Harvard Business School. 

 

 

 

Innovation on Wings: Nonstop Flights and 

Firm Innovation in the Global Context 

  

Dany Bahar 
Brown University 

Prithwiraj Choudhury 
Harvard Business School 

Do Yoon Kim 
Boston College 

Wesley W. Koo 
INSEAD 

 

 

  

 



1 
 

Innovation on Wings: Nonstop Flights and Firm Innovation in the Global Context 
 

Dany Bahar (Brown University) 

Prithwiraj Choudhury (Harvard Business School) 

Do Yoon Kim (Boston College) 

Wesley W. Koo (INSEAD) 

 
Abstract 

 
We study whether, when, and how better connectivity through nonstop flights leads to positive innovation 
outcomes for firms in the global context. Using unique data of all flights emanating from 5,015 airports around 
the globe from 2005 to 2015 and exploiting a regression discontinuity framework, we report that a 10% increase 
in nonstop flights between two locations leads to a 3.4% increase in citations and a 1.4% increase in the 
production of collaborative patents between those locations. This effect is driven primarily by firms, as opposed 
to by academic institutions. We further study the characteristics of firms and firm locations that are salient to 
the relation between nonstop flights and innovation outcomes across countries. Using a gravity model, we posit 
and find that the positive effect of nonstop flights on innovation is stronger for firms and subsidiaries with 
greater innovation mass (e.g., stocks of inventors and R&D spending), for firms and subsidiaries located in 
innovation hubs or in countries that are deemed technology leaders, and for firm and subsidiaries that are 
separated by large cultural or temporal distance. 
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1. Introduction 

The strategy literature has long posited that firms might overcome the constraints of geographically localized 

search for knowledge and collaborators through geographic mobility of employees (e.g., Rosenkopf and 

Almeida 2003). A more recent literature documents how better connectivity through roads and nonstop 

flights facilitates geographic mobility, enabling innovation outcomes in the United States (Agrawal et al. 2017, 

Catalini et al. 2020). However, for firms and inventors located across different countries, the relation between 

connectivity and innovation outcomes—such as cross-border knowledge spillovers (e.g., Singh 2005) and the 

production of global collaborative patents (GCPs) (e.g., Kerr and Kerr 2018)—might be more nuanced. This 

relates to two core insights in prior literature: (1) the persistence of cultural, temporal, and other dimensions 

of distance that affect firm innovation in the global context; and (2) the “spikiness” in the spatial distribution 

of innovation around the world. 

  First, a long-standing literature, notably Ghemawat (2001) and Berry et al. (2010), documents the 

persistence of geographic, cultural, economic, and other dimensions of distance in the global context. While 

better connectivity through nonstop flights shrinks geographic distance between firm locations, in the global 

context, cultural, temporal, and other dimensions of distance between firm locations may influence the 

relation between nonstop flights and knowledge spillovers and collaborations. Second, prior literature (e.g., 

Florida 2005, Furman and Hayes 2004, Kim and Aguilera 2015) documents that the distribution of global 

innovation is characterized by “spikes” (i.e., disproportionate spatial concentration of innovation in a select 

few locations around the world) and by differences between countries that are technology “leaders” versus 

those that are “followers.” This raises the question of whether the relation between connectivity and 

innovation across countries depends on the characteristics of firms and firm locations. 

  While a broader literature in economics studies how nonstop flights affect global economic 

outcomes, such as firm productivity and regional economic activity (Campante and Yanagizawa-Drott 2018, 

Giroud 2013), to the best of our knowledge, we lack evidence on whether, when, and how nonstop flights 

affect innovation outcomes for firms in the global context. This leads to our research questions: Do nonstop 
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flights affect firm innovation outcomes across countries? If so, how, and what characteristics of firms and firm locations connected 

by nonstop flights are salient to the relationship between nonstop flights and innovation outcomes across countries?  

  To motivate our empirical analysis, we borrow insights from the gravity model, which has been 

extensively used to predict trade, FDI, and migration flows (Anderson 1979, Frankel and Rose 2002, 

Vanderkamp 1977). We make two sets of predictions regarding how characteristics of firms and 

characteristics of firm locations affect the relation between flight connectivity and innovation outcomes. First, 

we predict that the relation between nonstop flights and innovation outcomes across countries is more salient 

for firms and subsidiaries with greater innovation mass (measured by R&D spending and number of 

inventors at firms/subsidiaries) and for firms and subsidiaries located within global innovation hubs or within 

countries that can be deemed technology leaders. Second, we predict that the relation between nonstop flights 

and innovation outcomes across countries is more salient for firms and firm locations separated by temporal 

and cultural distance. We measure temporal distance by computing time zone differences between firm 

locations; and measure cultural distance using the ethnic composition of inventors at firms/subsidiaries and 

using metrics from the World Values Survey of 2020, measured at firm locations.  

For our empirical analysis, we exploit a proprietary dataset comprising the universe of all active air 

routes globally from 2005 to 2015, sourced from the Official Aviation Guide (OAG). This unique dataset 

contains information on all flights, including nonstop flights in each year, emanating from 5,015 airports 

around the globe. We then geo-match these airports to the addresses of inventors based on the universe of 

patents filed with the United States Patent and Trademark Office (USPTO) for the aforementioned years. In 

doing so, we obtain two measures of innovation—global citations and global collaborations—for all 

patenting entities (firms and academic institutions) near each of these airports. 

With these data, we arrive to our results through several steps. First, we apply a regression 

discontinuity design (RDD) to study the causal effect of nonstop flights on innovation outcomes of interest 

(i.e., citations and collaborations across locations). Here, we build on the work by Campante and Yanagizawa-

Drott (2018), which leverages a discontinuity. They find that airport pairs less than 6,000 miles apart are more 

likely to be serviced by nonstop flights than pairs that are more than 6,000 miles apart, due to aviation 
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regulations significantly increasing costs of operating nonstop flights for destinations that are more than 6,000 

miles apart. Thus, in the context of innovation outcomes, this exercise enables the comparison of patent 

citations and collaborations between inventors in location pairs that are just below the 6,000 miles threshold 

(such as Shanghai and Milan, which are 5,650 miles apart) to those in location pairs that are just above the 

6,000 miles threshold (such as Shanghai and Madrid, which are 6,350 miles apart). Insofar as designers and 

planners of airports cannot precisely manipulate their distance from other airports (e.g., position themselves 

within 6,000 miles of other airports), the regression discontinuity implies that variation in between-airport 

distance near the 6,000-mile threshold is as good as random (Lee and Lemieux 2010). This feature allows us 

to interpret our results as causal. Our baseline estimation using this methodology finds that for airport pairs 

around the 6,000-mile threshold, a 10% increase in the number of yearly nonstop flights between two 

locations increases citations by 3.5% and collaborations by 1.5%.  

We further show that the effects of nonstop flights on innovation are driven primarily by firms, not 

by academic institutions. For firms, a 10% increase in flights increases citations by 3.38% and collaborations 

by 1.48%; for academic institutions, the same increase in flights is 0.99% and 0.40% for citations and 

collaborations, respectively. Thus, for the rest of the paper, we focus squarely on firms (and firm subsidiaries) 

and examine when nonstop flights matter for firm innovation in the global context.1  

Using the gravity model as a theoretical anchor, we argue that the innovation mass of firms or 

subsidiaries (measured using the number of inventors and R&D spending), the innovation mass at the 

firm/subsidiary location (i.e., whether the location is near a hub or whether the location is in a country 

deemed a technology leader), and non-geographic distances (i.e., temporal and cultural distances) between 

firms and firm locations are key for their joint innovation outcomes and, consequently, how nonstop flights 

can affect innovation outcomes. In particular, by re-estimating our RDD considering the heterogeneity of 

characteristics of firms/subsidiaries and characteristics of firm/subsidiary locations, our empirical results 

                                                
1 We study citations between firms and collaborations between subsidiaries within a firm. This is because in the 
patenting dataset, a citation is usually between two different assignees (e.g., firms), and a global collaborative patent 
(collaboration) is between inventors within a single assignee. In other words, we assume that for a global collaborative 
patent assigned to a firm, collaborating inventors are located at different subsidiaries within the firm.    
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show that the relation between nonstop flights and innovation outcomes is more salient for firms and 

subsidiaries: (1) with greater innovation mass; (2) located in innovation hubs or within countries that have been 

deemed technology leaders; and (3) separated by cultural and temporal distance. 

We also explore the two mechanisms outlined in the airline connectivity literature to understand how 

nonstop flights affect innovation outcomes for firm innovation across countries: reduction in pecuniary travel 

costs (e.g., Catalini et al. 2020) and reduction in travel time (e.g., Bernstein et al. 2016). Using data from 

Google Flights, we find that travel time reduction, rather than a reduction in pecuniary costs, is the most 

prominent factor explaining the relation between nonstop flights and global citations and collaborations at 

firms. In additional analyses, we show that our local average treatment effects at the airport pair level also 

extend to the airport level, suggesting that the documented effects represent aggregate increases in citations 

and collaborations. 

Our findings contribute to several literatures. First, we contribute to the literatures in strategy and 

economics on knowledge spillovers and collaborative patents for firms in the global context (Bahar et al. 

2020, Branstetter et al. 2014, Kerr and Kerr 2018, Miguelez and Fink 2013, Singh 2005). We find that 

knowledge frictions due to national borders, as discussed in Singh and Marx (2013),2 are attenuated by the 

availability of international nonstop flights. This finding highlights how airline connectivity mitigates the 

frictions exerted by political borders and cross-country distance on international collaborations (Alcácer et al. 

2017, Berry et al. 2010, Ghemawat 2007). Additionally, our results show that nonstop flights especially 

facilitate innovation outcomes for firms with high levels of innovation mass, for firms located near hubs or in 

countries deemed technology leaders, and for firms that are temporally and culturally distant. In light of 

Rosenkopf and Almeida (2003), this suggests that while nonstop flights help firms build bridges to temporally 

or culturally distant places, they also disproportionately help firms with more innovation mass, or located 

within regions with greater innovative activity overcome the constraints of geographically localized search for 

knowledge and collaborators. 

                                                
2 Singh and Marx (2013) find that, even after accounting for geographic proximity between patent inventors, country and 
state borders still constrain knowledge diffusion in the form of citations.  
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Second, by reporting a causal relation between easing human mobility through nonstop flights and 

the production and diffusion of knowledge at firms across country borders, we contribute to an evolving 

literature on connectivity and economic outcomes (Agrawal et al. 2016, Bernstein et al. 2016, Campante and 

Yanagizawa-Drott 2018, Catalini et al. 2020, Choudhury 2017, Giroud 2013). While prior research documents 

the economic consequences of flight connectivity for domestic innovation (primarily in the U.S.),3 we provide 

a parsimonious framework and document causal evidence related to nonstop flights and global innovation. 

Importantly, our paper also documents the conditions under which flight connectivity is likely versus unlikely 

to drive innovation at firms globally. By showing that flight connectivity is less effective for facilitating 

knowledge spillovers and collaborations at firms with smaller innovation masses, for firms located outside 

regions with significant innovative activity, and for firms and firm locations that are temporally or culturally 

proximate, this paper provides an important account of the limitations of transport connectivity in driving 

innovation. Moreover, the insight on how the effects are stronger for firms vis-à-vis academic institutions is a 

novel insight for this literature. In summary, by focusing on firms in the global context, by considering how 

characteristics of firms and firm locations drive our results, and by documenting savings in travel time as the 

underlying mechanism, our study departs from prior research (e.g., Catalini et al. 2020) that studies how flight 

connectivity and savings in travel costs affect innovation in a domestic and academic context. 

Finally, this study also provides important and timely policy implications for firms and managers. As 

companies and knowledge workers debate whether to resume international travel after the pandemic (Weed 

2021), our results shed light on the importance of business travel and nonstop flights for knowledge 

spillovers and collaborations, especially for firms in a global context. 

The paper is organized as follows: In Section 2, we introduce the empirical setting, data, and 

variables. In Section 3, we describe the regression discontinuity approach and present the causal estimates. In 

                                                
3 For example, Catalini et al. (2020) find that after the introduction of new routes by Southwest Airlines in the U.S., 
collaborations between academic scientists increased from 0.3 to 1.1 times. The authors highlight travel costs as an 
important hurdle to innovation collaborations. Agrawal et al. (2017) study roads and innovation. They find that a 10% 
increase in the highway stock in a region is associated with a 1.3% increase in citation-weighted patents. Their study 
points to a mechanism through which roads drive innovation, within-region knowledge flows, as roads make it easier for 
innovators located in the same region to interact with one another. 
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Section 4, we explore how characteristics of firms/subsidiaries and firm/subsidiary locations affect our 

results. Section 5 presents additional analyses, in which we estimate the effect of flight connectivity on 

innovation for a single location (as opposed to a pair of locations) to study whether nonstop global flights 

result in an aggregate increase in innovation outcomes. In Section 5, we also report results related to 

underlying mechanisms. Finally in Section 6, we conclude with a set of research and managerial policy 

implications. Our paper is accompanied by an online Appendix. 

2. Data and Setting  

2.1 Dataset and Dependent Variables 

Our data on commercial flights comes from OAG, a private company specializing in aviation analytics. This 

data contains information on 94,221 routes between 5,068 airports around the globe. We exclude 53 airports 

that serve only cargo flights or have no flights for the entire period from 2005 to 2015. This yields 5,015 

airports. For each route, we calculate the geodesic distance between the origin and destination (using the 

geodist command in Stata).4 

Next, we collect patent data and map each patent to nearby airports. We use the universe of patents 

filed in the U.S. Patent and Trademark Office (USPTO) from 2005 to 2015 from the Thompson Reuters 

patent dataset, as well as all of their forward citations. To assign patents to airports, we use inventor addresses 

contained in the patents. First, we map each inventor to all airports within a 50-mile radius of the inventor’s 

location, within his/her own country.5 This gives us a patent-inventor-airport-level dataset, with an inventor 

potentially assigned to multiple airports. Each patent is then assigned a location based on its inventors. If a 

patent has only one inventor, we code the patent’s location as that inventor’s location. If a patent has multiple 

inventors, we use the first inventor’s location. Figure 1 shows the locations of all the inventors in our dataset. 

As expected, given that innovation activities occur predominantly in developed countries, most locations are 

                                                
4 As Campante and Yanagizawa-Drott (2018) point out, the geodist command in Stata computes the geodesic distance: 
the length of the shortest curve between two points along the surface of (a mathematical model of) the Earth, not the 
actual flight distance. As such, this proxy is exogenous to the geopolitical factors that determine actual flight distance. 
5 Specifically, we map inventors to all airports within a 50-mile radius with territorial contiguity and within their own 
country, with the exception of the Schengen Area, for which we relax the “within same country” rule as long as there is 
territorial contiguity between the location of the inventor and the nearby airport.  
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in the United States, Europe, and East Asia. Assignees are categorized into firm or academic institutions 

based on their names: We checked whether the assignee name contains words and phrases such as 

“university,” “college,” “institute of technology,” or “school.” Since many assignees are foreign, we translated 

each of those terms into all available languages on Google Translate.6 Our sample contains 11,756 unique 

academic assignees and 198,327 unique firm assignees. Where applicable, we use the Duke DISCERN 

database (Arora et al. 2021) and the Compustat database to obtain the balance sheet information for the firm 

assignees.  

[Insert Figure 1 here] 

For the first dependent variable, citations, we measure activity at the airport pair level. We count a 

citation between two airports if there exists a patent citation from a patent mapped to one airport to a patent 

mapped to another airport. Our dataset is not directional—that is, the airport pair CDG-ORD (Paris Charles 

de Gaulle-Chicago O’Hare) in 2005 appears only once in the dataset, but there is no observation for the 

opposite direction, ORD-CDG, in 2005. This is because citations and collaborations may be driven by either 

flight direction (CDG-ORD or ORD-CDG). Therefore, we take the sum of all flights and the sum of 

citations/collaborations that occur between inventors located near two airports, regardless of flight direction, 

to measure the overall level of citation activity between the two locations. In cases where an inventor of a 

patent is assigned to more than one airport, we inversely weight the patent by the number of airports to avoid 

double counting citations. For example, if a citation involves one inventor assigned to ORD (Chicago 

O’Hare) and another inventor assigned to both CDG and ORY (Paris Charles de Gaulle and Paris Orly), our 

approach assigns 0.5 citations for the ORD-CDG and ORD-ORY airport pairs.  

For the second dependent variable, collaborations, we similarly measure those activities at the airport 

pair level. A collaboration between two airports corresponds to a collaborative patent with inventors from 

locations nearby those two airports. Specifically, for each year and each airport pair, we count the number of 

collaborative patents by inventors from both airports. In cases where an inventor is assigned to multiple 

                                                
6 The final list of keywords is available upon request. 
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airports, similar to how we count citations, we inversely weight each collaboration by the number of airports 

in order to avoid double counting.  

Our final dataset, thus, consists of a yearly panel of citations, collaborations, and the number flights 

at the airport pair level. Given that all collaborations pertain to a single assignee (i.e., multiple subsidiaries of 

the same assignee) and most citations are between assignees, we are able to conduct separate analyses based 

on the characteristics of firms/subsidiaries and of firm/subsidiary locations. An important caveat here is that 

we proxy firm/subsidiary location using the airport location—that is, airports proximate to the inventors 

working at the firm/subsidiaries. Any airport pair will appear for all 11 years of the sample (2005 to 2015), 

even if there were no flights or no patent information reported in some of those years (which are assumed to 

be zero), making it a balanced panel. A preliminary analysis using a counterfactual patent-matching method 

shows that more nonstop flights between inventors are associated with more citations and collaborations.7  

2.2 Characteristics of Firms and Firm Locations 

To study heterogenous effects, we collect information about innovation mass of firms/subsidiaries and 

distances between firms/subsidiaries. For innovation mass, we utilize three measures. First, we match firms 

to their balance sheets using Duke DISCERN data and Compustat data, and we obtain R&D spendings at the 

firm level. Second, for each firm, we count the number of unique inventors who filed patents with the firm. A 

third measure at the firm location level captures airports’ proximity to hubs of academic science: for each 

airport (i.e., firm/subsidiary location), we check whether it is within a 50-mile radius of a scientific hub as 

defined in Bikard and Marx (2020). We also differentiate between firms/subsidiaries located in innovation-

leader countries and those in innovation-follower countries (Furman and Hayes 2004). 

We also collect data on distances between firm/subsidiaries and between their locations. First, we 

collect data on temporal distance, measured by the extent of working hour overlap between two 

firm/subsidiary locations (proxied by the airport location). For each airport, we obtained the time zone using 

                                                
7 We conducted a correlational exercise using the counterfactual patent-matching methodology. This procedure helps 
map out the broad relation between flight connectivity and innovation outcomes across countries. In Appendix Sections 
A4 and A5, we show that nonstop flights provide an additional 2.6 percentage point increase in citations and a 2.9 
percentage point increase in collaborations for international airport pairs.  
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its latitude and longitude coordinates and the timezonefinder package in Python.8 Using the time zones, we 

calculate the time difference between the origin airport and the destination airport, then calculate the working 

hour overlap to be from 0 to 8 hours.9 Next, we measure the cultural distance between two firm/subsidiaries 

in two ways. First, we obtain the ethnicities of the inventors in our sample through machine learning 

algorithms for name-matching, and we measure whether a group of citing or collaborating inventors are 

multiethnic or co-ethnic. The assumption is that a co-ethnic group of inventors who cite or collaborate with 

one another have shorter cultural distance (are more culturally similar) than a multiethnic group of 

citing/collaborating inventors. Second, we use data from a specific question in the World Value Survey—a 

question that measures how much each country’s citizens believe immigrants play important roles in their 

society. This measure is particularly relevant to the context of global knowledge spillovers and collaborations 

because it gauges a specific cultural element—people’s tendency to appreciate the work of foreigners.  

3. Do Nonstop Flights Drive Firm Innovation in the Global Context? A Regression Discontinuity 

Approach 

To causally estimate the impact of nonstop flights on innovation across countries, we utilize a unique feature 

of the airline industry: airport pairs that are less than 6,000 miles apart are more likely to be serviced by 

nonstop flights than are pairs that are more than 6,000 miles apart. This pattern exists because of higher 

operating costs to service routes that are more than 6,000 miles long; this expense is due to a combination of 

administrative and legal rules as well as technological factors. This paves the way for a regression 

discontinuity design. While this approach was pioneered by Campante and Yanagizawa-Drott (2018), to the 

extent of the authors’ knowledge, we are the first to apply this method to explore innovation outcomes. 

The 6,000-mile threshold roughly corresponds to 12 hours of flight time given customary flight 

speeds (Campante and Yanagizawa-Drott 2018), and flights above the 12-hour and 6,000-mile threshold are 

known as ultra-long-haul (UHL) flights (McKenney et al. 2000). These UHL flights must meet special 

                                                
8 More information can be accessed at https://pypi.org/project/timezonefinder/. 
9 Working hour overlap was defined as 8 hours if the time difference between the origin and destination airports is either 
0, 24, or -24 hours; 7 hours if the time difference is -1, 1, 23 hours, and so forth. 
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requirements on personnel availability. For instance, the Federal Aviation Administration (FAA) requires 

flights that are more than 12 hours long to have an additional flight crew member as well as adequate sleeping 

quarters on the plane. Such requirements lead to greater operational costs for these flights, as the crew 

corresponds to about 36% of nonfuel costs (Federal Aviation Administration 2016). Technological advances 

in the 1980s and 1990s made this discontinuity more pronounced, as long-range airplane models introduced 

during this period made long-haul flights more fuel efficient, which accentuated the importance of 

minimizing nonfuel costs (e.g., crew costs).10 

Using this feature of the data, we implement a fuzzy regression discontinuity analysis. The fuzzy 

design responds to the fact that while there are still nonstop flights above the 6,000-mile threshold, there are 

many fewer of these than there are flights below the 6,000-mile threshold. The unit of analysis, similar to the 

one adopted in Campante and Yanagizawa-Drott (2018), is at the airport pair level. The “treatment” in this 

setting corresponds to an airport pair being slightly below the 6,000-mile threshold, allowing for a higher 

likelihood of having nonstop flights between the two airports.11 This is the key assumption: There is no 

reason to believe that innovation activities occurring between locations that are slightly more than 6,000 miles 

apart should be significantly different from those occurring between locations that are slightly less than 6,000 

miles apart. In other words, arguably, whether the distance between any airport pair lies just above or just 

below the 6,000-mile threshold is as good as randomly assigned. We provide summary statistics for our RDD 

dataset in Table 1.12  

[Insert Table 1 here] 

From Table 1, we see that the average airport pair has 2.14 citations and 2.00 collaborations in a 

given year, but the distribution is skewed to the left. Average firm citations between airport pairs is 1.96, and 

firm collaborations are 1.90. About half the airport pairs (in a given year) have nonstop flights, with the 

                                                
10 The Boeing 747-400 commenced commercial operations in 1989, followed by the Airbus A330 and A340 models as 
well as the Boeing 777 series. The 747-400 family was about 20% more fuel efficient than the previous best-selling 
planes, and the 777 pushed this gain to about 30% (Kharina and Rutherford 2015). 
11 For instance, 6,000 miles roughly corresponds to the distance between Los Angeles and Munich (slightly less than 
6,000 miles) or from Cologne to Sao Paulo (slightly more than 6,000 miles). 
12 Summary statistics for the RDD sample is presented in Appendix Table B1.  
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average number of nonstop flights at 611.95. The average distance between two airports in our dataset is 

around 1,111 miles. Hub-to-hub flights (flights between two airports that are both innovation hubs) are about 

26% of the routes. The average location pair has a working hour overlap of 7.04 hours (1.83 hours for 

location pairs in the regression discontinuity sample). The average difference in immigrant friendliness scores 

between locations (explained in detail in footnote of Table 1) is 0.19. Finally, the average price for any ticket 

in our sample is $946.48, and the average travel duration is 13.72 hours. 

A benefit of the regression discontinuity approach is that it is possible to visualize the effect of the 

discontinuity on innovation outcomes. Figure 2 presents a visual summary of our reduced-form results.13 We 

see from both panels that airport pairs that are slightly less than the 6,000-mile threshold have more citations 

and collaborations than airport pairs that are slightly more than the 6,000-mile threshold.  

[Insert Figure 2 here] 

Our main analysis for the regression discontinuity quantifies the graphical relationship. Since this is a 

fuzzy regression discontinuity, the estimation involves two stages, where the first stage estimates the 

discontinuity in the number of flights around the 6,000-mile threshold and the second stage estimates the 

impact of the discontinuity on the outcomes of interest (innovative activities):  

 asinh(𝑁𝑜𝑛𝑠𝑡𝑜𝑝 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑,𝑡)

= 𝛾11{𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
< 6,000} + 𝛾2(𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑

− 6,000)

+ 𝛾31{𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
< 6,000} × (𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑

− 6,000) + 𝜙𝑐𝑜 ,𝑐𝑑,𝑡 + 𝜖𝑎𝑜,𝑎𝑑,𝑡  

(1) 

 asinh(𝑌𝑎𝑜,𝑎𝑑,𝑡) = 𝛽1 𝑎𝑠𝑖𝑛ℎ(𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑,𝑡)̂  + 𝛽2(𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
− 6,000)

+ 𝛽31{𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
< 6,000} × 𝐷(𝐷𝑖𝑠𝑡𝑎𝑜 ,𝑎𝑑

− 6,000) + 𝜙𝑐𝑜,𝑐𝑑,𝑡 + 𝜖𝑎𝑜,𝑎𝑑,𝑡 

(2) 

 

Here, 𝑎𝑜 and 𝑎𝑑 refer to the origin and destination airports for a given route, and 𝑡 refers to a calendar year. 

