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Abstract

Researchers are increasingly turning to machine learning (ML) algorithms
to investigate causal heterogeneity in randomized experiments. Despite their
promise, ML algorithms may fail to accurately ascertain heterogeneous treat-
ment effects under practical settings with many covariates and small sample
size. In addition, the quantification of estimation uncertainty remains a chal-
lenge. We develop a general approach to statistical inference for heterogeneous
treatment effects discovered by a generic ML algorithm. We apply the Ney-
man’s repeated sampling framework to a common setting, in which researchers
use an ML algorithm to estimate the conditional average treatment effect and
then divide the sample into several groups based on the magnitude of the es-
timated effects. We show how to estimate the average treatment effect within
each of these groups, and construct a valid confidence interval. In addition,
we develop nonparametric tests of treatment effect homogeneity across groups,
and rank-consistency of within-group average treatment effects. The validity
of our methodology does not rely on the properties of ML algorithms because
it is solely based on the randomization of treatment assignment and random
sampling of units. Finally, we generalize our methodology to the cross-fitting
procedure by accounting for the additional uncertainty induced by the random
splitting of data.
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1 Introduction

A growing number of researchers are turning to machine learning (ML) algorithms to

uncover causal heterogeneity in randomized experiments. ML algorithms are appeal-

ing because in many applications the structure of heterogeneous treatment effects is

unknown. Despite their promise, however, relatively little theoretical properties have

been established for many of these algorithms. In addition, the choice of tuning pa-

rameter values remains to be often difficult and consequential in practice. As a result,

ML algorithms may fail to ascertain heterogeneous treatment effects under common

settings with many covariates and small sample size. Furthermore, one major chal-

lenge is the quantification of statistical uncertainty when estimating heterogeneous

treatment effects using ML algorithms.

In this paper, we develop a general approach to statistical inference for heteroge-

neous treatment effects estimated through the application of a generic ML algorithm

to experimental data. We apply the Neyman (1923)’s repeated sampling framework

to a common setting, in which researchers use ML algorithms to estimate the con-

ditional average treatment effect (CATE) given pre-treatment covariates and then

divide the sample into several groups based on the magnitude of these estimated ef-

fects. We show how to obtain a consistent estimate of the average treatment effect

within each of these groups — the sorted group average treatment effect (GATE) —

and construct an asymptotically valid confidence interval.

We also propose two nonparametric tests of treatment effect heterogeneity that are

of interest to applied researchers. First, we test whether there exists any treatment

effect heterogeneity across groups. Second, we develop a statistical test of the rank-

consistency of GATEs. If an ML algorithm produces a reasonable scoring rule, the

rank ordering of the GATEs based on their magnitude should be mononotic. To

accommodate the use of various ML algorithms, we make no assumption about their

properties. Specifically, ML algorithms do not have to be consistent or unbiased. This

is possible because the validity of our confidence intervals and nonparametric tests

solely depends on the randomization of treatment assignment and random sampling

of units. Thus, our approach imposes only a minimal set of assumptions on the

underlying data generating process.
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We first consider the sample-splitting procedure, which randomly splits the data

into the training and validation data. An ML algorithm is first applied to the training

data to estimate the CATE, and the validation data is then used to estimate the

GATEs. We then generalize our methodology to the cross-fitting procedure, which

randomly splits the data into several folds. Each fold is used as the validation data to

estimate the GATE while the remaining folds serve as the corresponding training data

to estimate the CATE. After repeating this for each fold, we aggregate the GATE

estimates to the entire sample. Unlike the sample-splitting case where we condition

on the split, we account for additional uncertainty induced by the randomness of its

cross-fitting procedure. This directly addresses the fact that when the sample size is

small the GATE estimate may vary considerably due to the random splitting of data.

Related Literature. The proposed methodology builds on the existing literature

about statistical inference for heterogeneous treatment effects. In an early work,

Crump et al. (2008) propose nonparametric tests of treatment effect heterogeneity.

The authors rely on the consistency of sieve methods under the assumption that

heterogeneous treatment effects are a smooth function of covariates. In contrast,

our methodology does not require the consistent estimation of the CATE by ML

algorithms. Moreover, while Crump et al. assume the continuous differentiability of

the CATE, we only require its continuity.

Ding et al. (2016) propose an alternative approach based on Fisher’s randomiza-

tion test. Similar to our proposed methodology, this test neither requires modeling

assumptions nor imposes restrictive assumptions on data generating process. In fact,

their test yields conservative p-values without asymptotic approximation whereas

other approaches including ours are only valid in large samples. The authors, how-

ever, test restrictive sharp null hypotheses. For example, Ding et al. consider a null

hypothesis that the individual treatment effect is constant within each group and

only varies across groups. In contrast, we focus on the null hypotheses about average

treatment effects within and across groups under the Neyman’s repeated sampling

framework.

More recently, Chernozhukov et al. (2019) study the same settings as the ones

considered in this paper. Similar to our methodology, the authors do not impose

strong assumptions on the properties of ML algorithms that are used to estimate the
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CATE. However, unlike our nonparametric methods, they rely on linear regression

when making inference about the GATE. Furthermore, Chernozhukov et al. assume

the monotonicity of the GATEs, which may be violated if the performance of ML

algorithms is poor. We remove this assumption and also show how to account for the

estimation uncertainty about the GATE cutoff points. Moreover, to incorporate the

additional uncertainty of the cross-fitting procedure, Chernozhukov et al. propose

to repeat the procedure many times and aggregate the resulting p-values. We avoid

such a computationally intensive procedure and instead use the Neyman’s repeated

sampling framework to conduct valid statistical inference under cross-fitting. Finally,

Ding et al. (2019) use the Neyman’s repeated sampling framework to explore treat-

ment effect heterogeneity like we do, but rely entirely on the linear regression and

does not allow for the use of more flexible ML algorithms.

2 The Proposed Methodology

We begin by developing our methodology for sample splitting. Under this setting, a

researcher randomly splits the sample into the training and validation data. The train-

ing data are first used to estimate the conditional average treatment effect (CATE)

using an ML algorithm. Based on the estimated CATE, the researcher analyzes the

validation data to estimate the sorted group average treatment effect (GATE) and

conduct statistical inference. Note that the CATE estimates can come from an ex-

ternal dataset rather than a random subset of the experimental data. We generalize

the methodology developed here to cross-fitting in Section 3.

2.1 Setup

Suppose that we have an independently and identically distributed (i.i.d.) sample

of n units from a super-population P. Let Ti represent the treatment assignment

indicator variable, which is equal to 1 if unit i is assigned to the treatment condition

and is equal to 0 otherwise, i.e., Ti ∈ T = {0, 1}. For each unit, we observe the

outcome variable Yi ∈ Y and a vector of pre-treatment covariates, Xi ∈ X , where Y
and X represent the support of the outcome variable and that of the pre-treatment

covariates, respectively.

We require the standard causal inference assumptions of consistency and no inter-
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ference between units, denoting the potential outcome for unit i under the treatment

condition Ti = t as Yi(t) for t = 0, 1 (e.g., Neyman, 1923; Holland, 1986; Rubin,

1990). The observed outcome is given by Yi = Yi(Ti). For simplicity, we assume that

the treatment assignment is completely randomized with exactly n1 units assigned

to the treatment condition though the extensions to other experimental designs are

possible. We formally state these assumptions below.

Assumption 1 (No Interference between Units) The potential outcomes for
unit i do not depend on the treatment status of other units. That is, for all t1, t2, . . . , tn ∈
{0, 1}, we have, Yi(T1 = t1, T2 = t2, . . . , Tn = tn) = Yi(Ti = ti).

Assumption 2 (Random Sampling of Units) Each of n units, represented by
a three-tuple consisting of two potential outcomes and pre-treatment covariates, is
assumed to be independently sampled from a super-population P, i.e.,

(Yi(1), Yi(0),Xi)
i.i.d.∼ P

Assumption 3 (Complete Randomization) For any i = 1, 2, . . . , n, the treat-
ment assignment probability is given by,

Pr(Ti = 1 | {Yi′(1), Yi′(0),Xi′}ni′=1) =
n1

n

where n1 =
∑n

i=1 Ti represents the number of treated units.

Suppose that a researcher applies an ML algorithm to a training dataset and

estimate the CATE. As noted earlier, this training dataset can be obtained through

the sample splitting or it may be an external dataset. The CATE is defined as,

τ(x) = E(Yi(1)− Yi(0) | Xi = x),

for any x ∈ X . The ML algorithm produces the following scoring rule,

s : X −→ S ⊂ R (1)

where a greater score indicates a higher priority to receive the treatment. Without

loss of generality, we assume that the scoring rule is bijective, i.e., s(x) 6= s(x′) for

any x,x′ ∈ X with x 6= x′. Note that one can always redefine X to satisfy this

assumption.

As noted earlier, we assume almost nothing about the properties of this scoring

rule created by the ML algorithm. In particular, the scoring rule does not have to

be a consistent estimate of the CATE. In fact, the scoring rule need not even be an

estimate of the CATE so long as it satisfies the definition given in Equation (1).
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2.2 Estimation and Inference

Given the setup introduced above, we first consider the estimation and inference for

the sorted group average treatment effect (GATE), which is a common quantity of

interest in applied research and is studied by Chernozhukov et al. (2019). The idea

is that researchers sort units into a total of K groups based on the quantile of the

scoring rule, and then estimate the average treatment effect within each group. For

simplicity, we assume that the number of treated and control units, i.e., n1 and n0,

are multiples of K. The formal definition of the GATE is given by,

τk = E(Yi(1)− Yi(0) | ck−1(s) ≤ s(Xi) < ck(s)) (2)

for k = 1, 2, . . . , K where ck represents the cutoff between the (k − 1)th and kth

groups and is defined as,

ck(s) = inf{c ∈ R | Pr(s(Xi) ≤ c) ≥ k/K},

for k = 1, 2, . . . , K, c0 = −∞, and cK =∞.

Thus, units that belong to the Kth group, for example, represent those who are

likely to have the greatest treatment effect according to the ML algorithm whereas

those in the first group are likely to have the least treatment effect. Unlike Cher-

nozhukov et al. (2019), we do not assume the monotonicity of the GATEs, i.e., τk ≤ τk′

for all k < k′. This relaxation is important because we want to impose as little re-

striction on the underlying scoring rule as possible. Indeed, if the scoring rule is not

a good estimate of the CATE, such an assumption may be violated. To address this

problem, we later develop a statistical test of this monotonicity assumption.

We consider the following estimator of the GATE using the experimental data,

τ̂k =
K

n1

n∑

i=1

YiTif̂k(Xi)−
K

n0

n∑

i=1

Yi(1− Ti)f̂k(Xi), (3)

for k = 1, 2, . . . , K where f̂k(Xi) = 1{s(Xi) ≥ ĉk−1(s)} − 1{s(Xi) ≥ ĉk(s)}, and
ĉk(s) = inf{c ∈ R :

∑n
i=1 1{s(Xi) > c} ≤ nk/K} is the estimated cutoff. First, we

derive the bias bound and exact variance of the GATE estimator.