Our main variable of interest, 𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑,𝑡 , measures the number of nonstop flights between 𝑎𝑜 and 

                                                
13 In Appendix Section B7, we show our graphical results are robust to using higher-order polynomials to fit the data 
points to either side of the discontinuity. 
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𝑎𝑑 in year 𝑡, which is estimated through the first stage in Equation (3).14 Similarly, 𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
 measures the 

distance in miles between the airports, 𝑎𝑜 and 𝑎𝑑, and our running variable (the variable that determines 

which observations are “treated” with additional nonstop flights) is denoted as (𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
− 6,000). The 

coefficient of interest is 𝛽1, which measures the discontinuity at the 6,000-mile threshold. Intuitively, 𝛽1 

measures the jump in 𝑌𝑎𝑜,𝑎𝑑,𝑡  at the 6,000-mile threshold from fitting separate regression slopes on either side 

of the discontinuity. To absorb the effects due to differences between two countries (e.g., language and time 

zone differences) on citations or collaborations, we include country-country-year fixed effects, marked as 

𝜙𝑐𝑜,𝑐𝑑,𝑡 . We utilize the inverse hyperbolic sine transformation (asinh) since it allows us to preserve 

observations with zeroes (MacKinnon and Magee 1990).15 

First-stage regressions confirm the existence of discontinuity around the 6,000-mile threshold, where 

airport pairs just below the threshold have on average 260 to 550 more nonstop flights per year than airport 

pairs just above the threshold (see more details of the first stage in Appendix Section B2; Appendix Figure B1 

provides visual evidence for the existence of the discontinuity). Below, in Table 2, we present results of the 

second-stage specification.16 

[Insert Table 2 here] 

Columns 1 and 2 show that a 10% increase in the number of nonstop flights between two locations 

leads to an increase in patent citations of 3.4% and a 1.4% increase in the number of collaborations.17 

                                                
14 In this analysis, we use the total number of nonstop flights, instead of the binary variable for the existence of nonstop 
flights. Using a binary indicator as the instrument, we also conclude that the existence of a nonstop flight increases 
citations and collaborations, but the effect size is greater: The existence of a nonstop flight increases citations by 90.89% 

(𝛽1 = 2.3964, 𝑝 < 0.01) and collaborations by 65.25% (𝛽1 = 1.0571, 𝑝 < 0.01). Our preferred specification, to be 
conservative, is using the continuous number of flights variable, given that the very small changes in the binary variable 
exploited using the fuzzy regression discontinuity design might overestimate the Wald estimator. 
15 Appendix Section B12 shows that our results are robust to using raw counts, log+1 transformations, and Poisson 
quasi-maximum likelihood estimators. 
16 Generally, RD results are sensitive to which observations near the threshold are included. We provide two thresholds: 
a 500-mile bandwidth and an “optimal” bandwidth. The optimal bandwidth is calculated following the methodology 
described in Calonico et al. (2014), which builds on prior work on optimal bandwidth choice in RD by Imbens and 
Kalyanaraman (2012). In Appendix Sections B3-B5, we show our RD results are robust to varying the number of bins, 
the bin selection method, and kernel choice, as well as different levels of fixed effects and clustering.  
17 In Appendix Sections B8 and B9, we conduct permutation tests on the 6,000-mile threshold to check whether we see 
similar discontinuities at thresholds other than our 6,000-mile mark. We show that the RD coefficients are insignificant 
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3.1. Firms versus Academic Institutions 

An important question is which entities—firms or academic institutions—benefit more from the presence of 

nonstop flights. An answer to this question will also shed light on which individuals (i.e., employees at firms 

versus academics) are likely taking the nonstop flights and contributing to knowledge spillovers and GCPs. 

We determine whether a patent’s assignee is a firm or an academic institution by searching based on a set of 

keywords (e.g., “school,” “university,” “institute”)18 in its name. Then, we count citations and collaborations 

between locations for firms and academic institutions separately, and we test whether the marginal effect of 

nonstop flights is greater for firms or academic institutions using seemingly unrelated estimations (Mize et al. 

2019) as well as bootstrapping. Table 2 presents the results. We find that a 10% increase in the number of 

nonstop flights between two locations leads to an increase in citations of 3.38% between two firms in those 

two locations and 0.99% between two academic institutions. A comparison of the coefficients shows that the 

two coefficients are significantly different (Diff = 0.2398, s.e. = 0.0929). Similarly, a 10% increase in nonstop 

flights between two locations leads to an increase in collaborations of 1.48% between two subsidiaries within 

a firm and 0.40% between two entities within an academic institution. The point estimates are also 

significantly different (Diff = 0.1072, s.e. = 0.0527). These results show that nonstop flights mainly serve to 

facilitate citations between firms and collaborations between subsidiaries within a firm (and much less so 

between academic institutions or between their branches). In light of the relative importance of firms in 

driving innovation across countries through nonstop flights, the next section focuses squarely on further 

exploiting variation in firms/subsidiaries and between firm/subsidiary locations.  

4. Firm Heterogeneity: A Gravity Model 

What characteristics of the firms/subsidiaries being connected by nonstop flights and of firm/subsidiary 

locations being connected by nonstop flights affect the relationship between nonstop flights and innovation 

                                                
when using random thresholds far from the 6,000-mile mark, confirming the validity of our 6,000-mile threshold. We 
also conduct permutation tests on the running variable (e.g., the distances to 6,000-mile variable) to test whether airports 
strategically locate themselves closer to other airports. We find no discontinuities in our running variable and, thus, no 
precise manipulation of airport locations. Appendix Section B11 further shows the effects are indeed driven by nonstop 
flights, not one-stop flights. 
18 In addition to these keywords, we use Google Translate to translate the keywords across all available languages, and 
we include those keywords in our categorization as well. 
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across countries? To answer this question, we build on the gravity model, which scholars have used to explain 

migration, bilateral trade flows, and FDI between countries (Vanderkamp 1977, Anderson 1979, Frankel and 

Rose 2002). When applied to trade, the model states that bilateral trade volume is proportional to the product 

of the countries’ masses (measured in countries’ GDP) and inversely proportional to the distance between the 

countries. When applied to innovation, the gravity model states that knowledge flows and collaborations 

between firms are proportional to the product of the innovation masses in those firms (commonly measured 

as patenting activities or number of inventors in nearby locations) and inversely proportional to the distance 

between those firms (Montobbio and Sterzi 2013, Picci 2010). The following parsimonious equation 

illustrates the gravity model’s key assumptions: 

 𝑌𝑖𝑗 ~ 𝑀𝑖 ∙ 𝑀𝑗/𝐷𝑖𝑗 (3) 

 

which translates to the following equation after taking the logarithms of both sides and adding the temporal 

dimension: 

 𝑙𝑜𝑔(𝑌𝑖𝑗𝑡) =  𝛽0 + 𝛽1 𝑙𝑜𝑔(𝑀𝑖𝑡) + 𝛽2 𝑙𝑜𝑔(𝑀𝑗𝑡) + 𝛽3 𝑙𝑜𝑔(𝐷𝑖𝑗) + 𝜖𝑖𝑗𝑡  (4) 

In these equations, Y is the outcome of interest (knowledge flows and collaborations between two firms), M 

represents the innovation masses in firm i and firm j, and D is the distance between firms i and j.19 Whereas 

distance is usually the geographic distance, it can also stand for other types of distance (e.g., cultural, 

economic, and language distances). By the gravity model, we expect the coefficients on the mass terms 

(𝛽1, 𝛽2) to be positive and the coefficient on the distance term (𝛽3) to be negative.  

In this study, we modify the gravity model in Equation (4) to predict the conditions under which 

nonstop flights facilitate (do not facilitate) knowledge flows between firms and collaborations between 

subsidiaries within a firm. We present two arguments—one regarding innovation masses of a pair of firms 

and one regarding the distances between those firms/subsidiaries and their locations. Rather than focusing on 

mass and distance as the main effects, we discuss their roles as moderators that amplify or suppress the effect 

of nonstop flights on innovation outcomes. The following equation illustrates the modified gravity model:  

                                                
19 To develop conceptual arguments, when we mention “firms,” we imply both firms and their subsidiaries.  
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 𝑙𝑜𝑔(𝑌𝑖𝑗𝑡) =  𝛽0 + 𝛽1 𝑙𝑜𝑔(𝑀𝑖𝑡)

+ 𝛽2 𝑙𝑜𝑔(𝑀𝑗𝑡)

+ 𝛽3 𝑙𝑜𝑔(𝐷𝑖𝑗) + 𝛽4 𝑙𝑜𝑔(𝑀𝑖𝑡) ∙ 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑗𝑡

+ 𝛽5 𝑙𝑜𝑔(𝑀𝑗𝑡) ∙ 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑗𝑡

+ 𝛽6 𝑙𝑜𝑔(𝐷𝑖𝑗) ∙ 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑗𝑡 + 𝛽7𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑖𝑗𝑡 + 𝜖𝑖𝑗𝑡  

 

 

(5) 

First, regarding innovation mass, prior literature has shown that global innovation is “spiky”—that is, 

the spatial distribution of global innovation is highly concentrated in a few locations (Bresnahan et al. 2001, 

Florida 2005, Kerr and Robert-Nicoud 2020).20 We extend this logic to firms. A lack of ex ante innovation 

mass at firms being connected (e.g., number of nearby inventors, level of R&D) acts as an innovation 

bottleneck that cannot be directly alleviated by nonstop flights. Just as connecting two countries with low GDP 

and low populations is unlikely to create a significantly higher trade flow (because those two countries have 

few things to trade in the first place), connecting two firms with nonstop flights is unlikely to lead to 

increased citations and collaborations if those firms are characterized ex ante by low innovation masses. 

Conversely, nonstop flights connecting firms with large innovation masses are particularly likely to increase 

citations and collaborations between those firms because nonstop flights build a bridge between two firms 

with ex ante high innovation stocks, where inventors would otherwise have found it more difficult to meet 

each other face-to-face. Therefore, in Equation (5), we expect the moderation effects of innovation masses 

(coefficients 𝛽4 and 𝛽5) to be positive.  

In contrast to innovation mass, the lack of which is a bottleneck that cannot be alleviated by nonstop 

flights, the distance between two firms or subsidiaries is a bottleneck that can be alleviated by nonstop flights. 

International business scholars have developed various types of distance measures to study firms’ 

                                                
20 Richard Florida’s 2005 article documents a “spiky” map of innovation where the global patenting peaks are Tokyo, 
Seoul, New York, and San Francisco. Innovation activities are more concentrated in a few global locations than is 
economic activity or population. Bresnahan et al. (2001) present case studies that illustrate the necessary preconditions 
for the formation of new global innovation hubs (concentration of firm-building capabilities and managerial skills, 
supply of skilled labor, and connections to markets). Recently, Kerr and Robert-Nicoud (2020) document the uneven 
distribution of innovation globally. The top 10 global innovation clusters in terms of patent count include large cities in 
Asia, the United States, and France. The first-place cluster (Tokyo-Yokohama) holds twice the patent count of the 
second-place cluster (Shenzhen-Hong Kong). 
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internationalization decisions and other firm-level outcomes (Berry et al. 2010, Ghemawat 2007). Their key 

insight is that different types of distance across countries (e.g., geographic distance, cultural distance, temporal 

distance) create communication barriers that deter mobility, exchange, and collaboration. Nonstop flights 

between two distant firms allow inventors at those firms to interact physically and resolve their differences 

through face-to-face interactions. Thus, nonstop flights will engender increased citations and collaborations 

between culturally/temporally distant firms and subsidiaries. Conversely, nonstop flights connecting 

culturally/temporally proximate firms/subsidiaries are less likely to create significant increases in citations and 

collaborations because the barriers to communication for inventors between those firms are low in the first 

place. Therefore, we expect the moderation effect of distances in Equation (5) (coefficient 𝛽6) to be negative.  

To test these predictions, we carry out analyses using different measures of mass and distance in the 

context of the regression discontinuity framework.  

4.1 Importance of Innovation Mass of Firms and Firm Locations 

For innovation mass, we consider two firm-level variables: inventor mass and R&D spending. Inventor mass 

refers to the total number of inventors who have filed a patent with a firm. R&D spending is also a proxy for 

the level of innovation productivity at a firm. To obtain the R&D spending data, we build on the Duke 

DISCERN dataset (Arora et al. 2021) to match assignees to Compustat. For all matched assignees, we obtain 

the average of their R&D spending for 2005 to 2015.  

To estimate the differential effect of flights for different levels of inventor mass and R&D spending, 

we split patent assignees into groups of high and low mass. A firm has high inventor mass if it has an above 

median number of inventors, and a firm has low mass otherwise. Similarly, a firm has high R&D spending if 

its average R&D spending from 2005 to 2015 is above the median in our sample. Once firms are categorized 

as high or low mass, we count the number of citations for high/low mass firms separately to the airport-pair-

year level. Thus, we create two sets of variables: the number of citations by high mass firms and the number 

of citations by low mass firms. Finally, we twice run the same regression discontinuity specification as 

Equation (4), once using the number of citations at high mass firms and another time using low mass firm 



18 
 

citations. Similarly for collaborations, using the same high and low mass split, we aggregate the number of 

collaborations to high/low mass firm patents to the airport-pair-year level. We present the results below.21  

[Insert Table 3 here] 

We find support for predictions from the modified gravity model: The effect of nonstop flights on 

innovation across countries is greater for firms with high innovation mass. For firms with high inventor mass, 

a 10% increase in nonstop flights increases citations by 3.29%; the change is 1.85% for low inventor mass 

firms (Columns 1-2). Block bootstrapping tests reject the null of no difference between high and low mass 

firms (Diff = -0.143, p = 0.032).22 Similarly for collaborations, a 10% increase in nonstop flights increases 

collaborations across subsidiaries by 1.41% for high mass firms, but 0.2% for low mass firms (Diff = 0.121, p 

= 0.027). Columns 5-8 show a similar picture: firms with high R&D spending benefit more from nonstop 

flights, but the difference is not significant for citations. For collaborations, firms with higher R&D spending 

benefit more, with a 10% increase in flights increasing collaborations by 0.93% for high R&D spending firms, 

but 0.31% for others (Diff = 0.062, p = 0.212). 

Next, we study the importance of firms/subsidiaries being located in scientific hubs. Innovation 

hubs are locations (usually cities) where patenting activities in a technical field are geographically concentrated 

(Bikard and Marx 2020).23 We mark an airport as belonging to an innovation hub if it is within a 50-mile 

radius of any hub.24 We split the data into two subsamples: (1) routes that connect two firm/subsidiary 

locations (proxied by airport locations) that are both located near innovation hubs; and (2) routes in which at 

least one airport is not located near an innovation hub.25 The two subsamples contain similar numbers of 

                                                
21 In the Appendix Section C6, we present an additional set of mass results based on firm-level variables including 
Revenue and Employee count, in addition to R&D spending.  
22 Appendix Section E provides a detailed overview of comparing RD coefficients across models. We use a seemingly 
unrelated estimates approach to compare effect sizes (Mize et al. 2019), and we also provide block bootstrapping results. 
23 The authors define innovation hubs as cities with significant patenting for a given subclass, for all subclasses. 
Specifically, they code a hub as being within a 50-mile radius of a city with (1) more than 5% of patents in a given 
subclass and (2) at least five patents within that subclass. Additional details (including the location data for hubs) are 
provided in Bikard and Marx (2020). 
24 Appendix Section C1 contains examples of airports near hubs and those not near hubs. Section C2 tests the 
relationship between flight distance and the likelihood of a flight connecting two innovation hubs.  
25 We consider Hub to Hub connections versus routes with at least one non-Hub airport in the main draft. Appendix C4 
shows non-hub to non-hub routes do not benefit from nonstop flights. 
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observations. For both subsamples, we repeat the regression discontinuity analysis to test whether the effect 

of nonstop flights on innovation depends on innovative activity levels. As with the RDD analysis, we conduct 

these subsample analyses at the airport pair-year level. 

[Insert Table 4 here] 

Table 4 shows the results for our subsample analysis. Columns 1 and 2 show that nonstop flights 

increase both citations and collaborations, respectively, for hubs. A 10% increase in nonstop flights increases 

citations by 3.2% and increases collaborations by around 2.5%. However, when either airport is not near an 

innovation hub, collaborations and citations are not impacted. Both coefficients in Columns 3 and 4 suggest 

that the effect sizes are close to zero and not statistically significant. This result indicates that nonstop flights 

enhance production of GCPs and knowledge flows mainly through connecting inventors located at various 

innovation hubs. This result should be interpreted with caution, as hubs and non-hubs differ inherently in 

terms of the likelihood of having nonstop flights and the ability to produce innovative ideas. 

Finally, we study knowledge diffusion between firms and subsidiaries located in countries at the 

technological frontier and those in follower countries. We borrow from Furman and Hayes (2004)’s 

categorization of leader versus follower countries in terms of their historical innovative productivity. 

According to their categorization, the leading innovating countries include Germany, Japan, Sweden, 

Switzerland, and the United States. These countries are categorized as “leaders,” and the other countries 

(countries labelled as “middle tier,” “third tier,” and “emerging innovators” in Furman and Hayes (2004)’s 

terminology) are categorized as “followers”. Then, we restrict the sample to citations and collaborations by 

firms located in these leader and follower countries, and we gauge the flights’ effects on citations and 

collaborations that occur (1) between leaders, (2) between followers, and (3) between a leader and a 

follower.26 Table 5 shows that a 10% increase in nonstop flights between firms in two “leader” countries 

leads to a 17.95% increase in citations and a 4.96% increase in collaborations. We also find statistically non-

significant effects for firms located in leader-follower and follower-follower country pairs. 

[Insert Table 5 here] 

                                                
26 Appendix Section C5 contains the original list of leader countries. 
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4.2 Importance of Temporal and Cultural Distances  

In this section, we explore how cultural and temporal distances between firms/subsidiaries and their locations 

(proxied by airport locations) affect the relation between nonstop flights and innovation outcomes. The 

analysis is done at the airport pair-year level. We consider the effects of two types of distance—temporal 

distance and cultural distance. For each type of distance, we compare the effect of nonstop flights on firms’ 

innovation outcomes at airport pairs that are distant or close. Since our RDD setup includes only location 

pairs that are similar in terms of geographic distance, we will focus on non-geographic measures of distance. 

Whereas the location pairs in the RDD setup are of similar geographic distance (around 6,000 miles), there is 

significant variation in temporal and cultural distances. 

First, we test whether nonstop flights allow firms or subsidiaries to overcome temporal distance. 

Prior work suggests how greater working hour overlap (short temporal distance) is associated with greater 

levels of collaboration and knowledge sharing because working hour overlap can reduce frictions in 

synchronous communication (Bircan et al. 2021, Chauvin et al. 2020, Espinosa et al. 2015, Mell et al. 2021). 

To test this, we divide the sample into airport pairs with above median working hour overlap (greater than 1.5 

hours) and those with below median working hour overlap (1.5 hours or less). In Appendix Section D1, we 

also conduct robustness checks showing that a similar pattern emerges when using other cutoffs for high 

versus low temporal distances. In Appendix Section D2, we also show that the effect of nonstop flights on 

innovation outcomes is stronger for routes with shorter north-south distances (routes that cross over less 

longitudinal distance). 

[Insert Table 6 here] 

Table 6 (Columns 1-4) reports the results. We see that nonstop flights help overcome temporal 

distance: nonstop flights increase citations and collaborations for firms in location pairs with below median 

working hour overlap (long temporal distance), but do not for above median pairs (short temporal distance). 

A 10% increase in flights for airport pairs with less than 1.5 hours working hour overlap leads to a 5.25% 

increase in citations between firms and a 1.87% increase in collaborations between subsidiaries within a firm. 

For airport pairs with above median working hour overlap, we see the coefficient sizes are smaller and are 
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statistically insignificant at conventional thresholds. Chow test results show that for citations, temporally 

distant location pairs benefit more than temporally proximate ones (diff=0.665, p=0.003). For collaborations, 

we cannot reject the null of no difference (diff=0.088, p=0.602) due to the large standard errors for our 

estimates for low-temporal distance pairs. Overall, nonstop flights do not seem to enable knowledge 

spillovers and collaborations between inventors that are temporally close to one another.  

Second, we theorize that cultural distance between firms/subsidiaries and between their locations is a 

salient deterrence to innovation outcomes. If two inventors are culturally distant, they are likely to carry 

different understandings of power relations and individualism (Hofstede 1980). Cultural distance prevents 

information flow, increases uncertainty in a relationship, and increases the cost of communication and 

collaboration (Berry et al. 2010, Lazear 1999). We use two measures of cultural distance. First, we adopt a 

direct measure of cultural distance at the firm level, by using the ethnic composition of the inventors who cite 

one another at two geographically distant firms and that of the inventors who collaborate with one another at 

two geographically distant subsidiaries within a firm. Inventors’ ethnicities are determined using NamePrism, 

a tool based on machine learning algorithms that accurately predict a person’s ethnicity based on the full 

name. Inventors in a citing or collaborating relationship are deemed co-ethnic if they share an ethnicity and 

multiethnic if there is more than one ethnicity in that relationship. Then, we compare the effect of nonstop 

flights on co-ethnic innovation and that on multiethnic innovation. Table 5 (Columns 5-8) shows that for 

inventor pairs that share the same ethnicity (low ethnic distance), co-ethnic collaborations increase by 0.87% 

while co-ethnic citations increase by 1.43%. However, for inventor pairs with different ethnicities (high ethnic 

distance), multiethnic collaborations increase by 1.30% and citations by 3.54%. A Chow test for difference of 

coefficients shows that co-ethnic citations benefit more than multiethnic citations (Diff = 0.154, p = 0.001).  

Results for collaborations lack statistical significance (Diff = 0.043, p = 0.124). In summary, we find some 

evidence for the fact that nonstop flights tend to facilitate innovation across countries for firms that are 

culturally distant.27  

                                                
27 In addition to cultural distance, firm boundaries may serve to amplify institutional distance. Thus, nonstop flights may 
have different effects, depending on whether those citations are cross-assignee or within-assignee. However, as 
Appendix B10 shows, most citations are cross-assignee (over 95%), limiting our ability to test for differences. 
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Next, we construct another measure for cultural distance. We utilize the data from the World Values 

Survey (WVS) in 2020 to gauge individuals’ attitudes toward foreign workers. Berry et al. (2010) and others 

have adopted the WVS data to create indices of cultural distance between countries. Instead of using an 

index, the interpretation of which is difficult to decipher, we point one specific question on the WVS that 

asks respondents to “evaluate the impact of immigrants on the development of your country,” for which the 

answer choices range from “very bad” to “very good.” We then aggregate the answers at the country-level 

and obtain a value for each country, which is matched to the data on flights and patenting. The assumption is 

that immigrant-friendliness is a good proxy for individuals’ ability to appreciate the work of foreigners—a 

cultural dimension that is highly relevant to our context. We divide our sample into location pairs that are (1) 

both immigrant friendly, (2) both immigrant unfriendly, and (3) one immigrant friendly and one immigrant 

unfriendly. We find that nonstop flights increase citations and collaborations among firms in locations that 

are marked by a high degree of cultural distance: where one location is immigrant friendly and another 

location is immigrant unfriendly. Interestingly, where both locations are unfriendly to immigrants, nonstop 

flights do not facilitate innovation between those locations. Table 6 presents results of the regression 

discontinuity subsample analysis. For firms in location pairs with high cultural distance (in terms of 

friendliness toward immigrants), a 10% increase in nonstop flights leads to a 7.2% increase in citations. 

Finally, Appendix Section D4 presents an alternative immigrant analysis using firms’ labor condition 

applications (LCAs) as a proxy for firms’ employment of immigrants, showing that nonstop flights drive 

knowledge diffusion among firms with higher levels of immigrant labor.  

[Insert Table 7 here] 

5. Additional Analyses 

5.1. Airport-level Instrument 

Our regression discontinuity results show that at the airport pair level, pairs slightly below 6,000 miles apart 

have increased knowledge flows. However, an open question is whether this result extends more globally 

above and beyond the 6,000-mile threshold. One specific concern is that measurements at the airport pair 

level may be confounded by redirection of knowledge flows from other airport pairs to the focal pair. We 
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analyze how direct flights affect citations and collaborations at a single airport. This approach calculates the 

net effect and mitigates concerns of compositional changes in innovation outcomes. 

We implement an instrumental variable-based identification strategy proposed by Campante and 

Yanagizawa-Drott (2018) to extend the results from the airport pair level to the airport level. At the airport 

level, we use exogenous variation in that airport’s connectedness to measure its impact on the number of 

publications and citations. Variation in an airport’s connectedness stems from the cost of operating 6,000+ 

miles flights: airports with many other “potential” airports slightly less than 6,000 miles apart will be more 

“connected” in terms of number of flights. We use an instrumental variable approach where this share of 

airports slightly below 6,000 miles shifts the total number of realized connected airports, thus impacting 

innovation. Our first- and second-stage regressions are as follows. 

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖
𝑡 = 𝛼0 + 𝛼1𝑆ℎ𝑎𝑟𝑒𝐵𝑒𝑙𝑜𝑤6𝐾𝑖 + 𝑋𝑖 + 휀𝑖 (6) 

 𝑌𝑖
𝑡 = 𝛽0 + 𝛽1 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖

𝑡̂ + 𝑋𝑖 + 휀𝑖 
(7) 

 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖
𝑡  measures the number of airports with which airport 𝑖 has a nonstop flight in year 𝑡. 

𝑆ℎ𝑎𝑟𝑒𝐵𝑒𝑙𝑜𝑤6𝐾𝑖 counts the total number of airports (connected or unconnected) slightly below 6,000 miles 

and divides this by the total number of airports (again, connected or unconnected) around 6,000 miles. 𝑌𝑖
𝑡  is 

our dependent variable, either the number of firm or academic publications near airport 𝑖 in year 𝑡 or the 

number of citations to those patents.28 𝑋𝑖 includes control variables, including the total number of airports 

near 6,000 miles for airport 𝑖, its distance from the equator, and the time zone difference from GMT, as well 

as region fixed effects. 

[Insert Table 8 here] 

Generally, we find that more connected airports lead to more citations and publications. An 

additional connected airport in 2015 increases the total number of citations by about 12.7% and the total 

                                                
28 We use the number of connected airports in 2015 and sum the number of publications and citations across all years in 
our patent sample (2005-2015). Appendix Section F shows our findings are robust to using alternate years. 



24 
 

number of publications by 10.6% for firms.29 Given that the median number of connected airports in our 

sample is 4 (mean = 15.87, Sc.D. = 42.92), the economic magnitude of connectivity seems to be quite 

significant. In Appendix Section F, we break down the effects across different years and find similar results. 

Appendix Section F also tests how connectivity affects the number of collaborators and duration and finds 

that both increase, suggesting the existence of intensive and extensive margins. 

5.2. Mechanisms: Ticket Prices and Flight Duration 

We next turn to the mechanisms by which nonstop flights affect collaborations and citations in our context. 

The two mechanisms of interest relate to the reduction in travel costs (e.g., Catalini et al. 2020) and reduction 

in travel time (e.g., Bernstein et al. 2016). Advances in technology and increased competition have 

significantly impacted both the monetary cost as well as the time it takes to transport people. For instance, a 

typical trip from Los Angeles to Boston cost about $4,500 in 1941 (2015 dollars) and took more than 15 

hours across 12 stops. In contrast, in 2015, the same route could be travelled nonstop for just $480, which is 

just 11% of the 1941 cost, and it would take only six hours (Garcia 2017).  

Determining whether nonstop flights impact innovation across countries through travel duration or 

ticket price has important implications for theory and for informing policy. Prior work on collaboration over 

distance has focused primarily on travel costs as a key barrier to collaboration. For instance, pecuniary travel 

costs and the importance of face-to-face interactions in facilitating collaborative outcomes can explain why 

distance still matters for collaboration (Catalini et al. 2020). However, for many innovators, “time famine”—

that is, a shortage of time—is a more salient constraint (Perlow 1999), especially for inventors at firms who, 

relative to academic inventors, might care more about time spent on international journeys than about 

monetary costs of travel. Delving into the components of travel costs is crucial to understanding the existence 

of barriers to collaboration other than, for instance, geopolitical borders (Singh and Marx 2013).  

                                                
29 Since our dependent variables are inverse hyperbolic sine transformed, we can interpret them as log-transformed 
variables. Therefore, we use exp{coefficient}-1 to calculate the effect sizes. 
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For each airport pair, we obtain the average ticket price and duration of travel sourced from Google 

Flights. Specifically, from January 5 to February 6, 2020, we queried Google Flights for flights leaving 

Thursday, June 18, 2020, and returning Sunday, June 21, 2020. The mid-June dates were chosen to represent 

a typical conference weekend.30 Our query window for the flight price and duration information (i.e., from 

January 5 to February 6, 2020) was before most COVID-induced travel bans took place (e.g., travel bans to 

and from China took place mostly in late January and early February 2020), which suggests that our flight data 

are representative of data that would be obtained during normal, non-pandemic times. We obtained ticket 

information for airport pairs that are more than 3,000 miles apart and that have more than 1,000 flights 

between them from 2005 to 2015 (i.e., 100 flights per year, or about one weekly round-trip flight), for a total 

of 3,708 routes. With this information, we calculate the average ticket price and the average time duration of 

all routes between an airport pair. By constructing the dataset as described above, we assume that flight 

durations and prices in 2020, adjusted for inflation, are similar to what they would have been in our sample 

period 2005-2015.  

 A major appeal of nonstop flights is their ability to decrease flight time significantly, and customers 

frequently pay extra to take nonstop flights. Figure 3 plots how prices and travel duration vary with number 

of stops using the data we gathered from Google Flights. Each point on the graph represents the average 

difference in price and travel time between a nonstop flight and a flight with stops. The left panel shows that 

a one-stop flight is, on average, 5.1% cheaper than a nonstop flight. This constitutes an average price 

difference of about $40. However, the average one-stop flight is about 53% longer in terms of travel time 

than a nonstop flight, a time difference of about 5.8 hours. This trade-off between more expensive tickets and 

shorter flight durations is stronger for long-distance flights (Appendix Section G shows that the magnitude of 

the coefficient on duration increases for airport pairs more than 6,000 miles apart).  

[Insert Figure 3 here] 

                                                
30 For instance, in 2019, the Association of Clinical Research Professionals Annual Meeting was held April 12-15 (Friday 
to Monday) and USPTO’s Inventors Conference was held September 13-14 (Friday to Saturday).  
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In order to shed light on the relationship between firms’ innovation activities and ticket prices/travel 

duration, we estimate the number of collaborations and citations using the following specification: 

 asinh (𝑌𝑎𝑜,𝑎𝑑
) = 𝛽0 + 𝛽1 asinh(𝑃𝑟𝑖𝑐𝑒𝑎𝑜,𝑎𝑑

) + 𝛽2 asinh(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑜,𝑎𝑑
)

+ 𝛿 asinh(𝑋𝑎𝑜,𝑎𝑑
) + 𝜂𝑐𝑎𝑜 ,𝑐𝑎𝑑

+ 𝜖𝑎𝑜,𝑎𝑑
 

(8) 

where 𝑌𝑎𝑜,𝑎𝑑
 measures the total number of collaborations or citations between 𝑎𝑜 and 𝑎𝑑. 𝑃𝑟𝑖𝑐𝑒𝑎𝑜,𝑎𝑑

 is the 

average ticket price for flights between 𝑎𝑜 and 𝑎𝑑, and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑜,𝑎𝑑
 measures the average number of 

hours for those flights.31 In all specifications, we control for the distance between airport pairs (𝑋𝑎𝑜,𝑎𝑑
), as 

well as country-country fixed effects (𝜂𝑐𝑎𝑜,𝑐𝑎𝑑
), which control for between-country differences such as 

language and time zone differences. We cluster our standard errors at the country-country level.  

We present estimates of the specification below. Across all specifications, we see that flight duration 

has a negative and significant partial correlation with collaborations and citations. In our preferred 

specification for collaborations (Column 3), a 10% increase in duration (1.3 hours) is associated with an 8.9% 

decrease in collaborations (1.8 fewer collaborations per route, across the entire sample period). Similarly, for 

citations (Column 4), a 10% increase in duration is associated with an 8.7% decrease in citations (1.9 fewer 

citations per route). However, while prices are negatively correlated with citations and collaborations, the 

coefficients are not statistically distinguishable from zero for collaborations. This result hints that it is a 

reduction in terms of the time duration of nonstop flights, not price, that would facilitate the collaborative 

production of innovation and the diffusion of knowledge across firms globally. 

[Insert Table 9 here] 

  

                                                
31 Our results are robust whether we average for direct and one-stop flights or whether we consider averages across all 
flights (2+ stops). 
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6. Discussion and Conclusion 

Firms continue to benefit from global knowledge diffusion and the production of global collaborative 

patents, but national borders remain relevant as a source of friction (Singh and Marx 2013). Alcacer et al. 

(2017) detailed how “figurative distances” stemming from political borders were creating frictions that 

impeded knowledge collaboration and spillovers, and Aguilera et al. (2019) bemoaned the de-globalization 

trend. In the context of this prior literature, this paper shows how in the global context, nonstop flights 

boosts the diffusion of knowledge through patent citations and collaboration of inventors, especially at firms. 

To provide causal evidence, we use an RDD framework and find that a 10% increase in the number of 

nonstop flights between two locations increases citations by 3.4% and collaborations by 1.4%. This positive 

effect is driven primarily by firms, as opposed to those by academic institutions. We find the effects to be 

more salient at firms/subsidiaries: (1) with more inventors and R&D spending; (2) located in hubs or in 

countries deemed as technology leaders; and (3) that are culturally distant or located in culturally and 

temporally distant places.  

Our study has several limitations. Similar to Catalini et al. (2020), Bernstein et al. (2016), and most 

prior studies on airline connectivity and innovation/economic outcomes, we do not observe individuals 

traveling between locations and instead impute travel patterns by aggregating citation and collaborations to 

the level of airport pairs.32 One consequence of this is that we are unable to disaggregate who is travelling and 

for what reason. A recent McKinsey report (Curley et al. 2020) documents that in 2018, international airline 

business travel spending exceeded $1.4 trillion; this travel encompassed transient travel and travel for 

meetings, incentives, conferences, and events (MICE), from large group offsite gatherings to industry-wide 

exhibitions. Future research should attempt to disaggregate the effects of airline travel for company meetings 

versus airline travel for attending conferences and contribute to the literature on temporary colocation and 

innovation outcomes (Boudreau et al. 2017, Chai and Freeman 2019). Additionally, there is an increasing 

adoption of alternative work arrangements and communication technologies such as Zoom (which might 

                                                
32 To the best of our knowledge, the only prior study that uses actual international flight travel data for individuals is 
Choudhury (2017).  
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come to characterize the post-COVID world (Marr 2021)); future research may study whether the effects of 

transportation connectivity on innovation across countries are weakened or strengthened by the use of new 

communication technologies. Finally, due to data limitations, we only examine USPTO patents, while not 

including patents issued by other patent offices, such as the European Patent Office or the Japan Patent 

Office. Even though our results hold while limiting the sample to airport pairs with at least one U.S. city, the 

analysis would be more complete if it included patents from rest of the world.  

Despite these limitations, our findings contribute to several streams of the strategy and innovation 

literature—notably the literature on connectivity and economic/innovation outcomes. We contribute to this 

literature by showing whether, how, and when, mitigating travel constraints can foster greater knowledge 

diffusion in a global setting (Agrawal et al. 2017, Baum-Snow 2007, Duranton and Turner 2012, Ghani et al. 

2016). Our findings are related to Agrawal et al. (2017), who exploit historical data on planned highways, 

railroads, and exploration routes as sources of exogenous variation in order to estimate the effect of interstate 

highways on regional innovation.33 Notably, we highlight the scope conditions of greater connectivity 

fostering innovation outcomes and document that for firms with relatively lower innovation mass, 

firms/subsidiaries that are located outside hubs/countries that represent the technological frontier, and for 

firms and firm locations that are culturally or temporally proximate, adding nonstop flights is less likely to 

enhance innovation outcomes. This result sheds light on why it may be difficult for firms and inventors in 

some “follower” countries to get to the technological frontier. 

A relevant paper in this literature is Catalini et al. (2020), which uses a difference-in-differences 

empirical strategy combined with a series of robustness and falsification tests to document that the availability 

of cheaper options for airline travel has a causal effect on the probability, intensity, and direction of 

collaborations among academic scientists. However, while Catalini et al. (2020)’s study focuses on academic 

scientists within the United States (for whom temporal and cultural distance with collaborators or being 

                                                
33 More broadly, our findings are also relevant to the literature on international labor mobility and knowledge diffusion 
(Agrawal et al. 2006, 2011, Almeida and Kogut 1999, Bahar et al. 2020, Choudhury 2016, Choudhury and Kim 2019, 
Foley and Kerr 2013, Ghani et al. 2014, Hovhannisyan and Keller 2015, Kapur 2001, Kapur and McHale 2005a, 2005b, 
Kerr 2008, MacGarvie 2006, Nanda and Khanna 2010, Obukhova 2009, Oettl and Agrawal 2008, Papageorgiou and 
Spilimbergo 2009, Rosenkopf and Almeida 2003, and Singh 2005). 
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located in a country that is a technological follower might be less salient) and focuses on savings in travel 

costs as the underlying mechanism, our study focuses on firms, how characteristics of firms/subsidiaries and 

their locations matter for the relation between nonstop flights and innovation outcomes across countries and 

documents savings in travel time as the underlying mechanism. 

Our findings also contribute to the literature on knowledge spillovers and collaborative patents for 

firms in the global context. Branstetter et al. (2014) document that multinational corporations (MNCs) from 

advanced economies are largely responsible for the “exponential” growth in U.S. patents filed from China 

and India. Kerr and Kerr (2018) cite analysis from the Bureau of Economic Analysis to state that the share of 

R&D for U.S. MNCs conducted by foreign subsidiaries rose from 6% in 1982 to 14% in 2004. Our findings 

contribute to this literature by outlining an important mechanism—that is, international travel and flight 

connectivity—that facilitates knowledge flows and the production of global collaborative patents (GCPs) 

across countries. To quote Kerr and Kerr (2018 p.F268), “[the] use of cross-border teams is a very attractive 

technique for multinationals conducting innovation abroad and careful thought by nations about short-term 

travel policies…may have a big impact as multinationals weigh their options.” Our findings speak directly to 

this assertion and provide empirical evidence for whether, how, and when nonstop flights facilitate the 

production of GCPs.  

Finally, we contribute to the international business literature on distances. That research shows that 

interfirm alliances and employee mobility are “bridges to distant contexts” that mitigate the constraints of 

geographically localized search for knowledge and collaborators (Rosenkopf and Almeida 2003). Our study 

suggests that flight connectivity is an important facilitator for firms to build bridges to distant contexts, but 

the effectiveness of the bridges depends on characteristics of the firms and characteristics of the contexts 

being connected. Similarly, scholars have shown that temporal distance and work hour overlap impede 

knowledge-intensive communication in firms (Bahar 2020). Our study suggests that nonstop flights may 

feasibly overcome the temporal barrier and facilitate the spread of knowledge across temporally distant firms 

and subsidiaries within a firm. Additionally, our study relates to the interplay between geographic distance and 

non-geographic distances. Whereas geographic distance physically limits knowledge flows, non-geographic 
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factors such as cultural distances also constrain the point of contact and hamper interactions (Shenkar 2001, 

Shenkar et al. 2008). Our study suggests conditions under which geographic distance may not be a friction, 

i.e., if firms and firm locations are culturally similar or temporally proximate, firms may not need a physical 

bridge (e.g., through nonstop flights) to exchange knowledge or collaborate.  

Our study suggests several additional directions for future research. First, future research should 

explore whether the introduction of synchronous and asynchronous communication technology substitutes 

for or complements airline travel. Second, future research should explore the importance of global 

immigration policies as they relate to airline travel and how that affects the utility of choosing a nonstop flight 

versus a flight with more stops. In other words, while a nonstop flight avoids the need for securing a “transit 

visa,” such visas might be salient for global travel that involves stopovers (O’Keefe 1993). Finally, future 

research should study the importance of global airline travel in an era of increasing distributed work and 

“work from anywhere” (WFA) (Choudhury et al. 2021). It would be interesting to study whether the 

importance of airline connectivity, travel, and temporary colocation increases when more firms adopt WFA 

and when workers become more globally distributed. 

Our study also has several managerial and policy implications—notably that business travel to 

culturally and temporally distant places might be beneficial for innovation outcomes at firms with large 

innovation masses, especially when the travel connects two hubs. For decades, airports and policy makers 

have offered incentives to airlines to start nonstop flights.34 Our study provides useful evidence for when 

policy makers should design incentives to attract airlines to start nonstop flights. Our study also points to the 

importance of business travel for fostering innovation and suggests conditions for when such travel might be 

                                                
34 From 2012 to 2014, regional airports in the U.S. spent in excess of $171 million in incentives to attract new routes 
(CAPA 2018). Whether or not to operate nonstop flights between airports is a topic of active managerial discussion 
(Routes 2019). Many airports offered incentives to attract new international flights: Hartsfield-Jackson Atlanta 
International Airport offered to waive landing fees (Williams 2014); Tampa International Airport offered cash and 
airport fee waivers to attract Edelweiss (Thalji 2013); Indianapolis International Airport offered Delta $5.5 million in 
conditional incentives (Lange and Cook 2017); Pittsburgh was able to attract an international flight to London by 
offering British Airways $3 million in funding over two years (Belko 2019); New Orleans waived landing fees for British 
Airways (Buchanan 2016); and so forth. Cities in Ohio were unable to attract international airlines (Glaser 2018), even 
trying to kickstart local airlines that would serve international locations (Teasley 2018). Globally, Greece launched a fee 
waiver program to attract international routes during the winter season (GTP Editing Team 2018). 
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more effective. As the McKinsey report published by Curley et al. (2020) documents, while business travel 

spending exceeded $1.4 trillion in 2018, “historically, business travel has been more volatile and slower to 

recover than leisure travel after economic downturns and other disruptions to travel patterns.” Our study 

indicates that if indeed international flights exhibit a slow recovery in the aftermath of pandemics and 

economic downturns, cross-border knowledge spillovers and collaborations at firms could be adversely 

affected. 

In conclusion, this paper presents, to the best of our knowledge, the first set of causal evidence and 

boundary conditions for whether, when, and how nonstop flights positively affect firm innovation in a global 

context. Using unique data and a two-pronged empirical approach (including a cutting-edge RDD and tests of 

firm and firm location heterogeneity using a modified gravity model), we shed light on whether, when, and 

how nonstop flights affect knowledge spillovers (citations) and collaborations (the production of GCPs) for 

firms in a global setting. Our study contributes to literatures on connectivity and innovation outcomes, 

knowledge spillovers and collaborative patents for firms in the global context, and how cultural and temporal 

distances affect innovation across countries. Finally, it provides policy and managerial implications on the 

value of business travel. 
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Figure 1. Inventor Locations 

 
Note: Each inventor location (prior to mapping to the closest airport) is plotted as a red dot. Inventors with 
the same latitude and longitude are jittered so they are not plotted directly on top of each other. 
 
Figure 2. Impact of Nonstop Flights on Citations and Collaborations 
 

 
(a) Impact on citations 

 
(b) Impact on collaborations 

 
Note: These graphs use observations based on the optimal bandwidth, which corresponds to 844.35 miles for 
collaborations and 838.46 miles for citations, at either side of the 6,000-mile threshold. We use a triangular 
kernel to estimate the optimal bandwidth. It also uses a linear estimator as well as the mimicking variance 
evenly spaced method to define the number of bins, which results in relatively small bin sizes, reducing the 
possibility that few outliers on either side drive the discontinuity. Varying the number of bins does not alter 
the result. Appendix Sections B3-B5 show our graphical results are robust to changing the number of bins, as 
well as to using quantile-spaced binning methods, kernel choice, and different levels of fixed effects and 
clustering. 



37 
 

Figure 3. Nonstop Flights are More Expensive than One-stop Flights 
 

 

Note: Coefficient plot of the relationship between number of stops and flight price and flight duration, 
obtained from Google Flights in January 2020. Each point measures the percentage difference between ticket 
price/duration for nonstop flights (omitted category) and flights with a given number of stops. Outcome 
variables are inverse hyperbolic sine transformed and are interpreted similarly to a log-transformation. Thus, 
the y-axis measures log-differences in price and duration against nonstop flights.  
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Table 1. Summary Statistics of the Full Sample 

 count mean Sc.D. min max 

# Citations 538,054 2.14 36.67 0.00 5,702.40 
# Collaborations 538,054 2.00 56.47 0.00 7,228.03 
# Citations (firms) 538,054 1.96 35.20 0.00 5,498.18 
# Collaborations (firms) 538,054 1.90 55.07 0.00 7,048.09 
# Citations (academic) 538,054 0.04 0.49 0.00 67.16 
# Collaborations (academic) 538,054 0.07 1.41 0.00 239.69 
Has nonstop 538,054 0.49 0.50 0.00 1.00 
Nonstop flights (count) 538,054 611.95 1,799.85 0.00 74,002.00 
Distance (miles) 521,477 1,110.86 1,246.99 0.00 11,873.40 
Hub-to-hub flight 537,878 0.26 0.44 0.00 1.00 
Working hour overlap 537,878 7.04 1.58 0.00 8.00 
Immigrant friendliness distance 402,523 0.19 0.28 0.00 1.87 
Average price 20,350 946.48 528.11 214.30 4,538.75 

Note: Observations are at the route-year level, excluding average price and average duration, which are at the 
route-ticket level. Citations and collaborations are inversely weighted based on the number of airports within 
50 miles (to avoid double counting). Cross-citations measures the number of citations across different 
assignees. Distance is in miles. Hub-to-hub measures (whether the origin and destination airports are within 
50 miles of an innovation hub) are as defined in Bikard and Marx (2020). Inventor Mass and Publication 
Mass count the number of inventors/publications in either airport of an airport pair. Immigrant friendliness 
distance measures the difference between different countries’ attitudes toward immigrants, which is a 
question (Q121) in Wave 7 of the World Value Survey (source: 
https://www.worldvaluessurvey.org/WVSDocumentationWV7.jsp). 
 
 
 
Table 2. Regression Discontinuity: Effect of Nonstop Flights on Global Innovation is Stronger for Firms 
than for Academic Institutions 

 Overall Academic Institutions Firms 
 (1) (2) (3) (4) (5) (6) 
 Citations  

(asinh) 
Collaborations 

(asinh) 
Citations 
(asinh) 

Collaborations 
(asinh) 

Citations 
(asinh) 

Collaborations 
(asinh) 

Nonstop 
flights (asinh) 

0.346*** 0.152*** 0.099*** 0.040** 0.338*** 0.148*** 

 (0.101) (0.053) (0.030) (0.016) (0.099) (0.052) 
(6,000-
Distance) 

-0.001** -0.000 -0.000** -0.000* -0.001** -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
(6,000-
Distance) x 
Under6,000 

0.001* 0.000 0.001** 0.000** 0.001* 0.000 

 (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) 

Observations 3,795 3,795 3,795 3,795 3,795 3,795 

Note: Observations at the airport pair year level, excluding singletons. Standard errors in parentheses, 
clustered at the country pair year level. Variables inverse hyperbolic sine transformed are denoted by asinh. 
Bandwidth set at 550 miles. Observations weighted using a triangular kernel. All specifications include 
country pair year fixed effects. Distance denotes the geodesic distance (in miles) between airport pairs. 
Under6,000 is an indicator variable equal to 1 if the distance is less than 6,000. * p < 0.10, ** p < 0.05, *** p < 
0.01. 
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Table 3. Regression Discontinuity: Effect of Nonstop Flights on Global Innovation is Stronger for Firms 
with Greater Innovation “Mass” 

 Inventor Mass R&D Spending 

 Citations 
(asinh) 

Collaborations 
(asinh) 

Citations 
(asinh) 

Collaborations 
(asinh) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Firm Mass: High Low High Low High Low High Low 

Nonstop flights (asinh) 0.329*** 0.185*** 0.141*** 0.020 0.180*** 0.187*** 0.093*** 0.031 
 (0.099) (0.051) (0.051) (0.013) (0.052) (0.054) (0.030) (0.028) 
(6,000-Distance) -0.001** -0.001** -0.000 -0.000 -0.001*** -0.001*** -0.000* -0.000** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
(6,000-Distance) x 
Under6,000 

0.001* 0.001** 0.000 0.000 0.001*** 0.001*** 0.000 0.000* 

 (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Observations 3,795 3,795 3,795 3,795 3,795 3,795 3,795 3,795 

Note: Observations at the airport pair year level. Standard errors in parentheses, clustered at the country pair 
year level. Variables inverse hyperbolic sine transformed are denoted by asinh. Bandwidth set at 550 miles. All 
specifications include country pair year fixed effects. Distance denotes the geodesic distance (in miles) 
between airport pairs. Under6,000 is an indicator variable equal to 1 if the distance is less than 6,000. Inventor 
Mass refers to the number of inventors who patented with a firm. R&D Spending for a firm is obtained 
through the DISCERN dataset (Arora et al. 2021). Columns 1, 3, 5, and 7 use counts of citations and 
collaborations by firms with above median Inventor Mass/R&D Spending, while Columns 2, 4, 6, and 8 
count citations and collaborations for below median firms. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
Table 4. Regression Discontinuity: Effect of Nonstop Flights on Global Innovation is Stronger for Firms 
that are Both Located Near Innovation Hubs 

 Both Airports are Hubs One or More Non-hub Airports 
 (1) (2) (3) (4) 
 Citations  

(asinh) 
Collaborations 

(asinh) 
Citations  
(asinh) 

Collaborations 
(asinh) 

Bandwidth: Optimal Optimal Optimal Optimal 

Nonstop flights (asinh) 0.321*** 0.246** 0.014 0.057 
 (0.092) (0.079) (0.032) (0.041) 
     
(6,000 – Distance) -0.001 -0.001 -0.000 -0.000 
 (0.001) (0.001) (0.000) (0.000) 
     
(6,000 – Distance) x 
Under6,000 

0.002 0.002 0.000 0.000 

 (0.003) (0.001) (0.000) (0.000) 
     

Country pair-year FE Y Y Y Y 
Observations 1,034 1,485 1,199 1,507 

Note: This table presents the results from the regression discontinuity design, divided into subsamples that 
consist of: (1) hub-hub location pairs; and (2) location pairs with at least one non-hub location. Number of 
observation varies across models due to differences in subsample size. Standard errors are in parentheses, 
clustered at the country-country level. Dependent variables are inverse hyperbolic sine transformed. Optimal 
bandwidth calculation follows the methodology described in Calonico et al. (2020). Airports are located near 
an innovation hub if they are within a 50-mile radius of innovation hubs, as defined in Bikard and Marx 
(2020). * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 5. Regression Discontinuity: Effect of Nonstop Flights on Global Innovation is Stronger for Firms in 
Innovation-leading Countries 

 Citations (asinh) Collaborations (asinh) 

 (1) (2) (3) (4) (5) (6) 

 
Leader-
Leader 

Follower-
Follower 

Leader-
Follower 

Leader-
Leader 

Follower-
Follower 

Leader-
Follower 

Nonstop 
flights (asinh) 

1.795*** 2.225 0.118 0.496*** 0.397 0.095 

 (0.423) (5.553) (0.121) (0.154) (1.146) (0.079) 
(6,000-
Distance) 

-0.006* -0.019 -0.001*** 0.000 -0.004 -0.001*** 

 (0.003) (0.052) (0.000) (0.001) (0.011) (0.000) 
(6,000-
Distance) x 
Under6,000 

0.014** 0.029 0.002*** 0.001 0.006 0.001*** 

 (0.005) (0.077) (0.001) (0.002) (0.016) (0.000) 

Observations 583 748 1,562 583 748 1,562 

Note: Observations at the airport pair year level. Standard errors in parentheses, clustered at the country pair 
year level. Number of observation varies across models due to differences in subsample size. Variables 
inverse hyperbolic sine transformed are denoted by asinh. Bandwidth set at 550 miles. All specifications 
include country pair year fixed effects. “Leader” and “Follower” denote firms in countries that are defined in 
Table 6 in Furman and Hayes (2004). Leader countries are historically high in innovation productivity and 
include Germany, Japan, Sweden, Switzerland, and the United States. Leader-Follower pairs are bi-directional 
(they include flights from leaders to followers and from followers to leaders). * p < 0.10, ** p < 0.05, *** p < 
0.01. 
 