Theorem 1 (Bias Bound and Exact Variance of the GATE Estimator)

Under Assumptions 1–3, the bias of the proposed estimator of the GATE given in
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Equation (3) can be bounded as follows,

P(|E{τ̂k − τk | ĉk(s), ĉk−1(s)}| ≥ ǫ)

≤ 1− B

(
k

K
+ γk(ǫ),

nk

K
, n− nk

K
+ 1

)
+B

(
k

K
− γk(ǫ),

nk

K
, n− nk

K
+ 1

)

−B
(
k − 1

K
+ γk−1(ǫ),

n(k − 1)

K
, n− n(k − 1)

K
+ 1

)

+B

(
k − 1

K
− γk−1(ǫ),

n(k − 1)

K
, n− n(k − 1)

K
+ 1

)
,

for any given constant ǫ > 0 where B(ǫ, α, β) is the incomplete beta function (if

α ≤ 0 and β > 0, we set B(ǫ, α, β) := H(ǫ) for all ǫ where H(ǫ) is the Heaviside step

function), and

γk(ǫ) =
ǫ

Kmaxc∈[ck(s)−ǫ, ck(s)+ǫ] E(Yi(1)− Yi(0) | s(Xi) = c)
.

The variance of the estimator is given by,

V(τ̂k) = K2

{
E(S2

k1)

n1
+

E(S2
k0)

n0
− K − 1

K2(n− 1)
κ2
k1

}
,

where S2
kt =

∑n
i=1(Yki(t) − Yk(t))

2/(n − 1) and κkt = E(Yi(1) − Yi(0) | f̂k(Xi) = t)

with Yki(t) = f̂k(Xi)Yi(t), and Yk(t) =
∑n

i=1 Yki(t)/n, for t = 0, 1.

Proof is given in Supplementary Appendix S1.

When compared to the standard variance estimator, there is an additional third

term, which results from the fact that the cutoff points are estimated. Since exactly

n/K data points are taken to have f̂k(Xi) = 1, the value of this function is negatively

correlated across units, i.e., Corr(f̂k(Xi), f̂k(Xj)) < 0, resulting in this additional

negative term. The variance can be consistently estimated by replacing each unknown

parameter with its sample analogue,

Ê(S2
kt) =

1

nt − 1

n∑

i=1

1{Ti = t}(Yki − Ykt)
2,

κ̂kt =

∑n
i=1 1{f̂k(Xi) = t}TiYi∑n
i=1 1{f̂k(Xi) = t}Ti

−
∑n

i=1 1{f̂k(Xi) = t}(1− Ti)Yi∑n
i=1 1{f̂k(Xi) = t}(1− Ti)

,

for t = 0, 1 where Yki = f̂k(Xi)Yi and Y kt =
∑n

i=1 1{Ti = t}Yki/nt.

We can further derive the asymptotic sampling distribution of the GATE estimator

by requiring the following continuity assumption and moment conditions:

Assumption 4 (Continuity of the CATE at the Thresholds) Let F (c) =
Pr(s(Xi) ≤ c) represent the cumulative distribution function of the scoring rule and
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define its pseudo-inverse F−1(p) = inf{c : F (c) ≥ p} for p ∈ [0, 1]. The CATE
function E(Yi(1) − Yi(0) | s(Xi) = F−1(p)) is assumed to be continuous in p at
p = 1/K, . . . , (K − 1)/K.

Assumption 5 (Moment Conditions) For each t = 0, 1, we have

1. V(Yi(t)) > 0;

2. E(Yi(t)
3) <∞.

Assumption 4 is similar to the assumption commonly used in the literature that the

CATE is continuous in the covariates Xi (e.g., Künzel et al., 2018; Wager and Athey,

2018), but we only require continuity at the thresholds, 1/K, · · · , (K−1)/K. We will

show in Propostion 1 below that Assumption 4 is among the weakest assumptions

necessary for our asymptotic results. In particular, this assumption requires that the

scoring rule cannot be discontinuous at the thresholds unless the CATE is constant

in the scoring rule, i.e. E(Yi(1)−Yi(0) | s(Xi) = F−1(p)) = E(Yi(1)−Yi(0)) for all p.

We now present the asymptotic sampling distribution of the GATE estimator.

Theorem 2 (Asymptotic Sampling Distribution of the GATE Estimator)

Under Assumptions 1–5, we have,

τ̂k − τk√
V(τ̂k)

d−→ N(0, 1)

for k = 1, . . . , K where V(τ̂k) is given in Theorem 1.

Proof is given in Supplementary Appendix S2. We emphasize that Theorem 2 does

not impose a strong assumption about the properties of the ML algorithm used to

generate the scoring rule s.

In fact, the continuity of the CATE at the thresholds (Assumption 4) is among the

weakest assumptions that can ensure the validity of Theorem 2. To see this, consider

an alternative assumption that there exists a threshold at which CATE is bounded

but discontinuous, slightly relaxing Assumption 4. The following proposition shows

that this assumption is not sufficient for Theorem 2.

Proposition 1 (Insufficiency of Bounded Variation) Suppose Assumptions 1–

3 and 5 hold. Further assume that the there exists a threshold k/K, such that

E(Yi(1) − Yi(0) | s(Xi) = F−1(p)), is discontinuous (but bounded) at p = k/K.
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Then, there exist a scoring rule s and a population P such that as n → ∞ with

0 < n1/n < 1 staying constant, we have,

E

(
τ̂k − τk√
V(τ̂k)

)
6−→ 0.

Proof is given in Supplementary Appendix S3. Proposition 1 demonstrates that if the

CATE is midly discontinuous at a threshold, then we cannot sufficiently control the

bias in estimating the boundary points, ck(s). Under this scenario, the bias decays

at the rate of n−1/2, which is not fast enough for the application of the central limit

theorem.

2.3 Nonparametric Test of Treatment Effect Heterogeneity

In many applications, heterogeneous treatment effects are imprecisely estimated. Re-

searchers may wish to know whether the treatment effect heterogeneity discovered by

ML algorithms represents signal rather than noise. In addition, checking the statis-

tical significance of each GATE suffers from multiple testing problems. To address

these challenges, we develop a nonparametric test of treatment effect heterogeneity.

In particular, we consider the following null hypothesis that all GATEs are equal to

one another,

H0 : τ1 = τ2 = · · · = τK . (4)

This null hypothesis is equivalent to τk = τ for any k where τ = E(Yi(1) − Yi(0))

represents the overall average treatment effect (ATE). Thus, we consider the following

test statistic,

τ̂ = (τ̂1 − τ̂ , · · · , τ̂K − τ̂)⊤,

where

τ̂ =
1

n1

n∑

i=1

YiTi +
1

n0

n∑

i=1

Yi(1− Ti).

To derive the asymptotic reference distribution of this test statistic,

Imai and Li (2021) derive the bias bound and the exact variance of this PAPE

estimator. Leveraging those results, the following theorem shows that we can utilize

a χ2 distribution as an asymptotic approximation to the reference distribution when

testing treatment effect heterogeneity.
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Theorem 3 (Nonparametric Test of Treatment Effect Heterogeneity)

Suppose Assumptions 1–5 hold. Under H0 defined in Equation (4) and against the

alternative H1 : R
K \H0, as n→∞ with 0 < n1/n < 1 stays constant, we have,

τ̂⊤Σ−1τ̂
d−→ χ2

K

where the entries of the covariance matrix Σ are defined as follows,

Σkk = K2

[
E(S2

k1)

n1

+
E(S2

k0)

n0

− K − 1

K3(n− 1)

{
(K − 2)κ2

k1 + 2κk1κk0

}]
,

Σkk′ = K2

{
E(S2

kk′1)

n1
+

E(S2
kk′0)

n0

}
+

K − 1

K(n− 1)

(
κ2
k1 − κk1κk0 + κ2

k′1 − κk′1κk′0 −Kκk1κk′1

)

for k, k′ ∈ {1, · · ·K} and k 6= k′ where S2
kt =

∑n
i=1(Yki(t) − Yk(t))

2/(n − 1), S2
kk′t =∑n

i=1(Yki(t)− Yk(t))(Yk′i(t)− Yk′(t))/(n− 1) and κkt = E(Yi(1)− Yi(0) | f̂k(Xi) = t)

with Yki(t) =
(
f̂k(Xi)− 1/K

)
Yi(t), and Yk(t) =

∑n
i=1 Yki(t)/n, for t = 0, 1.

Proof is given in Supplementary Appendix S4. Similar to Theorem 1, there is an

additional third term in the variance beyond the two standard terms, induced by

the fact that f̂k(Xi) is negatively correlated across units. In practice, we replace the

entries of Σ with their sample analogues, which result in a consistent estimator Σ̂.

By Slutsky’s Lemma, the asymptotic distribution is not affected by this substitution.

2.4 Nonparametric Test of Rank-Consistent Treatment Ef-

fect Heterogeneity

To evaluate the quality of the scoring rule produced by an ML algorithm, we can

test whether or not the rank of estimated GATEs is consistent with that of the true

GATEs. The relevant null hypothesis is given by,

H∗
0 : τ1 ≤ τ2 ≤ · · · ≤ τK . (5)

Unlike the null hypothesis for treatment effect heterogeneity given in Equation (4),

this is a composite null hypothesis.

To characterize the sampling distribution under this null hypothesis H∗
0 , we con-

sider the following optimization problem,

µ∗(x) = argmin
µ

‖µ− x‖22 subject to µ1 ≤ µ2 ≤ · · · ≤ µK ,

where µ = (µ1, µ2, . . . , µK)
⊤ and x ∈ RK . If x ∼ N(0,Σ), the following test statistic

has a mixture of appropriately weighted χ2 distribution with K degrees of freedom,
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called chi-bar-squared distribution (Shapiro, 1988),

(x− µ∗(x))⊤Σ−1(x− µ∗(x)) ∼ χ̄2
K .

Using this fact, the next theorem derives a nonparametric test of rank-consistent

treatment effect heterogeneity that is asymptotically uniformly most powerful.

Theorem 4 (Nonparametric Test of Rank-Consistent Treatment Ef-

fect Heterogeneity) Suppose that Assumptions 1–5 hold. Then, as n → ∞
and 0 < n1/n < 1 stays constant, an asymptotically uniformly most powerful test

of size α for the null hypothesis H∗
0 defined in Equation (5) against the alternative

H∗
1 : RK \H∗

0 has the following critical region,

{τ̂ ∈ R
K | (τ̂ − µ0(τ̂ ))

⊤
Σ−1 (τ̂ − µ0(τ̂ )) > Cα},

for some constant Cα that only depends on α. The expression of Σ is given in Theo-

rem 3. Under H∗
0 and as n→∞, we have,

(τ̂ − µ∗(τ̂ ))⊤Σ−1 (τ̂ − µ∗(τ̂ ))
d−→ χ̄2

K .

Proof is given in Supplementary Appendix S5. When conducting this statistical test

in practice, we use Monte Carlo simulations to approximately compute the critical

values.

3 Generalization to Cross-Fitting

In this section, we generalize our methodology to cross-fitting. Under this setting,

researchers use the same experimental data to first generate the scoring rule using

an ML algorithm and then estimate the GATE based on the resulting scoring rule.

In comparison with sample splitting (Section 2) where they are done on separate

samples, cross-fitting could potentially be much more efficient. The key challenge,

however, is the incorporation of additional uncertainty due to the random splitting

of the data. We show how to overcome this under the Neyman’s repeated sampling

framework.

3.1 Estimation and Inference

Under cross-fitting, we randomly divide the experimental data into L ≥ 2 folds of

equal size m = n/L where for the sake of simplicity we assume n is a multiple of

L, and each fold contains m1 treated units with m0 control units, i.e, m = m0 +

10



m1. We maintain Assumptions 1–3 introduced in Section 2.1. Then, for each ℓ =

1, 2, . . . , L, we use the ℓth fold as a validation dataset Zℓ = {X(ℓ)
i , T

(ℓ)
i , Y

(ℓ)
i }mi=1 to

conduct statistical tests and estimate the GATE. We use the remaining folds, Z−ℓ =

{X(−ℓ)
i , T

(−ℓ)
i , Y

(−ℓ)
i }n−m

i=1 , as the training dataset to estimate the scoring rule with an

ML algorithm.

Suppose that we define a generic ML algorithm as a deterministic map from the

space of training data Z train to the space of scoring rules S:

F : Z train → S.

Then, for a given training data set Ztrain of size n−m, the estimated scoring rule is

given by,

ŝZn−m
train

= F (Zn−m
train ). (6)

We now generalize the definition of the GATE to the cross-fitting case,

τk(F, n−m) = E[E{Yi(1)− Yi(0) | ck−1(ŝZn−m
train

) ≤ ŝZn−m
train

(Xi) ≤ ck(ŝZn−m
train

)}], (7)

where the inner expectation is taken over the distribution of {Xi, Yi(0), Yi(1)} among

the units who belong to the kth group, and the outer expectation is taken over all

possible training sets of size n − m from Zn−m
train the population P. This generalized

GATE is not a function of fixed scoring rule. Rather, it is a function of ML algorithm

F itself (as well as the sample size of training data, n−m). Intuitively, it represents

the average CATE of all samples that scored between (k − 1)/K × 100th percentile

and k/K × 100th percentile under the ML algorithm F across all possible training

datasets of size n−m.

We describe the estimation and inference for τk(F, n − m). For each fold ℓ, we

first estimate a scoring rule s by applying the ML algorithm F to the training data

Z−ℓ,

ŝℓ = F (Z−ℓ). (8)

We then estimate the GATE based on the validation data Zℓ, using the following

estimator that is analogous to the one defined in Equation (3),

τ̂ ℓk(F, n−m) = K

[
1

m1

m∑

i=1

Y
(ℓ)
i T

(ℓ)
i f̂ ℓ

k(X
(ℓ)
i ) +

1

m0

m∑

i=1

Y
(ℓ)
i (1− T

(ℓ)
i )
{
1− f̂ ℓ

k(X
(ℓ)
i )
}

11



Algorithm 1 Estimation of the Sorted Group Average Treatment Effects (GATEs)
under Cross-fitting

Input: Data Z = {Xi, Ti, Yi}ni=1, Machine learning algorithm F , Estimator τ̂k,
Number of folds L

Output: Estimated GATEs {τ̂k(F, n−m)}Kk=1

1: Split the data Z into L random subsets of equal size {Z1, · · · ,ZL}
2: Set m← n/L and ℓ← 1
3: while ℓ ≤ L do

4: Z−ℓ = {Z1, · · · ,Zℓ−1,Zℓ+1, · · · ,ZL} ⊲ Create the training dataset
5: ŝ−ℓ = F (Z−ℓ) ⊲ Estimate the scoring rule s by applying F to Z−ℓ

6: τ̂ ℓk = τ̂k(Zℓ) for each k = 1, 2, . . . , K ⊲ Calculate the GATE estimator using
Zℓ

7: ℓ← ℓ+ 1
8: end while

9: return τ̂k(F, n−m) = 1
L

∑L
ℓ=1 τ̂

ℓ
k for each k = 1, 2, . . . , K

− 1

m0

m∑

i=1

Y
(ℓ)
i (1− T

(ℓ)
i )

]
,

where f̂ ℓ
k(X

(ℓ)
i ) = 1{ŝℓ(X(ℓ)

i ) ≥ ĉℓk(ŝℓ)} − 1{ŝℓ(X(ℓ)
i ) ≥ ĉℓk−1(ŝℓ)}, and ĉℓk(ŝℓ) = inf{c ∈

R :
∑m

i=1 1{ŝℓ(X
(ℓ)
i ) > c} ≤ mk/K} represents the estimated cutoff in the ℓth sub-

sample. Repeating this for each fold and averaging the results gives us the final GATE

estimator,

τ̂k(F, n−m) =
1

L

L∑

ℓ=1

τ̂ ℓk (9)

for k = 1, 2, . . . , K. Algorithm 1 summarizes this estimation procedure.

We extend our bias and variance results under sample splitting (Theorem 1) to the

cross-fitting case by incorporating the additional randomness induced by the cross-

fitting procedure.

Theorem 5 (Bias Bound and Exact Variance of the GATE Estimator

under Cross-fitting) Under Assumptions 1–3, the bias of the proposed GATE

estimator given in Equation (9) can be bounded as follows,

E

[
P

(∣∣∣E{τ̂k(F, n−m)− τk(F, n−m) | ĉk(ŝZn−m
train

), ĉk−1(ŝZn−m
train

)}
∣∣∣ ≥ ǫ

∣∣∣ Zn−m
train

)]

≤ 1− B

(
k

K
+ γk(ǫ),

nk

K
, n− nk

K
+ 1

)
+B

(
k

K
− γk(ǫ),

nk

K
, n− nk

K
+ 1

)

−B
(
k − 1

K
+ γk−1(ǫ),

n(k − 1)

K
, n− n(k − 1)

K
+ 1

)

+B

(
k − 1

K
− γk−1(ǫ),

n(k − 1)

K
, n− n(k − 1)

K
+ 1

)
,
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for any given constant ǫ > 0 where B(ǫ, α, β) is the incomplete beta function (if

α ≤ 0 and β > 0, we set B(ǫ, α, β) := H(ǫ) for all ǫ where H(ǫ) is the Heaviside step

function), and

γk(ǫ) =
ǫ

KE{maxc∈[ck(ŝ
Z
n−m
train

(Xi))−ǫ, ck(ŝ
Z
n−m
train

(Xi))+ǫ] E(Yi(1)− Yi(0) | ŝZn−m
train

(Xi) = c)} .

The variance of the estimator is given by,

V(τ̂k(F, n−m)) = K2

[
E(S2

Fk1)

m1
+

E(S2
Fk0)

m0
− E

{
K − 1

K2(m− 1)

(
κℓ
k1

)2
}
+

V
(
κℓ
k1

)

K2
− L− 1

L
E(S2

Fk)

]
,

where S2
Fkt =

∑m
i=1(Y

ℓ
ki(t)−Y ℓ

k (t))
2/(m−1), S2

Fk =
∑L

ℓ=1(τ̂
(ℓ)
k − τ̂k(F, n−m))2/(L−1)

and κℓ
kt = E(Yi(1) − Yi(0) | f̂ ℓ

k(Xi) = t) with Y ℓ
ki(t) = f̂ ℓ

k(X
(ℓ)
i )Y

(ℓ)
i (t), and Y ℓ

k (t) =∑m
i=1 Y

ℓ
ki(t)/n, for t = 0, 1.

Proof is given in Supplementary Appendix S6. When compared to Theorem 1, there

are two main differences. First, there is an additional variance term, V
(
κℓ
k1

)
/K2,

that accounts for the variation across training data sets. Second, there is an additional

negative term, which represents the efficiency gain of the cross-validation procedure.

As expected, when L = 1, the expression reduces to the sample splitting case (see

Theorem 1).

The estimation of E(S2
Fkt), E{(κℓ

kt)
2} and V(κℓ

kt) is straightforward and based on

their sample analogues,

Ê(S2
Fkt) =

1

(mt − 1)L

L∑

ℓ=1

m∑

i=1

1{T (ℓ)
i = t}(Y ℓ

ki − Y ℓ
kt)

2,

̂E
{
(κℓ

kt)
2
}

=
1

L

L∑

ℓ=1

(
κ̂ℓ
kt

)2
, V̂(κℓ

kt) =
1

L− 1

L∑

ℓ=1

(κ̂ℓ
kt − κℓ

kt)
2, (10)

where Y ℓ
ki = f̂ ℓ

k(Xi)Y
(ℓ)
i , Y ℓ

kt =
∑m

i=1 1{Ti = t}Y (ℓ)
ki /mt, κℓ

kt =
∑L

ℓ=1 κ̂
ℓ
kt/L and

κ̂ℓ
kt =

∑m
i=1 1{f̂ ℓ

k(X
(ℓ)
i ) = t}T (ℓ)

i Y
(ℓ)
i∑m

i=1 1{f̂ ℓ
k(X

(ℓ)
i ) = t}T (ℓ)

i

−
∑m

i=1 1{f̂ ℓ
k(X

(ℓ)
i ) = t}(1− T

(ℓ)
i )Y

(ℓ)
i∑m

i=1 1{f̂ ℓ
k(X

(ℓ)
i ) = t}(1− T

(ℓ)
i )

.

In contrast, the estimation of E(S2
Fk) requires care. In particular, although it is

tempting to estimate E(S2
Fk) using a realization of S2

Fk, this estimate is highly variable

especially when K is small. As a result, it often yields a negative overall variance

estimate. We address this problem by applying Lemma 1 from Nadeau and Bengio

(2000) to τ̂k(F, n−m), which gives,

V(τ̂k(F, n−m)) ≥ E(S2
Fk).
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This inequality suggests the following consistent estimator of E(S2
Fk),

Ê(S2
Fk) = min

(
S2
Fk,

Ê(S2
Fk1)

m1

+
Ê(S2

Fk0)

m0

− K − 1

K2(m− 1)
̂E{(κℓ

k1)
2}
)
. (11)

Although this yields a conservative estimate of V(τ̂k(F, n−m)) in finite samples, the

bias appears to be relatively small in practice (see Section 4).

For completeness, we also establish the asymptotic sampling distribution of our

cross-fitting GATE estimator.

Theorem 6 (Asymptotic Sampling Distribution of the GATE Estima-

tor under Cross-Validation) Suppose that Assumption 4 holds for all but an

asymptotically measure 0 subset of possible training sets Z with size n − m. Then,

under Assumptions 1–3, and 5, we have, as n goes to infinity,

τ̂k(F, n−m)− τk(F, n−m)

σ

d−→ N(0, 1)

where the expression for σ2 is given as V(τ̂k(F, n−m)) in Theorem 5.

Proof is given in Supplementary Appendix S8, and is similar to the proof of Theo-

rem 2.

3.2 Nonparametric Tests of Treatment Effect Heterogeneity

We now extend the nonparametric tests of treatment effect heterogeneity and its rank-

consistency introduced in Sections 2.3 and 2.4 to the cross-fitting setting. Similar

to Chernozhukov et al. (2019), we account for the additional uncertainty due to

random splitting. Unlike their method, however, the proposed tests do not require a

computationally intensive resampling procedure.