Table 6. Regression Discontinuity: Effect of Nonstop Flights on Global Innovation is Stronger for Firms 
and Firm Locations Separated by Temporal and Ethnic Distance 

 Temporal Distance Ethnic Distance 

 Citations 
(asinh) 

Collaborations 
(asinh) 

Citations 
(asinh) 

Collaborations 
(asinh) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Distance: High Low High Low High Low High Low 

Nonstop flights 
(asinh) 

0.525*** -0.140 0.187*** 0.100 0.354*** 0.143*** 0.130*** 0.087*** 

 (0.120) (0.139) (0.055) (0.129) (0.101) (0.050) (0.046) (0.033) 
(6,000-Distance) -0.001 0.001 0.000 -0.001 -0.001** -0.001* -0.000 -0.000* 
 (0.001) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) 
(6,000-Distance) 
x Under6,000 

0.001 -0.001 0.000 0.001 0.001* 0.001** 0.000 0.001* 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) 

Observations 2,277 1,496 2,277 1,496 3,795 3,795 3,795 3,795 

Note: Observations at the airport-pair year level. Standard errors in parentheses, clustered at the country-pair 
year level. Number of observation varies across models due to differences in subsample size. Variables 
inverse hyperbolic sine transformed are denoted by asinh. Bandwidth set at 550 miles. All specifications 
include country-pair-year fixed effects. For temporal distance, “High” indicates two locations that are greater 
than 1.5 hour apart in time zone difference; “Low” indicates 1.5 hours or less in time zone difference. For 
ethnic distance, “High” indicates multiethnic composition of inventors across two locations; “Low” indicates 
co-ethnic composition of inventors. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table 7. Effect of Nonstop Flights on Global Innovation is Stronger for Firms in Countries that are 
Culturally Distant in Terms of People’s Attitudes Toward Immigrants (Immigrant Friendliness) 

 Citations (asinh) Collaborations (asinh) 

 (1) (2) (3) (4) (5) (6) 

 
Friendly-
Friendly 

Unfriendly-
Unfriendly 

Friendly-
Unfriendly 

Friendly-
Friendly 

Unfriendly-
Unfriendly 

Friendly-
Unfriendly 

Nonstop flights 
(asinh) 

-2.698 -0.265*** 0.789*** -0.897 -0.022 0.473** 

 (3.064) (0.081) (0.292) (1.136) (0.033) (0.194) 
       
(6,000-Distance) 0.028 -0.004** -0.000 0.009 -0.002* -0.000 
 (0.033) (0.001) (0.001) (0.012) (0.001) (0.001) 
       
(6,000-Distance) 
x Under6,000 

-0.050 0.003* -0.000 -0.017 0.002* -0.000 

 (0.060) (0.002) (0.001) (0.022) (0.001) (0.001) 

Observations 616 748 1,760 616 748 1,760 

Note: Observations at the airport pair year level, excluding airport pairs with missing immigrant friendliness 
measures (25.33% of the sample). Number of observation varies across models due to differences in 
subsample size. Standard errors in parentheses, clustered at the country pair year level. Variables inverse 
hyperbolic sine transformed are denoted by asinh. Bandwidth set at 550 miles. All specifications include 
country pair year fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 
 
 
Table 8. Well-Connected Airports Have More Patent Citations and Publications 

 Firms Academic Institutions 

 (1) (2) (3) (4) 
 Citations 

(asinh) 
Publications 

(asinh) 
Citations  
(asinh) 

Publications 
(asinh) 

# Connected Airports 
(2015) 

0.120** 0.101*** 0.082*** 0.058*** 

 (0.047) (0.036) (0.027) (0.019) 
Airports Near 6k 0.184* 0.132 0.064 0.057 
 (0.105) (0.081) (0.062) (0.047) 
Distance to Equator -0.000 -0.000 -0.000 -0.000 
 (0.001) (0.000) (0.000) (0.000) 
Time zone Difference 
from GMT 

-0.282 -0.194 -0.115 -0.087 

 (0.355) (0.275) (0.214) (0.151) 

Region FE Y Y Y Y 

Observations 5,015 5,015 5,015 5,015 

Note: Observations at the airport level. “Firms” columns count number of patent citations/publications by 
non-academic assignees. “Academic Institutions” columns count number of patent citations/publications by 
academic assignees. Standard errors in parentheses, clustered at the country level. All specifications include 
region fixed effects. All dependent variables are asinh transformed.  
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 9. Shorter Flight Duration is Associated with More Citations and Collaborations 

 (1) (2) (3) (4) 
 Citations  

(asinh) 
Collaborations 

(asinh) 
Citations  
(asinh) 

Collaborations 
(asinh) 

Duration (asinh) -0.628* -0.659*** -0.808*** -0.764*** 
 (0.331) (0.248) (0.246) (0.230) 
     
Price (asinh) -0.337 -0.240 -0.381** -0.266 
 (0.216) (0.208) (0.176) (0.185) 
     
Distance (asinh)   0.886 0.518 
   (1.213) (0.745) 
     
Constant 6.826*** 5.382*** -0.110 1.328 
 (2.461) (2.026) (11.733) (7.537) 

Observations 1,247 1,247 1,247 1,247 
R2 0.742 0.590 0.744 0.591 

Note: This table tests the validity of two mechanisms that potentially drive the connectivity-innovation 
relationship: flight duration and flight price. Observations at the airport pair level, restricted to airport pairs 
with price information from Google Flights that are more than 3,000 miles apart and that have more than 
1,000 flights between them from 2005 to 2015. Standard errors are in parentheses, clustered at the country-
country level. Dependent variables are inverse hyperbolic sine transformed. Both dependent variables are 
asinh transformed. * p < 0.1, ** p < 0.05, *** p < 0.01. 
 
 



 1 

Online Appendix  
for 

Innovation on Wings: Nonstop Flights and Firm Innovation in the Global Context 

Table of Contents 

Appendix A. Counterfactual Patent Matching .......................................................................... 3 

A1. Research questions and identification challenges ...................................................................... 3 

A2. Text similarity matching method ................................................................................................ 4 

A3. Summary Statistics ...................................................................................................................... 6 

A4. Counterfactual Citations.............................................................................................................. 8 

A5. Counterfactual Collaborations .................................................................................................... 11 

A6. Alternate Empirical Specifications .............................................................................................14 

A7. Assumptions required for causal interpretation .........................................................................17 

A8. Inferring economic significance of the counterfactual results ...................................................17 

Appendix B. Regression Discontinuity ................................................................................... 20 

B1. Regression Discontinuity Sample Summary ............................................................................. 20 

B2. First Stage Regressions ............................................................................................................. 20 

B3. Varying the number of bins ....................................................................................................... 22 

B4. Varying the bin selection method ............................................................................................. 23 

B5. Varying kernel choice ................................................................................................................ 26 

B6. Fixed Effects and Clustering ..................................................................................................... 27 

B7. Higher order polynomials for the reduced form ....................................................................... 29 

B8. Placebo thresholds .................................................................................................................... 30 

B9. Density of running variable ....................................................................................................... 33 

B10. Cross-assignee results .............................................................................................................. 34 

B12. Poisson regressions, Log+1 transformations and raw counts ................................................. 37 

B13. Pooling airports at cities .......................................................................................................... 40 

Appendix C. Mass Variables ................................................................................................... 41 

C1. List of hubs .................................................................................................................................41 

C2. Probability of hubs across distances ......................................................................................... 43 

C3. Innovation hubs and distance ................................................................................................... 44 

C4. Hub to hub vs non-hub to hub .................................................................................................. 46 

C5. Leaders and followers ................................................................................................................ 47 

Appendix D. Distances ............................................................................................................ 49 

D1. Temporal distance ..................................................................................................................... 49 



 2 

D2. North-South analysis ................................................................................................................ 52 

D3. Nonlinear effects ....................................................................................................................... 53 

D4. Immigrant Employees .............................................................................................................. 54 

Appendix E. Subgroup Analysis .............................................................................................. 55 

Appendix F. Airport level analysis and General Equilibrium concerns ................................. 57 

Appendix G. Pecuniary Cost and Travel Time………………………………………………. 64 
 
  



 3 

Appendix A. Counterfactual Patent Matching 
 

A1. Research questions and identification challenges 

 
To test whether distance affects knowledge flows and whether knowledge is geographically 

localized, the typical way would be to carry out the following specification: 
 

𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑗 = 𝛽0 + 𝛽1𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 + 𝜖𝑖𝑗 , 

 

where 𝑖, 𝑗 refer to two locations, 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑗 counts the number of citations between locations i 

and j, and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗 is the distance between those locations. If we see 𝛽1 < 0, this would be 

consistent with localized knowledge spillovers. 
A key omitted variable is technological similarity. For example, a relevant question to ask is 

are there more citations between inventors located in the Bay Area because of their geographic 
proximity to one another? Or is it because the Bay Area has a specific set of industries, and citations 
are more likely to occur within industries? Simply controlling for industry classification and 
comparing citation patterns within industries is also inadequate because technological similarity 
causes not only knowledge spillovers but agglomeration: inventors move to locations where they will 
be most productive. We cannot distinguish between the effects of technological similarity and 
proximity. 

JTH 1993 suggest comparing patent-citation pairs that actually happen versus potential 
patent-citation pairs where a citation does not happen. Given a “focal” patent and a real “citing” 
patent that cites the focal patent, a “counterfactual” patent can be chosen such that it is similar to 
the real citing patent but does not actually cite the focal patent. There exists debate regarding how to 
accurately choose potential patent-citation pairs, but generally researchers control for counterfactual 
patents that have similar 1) application year and 2) patent classification. Along these lines, we aim to 
control for the underlying technological similarity by looking at how similar the keywords in the 
patent titles are. In section C.2, we describe the methodology for measuring technological similarity 
using text analysis.  
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A2. Text similarity matching method  

 
For each real citing patent, we collect a counterfactual patent that is similar to the real citing 

patent but does NOT cite the focal patent. We measure similarity based on the patents’ titles. 
Intuitively, if patents contain similar words, they will have similar underlying technologies. 
Furthermore, if patents contain similar words that do not appear elsewhere (e.g., “socket 
connector”), they should be counted as more similar than two patents that share words that 

frequently occur elsewhere. Thus, we use weighted Jaccard similarity measure1 with TF-IDF weights. 
Because the text matching process is computationally intensive, we narrow down our sample 

of all patents between 2005 and 2015 to those that were published by the top 50 assignees with the 
most patents and their citing patents. For each citing patent in this subsample, we take three steps: 1) 
collect all patents that have the same application year but do not cite our focal patent (these are 
potential candidates for the counterfactual patent), 2) calculate similarity scores between the real 
citing patent and all the candidates, and 3) choose the patent that has the highest similarity score to 
be the counterfactual patent. 

For example, Figure A1 shows a pair of patents, one of which actually cites a patent in our 
dataset (the focal patent), and another that is similar to that citing patent but does not cite any 
patents in our dataset. The two patent titles have similar keywords, such as “socket connector” or 
“fasten” which gave the pair high similarity scores. Also, the two patents have the same application 
year of 2011. However, the two patents have different locations: While the real citing patent’s 
location is Shenzhen, mainland China, the counterfactual patent is in Taipei, Taiwan. The fact that 
one patent cites the focal patent but the other does not may be driven by the availability of nonstop 
flights. Specifically, the citation pattern may be driven by the possibility that there are nonstop flights 
between the focal patent’s inventor location and the citing patent’s inventor location, but not 
between the focal patent’s inventor location and the counterfactual patent’s inventor location. This 
is the relationship we aim to statistically test. 

                                                        
1 We calculate 𝑠(𝑿, 𝒀) =

∑ min(𝑋𝑖,𝑌𝑖)
𝑀
𝑖=1

∑ max(𝑋𝑖,𝑌𝑖)
𝑀
𝑖=1

 for vectors 𝑿, 𝒀. The vectors represent the TF-IDF scores of the words 

contained in the documents. TF-IDF refers to Term Frequency-Inverse Document Frequency and is calculated by 
counting the number of times a word occurs in a document (term frequency), and dividing that number by the log of the 
fraction of documents that contain the word (inverse document frequency).  
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Figure A1. Illustration of the matching method. 
This figure juxtaposes two patents: one real patent that cites the focal patent (not shown here) and a 
control/counterfactual patent that does not cite the focal patent. This pair of patents help illustrate 

how text similarity is calculated in our matching method. 
 
 
 
When testing for inventors and collaborations between inventors, we utilize a similar 

approach. The assumption is that all inventors on the counterfactual patent and on the real citing 
patent are working on similar technologies and are thus likely to collaborate with one another 
(relative to inventors who work on dissimilar technologies). However, collaborations occur between 
certain inventors but not between others. We estimate the extent to which this pattern is driven by 
the availability of nonstop flights between these inventors.  
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A3. Summary Statistics 

 
In Table A1, we present summary statistics for the counterfactual patent matching data. 

Exactly half of the citations are real citations by construction. On average, 44.5% of patent-citation 
pairs are connected by a nonstop flight. Patent-citation pairs are separated by 3,635 miles, and on 
average have 2,453 of flights between them. Around 60% of the patent-citation pairs are located 
across country borders. 

Similarly, for the counterfactual collaboration dataset, around 34.8% of inventor pairs are 
real collaborations. 53.2% of the inventors are connected by a nonstop flight, and are separated by 
2,978 miles. On average, there are 3,550 flights between any two inventors, and 42.8% are located 
across country borders (i.e., are (potential) international collaborations). A more detailed breakdown 
is presented in Table A2. 
 
Table A1. Summary statistics for the counterfactual patent matching data. 

Part A. Counterfactual Citations 
 count mean s.d. min max 

Real Citations 554884 0.50 0.50 0 1 
Nonstop 554884 0.45 0.50 0 1 
Distance (asinh) 554884 8.48 1.08 5.30 10.10 
Nonstop Flights 
(asinh) 

554884 3.99 4.61 0 12.60 

Intl 554884 0.59 0.49 0 1 
Total Flights 554884 2452.99 6099.44 0 74128 
Application Year 554884 2011.75 2.27 2005 2016 

 
Part B. Counterfactual Collaborations 

 count mean s.d. min max 

Real Collaborations 3350653 0.35 0.48 0 1 
Nonstop 3350653 0.53 0.50 0 1 
Distance (asinh) 3350653 8.17 1.17 5.30 10.10 
Nonstop Flights 
(asinh) 

3350653 4.88 4.77 0 12.60 

Intl 3350653 0.43 0.49 0 1 
Total Flights 3350653 3550.44 7748.24 0 74355 
Application Year 3350653 2011.82 2.29 2005 2016 

Note: Observations are at the patent-citation pair level for Part A and at the inventor pair level for Part B. 
Exactly half of the patent-citation pairs are real citations in Part A. Nonstop is an indicator for whether there 
exists a nonstop flight between a patent’s location and the citation’s location (Part A) or between the 
inventors’ locations (Part B). Intl is an indicator for whether the patent-citation pairs are located in different 
countries (Part A) or whether the inventors are located in different countries (Part B). Distance is in miles. 
Application year is the application year for the citation. 
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Table A2. Summary statistics for the counterfactual patent matching data, by whether a nonstop 
flight exists between two locations. 

 
Part A-1: Counterfactual Citations, RealCitation=1 

 count mean s.d. min max 

Has Nonstop 277442 0.47 0.50 0.00 1.00 
Distance (asinh) 277442 8.42 1.09 5.30 10.09 
Nonstop Flights (asinh) 277442 3.95 4.35 0.00 11.91 
Intl 277442 0.55 0.50 0.00 1.00 
Nonstop Flights 277442 5540.27 12916.75 0.00 148483.00 
Year 277442 2011.75 2.27 2005.00 2016.00 

 
Part A-2: Counterfactual Citations, RealCitation =0 

Has Nonstop 277442 0.42 0.49 0.00 1.00 
Distance (asinh) 277442 8.53 1.07 5.30 10.10 
Nonstop Flights (asinh) 277442 3.41 4.19 0.00 11.87 
Intl 277442 0.64 0.48 0.00 1.00 
Nonstop Flights 277442 4270.96 11400.96 0.00 142194.00 
Year 277442 2011.75 2.27 2005.00 2016.00 

 
Part B-1: Counterfactual Collaborations, RealCollaboration=1 

Has Nonstop 1166671 0.61 0.49 0.00 1.00 
Distance (asinh) 1166671 7.79 1.23 5.30 10.07 
Nonstop Flights (asinh) 1166671 5.30 4.44 0.00 11.91 
Intl 1166671 0.29 0.45 0.00 1.00 
Nonstop Flights 1166671 9128.62 17298.94 0.00 148483.00 
Year 1166671 2011.76 2.33 2005.00 2016.00 

 
Part B-2: Counterfactual Collaborations, RealCollaboration=0 

Has Nonstop 2183982 0.49 0.50 0.00 1.00 
Distance (asinh) 2183982 8.38 1.08 5.30 10.10 
Nonstop Flights (asinh) 2183982 4.09 4.37 0.00 11.91 
Intl 2183982 0.50 0.50 0.00 1.00 
Nonstop Flights 2183982 6016.53 14320.50 0.00 148483.00 
Year 2183982 2011.86 2.27 2005.00 2016.00 
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A4. Counterfactual Citations 

 
To construct the citation dataset, for each focal patent, we identify a citing patent that cites 

the focal patent and a counterfactual non-citing patent. That is, for each citing patent, we have 
identified a counterfactual patent from the same application year that does not cite the focal patent 
but has a title with high textual similarity to the title of the citing patent. We determine the degree of 
textual similarity using an algorithm based on the Jaccard index of similarity, which counts the 
number of common words (“tokens”) in the two titles as a share of the total number of words 

(Niwattanakul et al. 2013).2 More specialized words are weighted heavier than those that are 
common (for example, two patent titles that both contain the word “microprocessor” would be 
considered more similar than two titles that both contain the word “new”). We then study the effect 
of connectedness on patent citations using this set of matched counterfactual patents by creating a 
dataset in which each observation is a pair of patents. A patent pair contains either a focal patent 
and a real citing patent or a focal patent and a counterfactual patent matched to the citing patent, 
marked accordingly.  

In the table below, we present summary statistics for the counterfactual patent-matching 
data. Exactly half of the patent-citation pairs are real citations by construction, with the other half 
consisting of counterfactual, non-citing patents. The dataset maps each patent pair (i.e., both patent-
real citation pairs and patent-counterfactual citation pairs) to airport pairs to obtain information 
about the existence and the number of nonstop flights. On average, 45% of patent-citation pairs are 
connected by a nonstop flight (47% for real patent-citation pairs, 42% for counterfactual patent-
citation pairs). The average patent-citation pair is separated by 3,635 miles in distance and has 2,453 

flights per year (6.7 flights or around 3 round trips per day) between them.3 Around 60% of the 
patent-citation pairs are located across national borders.  
 
  

                                                        
2 Specifically, we calculate 𝑠(𝑿,𝒀) =

∑ min(𝑋𝑖,𝑌𝑖)
𝑀
𝑖=1

∑ max(𝑋𝑖,𝑌𝑖)
𝑀
𝑖=1

 for vectors 𝑿,𝒀. The vectors represent the TF-IDF scores of the 

words contained in the titles. TF-IDF refers to Term Frequency-Inverse Document Frequency and is calculated by 
counting the number of times a word occurs in a title (term frequency) and dividing that number by the log of the 
fraction of titles that contain the word (inverse document frequency). 
3 The average number of nonstop flights between patent-citation pairs is larger than the average number of flights 
between airport pairs (which is 631.44 nonstop flights per year) because patent-citation pairs are likely to be located at 
busier airport pairs that have many flights.  
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Table A3. Summary statistics for the control patent matching data. 

Part A. Counterfactual Citations 
 count mean s.d. min max 

realCitation 554884 .5 .5000005 0 1 
Nonstop 554884 .4452696 .496996 0 1 
Distance (asinh) 554884 8.475401 1.081952 5.298575 10.10236 
Total Flights (asinh) 554884 3.99273 4.609691 0 12.60137 
Intl 554884 .5942503 .491037 0 1 
Total Flights 554884 2452.989 6099.436 0 74128 
Application Year 554884 2011.751 2.270869 2005 2016 

 
Part B. Counterfactual Collaborations 

 count mean s.d. min max 

realCollaboration 3350653 .3481921 .4763974 0 1 
Nonstop 3350653 .5315071 .4990064 0 1 
Distance (asinh) 3350653 8.17056 1.168847 5.298498 10.10236 
Total Flights (asinh) 3350653 4.882422 4.766773 0 12.60137 
Intl 3350653 .427522 .4947191 0 1 
Total Flights 3350653 3550.44 7748.241 0 74355 
Application Year 3350653 2011.821 2.294037 2005 2016 

Note: Observations are at the patent-citation pair level for Part A, and at the inventor-pair level for Part B. Exactly half 
of patent-citation pairs are real citations in Part A. Nonstop is an indicator for whether there exists a nonstop flight 
between a patent’s location and the citation’s location (part A), or between the inventors’ locations (part B). Intl is an 
indicator for whether the patent-citation are located in different countries (part A) or whether inventors are located in 
different countries (part B). Distance is in miles. Application Year is the application year for the citation. 

 
With this dataset, we explore the question of whether flight connectivity between two 

locations (as measured by the availability of nonstop flights) can explain patent citations between 
those locations. We estimate the following specification using ordinary least squares:4 
 𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑝,𝑐,𝑡

= 𝛿1𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑝,𝑐,𝑡 + 𝛿2𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝,𝑐 + 𝜔𝑝 + 𝛾𝑐 + 𝜂𝑡 + 휀𝑝,𝑐,𝑡 

(1) 

for focal patent 𝑝, citation 𝑐, and application year 𝑡, where 𝑐 can be a real citation or counterfactual 

citation. 𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑝,𝑐,𝑡 = 1 if 𝑐 actually cites patent 𝑝 and = 0 otherwise. 𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑝,𝑐,𝑡 is 

a binary variable for whether there exists a nonstop flight between the airports nearest to the 

locations of 𝑝, 𝑐 in year 𝑡. Besides the binary variable for the existence of nonstop flights between 
the two locations underlying a patent-citation pair, we also use the count of nonstop flights between 

𝑝 and 𝑐 as an alternative independent variable. We also control for 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝,𝑐 , which is the 

geographic distance between the primary contributors (inventors whose names are listed first) who 

filed the citing patent 𝑝 and the counterfactual, non-citing patent.5 We include focal patent fixed 

                                                        
4 We are estimating a linear probability model, which approximates the marginal effects without assuming an arbitrary 
nonlinear relationship (Angrist and Pischke 2008). Furthermore, OLS allows us to calculate the correct cluster robust 
standard errors.  
5 Distance, similarly to other variables with long-tailed distributions, is rescaled using the inverse hyperbolic sine (asinh). 
The inverse hyperbolic sine approximates the natural logarithm while retaining zero-valued observations (MacKinnon 
and Magee 1990). 
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effects (𝜔𝑝) to control for unobserved characteristics associated with the focal patent. To control 

for geopolitical unobservables, we include country fixed effects for the countries in which the citing 

and counterfactual patents are located (𝛾𝑐), omitting focal patent country fixed effects since we 
already include focal patent fixed effects. Finally, we control for any year-specific shocks that may 
affect the relationship between nonstop flight existence and citations by including year fixed effects 

(𝜂𝑡). Table A4 presents the estimates for this specification. 
 