Our first null hypothesis of interest is that the GATEs are all equal to the ATE,

HF0 : τ1(F, n−m) = τ2(F, n−m) = · · · = τK(F, n−m). (12)

This null hypothesis depends on the ML algorithm F whereas the null hypothesis

given in Equation (4) depends on the (fixed) scoring rule. Generalizing the sample-

splitting case to the cross-fitting setting requires the following additional assumption

that the ML algorithm F is stable.

Assumption 6 (ML Algorithm Stability) Let Zn
train

be a training dataset of

size n and ŝZn
train

= F (Zn
train

) represent the estimated scoring rule that results from the
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application of an ML algorithm F to the training dataset. Then as n→∞, we have

that for any a, b with a < b:

V(E[Yi(1)− Yi(0) | a ≤ ŝZn
train

(Xi) ≤ b])→ 0

The inner expectation is taken over the distribution of {Xi, Yi(0), Yi(1)} among the

units in the population P which belong to the group defined by the conditioning set.

The outer variance is computed across the random sampling of training data set of

size n from the same population.

Assumption 6 implies that as the size of training data approaches infinity, the

resulting scoring rule ŝZn
train

stabilizes. Importantly, we do not assume that the ML

algorithm converges to the true CATE. We show that Assumption 6 is indeed the

necessary and sufficient condition for the existence of the variance of the proposed

GATE estimator.

Lemma 1 As n→∞, V(τ̂k(F, n−m))→ 0 if and only if Assumption 6 holds.

Lemma 1 follows immediately from the variance expression in Theorem 5, and the

proof is contained in Supplementary Appendix S7. This lemma shows that if As-

sumption 6 is not true, then even under infinite samples, our GATES estimator

would still have residual variance that makes it impossible to construct an asymp-

totic nonparametric test. The following theorem generalizes the result of Theorem 3

to cross-fitting.

Theorem 7 (Nonparametric Test of Treatment Effect Heterogeneity

Under Cross-fitting) Suppose that Assumption 4 holds for any measurable subset

of all training data sets Zn−m
train

of size n−m. Then, under Assumptions 1–3, 5, and 6,

and the null hypothesis HF0 defined in Equation (12) and against the alternative

HF1 : R
K \HF0, as n→∞ and 0 < m1/m < 1 stays constant, we have,

τ̂⊤
F Σ−1τ̂F

d−→ χ2
K

where τ̂F = (τ̂1(F, n−m)− τ̂ , · · · , τ̂K(F, n−m)− τ̂ ), and Σ is defined as for k, k′ ∈
{1, · · ·K}:

Σkk′ = K2

(
E(S2

Fkk′1)

m1

+
E(S2

Fkk′0)

m0

− L− 1

L
E(S2

Fkk′)

)
+ Cov

(
κℓ
k1, κ

ℓ
k′1

)

+
K − 1

K(m− 1)
Eℓ

{
(κℓ

k1)
2 − κℓ

k1κ
ℓ
k0 + (κℓ

k′1)
2 − κℓ

k′1κ
ℓ
k′0 −Kκℓ

k1κ
ℓ
k′1

}
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where S2
Fkt =

∑m
i=1(Y

∗ℓ
ki (t)−Y ∗ℓ

k (t))2/(m−1), S2
kk′t =

∑m
i=1(Y

∗ℓ
ki (t)−Y ∗ℓ

k (t))(Y ℓ
k′i(t)−

Y ∗ℓ
k′ (t))/(m−1), S2

Fkk′ =
∑L

ℓ=1(τ̂
ℓ
k(F, n−m)− τ̂k(F, n−m))(τ̂ ℓk′(F, n−m)− τ̂k′(F, n−

m))/(L − 1) and κℓ
kt = E(Yi(1) − Yi(0) | f̂ ℓ

k(Xi) = t) with Y ∗ℓ
ki (t) = (f̂ ℓ

k(X
(ℓ)
i ) −

1/K)Y
(ℓ)
i (t), and Y ∗ℓ

k (t) =
∑m

i=1 Y
∗ℓ
ki (t)/m, for t = 0, 1.

Proof is given in Supplementary Appendix S9. Compared to Theorem 3, the only

difference appears in the expression of the covariance matrix Σ due to the efficiency

gains of the cross-validation procedure.

Finally, we extend the nonparametric test of rank-consistent treatment effect het-

erogeneity (Theorem 4) to cross-fitting. The null hypothesis is given by,

H∗
F0 : τ1(F, n−m) ≤ τ2(F, n−m) ≤ · · · ≤ τK(F, n−m). (13)

Now, we present the result.

Theorem 8 (Nonparametric Test of Rank-Consistent Treatment Ef-

fect Heterogeneity Under Cross-Fitting) Suppose that Assumption 4 holds

for any measurable subset of all training data sets Zn−m
train

of size n − m. Then, un-

der Assumptions 1–3, 5 and 6, as n → ∞ and 0 < m1/m < 1 stays constant, the

uniformly most powerful test of size α for the null hypothesis H∗
F0 defined in Equa-

tion (13) against the alternative H∗
F1 : R

K \H∗
F0 has the following critical region,

{τ̂F ∈ R
K | (τ̂F − µ0(τ̂F ))

⊤
Σ−1 (τ̂F − µ0(τ̂F )) > Cα},

for some constant Cα that only depends on α. Furthermore, under HF0 and as n→
∞, we have,

(τ̂F − µ0(τ̂F ))
⊤
Σ−1 (τ̂F − µ0(τ̂F ))

d−→ χ̄2
K ,

where τ̂F and Σ are defined in Theorem 7.

Proof directly follows from the fact by Theorem 7, Σ−1/2τ̂F is asymptotically normally

distributed with variance I. Then, following the same steps as those in Supplementary

Appendix S5 immediately establishes the result.

4 A Simulation Study

We undertake a simulation study to examine the finite sample performance of the

proposed methodology. We consider both sample-splitting and cross-fitting cases.

For the estimation of GATEs, we evaluate the bias and variance of the proposed

estimators as well as the coverage of their confidence intervals. For hypothesis tests,
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we examine the actual power and size of the proposed tests. We show that the

proposed methodology performs well even when the sample size is as small as 100.

4.1 The Setup

We utilize the data generating process from the 2016 Atlantic Causal Inference Con-

ference (ACIC) Competition. We briefly describe its simulation setting here and

refer interested readers to Dorie et al. (2019) for additional details. The focus of this

competition was the inference of average treatment effect in observational studies.

There are a total of 58 pre-treatment covariates X, including 3 categorical, 5 binary,

27 count data, and 13 continuous variables. The data were taken from a real-world

study with the sample size n = 4802.

In our simulation, we assume that the empirical distribution of these covariates

represent the population P and obtain each simulation sample via bootstrap. We

consider small and moderate sample sizes: n = 100, 500, and 2500. For the sample-

splitting case, the models are pre-trained on the original dataset from the 2016 ACIC

data challenge, and the sample size n refers to the number of testing samples. For the

cross-validation case, n refers to the total dataset size, which we then conduct 5-fold

cross-validation, L = 5. One important change from the original competition is that

instead of utilizing a propensity model to determine T , we assume that the treatment

assignment is completely randomized, i.e., Pr(Ti = 1) = 1/2, and the treatment and

control groups are of equal size, i.e., n1 = n0 = n/2.

To generate the outcome variable, we use one of the settings from the competition,

which is based on the generalized additive model with polynomial basis functions. The

model represents a setting, in which there exists a substantial amount of treatment

effect heterogeneity. The formula for this outcome model is reproduced here:

E(Yi(t) | Xi) = 1.60 + 0.53× x29 − 3.80 × x29(x29 − 0.98)(x29 + 0.86) − 0.32 × 1{x17 > 0}

+ 0.21× 1{x42 > 0} − 0.63 × x27 + 4.68× 1{x27 < −0.61} − 0.39 × (x27 + 0.91)1{x27 < −0.91}

+ 0.75× 1{x30 ≤ 0} − 1.22 × 1{x54 ≤ 0}+ 0.11 × x371{x4 ≤ 0} − 0.71 × 1{x17 ≤ 0, t = 0}

− 1.82× 1{x42 ≤ 0, t = 1}+ 0.28 × 1{x30 ≤ 0, t = 0}

+ {0.58 × x29 − 9.42× x29(x29 − 0.67)(x29 + 0.34)} × 1{t = 1}

+ (0.44 × x27 − 4.87× 1{x27 < −0.80}) × 1{t = 0} − 2.54 × 1{t = 0, x54 ≤ 0}.
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Throughout, we setK = 5 so that observations are sorted into five groups based on

the magnitude of the CATE. For the case of sample-splitting, we can directly compute

the true values of GATEs using the outcome model and evaluate each quantity based

on the entire original data set. For the cross-validation case, however, the exact

calculation of the GATE true values would require averaging over all combinations of

training data sets from the original data set. Since this is computationally prohibitive,

we obtain their approximate true values by independently sampling 10,000 training

data sets. For each training dataset, we train an ML algorithm F using 5-fold cross-

validation. Then, we use the sample mean of each estimated causal quantity across

the 10,000 simulated data sets as our approximate truth.

We evaluate Bayesian Additive Regression Trees (BART) (see Chipman et al.,

2010; Hill, 2011; Hahn et al., 2020) and Causal Forest (Wager and Athey, 2018), and

LASSO (Tibshirani, 1996). The number of trees were tuned through the 5-fold cross

validation for both algorithms. For implementation, we use R 3.6.3 with the following

packages: bartMachine (version 1.2.6) for BART, grf (version 2.0.1) for Causal Forest,

and glmnet (version 4.1-2) for LASSO. The number of trees was tuned through 5-

fold cross-validation for BART and Causal Forest. The regularization parameter was

tuned similarly for LASSO.

4.2 Finite-Sample Performance of the Proposed Estimators

Table 1 presents the results for the estimation of GATEs in the sample-splitting case.

According to this simulation setup, Causal Forest and BART appear to identify treat-

ment effect heterogeneity better than LASSO. For example, for BART, the largest

and smallest GATEs are 5.89 and 2.09, respectively. In contrast, the gap between the

corresponding quantities is much smaller for the LASSO, roughly equaling 2 points.

For each sample size, we conducted 1,000 simulation trials. For all three algo-

rithms, the estimated biases of the proposed GATE estimators are negligibly small,

accounting for less than 5% of their estimated standard deviation in almost all cases.

The bias also generally decreases as the sample size grows. We also find that the

empirical coverage of the confidence intervals is close to the theoretical 95% value

even when the sample size is as small as n = 100.