Table A4. Effect of the existence of a nonstop flight on the likelihood of patent citation. 

Dep. Var.: Real citation (binary) 

 (1) (2) (3) (4) 

Has nonstop 0.0564  0.0395  

 (0.004) ***  (0.006) ***  

Nonstop flights (asinh)  0.0080  0.0073 

  (0.000) ***  (0.001) *** 

Has nonstop × Intl   0.0258  

   (0.008) ***  

Nonstop flights (asinh) × Intl    0.0010 

    (0.001) 

Distance (asinh) -0.0251 -0.0196 -0.0139 -0.0091 

 (0.002) *** (0.002) *** (0.003) *** (0.003) *** 

Intl   -0.0636 -0.0521 

   (0.010) *** (0.010) *** 

      

N 554,864 554,864 554,864 554,864 

R2 0.064 0.065 0.065 0.065 

Note: This table estimates the change in the likelihood of a patent citation given the existence of a nonstop 
flight between airports near the inventors. It also estimates the effect of an alternative independent variable 
(number of nonstop flights) on citations. All specifications include a cited patent fixed effect, a 
citing/counterfactual patent’s country fixed effect, and a year fixed effect. Standard errors are clustered at the 
cited patent level. 
* p < 0.05, ** p < 0.01, *** p < 0.001. 

The results in Column 1 suggest that the existence of nonstop flights between two inventors 
who have patented similar technologies is associated with a 5.6 percentage point increase in the 
likelihood of a real citation, which represents an 11% increase in the likelihood of a real citation 
compared to the baseline citation likelihood of 50%. This estimate is obtained after controlling for 
the distance between the inventors and the characteristics of both countries of the inventors (in case 
they are different), as well as year fixed effects. To delve beyond the existence of nonstop flights 
between inventors, Column 2 of the same table uses an alternative independent variable—the 
number of flights between inventors. The result suggests that a 10% increase in the number of 
flights between two locations is associated with an increase of 0.08 percentage points in the 
likelihood of a patent citation. In terms of economic significance, given it is a continuous variable, 
we look in terms of standard deviations. In this case, a 1 standard deviation increase in flights 
corresponds to a 2 percentage point increase in the likelihood of a patent citation (or a 4% increase 
compared to the baseline).  
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Columns 3 and 4 allow for differential effects on whether a citation occurs across national 
borders by interacting the binary nonstop flight existence variable with a binary variable that equals 

one if 𝑝 and 𝑐 belong to inventors in different countries and equals zero otherwise. Our results 
suggest that the existence of nonstop flights is associated with an increase in the likelihood of 
citation, and this relation is, in part, driven when patents that are in different countries. When a 
nonstop flight exists across national borders relative to when there are no nonstop flights, the 
interaction term in Column 3 shows the likelihood of a citation increases by an additional 2.6 
percentage points (a 5.2% increase based on the baseline citation likelihood). However, Column 4 
shows that a 10% increase in the number of flights across international borders increases the 
likelihood of a citation by 0.01 percentage points, and the effect is not statistically significant. This 
result suggests that the existence of nonstop flights between two international locations is important 
for cross-country patent citations, but we are unable to find a distinguishable result for this 
continuous variable. In other words, the result suggests that the extensive margin is perhaps more 
important than the intensive margin in terms of flight connectivity. Thus far, our results suggest that 
connectedness between locations explains citations between patents, and this relationship holds 
when crossing national borders. 

 

A5. Counterfactual Collaborations 

 
We also employed a textual similarity-based counterfactual patent method to study how nonstop 
flights affect patent collaborations. To measure inventor collaborations, we replicate the idea above 
and create a dataset in which each observation is a pair of inventors. Given a focal patent, we 
identify all inventors who worked on both a real citing patent and its matched counterfactual, non-
citing patent. For this exercise, we use two sets of patents: all citing patents used for analysis in 
Section 3.1 and all counterfactual citations used for analysis in Section 3.1. Since these two sets of 
matched patents are highly similar (as measured by textual similarity of patent abstracts) in content, 
the inventors on these patents are arguably potential collaborators whose work centers around 
similar technologies. We then create all pairwise combinations of inventors from those two sets of 
patents. We mark a pair of inventors as a real collaboration if the two inventors actually worked 
together and otherwise if it is a counterfactual pair. For both pairs of inventors (i.e., real 
collaborations and counterfactual collaborations), we impute the relevant airport pairs. Then, we 
compare the existence of nonstop flights between real collaborators against that between potential 
collaborators who were not collaborating. For this counterfactual collaboration dataset, 34% of 
inventor pairs are real collaborations.6 Fifty-three percent of the inventor pairs are connected by a 
nonstop flight (61% for real inventor pairs, 49% for counterfactual inventor pairs) and are separated 
by 2,978 miles on average. Also, on average, there are 3,550 flights between an inventor pair, and 
43% of the inventor pairs are located across national borders (i.e., are potential global 
collaborations). 
 Specifically, to study global collaborations, we estimate a slightly different specification from 
the citations regression: 
 𝑅𝑒𝑎𝑙 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝,𝑖,𝑗,𝑡

= 𝛽1𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑖,𝑗,𝑡 + 𝛽2𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 + 𝜔𝑝 + 𝜂𝑡 + 휀𝑝,𝑐,𝑡 
(2) 

Again, 𝑝 stands for the focal patent, 𝑖, 𝑗 stand for inventors, and 𝑡 stands for the year of 

collaboration. The value of 𝑅𝑒𝑎𝑙 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑝,𝑖,𝑗,𝑡 = 1 if inventors 𝑖, 𝑗 are actual collaborators 

                                                        
6 In contrast to citations, the collaborations dataset is not split evenly because real and counterfactual collaborations do 
not contain even numbers of inventors. 
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on a citing or counterfactual citing patent of focal patent 𝑝 issued in year 𝑡 and = 0 otherwise. 

𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑖,𝑗,𝑡 is an indicator for whether a nonstop flight connects the two inventors in year 𝑡, 

and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 is the inverse hyperbolic sine of the distance between the inventors. We include 

focal patent fixed effects 𝜔𝑝 to control for the underlying technology and year fixed effects 𝜂𝑡 to 

capture any time-specific effects. 
 

Table A5. Effect of the existence of a nonstop flight on the likelihood of patent collaboration. 

Dep. Var.: Real collaboration (binary) 

 (1) (2) (3) (4) 

Has nonstop 0.0546  0.0187  

 (0.002) ***  (0.003) ***  

Nonstop flights (asinh)  0.0069  0.0033 

  (0.000) ***  (0.000) *** 

Has nonstop × Intl   0.0290  

   (0.004) ***  

Nonstop flights (asinh)× Intl    0.0033 

    (0.000) *** 

Distance (asinh) -0.1580 -0.1549 -0.0761 -0.0740 

 (0.001) *** (0.001) *** (0.002) *** (0.002) *** 

Intl   -0.3988 -0.3960 

   (0.005) *** (0.005) *** 

      

N 3,350,645 3,350,645 3,350,645 3,350,645 

R2 0.255 0.255 0.273 0.273 

Note: This table estimates the change in the likelihood of a collaboration given the existence of a nonstop 
flight between airports near the inventors. It also estimates the effect of an alternative independent variable 
(number of nonstop flights) on citations. All specifications include a cited patent fixed effect, a 
citing/counterfactual patent’s country fixed effect, and a year fixed effect. Standard errors clustered at the 
cited patent level.  
* p < 0.05, ** p < 0.01, *** p < 0.001. 
 

Table A5 shows the results of estimating Appendix Equation (2). Columns 1 and 2 show 
that inventors connected by at least one nonstop flight between their locations are 5.5 percentage 
points more likely to be collaborators, which is a 16% increase based on the baseline collaboration 
likelihood of 34%, as compared to inventors without nonstop connections between their locations. 
Column 2 of the same table again uses the number of flights between inventors. The result suggests 
that a 10% increase in the number of flights between two locations is associated with an increase of 
0.07 percentage points in the likelihood of a collaboration. In terms of economic significance, we 
find that a 1 standard deviation increase in flights corresponds to a 1.7 percentage point increase in 
the likelihood of a collaboration (or a 5.1% increase compared to the baseline collaboration 
likelihood of 34%). 

Columns 3 and 4 present the results from interacting the flight variables in Equation (2) with 
a binary variable for whether the inventors are located in different countries. The positive and 
significant coefficient shows that for global inventor teams, there is an additional 2.9 percentage 
point increase (an additional 8.3% increase from the baseline collaboration probability of 34%) in 



 13 

the positive effect of the existence of nonstop flights on collaborations. In contrast to citations, the 
effect for international collaborations is significant for both independent variables—that is, whether 
or not two locations are connected by a nonstop flight and number of nonstop flights between the 
two locations. This result suggests that both the existence and the quantity/frequency of nonstop 
flights are important for driving collaborations between two locations.   

 
  



 14 

A6. Alternate Empirical Specifications 

 
Using the counterfactual patent information collected above, we test how nonstop flights 

correlate with the probability of a patent pair having a nonstop flight. If nonstop flights increase the 
likelihood of citations, we should see a positive relationship between the given patent pair is a real 
citing patent pair, and whether the two locations have a nonstop flight.  

Our regression specification is as follows: 
 
 𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑝,𝑐,𝑡

= 𝛿1𝑁𝑜𝑛𝑠𝑡𝑜𝑝 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑝,𝑐,𝑡 + 𝛿2𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝,𝑐 + 𝛿3𝐼𝑛𝑡𝑙𝑝,𝑐

+ 𝛿4𝐼𝑛𝑡𝑙𝑝,𝑐 × 𝑁𝑜𝑛𝑠𝑡𝑜𝑝 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑝,𝑐,𝑡 + 𝜔𝑝 + 𝛾𝑐 + 𝜂𝑡 + 휀𝑝,𝑐,𝑡 

(3) 

for focal patent 𝑝 and citation 𝑐, and application year 𝑡 where 𝑐 can correspond to a real citation or 

counterfactual citation. 𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑝,𝑐,𝑡 = 1 if 𝑐 actually cites patent 𝑝, and 0 otherwise. 

𝑁𝑜𝑛𝑠𝑡𝑜𝑝 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑝,𝑐,𝑡 counts the number of nonstop flights between the airports nearest to the 

locations of 𝑝, 𝑐 in year 𝑡. We include focal patent fixed effects (𝜔𝑝) so that 𝛿1 measures the 

relationship between nonstop flights and real citations, keeping all the focal patent characteristics 
fixed. The variation in the number of nonstop flights comes from comparing the real citations and 
counterfactual citations. In some specifications, we include dummy variables for whether the flight is 

an international flight 𝐼𝑛𝑡𝑙𝑝,𝑐 , and an interaction term between international flights and the number 

of nonstop flights. To the extent that nonstop flights affect international knowledge flows, we 

should see 𝛿4 ≠ 0. To control for geopolitical unobservables, we include country fixed effects for 

the counterfactual patent (𝛾𝑐). Finally, we control for any year specific shocks that may affect the 

relationship between nonstop flights and citations (𝜂𝑡).  
 
 While in our preferred specification, we include distance between airports as a control, we 
address concerns of potential multicollinearity between the number of nonstop flights and distance. 
We first show that while there is a negative correlation between distance and the number of flights 

(𝜌 = −0.4481), nonparametric kernel estimates in Figure A2 suggest the relationship is nonlinear. 
For very short distances between two locations, the likelihood of having a nonstop flight between 
those locations is around 0.6. The likelihood of having a nonstop flight increases to 0.8 as airports 
become more distant. However, for longer flights, the probability of nonstop flights decreases.  
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Figure A2. Local polynomial regression of nonstop flights on distance 

Kernel-weighted local polynomial regression of nonstop flights on distance. Dataset uses all patent-
citation pairs. Nonstop flights is a binary variable, denoting probability of any nonstop flights 

between a patent-citation pair. Distance between two airports is inverse hyperbolic sine transformed. 
Graph was created using the lpoly command in Stata. 

 
 
 
We also estimate the specification above with and without distance controls, and compare 

the coefficients. Including controls for distance has little impact on our coefficient of interest 𝛿4 (the 
effect of nonstop flights on overcoming political borders) for citations, and a slight negative effect 
on collaborations. Overall, the results on reducing frictions from national borders hold even if we 
omit distance controls. 
 
Table A6. Coefficients from the main specification results, with and without distance controls. 

 Citations  Collaborations  

Coefficient With Distance  Omit Distance  With Distance  Omit Distance  

𝛿1 0.0395*** 
(0.006) 

0.0452*** 
(0.006) 

0.0187*** 
(0.003) 

0.0399*** 
(0.003) 

𝛿3 -0.0636*** 
(0.010) 

-0.0926*** 
(0.007) 

-0.3988*** 
(0.005) 

-0.5692*** 
(0.004) 

𝛿4 0.0258*** 
(0.008) 

0.0257*** 
(0.008) 

0.0290*** 
(0.004) 

0.0358*** 
(0.004) 

Note: Standard errors in parentheses are clustered at the focal patent level. The coefficients in this table correspond to 
the same coefficients in Appendix Equation (3), which is the main specification in the paper. 

 
Our standard errors are clustered at the focal patent level. Recent work shows that clustering 

is necessary when the sampling process and the assignment mechanism are clustered. In our context, 
this would correspond to how citations occur, and how counterfactual patents are assigned. Abadie 
et al. (2017)suggest researchers should cluster at the level of “treatment” assignment, hence our focal 
patent level clustered standard errors. If we believe instead that the assignment of counterfactual 
patents is completely random, we would not have a need for clustering; however, treatment is indeed 
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not random, and assigned at the focal patent level. Alternatively, coarser levels of clustering (i.e., 
country-country level) would be appropriate if we have reason to believe non-random sampling of 
some countries. Again, however, our dataset comprises of all nonstop flights across the globe, 
diminishing concerns of such non-random sampling. 
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A7. Assumptions required for causal interpretation 

 
Note that to interpret β as a causal effect, we would need to assume that 

𝑐𝑜𝑣(𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑝,𝑐,𝑡 , 휀𝑝,𝑐,𝑡) = 0. This is a plausible assumption when thinking of the individual 

inventors: the existence of a nonstop flight between locations could be considered exogenous to 
patenting activities and citations. Of course, an important threat to our identification is whether the 
inventors relocate to places that have nonstop flights to locations with other inventors who they 
could collaborate with or cite. While this approach does not address some sources of endogeneity 
(e.g., we cannot distinguish between cases where the inventors involved in a particular citation or 
collaboration were in those locations before the existence of a flight), our regression discontinuity 
results are consistent with a causal interpretation.  
 

A8. Inferring economic significance of the counterfactual results 

 
The counterfactual analysis suggests adding 7,352 nonstop routes per year will increase 

citations by 6.26% and adding 6,670 routes will increase collaborations by 7.49%. Roughly, 
increasing the number of nonstop routes by 30.59% will increase citations by 0.24 per patent – also 
adding a nonstop route leads to 2.36 more citations between those airports. Similarly, increasing the 
number of nonstop routes by 43.14% will add 0.29 more inventors per patent. 

From Tables A4 & A5, we see that the existence of nonstop flights increases the likelihood 
of a citation increases by 5.64 percentage points, and collaborations by 5.46 percentage points. The 
baseline likelihood of a citation is 50%, and thus a 5.64 percentage point increase would be a 11.2% 
increase. Similarly, the baseline likelihood of a collaboration is 34.82%, and thus a 5.46 percentage 
point increase would be a 15.68% increase in the likelihood of a collaboration. Taken together with 
the interaction terms for international pairs, this would be 8.22 percentage points for citations and 
8.36 percentage points for collaborations. Thus, in percentage increases, this would be a 16.44% 
increase in citations, and 24.01% increase in collaborations.  

To calculate standard deviation changes, a one standard deviation increase in nonstop flights 
is 6099.44, and compared to the mean 2452.99, this is a 248.6532% increase. Thus, that would be a 
1.98923 percentage point increase in citations,  

Interpreting the economic magnitude of these changes requires us to make assumptions 
about how many nonstop flights are added, which we detail below. 

Table A4 shows that when estimating 𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛽1𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑖𝑗  the coefficient 

is 0.0564. In conditional expectation form, we see 𝐸[𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗|𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑖𝑗 = 1] −

𝐸[𝑅𝑒𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗|𝐻𝑎𝑠 𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑖𝑗 = 0] = 0.0564. This suggests the following interpretation: 

patent pairs 𝑖𝑗 with a nonstop flight are 5.64 percentage points more likely to be a real citation than 

patent pairs 𝑖′𝑗′ without nonstop flights. Assuming this is causal, the implication is that for any 

patent pair 𝑖𝑗 that does not have a nonstop flight, adding a nonstop flight will make it 5.64 
percentage points more likely to be a real citation. We will maintain this causal interpretation and 
calculate the increase in patenting when “adding” a nonstop flight between patent pairs. 

Here, we calculate the magnitude of a 5.64 percentage point increase in patent citations. 
There are 554,884 patent pairs in our data, half of which are real. Alternatively, 247,073 patent pairs 
have nonstop flights, while 307,811 do not (See Table A3 below for a cross tabulation). The baseline 
probability of a real citation, given no nonstop flight, is 146,122 / 307,811 = 0.48. If nonstop flights 
were added to all patent-citation pairs, this baseline probability would increase by 5.64 percentage 
points to 0.53. Then, instead of 146,122 real citations, we would see 163,482.54 citations, an increase 
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of 17,360.54 patents.7 There are 72,509 unique publications in our counterfactual patent dataset, 
which is 3.83 citations per patent.8 An increase of 17,360.54 patents is an increase of 0.24 citations 
per patent, which is a 6.26% increase in citations per patent.  
 
Table A7. Cross tabulation of citations for patent pairs with and without nonstop flights. 

 Counterfactual 
Citations 

Real Citations Total Fraction 
Real 
Citations 

Real 
citations if 
all routes 
have 
nonstop 

No Nonstop 161,689 146,122 307,811 0.4747 163,482 

Has Nonstop 115,753 131,320 247,073 0.5315 131,320 

Total 277,442 277,442 554,884 0.5 294,802 

 
We next calculate the magnitude of this increase in light of the number of nonstop flights. 

Adding a nonstop flight for all patent-citation pairs without nonstop flights (i.e., for 307,811 patent-
citation pairs) is not equivalent to adding 307,811 routes because multiple patent-citation pairs exist 
for each route. A rough estimate would be to go to the route-level citations data and add nonstop 
flights to all routes with any number of citations between them.9 There are 48,898 routes across 11 
years for a total of 537,878 route-year observations. Of these, 176,704 route-years have citations, and 
of those, 80,871 route years have citations but no nonstop flights. To ensure all routes with citations 
have nonstop flights, we would need to add nonstop flights to 80,871 route-years, for about 
7,351.90 routes per year. On average, 24,035.45 routes per year have nonstop flights, and thus 
7,351.90 is a 30.59% increase in routes with nonstop flights.  
 
Table A8. Tabulation of the number of route-years with and without citations and collaborations, 
divided by whether a route-year has nonstop flights. 

 No citations Has citations No 
collaborations 

Yes 
collaborations 

No Nonstop 192,617 80,871 200,114 73,374 

Has Nonstop 168,557 95,833 167,682 96,708 

 361,174 176,704 376,796 170,082 

 
The two tables above show that a 30.59% increase in nonstop flight routes will lead to a 6.26 

percent increase in citations, or 0.24 citations per patent, per year. Alternatively, since adding 7,352 
nonstop routes leads to an increase of 17,360 patents, we expect each new nonstop route to add 
2.36 citations between those locations in a given year.  

Finally, we repeat the exercise for collaborations. Again, Table A5 shows collaborations are 
5.46 percentage points more likely if there exist nonstop flights. There are 3,350,653 potential 
inventor-pairs in our dataset, 1,166,671 of which are realized collaborations. If we add nonstop 
flights for all inventor pairs who don’t have collaborations, we would see real collaborations increase 

                                                        
7 ((146,122/307,811)+0.0564)*307,811 = 163,482 
8 277,447/72,509 = 3.8263 
9 Since the results from the counterfactual analysis are derived from routes with patent-citation pairs, we take a 
conservative estimate and assume the impact may not carry over to routes without any patent-citation pairs. 
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from 454,515 to 540,223.73,10 or by 85,708.73. This is 85,708.73 more collaborations, and an 
increase from 3.92 to 4.30 inventors on a patent, or about 0.29 inventors per patent.  
 
Table A9. Cross tabulation of counterfactual versus real collaborations.  

 Counterfactual 
collaboration 

Real 
Collaboration 

Total Fraction 
Real 

# Real if 
nonstop 

No Nonstop 1,115,242 454,515 1,569,757 0.2895 540,224 

Has Nonstop 1,068,740 712,156 1,780,896 0.3999 712,156 

Total 2,183,982 1,166,671 3,350,653 0.3482 1,252,380 

 
Calculating the number of flights we would need to add, we see that there are 73,374 route-

years (6,670.36 routes per year) with no nonstop flights but some level of collaborations. Thus, 
adding 6,670.36 routes per year, which is a 43.14% increase in the number of routes will increase the 
average number of collaborators per patent by 0.29, or about 7.49%.  

 
 
 
  

                                                        
10 The calculation is as follows: ((454,515/1,569,757)+0.0546)*1,569,757 = 540,223.732. 
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Appendix B. Regression Discontinuity 

 

B1. Regression Discontinuity Sample Summary 

 
Table B1. Summary statistics for the regression discontinuity sample. 
 Count Mean Sd Min Max 
# Citations 538,054 2.14 36.67 0.00 5,702.40 
# Collaborations 538,054 2.00 56.47 0.00 7,228.03 
# Citations (firms) 538,054 1.96 35.20 0.00 5,498.18 
# Collaborations (firms) 538,054 1.90 55.07 0.00 7,048.09 
# Citations (academic) 538,054 0.04 0.49 0.00 67.16 
# Collaborations (academic) 538,054 0.07 1.41 0.00 239.69 
# Citations (high inventor mass) 538,054 1.76 33.21 0.00 5,159.64 
# Collaborations (high inventor mass) 538,054 1.87 54.54 0.00 6,945.35 
# Citations (low inventor mass) 538,054 0.23 2.68 0.00 394.66 
# Collaborations (low inventor mass) 538,054 0.10 1.73 0.00 200.72 
# Citations (high R&D) 538,054 0.28 7.04 0.00 1,168.81 
# Collaborations (high R&D) 538,054 0.37 12.79 0.00 2,028.88 
# Citations (low R&D) 538,054 0.50 13.38 0.00 2,236.98 
# Collaborations (low R&D) 538,054 0.38 15.61 0.00 2,389.79 
# Citations (multi-ethnic) 538,054 1.53 24.00 0.00 3,733.47 
# Collaborations (multi-ethnic) 538,054 1.47 41.30 0.00 5,526.10 
# Citations (co-ethnic) 538,054 0.61 13.08 0.00 1,968.93 
# Collaborations (co-ethnic) 538,054 0.53 15.86 0.00 2,085.88 
Has nonstop 538,054 0.49 0.50 0.00 1.00 
Total # of nonstop flights 538,054 611.95 1,799.85 0.00 74,002.00 
Distance (miles) 521,477 1,110.86 1,246.99 0.00 11,873.40 
Hub-to-Hub flight 537,878 0.26 0.44 0.00 1.00 
Working hour overlap 537,878 7.04 1.58 0.00 8.00 
Immigrant friendliness distance 402,523 0.19 0.28 0.00 1.87 
Average price 20,350 946.48 528.11 214.30 4,538.75 
Average duration (hours) 20,350 13.72 4.65 4.48 41.50 

Note: This table provides the summary statistics for the regression discontinuity sample, which includes location pairs 
that are just above and below the 6000-mile threshold in terms of flight distance. 

 

B2. First Stage Regressions 
 

In this section, we show evidence that the 6000-mile threshold is associated with a 
meaningful discontinuity in the number of available nonstop flights. This relationship is the “first 
stage” regression in the fuzzy regression discontinuity. Regressions in the table below show that 
airport pairs just below the 6000-mile threshold (to the left of the dotted line) have significantly 
more nonstop flights than airport pairs just above the threshold (to the right of the dotted line). 
Figure B1 plots the number of nonstop flights between routes, using a linear fit. It shows that the 
number of nonstop flights above the 6000-mile threshold exhibits a downward trend. The 
discontinuity uses bins computed through the IMSE-optimal evenly-spaced method using spacings 
estimators. Optimal bandwidth computation follows the methodology described in Calonico et al. 
(2020), who build on the work by Imbens and Kalyanaraman (2012).  
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Table B2. First stage of regression discontinuity. 