We obtain similar findings for the cross-fitting case. Table 2 shows the results for
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ntest = 100 ntest = 500 ntest = 2500

Estimator truth bias s.d. coverage bias s.d. coverage bias s.d. coverage
Causal Forest

τ̂1 2.164 0.034 2.486 93.8% 0.041 1.071 95.0% 0.007 0.467 96.0%
τ̂2 4.001 0.011 2.551 93.7 −0.060 1.183 94.4 −0.002 0.510 95.3
τ̂3 4.583 −0.018 2.209 94.0 −0.003 0.956 96.4 0.020 0.421 95.8
τ̂4 4.931 −0.077 2.500 94.6 0.001 1.138 94.3 0.003 0.517 95.6
τ̂5 5.728 −0.058 3.332 96.0 −0.010 1.499 95.0 −0.009 0.661 95.2
BART

τ̂1 2.092 0.016 3.188 94.0% −0.014 1.402 96.2% 0.009 0.626 95.8%
τ̂2 3.913 0.127 2.918 95.1 0.028 1.388 94.0 −0.003 0.618 95.3
τ̂3 4.478 −0.077 2.218 94.3 −0.041 0.968 95.0 −0.001 0.425 95.1
τ̂4 5.042 −0.154 2.366 94.2 0.014 1.106 95.8 0.015 0.495 95.4
τ̂5 5.881 −0.019 2.510 94.7 −0.019 1.104 94.4 −0.000 0.489 95.0
LASSO

τ̂1 3.243 0.028 2.507 94.1% 0.049 1.119 95.1% 0.003 0.769 95.1%
τ̂2 3.817 −0.012 1.848 93.6 −0.013 0.834 94.5 −0.000 0.684 95.4
τ̂3 4.318 −0.013 2.095 94.2 −0.002 0.930 94.5 0.010 0.516 95.0
τ̂4 4.788 −0.041 2.475 94.0 −0.015 1.101 94.6 −0.001 0.480 94.6
τ̂5 5.241 −0.046 3.921 94.4 0.021 1.739 95.1 0.002 0.505 95.3

Table 1: The Finite Sample Performance of the GATE Estimators under Sample-
splitting. The table presents the estimated bias and standard deviation of the GATE
estimators as well as the empirical coverage of their 95% confidence intervals for
Causal Forest, BART, and LASSO. The machine learning algorithms are trained on
the original dataset from the 2016 ACIC data challenge.

n = 100 n = 500 n = 2500

Estimator truth bias s.d. coverage truth bias s.d. coverage truth bias s.d. coverage

Causal Forest

τ̂1 3.976 −0.053 2.971 94.0% 2.900 −0.007 1.572 95.6% 2.210 −0.007 0.594 97.7%
τ̂2 4.173 −0.061 2.584 95.9 4.112 −0.038 1.075 98.2 4.057 0.011 0.541 98.6
τ̂3 4.286 −0.012 2.560 96.7 4.510 −0.054 1.058 97.7 4.545 0.019 0.465 98.1
τ̂4 4.400 −0.119 2.865 97.4 4.799 0.066 1.149 97.9 4.951 −0.009 0.509 98.6
τ̂5 4.569 0.140 3.447 94.1 5.086 0.001 1.620 96.0 5.643 −0.006 0.620 98.3

LASSO

τ̂1 4.191 −0.125 3.196 97.6% 4.017 −0.025 1.488 96.0% 3.752 −0.004 0.669 96.0%
τ̂2 4.205 0.036 2.281 97.5 4.137 −0.069 1.027 97.9 4.028 −0.019 0.590 98.9
τ̂3 4.268 −0.126 2.354 96.6 4.291 −0.019 1.000 97.9 4.323 0.037 0.488 97.5
τ̂4 4.334 −0.003 2.536 96.8 4.430 0.035 1.174 96.8 4.571 0.033 0.642 97.2
τ̂5 4.406 0.111 3.615 96.2 4.530 0.047 1.811 95.0 4.732 0.022 0.697 95.3

Table 2: The Finite Sample Performance of the GATE Estimators under Cross-fitting.
The table presents the estimated bias and standard deviation of the proposed GATE
estimators as well as the empirical coverage of their 95% confidence intervals for
Causal Forest and LASSO.

Causal Forest and LASSO. Unfortunately, BART is too computationally intensive to

include for this simulation. For the results of Causal Forest and LASSO, we utilize

1,000 trials as before. As seen in the sample-splitting case, the estimated biases of
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the proposed GATE estimators are relatively small even when n = 100 and becomes

negligible when n = 500.

Recall that under the 5-fold cross-fitting, for example, n = 500 implies the eval-

uation sample of size 100 for each fold. And, yet, combining the five folds leads to

a much lower standard deviation than the sample-splitting case with the n = 100

case in Table 1. The results are similar when comparing the n = 2500 cross-fitting

case with the n = 500 sample-splitting case. Indeed, in some cases, the reduction in

standard deviation is more than 50 percent. This experimentally demonstrates the

efficiency gain from using a cross-fitting approach. We further find that although

Theorem 5 implies that the proposed variance estimate is conservative, the results

show only the slight overcoverage of the confidence intervals.

4.3 Finite-Sample Performance of the Proposed Hypothesis

Tests

We next examine the finite sample performance of the proposed hypothesis tests. Due

to the aforementioned computational itensity of BART, we focus on Causal Forest

and LASSO. For each simulated data set, we conduct hypothesis tests of two null

hypotheses of interest: treatment effect homogeneity (see Equations (4) and (12) for

sample-splitting and cross-fitting, respectively) and rank-consistency of the GATEs

(see Equations (5) and (13) for sample-splitting and cross-fitting cases, respectively).

According to the true values shown in Tables 1 and 2, the null hypothesis of

treatment effect homogeneity is false while the rank-consistency null hypothesis is

correct. This suggests that the proposed test should reject the former hypothesis more

frequently as the sample size increases whereas it should reject the latter hypothesis

no more frequently than the specified size of the test, which we set to 5% throughout

our simulation study.

We first consider the sample-splitting setting based on 500 simulation trials. Ta-

ble 3 presents the rejection rate and median p-value for each scenario across different

training and testing data sizes, denoted by ntrain and ntest, respectively. We find that

for Causal Forest, the training data of size 400 and the test data of size 2000 are

required to reject the null hypothesis of treatment effect homogeneity with a high

probability. This highlights the difficulty of identifying treatment effect heterogene-
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ntest = 100 ntest = 500 ntest = 2500

rejection median rejection median rejection median
rate p-value rate p-value rate p-value

Causal Forest

H0:Treatment effect homogeneity
ntrain = 100 5.2% 0.504 7.4% 0.529 19.6% 0.361
ntrain = 400 9.0 0.459 22.0 0.254 74.4 0.002
ntrain = 2000 13.0 0.367 40.4 0.092 96.0 0.000

H∗
0 : Rank consistency of GATEs
ntrain = 100 4.0% 0.583 2.2% 0.624 2.2% 0.704
ntrain = 400 2.8 0.687 0.2 0.820 0.2 0.907
ntrain = 2000 1.2 0.707 0.2 0.852 0.0 0.967

LASSO

H0: Treatment effect homogeneity
ntrain = 100 5.8% 0.496 5.2% 0.544 9.6% 0.516
ntrain = 400 7.0 0.557 4.0 0.578 10.4 0.468
ntrain = 2000 6.2 0.489 9.4 0.519 26.2 0.249

H∗
0 : Rank consistency of GATEs
ntrain = 100 4.6% 0.525 3.0% 0.584 5.4% 0.596
ntrain = 400 6.0 0.494 1.8 0.600 2.4 0.687
ntrain = 2000 3.2 0.608 1.4 0.698 1.2 0.851

Table 3: The Finite Sample Performance of the Hypothesis Tests for Treatment
Effect Homogeneity and Rank-consistency of GATEs under Sample-splitting. The
results are based on Causal Forest and LASSO. The table presents the percent of
500 simulation trials where each null hypothesis is rejected using the 5% test size. In
addition, the median p-value across all trials is also shown. The results are presented
for different training data sizes ntrain and different test data sizes ntest.

ity in randomized experiments. For the hypothesis test of the rank-consistency of

GATEs, we find that if trained with a small sample (ntrain = 100), Causal Forest

might falsely reject the null hypothesis but this false rejection rate is less than the

size of the test regardless of the size of the test data.

We obtain similar findings for LASSO, where small training data leads to low

rejection rates for the treatment effect homogeneity hypothesis and some false re-

jection of the rank consistency hypothesis. As before, the false rejection rates are

approximately 5% or lower (note that the small number of simulations induce some

noise). Interestingly, the proposed test is much less powerful for LASSO than for

Causal Forest. Even when the size of training data is 2,000 and the test sample size

is 2,500, the rejection rate is only slightly above 25%. This is consistent with the

finding in Section 4.2 that LASSO discovers less treatment effect heterogeneity than

Causal Forest.
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n = 100 n = 500 n = 2500

rejection median rejection median rejection median
rate p-value rate p-value rate p-value

Causal Forest

Homogeneous Treatment Effects 1.4% 0.790 4.6% 0.712 51.4% 0.041
Consistent Treatment Effects 1.4% 0.702 0.8% 0.845 0.0% 0.976
LASSO

Homogeneous Treatment Effects 0.6% 0.880 1.8% 0.850 9.0% 0.664
Consistent Treatment Effects 1.0% 0.722 0.6% 0.769 0.2% 0.889

Table 4: The Finite Sample Performance of the Hypothesis Tests for Treatment Effect
Homogeneity and Rank-consistency of GATEs under Cross-fitting. The results are
based on Causal Forest and LASSO. The table presents the percent of 500 simulation
trials where each null hypothesis is rejected using the 5% test size and also the median
p-value across all trials.

We also examine the performance of our hypothesis tests under the cross-fitting,

again using 500 simulation trials. Table 4 presents the rejection rate and median p-

value across different sample sizes. We use L = 5 fold cross-fitting for all simulations.

Note that the n = 500 case under cross-fitting is analogous in the size of training and

testing data to the (ntrain = 400, ntest = 100) case for sample splitting. Similarly, the

n = 2500 case under cross-fitting corresponds to the (ntrain = 2, 000, ntest = 500) case

under sample-splitting.

For both Causal Forest and LASSO, we find that the rejection rate of the ho-

mogeneous treatment effect hypothesis is lower in the n = 500 case compared with

the corresponding sample-splitting case, reflecting the additional uncertainty due to

the sampling of training data (under sample-splitting, the scoring rule is regarded

as fixed). However, when the sample size is n = 2, 500, for both algorithms the

rejection rate of homogeneous treatment effects is higher under cross-fitting than

sample-splitting, demonstrating that the efficiency gain of cross-fitting outweigh its

additional sampling uncertainty. For the hypothesis test of rank-consistency, we find

that the rejection rate under cross-fitting is significantly lower than the nominal test

size for all cases.

5 An Empirical Application

To demonstrate the applicability of the proposed framework, we utilize the exper-

imental data from the male sub-sample of the National Supported Work Demon-
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stration (NSW) (LaLonde, 1986; Dehejia and Wahba, 1999). NSW was a temporary

employment program to help disadvantaged workers by providing them with work ex-

perience and counseling in a sheltered environment. Specifically, qualified applicants

were randomly assigned to the treatment and control groups, where the workers in

the treatment group were given a guaranteed job for 9 to 18 months. The primary

outcome of interest is the annualized earnings in 1978, 36 months after the program.

The data contains a total of n = 722 observations, with n1 = 297 participants as-

signed to the treatment group and n0 = 425 participants in the control group. There

are 7 available pre-treatment covariates X that records the demographics and pre-

treatment earnings of the participants.

We evaluate Causal Forest, BART, and LASSO under the two settings consid-

ered in this paper. For sample-splitting, we randomly select 67% of the data (484

observations) to serve as a training dataset. We use the remaining 238 samples to

estimate the GATEs and conduct the proposed hypothesis tests. For cross-fitting,

we first randomly split the data into 3 folds, i.e., L = 3. For each fold, we use the

remaining three folds to train and test the ML algorithms. The number of trees

was tuned through 5-fold cross-validation for BART and Causal Forest within each

training dataset. The regularization parameter was tuned similarly for LASSO.

We focus on the quintile GATES (K = 5) as the primary outcomes. Table 5

presents the results (reported in 1,000 US dollars) under the sample-splitting and

cross-fitting settings. We find that Causal Forest is able to produce statistically

significantly positive GATE for the highest quintile group (τ̂5) under both sample-

splitting and cross-fitting. Thus, unlike the other two algorithms, Causal Forest can

identify a 20% subset that benefits significantly from the temporary employment

program.

Two additional observations are worth noting. First, the confidence intervals

are generally narrower in the cross-fitting case compared to the sample-splitting case.

This finding is consistent with the fact that cross-fitting is more efficient than sample-

splitting. Second, the three algorithms failed to produce any statistically significant

positive GATE for the remaining groups. This may be because there are few addi-

tional workers who benefit from the program. Alternatively, it is also possible that

such workers exist but the algorithms are unable to identify them.
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τ̂1 τ̂2 τ̂3 τ̂4 τ̂5
Sample-splitting

Causal Forest 3.40 0.13 −0.85 −1.91 7.21
[−1.29, 3.40] [−5.37, 5.63] [−5.22, 3.52] [−5.16, 1.34] [1.22, 13.19]

BART 2.90 −0.73 −0.02 3.25 2.57
[−2.25, 8.06] [−5.05, 3.58] [−3.47, 3.43] [−1.53, 8.03] [−3.82, 8.97]

LASSO 1.86 2.62 −2.07 1.39 4.17
[−3.59, 7.30] [−1.69, 6.93] [−5.39, 1.26] [−2.95, 5.73] [−2.30, 10.65]

Cross-fitting

Causal Forest −3.72 1.05 5.32 −2.64 4.55
[−6.52,−0.93] [−2.28, 4.37] [2.63, 8.01] [−5.07,−0.22] [1.14, 7.96]

BART 0.40 −0.15 −0.40 2.52 2.19
[−3.79, 4.59] [−2.54, 2.23] [−3.37, 2.56] [−0.99, 6.03] [−0.73, 5.11]

LASSO 0.65 0.45 −2.88 1.32 5.02
[−3.65, 4.94] [−3.28, 4.18] [−5.38,−0.38] [−1.83, 4.48] [−0.14, 10.18]

Table 5: The Estimated GATEs and their 95% Confidence Intervals based on Causal
Forest, BART, and LASSO under Sample-splitting and Cross-fitting. The estimated
GATEs based on quintiles are reported in 1,000 US dollars. Sample-spliting is done
using 67% of the sample as the training data and 33% of the sample as the evaluation
data. For cross-fitting, we use 3 folds of equal size.

Causal Forest BART LASSO

stat p-value stat p-value stat p-value
Sample-splitting

Homogeneous Treatment Effects 9.78 0.082 2.76 0.737 5.26 0.362
Rank-consistent Treatment Effects 3.07 0.323 1.13 0.657 3.14 0.302
Cross-fitting

Homogeneous Treatment Effects 30.29 0.000 2.32 0.803 10.79 0.056
Rank-consistent Treatment Effects 0.06 0.691 0.04 0.885 0.45 0.711

Table 6: The Results of the Proposed Hypothesis Tests under Sample-splitting and
Cross-fitting Using Causal Forest, BART, and LASSO. The values of test statistics
and p-values are presented. We test the null hypotheses of treatment effect homo-
geneity and rank-consistency of the GATEs.

To formally evaluate the statistical significance of several GATE estimates, we

must account for the potential multiple testing problem. Thus, we apply the proposed

hypothesis tests to evaluate the null hypotheses of treatment effect homogeneity and

rank-consistency of the GATEs. Table 6 presents the resulting values of test statistics

and p-values. We find that under sample-splitting, only Causal Forest is able to reject

the null hypothesis of treatment effect homogeneity at the 10% level. However, under

cross-fitting, both Causal Forest and LASSO algorithms can reject the null hypothesis

at the 10% level, with Causal Forest being able to reject the hypothesis at even
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the 0.1% level. In contrast, BART fails to reject the treatment effect homogeneity

hypothesis under both sample-splitting and cross-fitting. The results with Causal

Forest suggest that the identification of a statistically significant GATE estimate for

one subgroup under cross-fitting is able to grant enough power to reject the null

hypothesis that the average treatment effects are homogeneous across all subgroups.

Finally, we find that all three algorithms fail to reject the null hypothesis of the rank-

consistency of the GATEs. Thus, there is no strong statistical evidence that these

algorithms are producing unreliable GATEs.

6 Concluding Remarks

Many randomized experiments have a limited sample size and the resulting treat-

ment effect estimates are often small and noisy. Yet, many applied researchers are

starting to use machine learning algorithms to estimate heterogeneous treatment ef-

fects. Therefore, it is important to statistically distinguish signal from noise. We have

developed the framework that does not impose a strong assumption on machine learn-

ing algorithms and hence is applicable to a wide range of situations. The proposed

methodology allows researchers to construct confidence intervals on the estimated av-

erage treatment effects within a group identified by any machine learning algorithm.

We also show how to conduct formal hypothesis tests about heterogeneous treatment

effects. Our method solely relies upon the randomization of treatment assignment

and the random sampling of untis, and hence yields reliable statistical inference even

when the sample size is relatively small and machine learning algorithms are not

performing well.
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Supplementary Appendix

S1 Proof of Theorem 1

We first rewrite the expectation of the proposed estimator in Equation (3) as,

E(τ̂k) = KE {Yi (f
∗(Xi, ĉk−1(s)))− Yi (f

∗(Xi, ĉk(s)))} ,

where f ∗(Xi, c) = 1{s(Xi) < c}. Similarly, we can also write the estimand in Equa-
tion (2) as,

τk = KE {Yi (f
∗(Xi, ck−1(s)))− Yi (f

∗(Xi, ck(s)))} .
Now, define F (c) = P(s(Xi) ≤ c). Without loss of generality, assume ĉk(s) > ck(s)
and ĉk−1(s) > ck−1(s). If this is not the case, we simply switch the upper and lower
limits of the integrals in the proof below. Then, the bias of the estimator is given by,

|E(τ̂k)− τk|
K

≤ |E {Yi (f
∗(Xi, ĉk(s)))− Yi (f(Xi, ck(s)))}|+ |E {Yi (f

∗(Xi, ĉk−1(s)))− Yi (f
∗(Xi, ck−1(s)))}|

=

∣∣∣∣∣Eĉk(s)

[∫ ĉk(s)

ck(s)

E(τi | s(Xi) = c)dF (c)

]∣∣∣∣∣+
∣∣∣∣∣Eĉk−1(s)

[∫ ĉk−1(s)

ck−1(s)

E(τi | s(Xi) = c)dF (c)

]∣∣∣∣∣

=

∣∣∣∣∣EF (ĉk(s))

[∫ F (ĉk(s))

F (ck(s))

E(τi | s(Xi) = F−1(x))dx

]∣∣∣∣∣

+

∣∣∣∣∣EF (ĉk−1(s))

[∫ F (ĉk−1(s))

F (ck−1(s))

E(τi | s(Xi) = F−1(x))dx

]∣∣∣∣∣

≤ EF (ĉk(s))

[∣∣∣∣F (ĉk(s))−
k

K

∣∣∣∣× max
c∈[ck(s),ĉk(s)]

|E(τi | s(Xi) = c)|
]

+EF (ĉk−1(s))

[∣∣∣∣F (ĉk−1(s))−
k − 1

K

∣∣∣∣× max
c∈[ck−1(s),ĉk−1(s)]

|E(τi | s(Xi) = c)|
]

By the definition of ĉk(s), F (ĉk(s)) is the nk/Kth order statistic of n independent
uniform random variables, and thus follows the Beta distribution with the shape and
scale parameters equal to nk/K and n− nk/K +1, respectively. For the special case
where k − 1 = 0, we define the 0th order statistic of n uniform random variables to
be 0, and by extension also define the “beta distribution” with shape parameter ≤ 0
to be H(x) where H(x) is the Heaviside step function. Therefore, we have,

P

(
|F (ĉk(s))−

k

K
| > ǫ

)
= 1−B

(
k

K
+ ǫ,

nk

K
, n− nk

K
+ 1

)
+B

(
k

K
− ǫ,

nk

K
, n− nk

K
+ 1

)
,

where B(ǫ, α, β) is the incomplete beta function, i.e.,

B(ǫ, α, β) =

∫ ǫ

0

tα−1(1− t)β−1dt.

Similarly, we have

P(|F (ĉk−1(s))−
k − 1

K
| > ǫ)
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= 1−B

(
k − 1

K
+ ǫ,

n(k − 1)

K
, n− n(k − 1)

K
+ 1

)
+ B

(
(k − 1)

K
− ǫ,

n(k − 1)

K
, n− n(k − 1)

K
+ 1

)
.

Combining the above results yields the desired bias bound expression.
To derive the exact variance, we first apply the law of total variance to Equa-

tion (3),

V(τ̂k) = V

[
E

{
Kf̂k(Xi)

(
1

n1

n∑

i=1

TiYi(1)−
1

n0

n∑

i=1

(1− Ti)Yi(0)

) ∣∣∣∣ X, {Yi(1), Yi(0)}ni=1

}]

+ E

[
V

{
Kf̂k(Xi)

(
1

n1

n∑

i=1

TiYi(1)−
1

n0

n∑

i=1

(1− Ti)Yi(0)

) ∣∣∣∣ X, {Yi(1), Yi(0)}ni=1

}]

= K2
V

(
1

n

n∑

i=1

{Yki(1)− Yki(0)}
)

+K2
E

[
V

{
f̂k(Xi)

(
1

n1

n∑

i=1

TiYi(1)−
1

n0

n∑

i=1

(1− Ti)Yi(0)

) ∣∣∣∣ X, {Yi(1), Yi(0)}ni=1

}]
.

(S1)

Applying the standard result from Neyman’s finite sample variance analysis to the
second term shows that this term is equal to,

K2
E

{
1

n

(
n0

n1

S2
k1 +

n1

n0

S2
k0 + 2Sk01

)}
. (S2)

where Sk01 =
∑n

i=1(Yki(0) − Yk(0))(Yki(1) − Yk(1))/(n − 1). Since Yki(t) and Yij(t)
are correlated, we apply Lemma 1 of Nadeau and Bengio (2000) to the first term,
yielding,

V

(
1

n

n∑

i=1

{Yki(1)− Yki(0)}
)

= Cov(Yki(1)−Yki(0), Ykj(1)−Ykj(0))+
1

n
E(S2

k1+S2
k0−2Sk01),

(S3)
for i 6= j where

Cov(Yki(1)− Yki(0), Yki(1)− Yki(0)) = Cov
(
f̂k(Xi)τi, f̂k(Xj)τj

)

=
n n

K
( n
K
− 1)− ( n

K
)2(n− 1)

n2(n− 1)
E(τi | f̂k(Xi) = 1)2

=
(n−K)− (n− 1)

K2(n− 1)
κ2
k1

= − K − 1

K2(n− 1)
κ2
k1.