 (1) (2) (3) (4) 
Dep. Var.: Nonstop Flights (asinh) 

 
Bandwidth: 250 500 750 Optimal 

under6000 2.286*** 1.313*** 1.340*** 1.418*** 
 (0.309) (0.253) (0.219) (0.236) 
     
dist6000 -0.007** 0.000 0.000 -0.001 
 (0.003) (0.001) (0.000) (0.001) 
     
dist6000 x  -0.003 -0.003*** -0.002*** -0.001 
under6000 (0.004) (0.001) (0.001) (0.001) 
     
Constant 2.198*** 2.824*** 2.654*** 2.530*** 
 (0.276) (0.208) (0.169) (0.189) 
     

Country-pair-year 
FE 

Y Y Y Y 

Observations 1375 3300 5368 4323 
Adjusted R2 0.439 0.403 0.379 0.392 

Note: This table estimates the first stage, using several bandwidths for the estimation in terms of pair of 
airports at either side of the 6000 miles threshold: 250, 500 and 750 miles, as well as the optimal bandwidth. 
The Optimal bandwidth computation follows the methodology described in Calonico et al. (2020), who build 
on the work by Imbens and Kalyanaraman (2012). The estimation uses a triangular weight scheme, giving 
higher weight to observations closer to the threshold. All specifications include country-country-year fixed 
effects. Standard errors clustered at the country-country-year level. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

Figure B1. Discontinuity in number of flights with linear fit.  
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B3. Varying the number of bins 
 

One concern regarding the regression discontinuity estimation is that the graphical results 
may depend on the number of bins used on either side of the threshold. The “optimal” number of 
bins attempt to minimize the integrated mean-squared error by balancing the trade-off between 
squared-bias and variance of the local sample means (Cattaneo et al. 2018). In the paper, we utilize 
the evenly-spaced, or ES method of choosing the number of bins. The ES method yields 15 bins to 
the left, and 9 bins to the right of the threshold for the RD on citations, and 5 bins to the left, and 
15 bins to the right of the threshold for collaborations. Below, we show that the graphical results are 
robust to varying the number of bins from 25, 50, 100, and 150.  

 

  

  
 

Figure B2. Collaborations and citations below and above the 6000-mile threshold, with varying 
numbers of bins. 

  



 23 

B4. Varying the bin selection method 
 

The results are also robust to changes in the bin selection method. The quantile-spaced (QS) 
method is a popular alternative to ES methods. In the QS method, bins are selected so that each bin 
contains the same number of observations. We present eight different types of bin selection 
methods: 

 

 es: IMSE-optimal evenly-spaced method using spacings estimators. 

 espr IMSE-optimal evenly-spaced method using polynomial regression. 

 esmv mimicking variance evenly-spaced method using spacings estimators. 

 esmvpr mimicking variance evenly-spaced method using polynomial regression. 

 qs IMSE-optimal quantile-spaced method using spacings estimators. 

 qspr IMSE-optimal quantile-spaced method using polynomial regression. 

 qsmv mimicking variance quantile-spaced method using spacings estimators. 

 qsmvpr mimicking variance quantile-spaced method using polynomial regression. 
 
Since we are restricting the support to the optimal bandwidth, we use only a first-order 

polynomial to fit the regressions. This is to reduce concerns of overfitting and minimize boundary 
effects (Cattaneo et al 2019). Figure B3 presents the results with various bin selection methods. We 
see from the figures that the binning method does not visually change our results. Generally, the 
ESMV and QSMV are good choices to best depict the overall RD design. Since each point is based 
on quantiles, the QS method provides an accurate representation of the concentration of 
observations along our score (airport distance), while the ES method provides similar information, 
without the direct link to the concentration along the score support. 
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Figure B3. Collaborations and citations below and above the 6000-mile threshold, with different 
bin selection methods. Bin selections are based on combinations of evenly spaced or quantile based, 

mimicking variance, and whether polynomial regressions are used.  
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B5. Varying kernel choice 
 

Next, we test whether the choice of kernel affects the graphical results. The choice of kernel 
affects how points near the threshold are weighted. Our preferred specification uses a triangular 
kernel, but graphical results are robust to using either the Epanechnikov kernel or a uniform kernel. 
For each of the plots below, we see that at the 6000-mile threshold, there exists a visual 
discontinuity in the number of citations as well as collaborations. 

 

  

 

 

 
Figure B4. Collaborations and citations below and above the 6000-mile threshold, with different 
kernel choices. Kernel choices determine how much more weight to give to data points near the 

cutoff.  
 
 

  



 27 

B6. Fixed Effects and Clustering 
 
This section, we relax our use of fixed effects at the country-pair year level. Our preferred 
specification includes country-country-year fixed effects, absorbing the average innovation flows 
between two countries in a given year. Thus, for each route, we are comparing the effect of an 
additional flight above and beyond what can be explained by the country pair in a given year. 
Alternatively, we can include separate fixed effects for the origin country and destination country, as 
well as the separate years. Including separate fixed effects for origin country (OC) and destination 
country (DC) allows effects to vary within the OC separately from which DC the route serves.  
 
 
Table B3. Regression discontinuity with different fixed effects.  

 Citations 
 (1) (2) (3) (4) (5) 
 OC+DC+Y OCY+DCY OA+DA OAY+DAY OC+DC 

asinh(Flights) 0.605*** 0.605*** 0.451 0.451 0.806*** 
 (0.212) (0.221) (0.376) (0.304) (0.291) 
dist6000 0.001* 0.001* -0.001 -0.001 -0.000 
 (0.001) (0.001) (0.001) (0.001) (0.000) 
dist6000 # under6000 -0.001 -0.001 0.001 0.001 0.001 
 (0.001) (0.001) (0.001) (0.001) (0.001) 
Observations 3960 3498 3960 2156 5775 

 Collaborations 

 (6) (7) (8) (9) (10) 

asinh(Flights) OC+DC+Y OCY+DCY OA+DA OAY+DAY 0.463*** 
 0.454*** 0.454*** 0.755 0.755 (0.167) 
dist6000 (0.151) (0.171) (0.966) (0.933) 0.000 
 0.000 0.000 0.001 0.001 (0.000) 
dist6000 # under6000 (0.000) (0.000) (0.001) (0.001) 0.000 
 0.000 0.000 -0.002 -0.002 (0.000) 
asinh(Flights) (0.000) (0.000) (0.002) (0.002) 5775 

 4983 4521 4983 3069 0.463*** 

Note: Standard errors in parentheses. Fixed effects denoted as following: OC=Origin Country, DC=Destination 
Country, OA=Origin Airport, DA=Destination Airport, OCY=Origin Country-Year, DCY=Destination Country-Year, 
OAY=Origin Airport-Year, DAY=Destination Airport-Year. Standard error clustered at the level of fixed effects except 
for Columns 3 and 7 which use robust standard errors. Both dependent variables are asinh-transformed. In this table, we 
have included fixed effects for origin country, destination country, and year (Columns 1 and 6), origin country-year, 
destination country-year (Columns 2 and 7), origin airport, destination airport (Columns 3 and 8), and finally origin 
airport-year, destination airport-year (Columns 4 and 9). Columns 5 and 10 include separate origin/destination country 
fixed effects for less stringent fixed effects. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 
 
Table B4. Regression discontinuity with different levels of clustering. 

 Citations  
 (1) (2) (3) (4) (5) (6) 
 OC+DC OCY+DCY CCY OAY+DAY OA+DA Robust 

asinh(Flights) 0.285 0.285*** 0.285*** 0.285*** 0.285 0.285*** 
 (0.227) (0.081) (0.076) (0.090) (0.255) (0.082) 
dist6000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
 (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) 
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dist6000 # 
under6000 

0.000 0.000 0.000 0.000 0.000 0.000 

 (0.003) (0.001) (0.001) (0.001) (0.003) (0.001) 

Observations 2332 2332 2332 2332 2332 2332 
R2 0.612 0.612 0.612 0.612 0.612 0.612 

 

Collaborations  
(7) (8) (9) (10) (11) (12) 

OC+DC OCY+DCY CCY OAY+DAY OA+DA Robust 

0.169 0.169*** 0.169*** 0.169** 0.169 0.169** 
(0.145) (0.056) (0.059) (0.070) (0.192) (0.067) 
-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 
(0.001) (0.000) (0.000) (0.000) (0.001) (0.000) 
0.000 0.000 0.000 0.000 0.000 0.000 

(0.001) (0.000) (0.001) (0.001) (0.002) (0.000) 

3146 3146 3146 3146 3146 3146 
0.442 0.442 0.442 0.442 0.442 0.442 

 
Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Both dependent variables are asinh-transformed. This table includes two-way clustering at the origin 
country plus year clustering (OCY) and at the destination country plus year clustering (DCY), as well as clustering at the 
origin airport plus year clustering (OAY) and at the destination airport with year clustering (DAY). After restricting the 
sample to around the 6000-mile threshold, we have 3,795 observations across 1,116 clusters. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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B7. Higher order polynomials for the reduced form 
 
We next check whether our RD results are sensitive to the polynomial order that we use. Lee 

and Lemieux (2010) suggest that plotting higher order polynomials may enhance the visual impact of 
the graph, and also suggest that it is essential to check that the RD results are robust to the inclusion 
of higher order polynomial terms. Thus, in this section, we check whether graphically, our results are 
robust to modeling higher order polynomials.  
 

   
(a) Citations, p(1) (b) Citations, p(2) (c) Citations, p(3) 

   
(d) Collaborations, p(1) (e) Collaborations, p(2) (f) Collaborations, p(3) 

Figure B5. Higher order polynomial estimates of the regression discontinuity. 
Each figure contains plots using the rdplot command in Stata, using polynomials of differing orders.  

 
We see that for both citations and collaborations, we see a discontinuous jump at the 6000-

mile mark. In all panels, we observe the 95% confidence intervals do not overlap, and the results are 
therefore statistically significant. The magnitude of the effects seem to change slightly: the impact of 
nonstop flights on citations increases when using higher order polynomials, but the effect on 
collaborations decreases when using a second order polynomial. 
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B8. Placebo thresholds 
 

Next, we test whether our treatment of increased operating costs at the 6000-mile threshold 
is indeed meaningful. Towards this, we check whether we observe (or do not observe) similar 
discontinuities at placebo thresholds {Citation}. Since the 6000-mile threshold is an approximate 
cutoff for a 12-hour flight, it is a fuzzy discontinuity. Thus, far away from the 6000-mile threshold, 
we should see the treatment effect is zero. To test this, we estimate the regression discontinuity at 

various placebo thresholds. Specifically, for 𝑐∗ ∈ [4000, 9000] in 25 mile intervals, we estimate a 
2SLS model with the first stage equation given by: 

 
 𝑁𝑜𝑛𝑠𝑡𝑜𝑝 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑,𝑡

= 𝛾11{𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
< 𝑐∗} + 𝛾2(𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑

− 𝑐∗)

+ 𝛾31{𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
< 𝑐∗} × (𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑

− 𝑐∗) + 𝜙𝑐𝑜,𝑐𝑑,𝑡 + 𝜖𝑎𝑜,𝑎𝑑 ,𝑡 

 

And the second stage is given by: 
 

 log(𝑌𝑎𝑜,𝑎𝑑 ,𝑡) = 𝛽1  𝑁𝑜𝑛𝑠𝑡𝑜𝑝 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑 ,𝑡
̂    + 𝛽2(𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑

− 𝑐∗)

+ 𝛽31{𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑
< 𝑐∗} × 𝐷(𝐷𝑖𝑠𝑡𝑎𝑜,𝑎𝑑

− 𝑐∗) + 𝜙𝑐𝑜,𝑐𝑑,𝑡 + 𝜖𝑎𝑜,𝑎𝑑,𝑡 
 

 

The idea is that if there is a sharp discontinuity at the 6000-mile mark, for all 𝑐∗ ≠ 6,000, we 

should see that 𝛽1̂ = 0. Since our discontinuity is fuzzy, we should see instead that for cutoffs far 
away from the 6000-mile mark, we don’t observe significant coefficients. As we will discuss, since 
citation and collaboration outcomes are driven by airport pairs with high innovation mass, we may 
observe some cutoffs that show significant coefficient estimates (e.g., Pacific flights connecting the 
U.S. with Asia). To avoid misspecification, we split the sample into [4000, 5950] and [6050, 9000] 
and estimate the discontinuity for those two samples. We first present results for citations and 
collaborations.  

For citations (Figure B5), we see that most of the coefficients are statistically insignificant 
from zero. Since this is a fuzzy regression discontinuity, we see some significant placebo thresholds 
near the 6000-mile line. There appear to be a cluster of significant coefficients near the 4500 mile 
line, or a 9 hour flight. This effect is driven by the presence of airport pairs with high innovation 
mass, particularly between the US West coast and Asian countries, and is to be expected. 
Specifically, for citations, the placebo thresholds of 4575, 4600, 4650, 4750 miles are significant. 
Note that coefficients below the 4700-mile mark are positive, but become negative as the placebo 
threshold shifts right. As the placebo threshold moves, high-innovation mass routes between Asia 
and the US (e.g., SEA-HND, PDX-NRT) switch from control to treatment, and decreases the effect 
of additional flights. Thus, we are confident such changes are unrelated to our 6000-mile instrument. 

Similarly, for collaborations (Figure B6), we see that most coefficients are statistically 
insignificant from zero, and the majority of significant coefficients can be found between 5500-6500. 
We also conduct the placebo test over the entire support of the dataset (Figure B7). Again, for 
collaborations, there is a small cluster of significant coefficients near the 4500-mile mark, but there is 
stronger evidence of a cutoff near the 6000-mile threshold.  
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(1) Airports closer than 6000 miles (2) Airports farther than 6000 miles 

 
Figure B5. Effect of placebo thresholds on citations  

Each dot represents an estimate of 𝛽1, the effect of a 1% increase in nonstop flights between two 
airports, assuming there exists a discontinuity at the given distance. Red lines denote 99% 

confidence intervals. Gray dots denote coefficients that are insignificant. Coefficients with absolute 
values greater than 1 are omitted for visualization purposes (all insignificant). 

 
 

  
(1) Airports closer than 6000 miles (2) Airports farther than 6000 miles  

 
Figure B6. Effect of placebo thresholds on collaborations  

Each dot represents an estimate of 𝛽1, the effect of a 1% increase in nonstop flights between two 
airports, assuming there exists a discontinuity at the given distance. Red lines denote 99% 

confidence intervals. Gray dots denote coefficients that are insignificant. Coefficients with absolute 
values greater than 1 are omitted for visualization purposes (all insignificant). 
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Figure B7. Effect of placebo thresholds across the entire support 

Each dot represents an estimate of 𝛽1, the effect of a 1% increase in nonstop flights between two 
airports, assuming there exists a discontinuity at the given distance. Red lines denote 99% 

confidence intervals. Gray dots denote coefficients that are insignificant. Coefficients with absolute 
values greater than 1 are omitted for visualization purposes (all insignificant). 

 
  



 33 

B9. Density of running variable 

 
An important assumption underlying the RDD is that the subjects cannot precisely 

manipulate their scores (Imbens and Lemieux 2008). This may happen, for instance, for birthdays 
and school year cutoffs. In the case of airport pairs, such concerns may arise if airport authorities 
decide locations so that they maximize the number of airports within 6000 miles. While unlikely, if it 
were the case, we would see a bump in an airport’s “potential connections” just below the 6000-mile 
threshold. We do a nonparametric test using airport locations and all possible airport pair 
permutations, and plotting whether there are more potential airport pairs just below the 6000-mile 
line. From the figure below, we see that there is no evidence of bunching near the 6000-mile 
threshold. 

 

 
 

Figure B8. Nonparametric test of bunching near the 6000-mile threshold 
Each point on this plot represents the “potential” number of airport pairs (y-axis) within a specified 

distance (x-axis). The “potential” number of airport pairs is taken from counting all pairwise 
combinations of all airport pairs in our dataset.  
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B10. Cross-assignee results 
 
To better understand our results, we also study whether the effect of nonstop flights is 

greater within or across assignees. An assignee can be either an inventor or, in most cases, a firm to 
which a patent’s ownership is assigned. One would expect that if indeed flight connectivity causes 
more knowledge flows, it should in fact disproportionately facilitate cross-assignee knowledge flows. 
This is because cross-assignee knowledge flows, which usually involve the crossing of geographic 
and/or organizational boundaries, are typically costlier than knowledge flows within firms.  

To explore this possibility, we count the number of cross-assignee and within-assignee 
citations that happen between airports. To count the number of cross-assignee citations, we exclude 
patent-citation pairs that share the same assignee, then aggregate the number of citations to the 
airport-pair level. Similarly, we count only those patent-citation pairs that share the same assignee for 
within-assignee citations. For any airport pair, the sum of the cross-assignee and within-assignee 
citations is equal to the citations number defined above. 

Table below shows the results from estimating the RD specification (equation (1) in the 
main paper) using cross-assignee and within-assignee citations as dependent variables. The 
dependent variable for Columns 1 and 2 is the number of citations across different assignees for a 
given airport pair, while the dependent variable for Columns 3 and 4 is the number of citations 
within the same assignee. The estimates for cross-assignee knowledge spillovers (Columns 1 and 2) 
are similar in magnitude to the estimates of the full count shown in the main results. This is because 
the 95% of the citations in our data are cross-assignee citations. With this caveat, nonstop flights 
have little effect on within-assignee knowledge flows as shown in Columns 3 and 4, where we 
cannot distinguish any statistical significance in the estimates. But this could be because in Columns 
3 and 4 has very little variation to exploit. 

 
Table B5. Regression discontinuity analysis of within-assignee and cross-assignee citations. 

 Cross Assignee Within Assignee 

 (1) (2) (3) (4) 
 Citations Citations Citations Citations 

Bandwidth 500 Optimal 500 Optimal 

Nonstop Flights 
(asinh) 

0.3328*** 0.2670*** 0.0749** 0.0312 

 (0.0937) (0.0689) (0.0351) (0.0218) 
     
(6000 – Distance) 0.0010** 0.0003 0.0005** -0.0001 
 (0.0004) (0.0002) (0.0002) (0.0001) 
     
(6000 – Distance) x 
Under6000 

-0.0011 -0.0002 -0.0009** -0.0001 

 (0.0008) (0.0003) (0.0004) (0.0001) 

Observations 3300 4323 3300 4323 
R2 0.509 0.625 0.243 0.423 

Note: Standard errors in parentheses, clustered at the country-country level. Both dependent variables are 
asinh-transformed. Optimal bandwidth calculation follows the methodology described in Cattaneo et al. 
(2018). * p < 0.10, ** p < 0.05, *** p < 0.01. 
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B11. Effects not driven by one-stop flights 
 

This section further discusses how the existence of nonstop flights (and not other types of 
multi-stop flights) are driving the results. For the subsample of routes for which flight duration and 
prices are available, we test whether the 6000-mile threshold drives flights with layovers, and how 
innovation outcomes correlate with routes with nonstop/one-stop/multiple stops. Again, the 
subsample of routes includes those flights that are longer than 3000-miles apart, and have more than 
1000 flights total in our 2005-2015 time period. 

Figure B9 shows the results from a kernel-weighted local polynomial regression of the 
probability of a route having one or two stop flights, and the length of the route. We see that around 
the 6000-mile mark, there is no discernable difference in the likelihood of having one-stop flights, 
and two-stop flights seem to increase for longer flights. 

 

 
 

Figure B9. Probability of having 1-stop and 2-stop flights across distance 
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We confirm the visual results in regression form in the table below. We see that for all 
bandwidths, the 6000-mile discontinuity does not impact the probability of having a one-stop flight. 
Thus, routes just beneath and just above the 6000-mile threshold we use in the regression 
discontinuity differ only in the existence of nonstop flights, not one-stop flights. While not shown 
here, two-stop flights slightly increase after 6000 miles, but this would go against our findings. 
 
Table B6. First stage using one-stop flights only. 

 (1) (2) (3) (4) (5) 
Dep. Var.: Has One-stop Flight 
Bandwidth (miles) 500 750 1000 1250 Optimal 

Under6000 0.001 -0.027 -0.011 -0.007 -0.012 
 (0.001) (0.027) (0.011) (0.008) (0.012) 
      
6000 – Distance  -0.000 0.000 0.000 0.000 0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
      
(6000 – Distance) x under6000 0.000 -0.000 -0.000 -0.000 -0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
      
Constant 0.989*** 0.987*** 0.991*** 0.992*** 0.991*** 
 (0.001) (0.008) (0.003) (0.002) (0.003) 

Observations 78 122 197 269 184 
R2 0.494 0.340 0.332 0.331 0.332 

Note: This table estimates the first stage, using several bandwidths for the estimation in terms of pair of 
airports at either side of the 6000 miles threshold: 500, 750, 1000, 1250  miles, as well as the optimal 
bandwidth. The optimal bandwidth is computed using the methodology described in Cattaneo et al. (2018) 
who build on the work by Imbens and Kalyanaraman (2012). In addition, the estimation uses a triangular 
weight scheme, giving higher weight to observations closer to the cutoff point. All specifications include 
country-country fixed effects. Standard errors clustered at the country-country level. * p < 0.10, ** p < 0.05, *** 
p < 0.01 
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B12. Poisson regressions, Log+1 transformations and raw counts 
 
Our use of the asinh-transformed variables is motivated by Burbidge, Magee, and Robb (1988), 
MacKinnon and Magee (1990) who show the inverse hyperbolic sine transformation allows 
researchers to preserve observations with zero flights. 
 
We used the Stata package PPMLHDFE to check whether our results hold in a sharp regression 
discontinuity setting. That is, we estimate the following specification 
 

𝑌𝑎𝑜,𝑎𝑑 ,𝑡 = 𝑓(𝛾0 + 𝛾1𝑈𝑛𝑑𝑒𝑟6000𝑎𝑜,𝑎𝑑
+ 𝛾2𝐷𝑖𝑠𝑡6000𝑎𝑜,𝑎𝑑

+ 𝛾3𝑈𝑛𝑑𝑒𝑟6000𝑎𝑜,𝑎𝑑

× 𝐷𝑖𝑠𝑡6000𝑎𝑜,𝑎𝑑
+ 𝑋𝑎𝑜,𝑎𝑑

𝜉) 

 

Our coefficient of interest is 𝛾1, the magnitude of the discontinuity at the 6000-mile mark. The 
estimates are reported below. 

 
Table B7. Regression discontinuity using PQML. 

 Overall Academic Firms 
 (1) (2) (3) (4) (5) (6) 
 Citations Collaborations Citations Collaborations Citations Collaborations 

under6000 1.555*** 0.662*** 1.870*** 1.599*** 1.556*** 0.634*** 
 (0.143) (0.238) (0.243) (0.482) (0.146) (0.243) 
dist6000 -0.004*** -0.002** -0.003*** -0.002** -0.004*** -0.002** 
 (0.000) (0.001) (0.001) (0.001) (0.000) (0.001) 
dist6000 # 
under6000 

0.005*** 0.001 0.004*** 0.001 0.005*** 0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Constant 1.921*** 1.160*** -1.951*** -2.141*** 1.856*** 1.144*** 
 (0.154) (0.247) (0.225) (0.387) (0.158) (0.250) 

Observations 2472 1901 1074 731 2418 1870 

Note: Standard errors in parentheses. Since these are Poisson models, the dependent variables are raw counts of citations 
and collaborations at the airport pair year level. Note that the number of observations for Poisson regressions is smaller 
than for linear regressions because of the separation problem (Correia, Guimaraes, and Zylkin, 2021; Santos Silva and 
Tenreyro, 2006). In short, maximum likelihood solutions of Poisson models may not have a solution when regressors are 
perfectly collinear over the subsample where the dependent variable is nonzero. The solution implemented by 
PPMLHDFE is to drop observations that are separated. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 
Instead of scaling by the number of flights in the first stage, we also scale by the existence of 
nonstop flights. Specifically, our first and second stages are 

𝐻𝑎𝑠𝑁𝑜𝑛𝑠𝑡𝑜𝑝𝑎𝑜,𝑎𝑑,𝑡

= 𝛼01(𝐷𝑖𝑠𝑡6000 > 0) + 𝛼1𝐷𝑖𝑠𝑡6000 + 𝛼21(𝐷𝑖𝑠𝑡6000 > 0) × 𝐷𝑖𝑠𝑡6000 + 𝜖 

𝑌𝑎𝑜,𝑎𝑑 ,𝑡 = 𝛽0 𝐻𝑎𝑠𝑁𝑜𝑛𝑠𝑡𝑜𝑝̂
𝑎𝑜,𝑎𝑑,𝑡 + 𝛽1𝐷𝑖𝑠𝑡6000 + 𝛽21(𝐷𝑖𝑠𝑡6000 > 0) × 𝐷𝑖𝑠𝑡6000 + 𝜖 

The coefficient of interest is 𝛽0, the predicted probability of having a nonstop flight. 𝛽0 thus 
measures how how having any nonstop flight affects citations and collaborations. This is in contrast 
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with our main specification, which measures the impact of increased flights. The table below shows 
the results. 

Table B8. Discrete effect of having nonstop flights on knowledge diffusion. 

 Citations Collaborations 
 (1) (2) (3) (4) 
Bandwidth: 550 Optimal 550 Optimal 

HasNonstop 3.140*** 2.604*** 1.376** 1.556** 
 (1.167) (0.878) (0.584) (0.682) 
dist6000 -0.001** -0.001 -0.000 -0.000 
 (0.001) (0.001) (0.000) (0.000) 
c.dist6000#c.under6000 0.002 0.001 0.000 0.000 
 (0.001) (0.001) (0.001) (0.001) 

N 3795 2332 3795 3146 
Note: Standard errors in parentheses, clustered at the country pair-year level. HasNonstop is equal to 1 if the number of 
total flights at the airport pair-year is greater than zero.  
* p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

 
Table B9. Regression discontinuity using raw counts of citations and collaborations as dependent 
variables. 