Substituting Equations (S2) and (S3) into Equation S1, we obtain the desired
variance expression.

✷
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S2 Proof of Theorem 2

We begin by writing the proposed GATE estimator as,

τ̂k =
1

n

n∑

i=1

Ui (S4)

where

Ui := Kf̂k(Xi)Yi

(
Ti

q
− 1− Ti

1− q

)
(S5)

and q = n1/n. Next, we prove the following two lemmas.

Lemma S1 lim
n→∞

∑n
i=1 E(Ui)− τk√

n
= 0

Proof We bound the bias of E(τ̂k) by appealing to Theorem 1 of Imai and Li (2021),
which implies,

|E(τ̂k)− τk| ≤
∣∣∣∣∣KE

[∫ F (ĉk(s))

F (ck(s))

E(Yi(1)− Yi(0) | s(Xi) = F−1(x))dx

]∣∣∣∣∣

+

∣∣∣∣∣KE

[∫ F (ĉk−1(s))

F (ck−1(s))

E(Yi(1)− Yi(0) | s(Xi) = F−1(x))dx

]∣∣∣∣∣ (S6)

By the definition of ĉk(s), F (ĉk(s)) is the nk/Kth order statistic of n independent
uniform random variables. Therefore, it follows the Beta distribution with the shape
and scale parameters equal to nk/K and n− nk/K + 1), respectively.

Now, by Assumption 4, we can compute the first-order Taylor expansion of
∫ x

a
E(Yi(1)−

Yi(0) | s(Xi) = F−1(x))dx:

|E(τ̂k)− τk| ≤ |KE [a0{F (ĉk(s))− F (ck(s))}+ o(F (ĉk(s))− F (ck(s)))]|
+ |KE [a1{F (ĉk−1(s))− F (ck−1(s))}+ o(F (ĉk−1(s))− F (ck−1(s)))]|

=|Ka0|
∣∣∣∣

nk

K(n+ 1)
− k

K

∣∣∣∣+ |Ka1|
∣∣∣∣
n(k − 1)

K(n+ 1)
− k − 1

K

∣∣∣∣ + o

(
1

n

)

=O

(
1

n

)
.

Therefore, we have:

lim
n→∞

∑n
i=1 E(Ui)− τk√

n
≤
√
n|E[τ̂k − τk]| ≤

√
n · O

(
1

n

)
→ 0.

✷

Lemma S2 lim
n→∞

sup
i,j:i 6=j i,j≥n

|Corr(Ui, Uj)| → 0.
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Proof Assumption 5 implies that V(Ui) and V(Uj) are positive and finite unless

f̂k(Xi) = 0 for all i (in that case, the convergence result follows trivially). Thus, we
only need to show that Cov(Ui, Uj)→ 0.

Cov(Ui, Uj)

=Cov

(
Kf̂k(Xi)

(
Yi(1)Ti

q
− Yi(0)(1 − Ti)

1− q

)
,Kf̂k(Xj)

(
Yj(1)Tj

q
− Yj(0)(1 − Tj)

1− q

))

=K2 Cov
(
f̂k(Xi)(Yi(1) − Yi(0)), f̂k(Xj)(Yj(1)− Yj(0))

)

+K2
E

[
f̂k(Xi)f̂k(Xj)Cov

(
Yi(1)Ti

q
− Yi(0)(1 − Ti)

1− q
,
Yj(1)Tj

q
− Yj(0)(1 − Tj)

1− q

∣∣∣ {Xi′ , Yi′(0), Yi′(1)}ni′=1

)]

≤
∣∣∣∣

K − 1

K2(n− 1)
κ2k1

∣∣∣∣+K2 n0n1

n2(n− 1)
E

[
f̂k(Xi)f̂k(Xj)

(
Yi(1)

q
+

Yi(0)

1− q

)(
Yj(1)

q
+

Yj(0)

1− q

)]

= O

(
1

n

)
→ 0

Since the final expression is independent of i, j, the bound applies to all i, j and also
the supremum. ✷

Finally, we apply the following the weak-dependence version of Central Limit
Theorem (CLT), specifically the ρ-mixing case, as first proven by Ibragimov (1975):

Theorem S1 (Ibragimov’s Central Limit Theorem) Suppose U1, U2, · · · is a
strictly stationary process with Ui ∈ R, lim

n→∞

√
nE(Ui) = 0, 0 < V(Ui) < ∞ for all i,

and lim
n→∞

sup
i,j:i 6=j i,j≥n

|Corr(Ui, Uj)| → 0. Then define Sn =
∑n

i=1 Ui and σ2
n = V(Sn).

If we have lim
n→∞

σ2
n =∞, and E(|Uk|2+δ) <∞ for some δ > 0, then we have:

σ−1
n Sn

d−→ N(0, 1)

By construction, Ui − τk is a strictly stationary process. Lemma S1 guarantees
lim
n→∞

√
nE(Ui − τk) = 0 while Lemma S2 implies lim

n→∞
sup

i,j:i 6=j i,j≥n
|Corr(Ui, Uj)| → 0.

Assumption 5 implies E(|Uk|2+δ) < ∞ for some δ > 0x, 0 < V(Ui) < ∞, and
lim
n→∞

σ2
n =∞. Thus, all of the required conditions are satisfied, and we directly apply

the theorem to Ui − τk to achieve the desired result. ✷

S3 Proof of Proposition 1

We prove this proposition by finding an example that satisfies it. Define t(x) =
E(Yi(1)− Yi(0) | s(Xi) = F−1(x)). Then, consider a scoring function s and a popu-
lation such that:

t(x) =

{
2 x ≥ F (ck(s))

1 x < F (ck(s))
(S7)

Note that t(x) is bounded everywhere but has a discontinuity. By definition of ĉk(s),
F (ĉk(s)) follows the Beta distribution with the shape and scale parameters equal
to nk/K and n − nk/K + 1, respectively. Therefore, we have the following normal
approximation:

√
n + 1

(
F (ĉk(s))−

nk

K(n + 1)

)
d−→ N

(
0,

k

K

(
1− k

K

))
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In particular, as n → ∞, F (ĉk(s)) is distributed approximately symmetric around
F (ck(s)) = k

K
with an error of O(1/n) and has a standard deviation of O(1/

√
n).

Thus, we have,

E(τ̂k)− τk = KE

[∫ F (ĉk(s))

F (ck(s))

f(x)dx

]
+KE

[∫ F (ĉk−1(s))

F (ck−1(s))

f(x)dx

]

= (2− 1)O

(
1√
n

)
+ (1− 1)O

(
1√
n

)
+O

(
1

n

)

= O

(
1√
n

)

We can now conclude
√
n(E(τ̂k)− τk) 6→ 0. ✷

S4 Proof of Theorem 3

We begin by rewriting each element of τ̂ as,

τ̂k − τ̂ = K

{
1

n1

n∑

i=1

YiTif̂k(Xi) +
1

n0

n∑

i=1

Yi(1− Ti)(1− f̂k(Xi))−
1

Kn1

n∑

i=1

YiTi

−K − 1

Kn0

n∑

i=1

Yi(1− Ti)

}
.

Thus, this quantity is equal toK times the difference between two Population Average
Prescriptive Effect (PAPE) estimators, which are introduced in Imai and Li (2021),
with different budget constraints, k/K and (k − 1)/K. Thus, the diagonal variance
terms follows directly from the application of Theorem 3 of Imai and Li (2021). We
compute the off-diagonal covariance terms as follows:

Cov

{(
f̂k(Xi)−

1

K

)
τi,

(
f̂k′(Xj)−

1

K

)
τj

}

= Cov
(
f̂k(Xi)τi, f̂k′(Xj)τj

)
− 1

K
Cov

(
τi, f̂k(Xj)τj

)
− 1

K
Cov

(
τi, f̂k′(Xj)τj

)

= − K − 1

K2(n− 1)
κk1κk′1 +

K − 1

K3(n− 1)

(
κ2
k1 − κk1κk0

)
+

K − 1

K3(n− 1)

(
κ2
k′1 − κk′1κk′0

)

=
1

K3(n− 1)

{
(K − 1)(κ2

k1 − κk1κk0 + κ2
k′1 − κk′1κk′0)−K(K − 1)κk1κk′1

}
.

We now prove the asymptotic convergence result, following the proof strategy of
Theorem 2. We first write,

τ̂ =
1

n

n∑

i=1

Ui (S8)

where Ui ∈ Rk with the following elements:

Uik := Yi

{
K

q
Tif̂k(Xi) +

K

1− q
(1− Ti)(1− f̂k(Xi))−

Ti

q
− K − 1

1− q
(1− Ti)

}

= (Kf̂k(Xi)− 1)

{
TiYi

q
− Yi(1− Ti)

1− q

}
(S9)

We introduce some properties of Ui.
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Lemma S3 lim
n→∞

sup
i,j:i 6=j i,j≥n

|Corr(Ui,Uj)| → 0.

Proof We calculate the correlation elementwise and then bound it. Note that we
have, for any k, k′ ∈ {1, · · · , K}:

(Corr(Ui,Uj))kk′ = Corr(Uik, Ujk′)

Assumption 2 implies that V(Uik) and V(Ujk′) are positive and finite. Therefore, we
only need to show that Cov(Uik, Ujk′)→ 0. First, we consider the case of k = k′:

|Cov(Uik, Ujk)|

=

∣∣∣∣Cov
(
(Kf̂k(Xi)− 1)

(
TiYi

q
− Yi(1− Ti)

1− q

)
, (Kf̂k(Xj)− 1)

(
TjYj

q
− Yj(1− Tj)

1− q

))∣∣∣∣

≤
∣∣∣Cov

(
(Kf̂k(Xi)− 1) (Yi(1)− Yi(0)) , (Kf̂k(Xj)− 1) (Yj(1)− Yj(0))

)∣∣∣

+
∣∣∣E
[
(Kf̂k(Xi)− 1)(Kf̂k(Xj)− 1)

Cov

(
TiYi(1)

q
− Yi(0)(1− Ti)

1− q
,
TjYj(1)

q
− Yj(1)(1− Tj)

1− q

∣∣∣ {Xi′, Yi′(1), Yi′(0)}ni′=1

)]∣∣∣∣

=

∣∣∣∣
(K − 1)3

K2(n− 1)
κ2
k1 +

2(K − 1)2

K2(n− 1)
κk1κk0 +

(K − 1)

K2(n− 1)
κ2
k0

∣∣∣∣

+

∣∣∣∣
n0n1

n2(n− 1)
E

[
(Kf̂k(Xi)− 1)(Kf̂k(Xj)− 1)

(
Yi(1)

q
+

Yi(0)

1− q

)(
Yj(1)

q
+

Yj(0)

1− q

)]∣∣∣∣

≤
∣∣∣∣
(K − 1)