 Overall Academic Firms 
 (1) (2) (3) (4) (5) (6) 
 Citations Collaborations Citations Collaborations Citations Collaborations 

Nonstop Flights 
(asinh) 

13.164*** 0.722** 0.218*** 0.058** 12.355*** 0.660** 

 (3.737) (0.293) (0.069) (0.025) (3.495) (0.281) 
dist6000 -0.083*** -0.004** -0.001*** -0.000* -0.078*** -0.004** 
 (0.023) (0.002) (0.000) (0.000) (0.022) (0.002) 
dist6000 # 
under6000 

0.128*** 0.005* 0.002*** 0.000* 0.120*** 0.005* 

 (0.036) (0.003) (0.001) (0.000) (0.033) (0.003) 

Observations 3795 3795 3795 3795 3795 3795 
Note: Standard errors in parentheses. The dependent variables use raw counts of citations and collaborations. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table B10. Regression discontinuity using log+1 transformation. 
 Overall Academic Firms 
 (1) (2) (3) (4) (5) (6) 
 Citations Collaborations Citations Collaborations Citations Collaborations 

Nonstop Flights 
(asinh) 

0.304*** 0.124*** 0.077*** 0.032** 0.296*** 0.121*** 

 (0.088) (0.043) (0.023) (0.012) (0.086) (0.042) 
dist6000 -0.001** -0.000 -0.000** -0.000* -0.001** -0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
dist6000 # 
under6000 

0.001* 0.000 0.000** 0.000* 0.001** 0.000 

 (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) 

Observations 3795 3795 3795 3795 3795 3795 
Note: Standard errors in parentheses. Both dependent variables are transformed using “log + 1”. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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B13. Pooling airports at cities 
 
Table B11. Pooled airport analysis. 
 Overall Academic Firms 
 (1) (2) (3) (4) (5) (6) 
 Citations Collaborations Citations Collaborations Citations Collaborations  

Nonstop Flights 
(asinh) 

0.303*** 0.133*** 0.089*** 0.036*** 0.295*** 0.129*** 

 (0.082) (0.045) (0.025) (0.013) (0.081) (0.043) 
dist6000 -0.001* -0.000 -0.000* -0.000* -0.001* -0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
dist6000 # 
under6000 

0.001 0.000 0.001** 0.000* 0.001 0.000 

 (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) 

Observations 3322 3322 3322 3322 3322 3322 
Note: Standard errors in parentheses, clustered at the country-country-year level. All specifications include country-
country-year fixed effects. Observations are at the city pair-year level. Both dependent variables are asinh-transformed. 
In this table, we pool all airports in a given city. Specifically, we collected a list of cities served by multiple airports11 and 
used it to aggregate from the airport pair to the city pair level. For cities served by multiple airports, we took the sum of 
all citations, collaborations, and flights to create those measures at the city-pair level. For distances between cities, we 
take the average distance between all airports between the cities. We keep all other airport pairs.  

* p < 0.10, ** p < 0.05, *** p < 0.01 
 
 
 
Table B12. Flight effects on knowledge diffusion are greater for flights with at least one U.S. city.  

 Entire Sample At Least One U.S. City 
 (1) (2) (3) (4) 
 Citations Collaborations Citations Collaborations 

Nonstop Flights (asinh) 0.335*** 0.137*** 0.959*** 0.445*** 
 (0.095) (0.050) (0.276) (0.138) 
dist6000 -0.001** -0.000 -0.002** -0.001 
 (0.000) (0.000) (0.001) (0.001) 
dist6000 # under6000 0.001 0.000 0.007*** 0.003** 
 (0.001) (0.001) (0.002) (0.001) 

Observations 3300 3300 858 858 
Note: Bandwidth at 500 miles. Standard errors in parentheses, clustered at the country-pair-year level. All specifications 
include country-pair-year fixed effects. Both dependent variables are asinh-transformed. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 
  

                                                        
11 https://en.wikipedia.org/wiki/List_of_cities_with_more_than_one_commercial_airport 



 41 

Appendix C. Mass Variables 
 

Our paper adopts several measures for innovation “mass”: innovation hubs, leaders versus 
followers, and firm-level data such as R&D spending. This section delves into the mass variables in 
more detail. 

 

C1. List of hubs 

 
Of the 5,015 airports in our dataset, 965 are near innovation hubs. Again, we categorize an 

airport as being near innovation hubs if the airport is within a 50-mile radius of the innovation hubs 
listed in Bikard and Marx (2020). Below, we present the 20 largest hubs and 20 largest non-hubs in 
our dataset, based on the total number of outbound flights from those airports in 2005-2015. 
 
Table C1. List of hubs. 
 

a) Hubs 
 

Airport Code Country 
(ISO Code) 

Airport Name 

ATL US Hartsfield Jackson Atlanta International Airport 

LHR GB London Heathrow Airport 

PEK CN Beijing Capital International Airport 

HND JP Tokyo Haneda International Airport 

ORD US Chicago O'Hare International Airport 

LAX US Los Angeles International Airport 

CDG FR Charles de Gaulle International Airport 

FRA DE Frankfurt am Main Airport 

DFW US Dallas Fort Worth International Airport 

HKG HK Chek Lap Kok International Airport 

DEN US Denver International Airport 

MAD ES Madrid-Barajas Adolfo Suárez Airport 

JFK US John F Kennedy International Airport 

SIN SG Singapore Changi Airport 

AMS NL Amsterdam Airport Schiphol 

PVG CN Shanghai Pudong International Airport 

PHX US Phoenix Sky Harbor International Airport 

CAN CN Guangzhou Baiyun International Airport 

LAS US McCarran International Airport 

 
b) Non-hubs 

Airport Code Country 
(ISO Code) 

Airport Name 
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DXB AE Dubai International Airport 

BKK TH Suvarnabhumi Airport 

CGK ID Soekarno-Hatta International Airport 

IST TR Istanbul Atatürk International Airport 

MNL PH Ninoy Aquino International Airport 

GRU BR São Paolo/Guarulhos - Governador André Franco 
Montoro International Airport 

KMG CN Kunming Changshui International Airport 

BNE AU Brisbane International Airport 

JED SA King Abdulaziz International Airport 

DOH QA Hamad International Airport 

XIY CN Xi'an Xianyang International Airport 

CGH BR Congonhas Airport 

BOG CO El Dorado International Airport 

CTS JP New Chitose Airport 

PMI ES Palma De Mallorca Airport 

SGN VN Tan Son Nhat International Airport 

BSB BR Brasília Presidente Juscelino Kubistschek International 
Airport 

OKA JP Naha Airport 

LIS PT Lisbon Portela Airport 

GIG BR Rio de Janeiro/Galeão‚ Antonio Carlos Jobim 
International Airport 
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C2. Probability of hubs across distances 
 

In this section, we explore the likelihood of two locations connected by nonstop flights both 
being innovation hubs. First, note that the frequency of hub-to-hub connections changes with the 
distance between the two airports. The figure below shows a local polynomial regression of the 
probability of a hub-to-hub connection on distance with 95% confidence intervals. Thus, each point 
on the solid line denotes the fraction of flights that connect two airports in innovation hubs, for a 
given distance. We see that longer flights tend to be between two airports both located in innovation 
hubs. We detail the implications below. 

 

 
 

Figure C1. Probability of hub-to-hub connections 
Local polynomial regression of the probability of a hub-to-hub connection against distance between 

airports.  
 
Since hub-to-hub connections are more likely for airport pairs that are farther apart, we 

cannot distinguish between two mechanisms for the increase in innovation through nonstop flights. 
It is possible, for instance, that there are not enough ideas in non-hub locations, and thus is less 
knowledge spillovers. In contrast, it is also possible that nonstop flights tend to occur when both 
locations are innovation hubs, and we are capturing this effect indirectly.  
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C3. Innovation hubs and distance  
 

In the main text, we see distance and innovation are positively correlated for airport routes 
that are more than 6000 miles apart, which is unexpected. However, a manual inspection of the 
airport pairs that have high innovation and are far apart shows these are likely driven by city pairs 
like Singapore-Newark, Singapore-Los Angeles, New York-Bangkok, Sydney-Dallas, Atlanta-
Bombay, and so forth. These outliers in part drive the positive relationship between distance and 
innovations in our sample.12 This relationship, however, is not present for shorter flights. 

This section tests whether dropping routes with high levels of measured collaborations and 
citations impacts our results on travel duration and innovation. We repeat our analysis after 
dropping the top 10% of routes with most collaborations/citations. We see that increased travel 
duration is negatively correlated with innovation outcomes, especially for long-distance flights. Price, 
on the other hand, is mostly insignificant. 

 
Table C2. Effects of flight duration and flight price on knowledge diffusion (without outliers). 

 (1) (2) (3) (4) 
 Below 6000 Above 6000 
 Citations 

(asinh) 
Collaborations 

(asinh) 
Citations 
(asinh) 

Collaborations 
(asinh) 

Duration 
(asinh) 

-0.298 -0.444** -0.937** -0.684** 

 (0.193) (0.188) (0.408) (0.302) 
     
Price (asinh) -0.210** -0.044 -0.188 0.211 
 (0.089) (0.062) (0.197) (0.181) 
     
Distance 
(asinh) 

0.104 -0.201 2.368*** 1.952*** 

 (0.599) (0.611) (0.866) (0.659) 
     
Constant 2.167 3.886 -15.670** -16.183** 
 (5.233) (5.328) (7.563) (6.744) 

Observations 477 512 317 417 
R2 0.737 0.610 0.807 0.581 

Note: Standard errors in parentheses, clustered at the country pair level. Outliers are defined as airport pairs with citations 
and collaborations above the 90% percentile. Inverse hyperbolic sine transformed variables are denoted with “asinh”. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 
We also plot this relationship using coefficient plots in the figure below.  

                                                        
12 In section C3, we drop outlier routes (top 10%) that have very high levels of innovation. We see that the negative 
relationship between duration and collaboration/citations still hold, while the size of the coefficient on distance 
decreases. Price coefficients are mostly insignificant, but cheaper flights may increase citations in shorter flights. 
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(a) Coefficient plot of Duration and Price on 

Citations 

 
(b) Coefficient plot of Duration and Price on 

Collaborations 
 

Figure C2. Coefficients plots of flight duration and flight price on citations and collaborations 
 

Association between price and duration on citations/collaborations changes with the distance. Each 
point on this graph is the coefficient for either Duration or Price from estimating equation (5) above 

for two subsamples. Subsamples are chosen based on how far apart airports are (i.e., less than or 
greater than 6000 miles apart). Vertical lines indicate 95% confidence intervals. All regressions 
include country-country fixed effects. Standard errors clustered at the country-country level. 
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C4. Hub to hub vs non-hub to hub 

Table C3. Hub analysis further broken down into hub-hub, non-hub-non-hub, and non-hub-hub. 
 

 Citations Collaborations 
 (1) (2) (3) (4) (5) (6) 
 Hub-Hub Non-hub-

Hub | 
Non-hub-
Non-hub 

Non-hub-
Hub 

Hub-Hub Non-hub-
Hub | 

Non-hub-
Non-hub 

Non-hub-
Hub 

Nonstop 
Flights (asinh) 

0.532*** -0.045 -0.062 0.260*** 0.051 0.076 

 (0.180) (0.032) (0.047) (0.092) (0.036) (0.057) 
dist6000 -0.003** -0.000 -0.000 -0.001 -0.000 -0.000 
 (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) 
dist6000 # 
under6000 

0.006** 0.000** 0.000** 0.003* 0.000 0.000 

 (0.003) (0.000) (0.000) (0.002) (0.000) (0.000) 

Observations 1870 1760 1606 1870 1760 1606 

Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Bandwidth at 550 miles. Hub denotes whether an airport is within a 50-mile radius of innovation hubs as 
defined in Bikard and Marx (2020). Both dependent variables are asinh-transformed. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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C5. Leaders and followers 
 
To differentiate between firms in innovation-leading countries (“leaders”) and those in innovation-
following countries (“followers”), we borrow from Furman and Hayes’s 2004 Research Policy paper, 
which contains a list of countries that are categorized as leaders and followers based on their 
historical innovative productivity and advancement. Table 6 from Furman and Hayes (2004) 
contains the list of countries. This categorization sets precedence for measuring leaders versus 
followers and lends confidence to our analysis. 
 
Leading innovating countries include the following: Germany, Japan, Sweden, Switzerland, and the 
United States. Firms and inventors in these countries are categorized as “leaders” in our analysis. 
Further, we categorize firms and inventors in the other countries in Furman & Hayes (2004) (middle 
tier, third tier, and emerging innovators) are categorized as “followers”. Then, we restrict the sample to 
citations and collaborations by firms located in these leader and follower countries and conduct an 
analysis to gauge flights effects on citations and collaborations that occur 1) between leaders and 2) 
between a leader and a follower.  
 

C6. Firm-level variables 
 
In addition to R&D spending, which is used to measure firm-level innovation mass in the paper, we 
also have two additional firm-level measures for innovation mass: firm revenue and number of 
employees. The table below shows the split-sample analysis using these three variables. 
 
Table C4. Firms with greater innovation mass benefit more from nonstop flights. (Collaborations) 

Dep. Var.: 
Collaborations 
(asinh) 

Revenue  Employees  R&D 
Spending 

 

 (1) (2) (3) (4) (5) (6) 
 High Low High Low High Low 

Nonstop 
Flights (asinh) 

0.086*** 0.041 0.068*** 0.053* 0.093*** 0.031 

 (0.028) (0.027) (0.025) (0.028) (0.030) (0.028) 
dist6000 -0.000 -0.000** -0.000 -0.000** -0.000* -0.000** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
dist6000 # 
under6000 

0.000 0.000* -0.000 0.001** 0.000 0.000* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Observations 3795 3795 3795 3795 3795 3795 
Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Bandwidth is 550 miles. Revenue, Employees, and R&D spending obtained from the Duke DISCERN 
database. "High” refers to above median firms in each mass category, while “Low” refers to below median. To generate 
this table, we use the Duke DISCERN dataset to match the assignees in our sample to Compustat firms. We use this 
Compustat matched data to categorize firms into large or small based on their revenue, R&D expenditure, and employee 
counts. Finally, we categorize assignees into large or small based on the number of publications and inventors. We 
present these results later in this response letter. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table C5. Firms with more innovation mass benefit more from nonstop flights. (Citations) 

Dep. Var.: 
Citations 
(asinh) 

Revenue  Employees  R&D 
Spending 

 

 (1) (2) (3) (4) (5) (6) 
 High Low High Low High Low 

Nonstop 
Flights (asinh) 

0.197*** 0.186*** 0.197*** 0.174*** 0.180*** 0.187*** 

 (0.053) (0.056) (0.053) (0.054) (0.052) (0.054) 
dist6000 -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
dist6000 # 
under6000 

0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) 

Observations 3795 3795 3795 3795 3795 3795 
Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Bandwidth is 550 miles. Revenue, Employees, and R&D spending obtained from the Duke DISCERN 
database. "High” refers to above median firms in each mass category, while “Low” refers to below median. To generate 
this table, we use the Duke DISCERN dataset to match the assignees in our sample to Compustat firms. We use this 
Compustat matched data to categorize firms into large or small based on their revenue, R&D expenditure, and employee 
counts. Finally, we categorize assignees into large or small based on the number of publications and inventors.  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Appendix D. Distances 

 

D1. Temporal distance 

 
We test whether our results on temporal distance are robust to varying the threshold for 

temporal distance. Again, our main measure of temporal distance was business hour overlap, 
obtained using the timezonefinder package in Python. We first obtained each airport’s time zones, 
then for each pair of airports we calculate the time zone difference (in hours) between the two. The 
average time zone difference across all routes is -0.011 hours (s.d. = 2.25), with AKL-LAX and 
HNL-MEL having time zones farthest apart. These airport pairs, however large their time zone 
difference is, will still have some working hour overlap, (3 hours, since 9AM in AKL is 2PM in 
LAX). Thus, we convert the time zone difference to “business hour overlap” (0-8 hours), as well as 
“time difference” (0-12 hours). For “time difference,” we take the absolute value of time zone 
difference, and subtract it from 24 if time zone difference is 12+ hours. For “business hour 
overlap,” we subtract “time difference” from 8, but set all negative values to 0. Some routes with 
large “time difference” are between LA and Moscow, which have zero business hour overlap. 
Routes such as Munich and Singapore have 1 business hour overlap, but are 7 hours apart. In the 
paper, we use the median business hour overlap to categorize airport pairs into high or low temporal 
distance routes.  

In this section, we relax this assumption and use alternate cutoffs to bin routes into high or 
low temporal routes. Below, in Tables D1 through D5, we present regression discontinuity results 
from our two subsamples, low temporal distance and high temporal distance, based on the number 
of hours of business overlap. For each alternative threshold, we see that the effects are driven by 
airport pairs with high temporal distance (low business hour overlap).  
 
Table D1. High temporal distance corresponds to >0 hours in business hour overlap. 

 Citations  Collaborations  
 (1) (2) (3) (4) 
Business Hour 
Overlap: 

Low High Low High 

asinh(Flights) 0.277*** 0.828 0.242*** 0.279 
 (0.087) (0.980) (0.082) (0.211) 
dist6000 0.003*** -0.009 -0.000 -0.002 
 (0.001) (0.010) (0.000) (0.001) 
dist6000 # under6000 -0.007*** 0.010 -0.001 0.002 
 (0.002) (0.010) (0.001) (0.001) 

Observations 828 1450 1101 2002 
Note: Standard errors in parentheses, clustered at the Country pair-year level. All specifications include country-pair-year 
fixed effects. Dependent variables are inverse hyperbolic sine transformed.  Optimal bandwidth calculation follows the 
methodology described in Cattaneo et al. (2018). Working hour overlap calculated from airport time zone data. Low 
working hour overlap indicates 0 working hour overlap while high working hour overlap indicates any business hour 
overlap. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 
Table D2. High temporal distance corresponds to >1 hours in business hour overlap. 

 Citations  Collaborations  
 (1) (2) (3) (4) 
Business Hour 
Overlap: 

Low High Low High 
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asinh(Flights) 0.368*** -0.127 0.201*** 0.133 
 (0.077) (0.126) (0.057) (0.214) 
dist6000 0.001 0.003* 0.000 -0.001 
 (0.001) (0.002) (0.000) (0.002) 
dist6000 # under6000 -0.001 -0.003* -0.000 0.001 
 (0.002) (0.002) (0.001) (0.002) 

Observations 1342 990 1859 1287 
Note: Standard errors in parentheses, clustered at the Country pair-year level. All specifications include country-pair-year 
fixed effects. Dependent variables are inverse hyperbolic sine transformed.  Optimal bandwidth calculation follows the 
methodology described in Cattaneo et al. (2018). Working hour overlap calculated from airport time zone data. Low 
working hour overlap indicates 0-1 hours of overlap while High working hour overlap indicates greater than 1 hour of 
business hour overlap. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 
Table D3. High temporal distance corresponds to >2 hours in business hour overlap. 

 Citations Collaborations 
 (1) (2) (3) (4) 
Business Hour 
Overlap: 

Low High Low High 

asinh(Flights) 0.392*** -0.096 0.220*** 0.080 
 (0.083) (0.075) (0.066) (0.096) 
dist6000 0.001 0.003** 0.000 -0.001 
 (0.001) (0.001) (0.000) (0.001) 
dist6000 # under6000 -0.001 -0.003** -0.000 0.001 
 (0.002) (0.001) (0.001) (0.001) 

Observations 1595 737 2222 923 
Note: Standard errors in parentheses, clustered at the Country pair-year level. All specifications include country-pair-year 
fixed effects. Dependent variables are inverse hyperbolic sine transformed.  Optimal bandwidth calculation follows the 
methodology described in Cattaneo et al. (2018). Working hour overlap calculated from airport time zone data. Low 
working hour overlap indicates 0-2 hours of overlap while High working hour overlap indicates greater than 2 hours of 
business hour overlap. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 
Table D4. High temporal distance corresponds to >3 hours in business hour overlap. 

 Citations Collaborations 
 (1) (2) (3) (4) 
Business Hour 
Overlap: 

Low High Low High 

asinh(Flights) 0.299*** 0.481 0.159*** -0.111 
 (0.060) (1.185) (0.045) (0.121) 
dist6000 0.001 -0.005 0.000 0.002 
 (0.001) (0.017) (0.000) (0.002) 
dist6000 # under6000 -0.001 0.006 -0.000 -0.002 
 (0.001) (0.020) (0.001) (0.002) 

Observations 1712 620 2367 768 
Note: Standard errors in parentheses, clustered at the Country pair-year level. All specifications include 
country-pair-year fixed effects. Dependent variables are inverse hyperbolic sine transformed.  Optimal 
bandwidth calculation follows the methodology described in Cattaneo et al. (2018). Working hour overlap 
calculated from airport time zone data. Low working hour overlap indicates 0-3 hours of overlap while High 
working hour overlap indicates greater than 3 hours of business hour overlap. * p < 0.10, ** p < 0.05, *** p < 
0.01. 
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Table D5. High temporal distance corresponds to >4 hours in business hour overlap. 

 Citations Collaborations 
 (1) (2) (3) (4) 
Business Hour 
Overlap: 

Low High Low High 

asinh(Flights) 0.292*** 0.276 0.150*** -0.130 
 (0.060) (0.457) (0.044) (0.138) 
dist6000 0.001 -0.004 -0.000 0.002 
 (0.001) (0.006) (0.000) (0.002) 
dist6000 # under6000 -0.001 0.004 -0.000 -0.002 
 (0.001) (0.007) (0.001) (0.002) 

Observations 1848 484 2576 561 
Note: Standard errors in parentheses, clustered at the Country pair-year level. All specifications include country-pair-year 
fixed effects. Dependent variables are asinh-transformed.  Optimal bandwidth calculation follows the methodology 
described in Cattaneo et al. (2018). Working hour overlap calculated from airport time zone data. Low working hour 
overlap indicates 0-4 hours of overlap while High working hour overlap indicates greater than 4 hours of business hour 
overlap. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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D2. North-South analysis 
 
Table D6. Flight effects on knowledge diffusion are greater for shorter North-South distances. 

 Citations Collaborations 
 (1) (2) (3) (4) 
 Above median 

North-South 
distance 

Below median 
North-South 

distance 

Above median 
North-South 

distance 

Below median 
North-South 

distance 

Nonstop Flights 
(asinh) 

-0.078 0.599*** 0.089 0.208*** 

 (0.079) (0.138) (0.094) (0.063) 
dist6000 0.001** -0.001 -0.001 0.000 
 (0.001) (0.001) (0.001) (0.000) 
dist6000 # under6000 -0.001* 0.001 0.001 0.000 
 (0.001) (0.001) (0.001) (0.001) 

Observations 1430 1815 1430 1815 
R2 0.339 0.028 0.099 0.413 

Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Bandwidth at 500 miles. Both dependent variables are asinh-transformed. In this table, we study the 
differences between North-South routes (e.g., London - Johannesburg) and East-West routes (e.g., Los Angeles - 
Singapore) that cross many more time zones. To do this analysis, we calculate the difference in longitudes between 
airport pairs and run subsample analyses on above and below median longitudinal distance pairs. Some examples of 
routes that are slightly above the median North-South distance is London Gatwick-Hong Kong, or Nagoya-Charles 
DeGaulle. Routes that are slightly below the median are London Heathrow-Capetown, or Saigon-Frankfurt. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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D3. Nonlinear effects 
 
Table D7. Nonlinear effects of temporal distance.  
 Citations Collaborations 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 Bottom 

25% 
25-50 50-75 Top 

25% 
Bottom 25% 25-50 50-75 Top 

25% 

Nonstop 
Flights 
(asinh) 

0.333 0.018 0.683*** 0.420*** -0.176 -0.000 0.217** 0.215*** 

 (0.503) (0.026) (0.239) (0.127) (0.248) (0.006) (0.095) (0.064) 
dist6000 -0.003 -0.000 -0.004* 0.000 0.002 -0.000** -0.001 -0.000 
 (0.006) (0.000) (0.002) (0.001) (0.003) (0.000) (0.001) (0.000) 
dist6000 # 
under6000 

0.004 0.001** 0.006** -0.001 -0.003 0.000 0.003** -0.000 

 (0.008) (0.000) (0.003) (0.001) (0.004) (0.000) (0.001) (0.001) 

Observations 892 585 847 1398 892 585 847 1398 
Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Bandwidth at 550 miles. Both dependent variables are asinh-transformed. Time zone distance measures the 
difference in time zones between airport pairs with a maximum of 12 hours and a minimum of 0 hours. In this table, we 
split airport pairs into quartiles based on the temporal distance. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 
Table D8. Nonlinear effects of cultural distance. 
 Citations Collaborations 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 Bottom 

25% 
25-50 50-75 Top 

25% 
Bottom 

25% 
25-50 50-75 Top 

25% 

Nonstop 
Flights (asinh) 

0.246 -0.039 -0.273 1.169** 0.004 -0.126 -0.169 0.416* 

 (0.292) (0.157) (0.211) (0.553) (0.039) (0.130) (0.111) (0.211) 
dist6000 0.000 0.001 0.002 -0.004* -0.000** 0.001 0.001** -0.000 
 (0.001) (0.001) (0.001) (0.002) (0.000) (0.001) (0.001) (0.001) 
dist6000 # 
under6000 

-0.001 -0.002 -0.002 0.011** 0.000 -0.001 -0.002** 0.002 

 (0.002) (0.001) (0.002) (0.005) (0.000) (0.001) (0.001) (0.002) 

Observations 494 511 467 526 494 511 467 526 
Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Bandwidth at 550 miles. Both dependent variables are asinh-transformed. Cultural distance measures are 
derived from Berry et. al., (2020). 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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D4. Immigrant Employees 
 
Table D9. Flight effects on knowledge diffusion are greater for firms with more immigrant 
employees. 

 Citations Collaborations 
 (1) (2) (3) (4) 
 High Low High Low 

Nonstop Flights 
(asinh) 

0.208*** 0.073*** 0.111*** -0.000 

 (0.059) (0.027) (0.034) (0.014) 
dist6000 -0.001*** -0.001*** -0.000*** -0.000** 
 (0.000) (0.000) (0.000) (0.000) 
dist6000 # under6000 0.002*** 0.001*** 0.001** 0.000 
 (0.001) (0.000) (0.000) (0.000) 

Observations 3795 3795 3795 3795 
Note: Standard errors in parentheses, clustered at the country-pair-year level. All specifications include country-pair-year 
fixed effects. Both dependent variables are asinh-transformed. This table matches each firm to the number of labor 
condition applications (LCAs) they have submitted between the years 2008-2021. The number of LCAs approximates a 
firm’s dependence on immigrants as a central part of their workforce. In the context of innovative firms, this likely 
means a higher number of immigrant inventors and business people. Depending on the number of LCAs, we categorize 
them into “High” LCA dependent firms and “Low” LCA dependent firms. Roughly one third of the sample are 
matched to the LCA dataset. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Appendix E. Subgroup Analysis 
 
In our broader research paper, there are two types of heterogeneity we try to uncover. The first is 
heterogeneity across different subsamples. For instance, testing whether the effect of nonstop flights 
is greater for airport pairs that are temporally distant. This would involve estimating regression 
discontinuities for two different subsamples: airport pairs with high temporal distance and another 
for low temporal distance and properly comparing the point estimates. A second type of 
heterogeneity we consider is heterogeneity across different outcome variables. For instance, to test 
whether the effect of flights is greater for firms, we estimate two regression discontinuities, both 
using the entire sample of airport pairs, but with different outcome variables: one outcome for firms 
and another for academics. We detail how to test for these two types of heterogeneity below. 
 
Subgroup analysis of treatment effects in the RDD setting can be performed by modelling the 
effects of flights for each subsample. Specifically, we follow Wasserman (2021) and estimate the 
following regression specification using 2SLS: 
 

𝑌𝑎𝑜,𝑎𝑑,𝑡 = 𝛼0 + 𝛼1 𝑛𝑜𝑛𝑠𝑡𝑜𝑝𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑,𝑡
̂ + 𝛼2(𝐷𝑎𝑜,𝑎𝑑

× 𝑛𝑜𝑛𝑠𝑡𝑜𝑝𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎𝑜,𝑎𝑑,𝑡
̂ ) + 𝛼3𝐷𝑎𝑜,𝑎𝑑

+ 𝛼4𝑑𝑖𝑠𝑡6000𝑎𝑜,𝑎𝑑
+ 𝛼5𝑈𝑛𝑑𝑒𝑟6000𝑎𝑜,𝑎𝑑

× 𝑑𝑖𝑠𝑡6000𝑎𝑜,𝑎𝑑
+ 𝛼6𝐷𝑎𝑜,𝑎𝑑

× 𝑑𝑖𝑠𝑡6000𝑎𝑜,𝑎𝑑
+ 𝛼7𝐷𝑎𝑜,𝑎𝑑

× 𝑈𝑛𝑑𝑒𝑟6000𝑎𝑜,𝑎𝑑
× 𝑑𝑖𝑠𝑡6000𝑎𝑜,𝑎𝑑

+ 휀𝑎𝑜,𝑎𝑑,𝑡 

 

Here, 𝐷𝑎𝑜,𝑎𝑑
= 1 if the airport pair 𝑎𝑜 , 𝑎𝑑 are in the subsample of interest (e.g., airport pairs with 

above median temporal distance). All other variables are identical to our baseline specification. Our 

main variable of interest is then 𝛼2, which denotes the differential effect of nonstop flights for 

group 𝐷𝑎𝑜,𝑎𝑑
= 1. We use 2SLS, using 𝑈𝑛𝑑𝑒𝑟6000 to instrument for 𝑛𝑜𝑛𝑠𝑡𝑜𝑝𝐹𝑙𝑖𝑔ℎ𝑡𝑠, and 𝐷 ×

𝑈𝑛𝑑𝑒𝑟6000 to instrument for 𝐷 × 𝑛𝑜𝑛𝑠𝑡𝑜𝑝𝐹𝑙𝑖𝑔ℎ𝑡𝑠. As Wasserman (2021) and Hsu and Shen 
(2019) note, these estimates may lead to over-rejection. Thus, we use bootstrap resampling to 
estimate the variability of the estimates. We iteratively sample subsamples of our data with 
replacement, and run separate fuzzy RDD regressions for each subgroup to get instrumental variable 
estimates and standard errors of the group-specific effects.  
 
The second test for heterogeneous effects involves comparing RD estimates for two different 
outcome variables. Here, we follow Mize et. al., (2019) in using Seemingly Unrelated Estimates 
(SUEST), as well as block bootstrapped estimates of the difference.  
 
To test whether the effect of flights is different for academics vs firms, we follow Mize et. al., (2019) 
in using seemingly unrelated estimation (SUEST) to compare effect sizes. We compare the effects of 
the treatment on two separate outcomes by first, fitting a first-stage model to obtain “predicted” 
exposures for each unit. Then, we estimate separate second stage models for the two outcomes, 
while computing a cross-model covariance using the SUEST method. Testing cross-model 
difference can then be done using a Wald-like test or, alternatively, using a bootstrap method to 
simulate the distribution of the difference.  
 
In practice, to test whether the effect of nonstop flights is different for firms and academics, we 
“stack” the data and fit the models simultaneously as in Mize et. al., (2019). Stacking allows us to 
estimate the covariance between the two estimates and adjust our test statistic. As the name stacking 
suggests, if the length of our original dataset is N, the stacked dataset is exactly 2N rows long. For 
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columns, we create a stacked outcome variable, Y, of which the first N observations are the citation 
counts to academic patents, and the last N observations are the citation counts to firm patents. In 
addition to Y, we have a group of columns for observations regarding academic patents, and another 
group of columns for firm patents. For the academic columns, the first N rows replicate the original 
dataset variables asinh(Nonstop Flights), Dist6000, Under6000, and Dist6000*Under6000, while the 
last N rows are zeroes. For firm columns, the last N rows replicate the original dataset variables 
asinh(Nonstop Flights), Dist6000, Under6000, and Dist6000*Under6000, while the first N rows are 
zeroes. Thus, a roughly diagonal dataset is created as below: 
 

[
 
 
 
 
 
 

𝑌 𝐷𝑖𝑠𝑡6000𝑎 𝑈𝑛𝑑𝑒𝑟6000𝑎 𝐷𝑖𝑠𝑡6000𝑓 𝑈𝑛𝑑𝑒𝑟6000𝑓 𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐

𝐶𝑖𝑡𝑒𝐴𝑐𝑎𝑑1 948.3 1 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐶𝑖𝑡𝑒𝐴𝑐𝑎𝑑𝑁 10139.4 0 0 0 1
𝐶𝑖𝑡𝑒𝐹𝑖𝑟𝑚1 0 0 948.3 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐶𝑖𝑡𝑒𝐹𝑖𝑟𝑚𝑁 0 0 10139.4 0 0 ]

 
 
 
 
 
 

 

 
Using the data structure as above, we estimate the following equation: 
 

𝑌 = 𝛼0 𝑛𝑜𝑛𝑠𝑡𝑜𝑝𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑎
̂ + 𝛼1𝐷𝑖𝑠𝑡6000𝑎 + 𝛼2𝐷𝑖𝑠𝑡6000𝑎 × 𝑈𝑛𝑑𝑒𝑟6000𝑎

+ 𝛽0𝑛𝑜𝑛𝑠𝑡𝑜𝑝𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑓̂  + 𝛽1𝐷𝑖𝑠𝑡6000𝑓 + 𝛽2𝐷𝑖𝑠𝑡6000𝑓 × 𝑈𝑛𝑑𝑒𝑟6000𝑓

+ 𝛾𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 + 𝑋𝑎
𝐹𝐸 + 𝑋𝑓

𝐹𝐸 

 

Here, the coefficients 𝛼0 and 𝛽0 will recover the estimates from separately running RDD for 
academic and firm citations. Note, we include country-pair year fixed effects for academic as well as 

firms. Finally, SUEST involves running a Wald test for 𝛼0 = 𝛽0.We present the results below. 
 
The SUEST results show that nonstop flights are more beneficial for firms than for academics: for 
academic assignees’ patents, a 10% increase in nonstop flights leads to a 0.99% increase in citations, 

but for firm patents, citations increase by 3.38%. The difference of 2.39 percentage points has 𝑧 =
2.5813 with a 𝑝-value of 0.010, thus we reject the null hypothesis that the effect of flights on 
academic and firm citations are equal. Below, we compare the SUEST results with our bootstrapping 
results. 
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Above, on the left-hand side, we show the distribution of 1,000 bootstrapped estimates of the two 
effects. The right-hand side shows the distribution of the estimates of the difference in effects. The 
mean of the difference is 0.235, with a 95% confidence interval of [-0.384, -0.123]. We see that the 
bootstrap differences are indeed similar to the SUEST results, but with tighter confidence intervals 
for the bootstrapped results.  
 
We repeat the analysis above for collaborations and similarly find that the effect of nonstop flights is 
greater for firms than for academics. For academic assignees’ patents, a 10% increase in nonstop 
flights leads to a 0.404% increase in collaborations, while for firms the effect is 1.48%. The mean of 

the difference is 0.107, with 𝑧 = 2.035, and a p-value of 0.042. We thus reject the null hypothesis 
that the effect of flights on academic and firm collaborations are equal. Again, we compare our 
SUEST results with our bootstrap results. 
 

  
 
The left-hand side panel shows the distribution of 1,000 bootstrapped estimates of the two effects, 
while the right hand side panel plots the distribution of their differences. The mean of the difference 
is 0.1003, with a 95% confidence interval of [-0.184, -0.034]. Again, we see that the mean difference 
is very similar, with narrower confidence intervals. 

 

 

Appendix F. Airport level analysis and General Equilibrium concerns 
 
This section provides additional details about estimating the impact of nonstop flights at the airport 
level, as well as ways to alleviate general equilibrium concerns. 
 
F1. Instrumental variable approach 
 
First, we implemented an instrumental variable-based identification strategy proposed by Campante 
and Yanagizawa-Drott (2015) to extend the results from the airport-pair level to the airport level. 
While the RD shows that at the airport pair level, pairs slightly below 6000 miles apart have 
increased knowledge flows, whether this carries over to the airport level is unclear. This effect may 
be a redirection of knowledge flows from other airport pairs to the focal airport pair. Analyzing how 

0
1
0

2
0

3
0

D
e
n

s
it
y

0 .2 .4 .6
Estimate

Academic Firm

Bootstrapped RD Estimates of Flights on Collaborations



 58 

nonstop flights affect collaborations and citations at a single airport mitigates concerns of 
redirection as it would be the net effect. 

Our approach is to use an instrument to create exogenous variation on the number of nonstop 
flights linked to an airport. A corollary to our identification strategy (ultra-long-haul flights are more 
expensive to operate) is that airports with many other “potential” airports slightly less than 6000 
miles apart will be more “connected” in terms of number of flights. The identification assumption is 
that there is no reason for airports that happen to have relatively many airports sitting just under 
6,000 miles away should be systematically different from airports that happen to have many just 
above that threshold. This statement is conditional on the total number of airports around 6,000 
miles not explaining changes in innovation outcomes other than through the number of flights 
themselves. Thus, we weight the instrument with the information related to the potential of each 
connection; specifically, we proxy each airport’s potential using its eigenvector centrality at the 
beginning of our sample (2005).  We estimate the following equation for our first stage. 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖𝑡 = 𝛽0 + 𝛽1𝑆ℎ𝑎𝑟𝑒𝐵𝑒𝑙𝑜𝑤6𝐾𝑖 + 𝑋𝑖 + 휀𝑖 

Here, 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖 measures the number of airports with which airport 𝑖 has a nonstop 

flight in year 𝑡. 𝑆ℎ𝑎𝑟𝑒𝐵𝑒𝑙𝑜𝑤6𝐾𝑖 counts the total number of airports (connected or unconnected) 
slightly below 6000 miles and divides this by the total number of airports (again, connected or 

unconnected) around 6000 miles. A positive 𝛽1 is evidence that the share of airports slightly below 
6000 miles can predict the number of airports to which nonstop flights exist. We present results of 
estimating this equation below. 
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Table F1. First stage results in the instrumental variable analysis to gauge the flight effects on 
knowledge diffusion at the airport level.  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 Connected 

airports, 2005 

Connected 

airports, 2010 

Connected 

airports, 2015 

Connected 

airports, 2015 

Network 

Centrality, 
2005 

Network 

Centrality, 
2010 

Network 

Centrality, 
2015 

Network 

Centrality, 
2015 

Total # of 

Connected 
Airports 

(2005-2015) 

sharebelow6k 
(unweighted) 

26.743** 29.610** 33.558** 37.026***     26.743** 

 (12.680) (14.525) (16.393) (11.528)     (12.680) 
airportsnear6k 

(unweighted) 

-0.007 -0.003 -0.001 0.003     -0.007 

 (0.008) (0.009) (0.010) (0.005)     (0.008) 

dist_equator    -0.002    -0.000***  
    (0.002)    (0.000)  

gmt_timediff    -3.099***    -0.001***  
    (0.705)    (0.000)  

sharebelow6k     0.008*** 0.008*** 0.008*** 0.011***  
     (0.002) (0.002) (0.002) (0.003)  

airportsnear6k     0.000 0.000 0.000 0.000  
     (0.000) (0.000) (0.000) (0.000)  

Constant 2.411 0.263 -1.489 14.700* -0.000 -0.000 -0.000 0.008*** 2.411 
 (10.890) (12.143) (13.890) (8.707) (0.001) (0.001) (0.001) (0.002) (10.890) 

Observations 4956 4956 4956 4956 4956 4956 4956 4956 4956 

Note: Standard errors in parentheses, clustered at the country level. All specifications include region fixed effects. 
Sharebelow6k (unweighted) measures the fraction of airports within [5500,6000] miles over the number of airports 
within [5500,6500] miles. Sharebelow6k weights this measure by that airport’s network centrality in 2005.  
* p < 0.10, ** p < 0.05, *** p < 0.01 

Our first stage results show that the unweighted instrument 𝑆ℎ𝑎𝑟𝑒𝐵𝑒𝑙𝑜𝑤6𝐾 is a good predictor of 
the number of connected airports in 2005, 2010, and 2015. We include geographic controls such as 
the distance to the equator and the time difference from GMT in Columns 4, 8 and 9. as well as the 
eigenvector centrality between 2005-2015. A one standard deviation increase in the unweighted 
share of airports below 6000 miles (0.084) increases the number of connected airports in 2015 by 
about 3.11. Similarly, a one standard deviation increase in the weighted share of airports below 6000 
miles (0.144) increases network centrality by 0.002.  

Next, we turn to estimating the impact of flights on publications and citations at the airport level. 

We estimate the following equation. 

𝑃𝑎𝑡𝑒𝑛𝑡𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = 𝛽0 + 𝛽1 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖
̂ + 𝑋𝑖 + 휀𝑖 

Where 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐴𝑖𝑟𝑝𝑜𝑟𝑡𝑠𝑖
̂  is the predicted value of airports connected to 𝑖 via nonstop flights 

from our first stage specification. The coefficient of interest 𝛽1thus measures the impact of an 
additional airport connection, or increased connectivity, on the number of publications at a given 
airport at a given year. 
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Table F2. Nonstop flights and connectivity increase the number of collaborations and citations at 
the airport level. 

 Citations Publications 
 (1) (2) (3) (4) (5) (6) 
 Total 

(2000-
2015) 

2004 2014 Total (2000-
2015) 

2004 2014 

Connected 
Airports, 2015 

0.126*** 0.099** 0.062*** 0.105*** 0.071** 0.057*** 

 (0.046) (0.040) (0.020) (0.036) (0.028) (0.019) 
Total 
airportsnear6k 

0.160 0.113 0.060 0.114 0.064 0.057 

 (0.109) (0.093) (0.046) (0.085) (0.063) (0.042) 
Distance from 
Equator 

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

 (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 
Time zone 
difference 
from GMT 

-0.282 -0.196 -0.061 -0.198 -0.107 -0.072 

 (0.363) (0.307) (0.171) (0.282) (0.204) (0.152) 

Observations 4956 4956 4956 4956 4956 4956 
Note: Standard errors in parentheses, clustered at the country level. All specifications include region fixed effects. Both 
dependent variables are asinh-transformed. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 
Column 1 shows that an additional connected airport in 2015 leads to a 12.6% increase in the total 
number of citations to patents near that airport. Columns 2 and 3 show that this effect is positive for 
2004 and 2014, but decreasing, possibly because of insufficient time for citations to be realized. 
Similarly, Column 4 shows that an additional connected airport in 2015 increases the number of 
publications at that airport by about 10.5%, and that this effect is positive for 2004 and 2014. 
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Table F3. Instrumental variable analysis to gauge flight effects at the airport level, firms versus 
academic institutions.  

 Firms Academic Institutions 
 (1) (2) (3) (4) 
 Citations Publications Citations Publications  

conn2015 0.124*** 0.105*** 0.085*** 0.061*** 
 (0.046) (0.036) (0.027) (0.019) 
airportsnear6k 0.163 0.115 0.047 0.043 
 (0.109) (0.084) (0.065) (0.048) 
dist_equator -0.000 -0.000 -0.000 -0.000 
 (0.001) (0.000) (0.000) (0.000) 
gmt_timediff -0.287 -0.197 -0.121 -0.091 
 (0.362) (0.281) (0.217) (0.153) 

Observations 4956 4956 4956 4956 
Note: Standard errors in parentheses, clustered at the country level. All specifications include region fixed effects. All 
dependent variables are asinh-transformed. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

An additional connected airport has positive effect on citations and publications. Furthermore, 
Columns 1-2 in the table above suggest that the effect is greater for patents by firms than for patents 
by academics. Note that we have instrumented for the number of connected airports in 2015 to 
more easily interpret the coefficient sizes. The same results hold when using eigenvector centrality 
instead of the number of connected airports.  

Overall, results from section F1 suggest that flight connections between pairs are not changing the 

composition of citations / collaborations, but are increasing the pie overall. 
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F2. Forging new collaborations or strengthening existing collaborations? 

Our main empirical strategy has no pre-post testing. Therefore, it is difficult to test whether there is 
a “change” in the composition of teams. Instead, we use an instrumental variable approach at the 
airport level to test whether additional flights affect the extensive margin (as measured by the 
number of collaborators) or the intensive margin (as measured by the duration of collaborations).  

The main idea is that if flights have an effect on the extensive margin, we should see flights increase 
the breadth of collaborators, while the intensive margin would lead to increased duration of 
collaborations. First, we test whether more nonstop flights lead to more unique collaborators and/or 
longer collaborations between collaborators. 

For each inventor in our sample, we find the unique number of collaborators. Then, for each 
inventor-collaborator pair, we find the collaboration duration (time difference in years between first 
and last collaboration). Then, for each airport in our sample, we take the average and maximum of 
1) the number of collaborators, and 2) the average collaboration duration for each inventor. Thus, 
for each airport, we obtain 1) the average number of collaborators, 2) the average duration of 
collaborations, 3) the maximum number of collaborators, and 4) the maximum duration of 
collaborations across all inventors within a 50-mile radius of the airport. 

We consider inverse hyperbolic sine transformed outcomes in the table below.  

Table F4. Intensive versus extensive margins: mean and maximum number of collaborations and 
collaboration duration.  

 (1) (2) (3) (4) 
 Mean # 

Collaborators 
Mean Collab. 

Duration 
Max # 

Collaborators 
Max Collab. 

Duration 

conn2015 0.018*** 0.014** 0.089*** 0.062*** 
 (0.007) (0.006) (0.026) (0.020) 
airportsnear6k 0.032* 0.013 0.104 0.064 
 (0.018) (0.016) (0.069) (0.050) 
dist_equator -0.000 -0.000 -0.000 -0.000 
 (0.000) (0.000) (0.000) (0.000) 
gmt_timediff -0.053 -0.032 -0.135 -0.109 
 (0.054) (0.047) (0.207) (0.145) 

Observations 4956 4956 4956 4956 
Note: Standard errors in parentheses, clustered at the country level. All specifications include region fixed effects. 
Conn2015 measures the number of airports to which airport I is connected to in 2015. Airportsnear6k counts the total 
number of airports within 6000 miles of airport i. dist_equator measures the distance from airport I to the equator. 
Gmt_timediff measures the difference between airport I’s time zone and GMT. Mean # collaborators measures the 
mean number of collaborators for all inventors within 50 miles of airport i. All dependent variables are asinh-
transformed. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 

Columns 1 and 2 show the average number of collaborators and collaboration duration, while 
Columns 3 and 4 show the maximum number of collaborations and durations. We see that nonstop 
flights increase innovation in both the extensive and intensive margins, facilitating both meeting new 



 63 

collaborators as well as intensifying existing ones. Qualitatively, the coefficient magnitudes point to 
the extensive margin being larger, suggesting flights allow inventors to meet more new inventors, 
but the coefficients are not statistically significant from each other. Interestingly, the coefficient sizes 
are larger for Columns 3 and 4, suggesting that the effect of nonstop flights is greater for more 
productive inventors. 

We also use the raw number of collaborations and duration without transforming in the table below.  

Table F5. Intensive and extensive margins: mean and maximum number of collaborations / 
collaboration duration (raw value, not asinh-transformed).  

 (1) (2) (3) (4) 
 Mean # 

Collaborators 
Mean Collab. 

Duration 
Max # 

Collaborators 
Max Collab. 

Duration 

conn2015 0.027** 0.014 5.435** 0.487*** 
 (0.010) (0.009) (2.374) (0.167) 
airportsnear6k 0.041 0.011 11.444* 0.378 
 (0.027) (0.022) (6.332) (0.403) 
dist_equator -0.000 -0.000 -0.020 -0.001 
 (0.000) (0.000) (0.028) (0.002) 
gmt_timediff -0.072 -0.048 -2.481 -0.829 
 (0.081) (0.066) (16.300) (1.254) 

Observations 4956 4956 4956 4956 
Note: Standard errors in parentheses, clustered at the country level. All specification include region fixed effects. 
Conn2015 measures the number of airports to which airport I is connected to in 2015. Airportsnear6k counts the total 
number of airports within 6000 miles of airport i. dist_equator measures the distance from airport I to the equator. 
Gmt_timediff measures the difference between airport I’s time zone and GMT. Mean # collaborators measures the 
mean number of collaborators for all inventors within 50 miles of airport i.  
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Appendix G. Pecuniary Cost and Travel Time 
 

Table G1. Duration matters more for airports further apart. 

 Under 6000 Over 6000 
 (1) (2) (3) (4) 
 Collaborations  Citations  Collaborations  Citations  

Duration (asinh) -0.580** -0.498* -1.048** -1.238*** 
 (0.278) (0.291) (0.404) (0.390) 
     
Price (asinh) -0.291 -0.436* 0.142 0.044 
 (0.245) (0.242) (0.240) (0.244) 
     
Distance (asinh) -0.792 -1.835 3.128*** 4.793*** 
 (1.046) (1.715) (0.742) (0.819) 
     
Constant 11.864 22.099 -24.567*** -37.367*** 
 (10.302) (16.049) (6.920) (7.566) 

Observations 651 651 572 572 
R2 0.592 0.700 0.637 0.831 

Note: This table tests the two potential mechanisms (flight duration and flight price) for location pairs with 
longer versus shorter flight paths. Standard errors are in parentheses, clustered at the country-country level. 
Both dependent variables are asinh-transformed. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table G2. Duration matters more for international flights. 

 Domestic Flight  International Flight 
 (1) (2) (3) (4) 
 Collaborations  Citations  Collaborations  Citations  

Duration (asinh) -0.052 0.067 -0.899*** -0.870*** 
 (0.385) (0.188) (0.249) (0.244) 
     
Price (asinh) -0.704 -0.747 -0.159 -0.243** 
 (1.261) (1.003) (0.116) (0.113) 
     
Distance (asinh) -1.264 -2.646* 1.476*** 2.743*** 
 (0.662) (1.171) (0.508) (0.591) 
     
Constant 18.272 31.045 -7.745 -17.737*** 
 (13.557) (16.646) (4.824) (5.685) 

Observations 219 219 1028 1028 
R2 0.283 0.424 0.684 0.854 

Note: This table tests two potential mechanisms (flight duration and flight price) for location pairs with 
domestic versus international flights. Standard errors are in parentheses, clustered at the country pair level. All 
specifications include country pair fixed effects. Both dependent variables are asinh-transformed. * p < 0.1, ** 
p < 0.05, *** p < 0.01. 
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