K2(n− 1)
{(K − 1)κk1 + κk0}2

∣∣∣∣

+

∣∣∣∣
n0n1

n2(n− 1)
E

[
(Kf̂k(Xi)− 1)(Kf̂k(Xj)− 1)

(
Yi(1)

q
+

Yi(0)

1− q

)(
Yj(1)

q
+

Yj(0)

1− q

)]∣∣∣∣

=O

(
1

n

)
→ 0

Since the final expression is independent of i, j, the bound is valid for all Cov(Uik, Ujk)
and in particular the supremum of Cov(Uik, Ujk) over i, j. We prove the same result
for the case with k 6= k′:

|Cov(Uik, Ujk′)|

=

∣∣∣∣Cov
(
(Kf̂k(Xi)− 1)

(
TiYi

q
− Yi(1− Ti)

1− q

)
, (Kf̂k′(Xj)− 1)

(
TjYj

q
− Yj(1− Tj)

1− q

))∣∣∣∣

≤
∣∣∣Cov

(
(Kf̂k(Xi)− 1) (Yi(1)− Yi(0)) , (Kf̂k′(Xj)− 1) (Yj(1)− Yj(0))

)∣∣∣

+
∣∣∣E
[
(Kf̂k(Xi)− 1)(Kf̂k′(Xj)− 1)

Cov

(
TiYi(1)

q
− Yi(0)(1− Ti)

1− q
,
TjYj(1)

q
− Yj(1)(1− Tj)

1− q

∣∣∣ {Xi′, Yi′(1), Yi′(0)}ni′=1

)]∣∣∣∣

=

∣∣∣∣
(K − 1)2

K2(n− 1)
κk1κk′1 +

(K − 1)

K2(n− 1)
κk1κk′0 +

(K − 1)

K2(n− 1)
κk0κk′1 +

1

K2(n− 1)
κk0κk′0

∣∣∣∣

+

∣∣∣∣
n0n1

n2(n− 1)
E

[
(Kf̂k(Xi)− 1)(Kf̂k′(Xj)− 1)

(
Yi(1)

q
+

Yi(0)

1− q

)(
Yj(1)

q
+

Yj(0)

1− q

)]∣∣∣∣
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≤
∣∣∣∣
(K − 1)

K2(n− 1)
{(K − 1)κk1 + κk0}{(K − 1)κk′1 + κk′0}

∣∣∣∣

+

∣∣∣∣
n0n1

n2(n− 1)
E

[
(Kf̂k(Xi)− 1)(Kf̂k′(Xj)− 1)

(
Yi(1)

q
+

Yi(0)

1− q

)(
Yj(1)

q
+

Yj(0)

1− q

)]∣∣∣∣

=O

(
1

n

)
→ 0

Thus, by taking the maximum of these two bounds, we have a valid bound on
supi,j:i 6=j |Corr(Ui,Uj)| that is of order O(1/n). ✷

Lemma S4 lim
n→∞

∑n
i=1 E(Ui)√

n
= 0

Proof This follows directly from Lemma S1 and H0, which asserts that τk = τ for
all k. ✷

Finally, we introduce the multivariate weak-dependence version of the Central
Limit Theorem, specifically the ρ-mixing case, as first proven by Ibragimov (1975):

Theorem S2 (Ibragimov’s Multivariate Central Limit Theorem) Suppose
U1,U2, · · · is a strictly stationary process with Ui ∈ Rm, lim

n→∞

√
nE(Ui) = 0, and

0 < V(Ui)jj <∞ for all i and j ∈ {1, · · · , m}. Then define Sn =
∑n

i=1Ui and Σn =
V(Sn). If we have lim

n→∞
diag(Σn) = (∞, · · · ,∞) and lim

n→∞
sup

i,j:i 6=j i,j≥n
|Corr(Ui,Uj)| →

0 for all i 6= j, and E(‖Uk‖2+δ
2 ) <∞ for some δ > 0, then we have:

Σ−1/2
n Sn

d−→ N(0, I)

By construction, Xi is a strictly stationary process. Lemmas S3 and S4 imply
lim
n→∞

sup
i,j

Corr(Ui,Uj)→ 0 and lim
n→∞

√
nE(Ui) = 0. Assumption 2 implies E(‖Xk‖2+δ

2 ) <

∞, 0 < V(Ui)jj < ∞, and lim
n→∞

diag(Σn) = (∞, · · · ,∞). Thus, all the conditions

of Theorem S2 are satisfied. We directly apply the theorem to the Ui defined in
Equation (S9) to obtain the desired result. ✷

S5 Proof of Theorem 4

The proof of Theorem 3 above established that Σ−1/2τ̂ is asymptotically normally
distributed with the identity variance matrix I. For simplicity, throughout this proof,
we will assume that Σ−1/2τ̂ is exactly normally distributed with unknown mean
θ = (τ1 − τ, · · · , τK − τ), i.e., Σ−1/2τ̂ ∼ N(θ, I).

Let the likelihood of the data τ̂ under the null and alternative hypotheses as
Lτ̂ (H

C
0 ) and Lτ̂ (H

C
1 ). Under the asymptotic normal assumption, the likelihood ratio

is given by:

Lτ̂ (H
C
0 )

Lτ̂ (H
C
1 )

=

{
exp

{
(τ̂ − µ1(τ̂ ))

⊤Σ−1(τ̂ − µ1(τ̂ ))
}

θ ∈ Θ0

exp
{
−(τ̂ − µ0(τ̂ ))

⊤Σ−1(τ̂ − µ0(τ̂ ))
}

θ ∈ Θ1

(S10)
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Where µi(τ̂ ) are the optimal mean vectors given data τ̂ for region j of the hypothesis
test, and is the solution to the following optimization problems for j ∈ {0, 1}:

µj(τ̂ ) = argmin
µ∈Θj

‖τ̂ − µ‖2 (S11)

We can identify the optimal means (µ1,µ0) for each region of the hypothesis test
through this optimization problem because the multivariate normal distribution is
spherical and symmetric.

We use (τ̂−µ0(τ̂ ))
⊤Σ−1(τ̂ −µ0(τ̂ )) as our test statistic. Note that when τ̂ ∈ Θ0,

the statistic is always 0, so the null hypothesis is never rejected and thus we are
consistent. Given that we have a composite test, we are interested in finding the
uniformly most powerful test. This requires calculating the size of a test α, as a
function of the critical value C(α):

α = sup
θ∈Θ0

Pr((τ̂ − µ0(τ̂ ))
⊤Σ−1(τ̂ − µ0(τ̂ )) > C(α) | θ)

Since the supremum must occur at the boundary ∂Θ0 of the polytope Θ0 the set Θ0,
the probability of exceeding C(α) is maximized when the solid angle of the Θ0 region
is minimized. By considering the shape of the polytope Θ0, we recognize that the
boundary points, which minimize the solid angle, are precisely those on the boundary
when all constriants are active:

α = sup
t

Pr((τ̂ − µ0(τ̂ ))
⊤Σ−1(τ̂ − µ0(τ̂ )) > C(α) | τ1 − τ = · · · = τK − τ = t).

We now note that we have translational invariance on this boundary, i.e., all points
along τ1 − τ = · · · = τK − τ have the same probability, yielding,

α = Pr((τ̂ − µ0(τ̂ ))
⊤Σ−1(τ̂ − µ0(τ̂ )) > C(α) | τ1 − τ = · · · = τK − τ = 0)

Therefore, to identify the value of α, we just need the CDF of the statistic (τ̂ −
µ0(τ̂ ))

⊤Σ−1(τ̂ − µ0(τ̂ )) when τ̂ ∼ N(0,Σ). This can be easily estimated using
Monte Carlo simulation. ✷

S6 Proof of Theorem 5

The derivation of bias is essentially identical to that given in Supplementary Ap-
pendix S1 and thus is omitted. To derive the variance, we first introduce the following
useful lemma, adapted from Nadeau and Bengio (2000).

Lemma S5

E(S2
Fk) = V(τ̂ ℓk)− Cov(τ̂ ℓk , τ̂

ℓ′

k ),

V(τ̂k(F, n−m)) =
V(τ̂ ℓk)

L
+

L− 1

L
Cov(τ̂ ℓk, τ̂

ℓ′

k ).

where ℓ 6= ℓ′.

The lemma implies,

V(τ̂k(F, n−m)) = V(τ̂ ℓk)−
L− 1

L
E(S2

Fk). (S12)
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We then follow the same process of derivation as in Appendix S1 for the first term.
The only difference occurs in the derivation of the covariance term:

Cov(Y ℓ
ki(1)− Y ℓ

ki(0), Y
ℓ
ki(1)− Y ℓ

ki(0))

=Eℓ

[
CovX,Y

(
f̂ ℓ
k(X

(ℓ)
i )τi, f̂

ℓ
k(X

(ℓ)
j )τj

)]
+ Covℓ

[
EX,Y [f̂

ℓ
k(X

(ℓ)
i )τi],EX,Y [f̂

ℓ
k(X

(ℓ)
j )τj ]

]

=
mm

K
(m
K
− 1)− (m

K
)2(m− 1)

m2(m− 1)
E(τi | f̂k(Xi) = 1)2 + Vℓ

[
EX,Y [f̂

ℓ
k(X

(ℓ)
i )τi]

]

=− Eℓ

[
K − 1

K2(m− 1)
(κℓ

k1)
2

]
+

1

K2
Vℓ

(
κℓ
k1

)
. (S13)

✷

S7 Proof of Lemma 1

Since L is fixed, n → ∞ implies m = n/L → ∞. Therefore, the variance expression
in Theorem 5 reads:

V(τ̂k(F, n−m))→
VZ∞

train
(κℓ

k1)

K2
− L− 1

L
E(S2

Fk)

≥
VZ∞

train
(κℓ

k1)

K2
− L− 1

L
V(τ̂k(F,∞))

=
VZ∞

train
(κℓ

k1)

K2
− L− 1

L

VZ∞

train
(κℓ

k1)

K2

=
1

L

VZ∞

train
(κℓ

k1)

K2

where the inequality comes from Lemma 1 of Nadeau and Bengio (2000). Separately,
we also have:

V(τ̂k(F, n−m))→
VZ∞

train
(κℓ

k1)

K2
− L− 1

L
E(S2

Fk) ≤
VZ∞

train
(κℓ

k1)

K2

Together, we have, as n→∞:

1

L

VZ∞

train
(κℓ

k1)

K2
≤ V(τ̂k(F, n−m)) ≤

VZ∞

train
(κℓ

k1)

K2

Therefore, VZn
train

(κℓ
k1) → 0 as n → ∞ is a necessary and sufficient condition for

V(τ̂k(F, n−m))→ 0. ✷

S8 Proof of Theorem 6

We now prove the asymptotic convergence result. Note that we can write:

τ̂k(F, n−m) =
1

m

m∑

i=1

Ui,

where Ui ∈ R is defined as,

Ui :=
1

L

L∑

ℓ=1

Kf̂ ℓ
k(X

(ℓ)
i )Y

(ℓ)
i

(
T

(ℓ)
i

q
− 1− T

(ℓ)
i

1− q

)
. (S14)

We now prove two lemmas.
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Lemma S6 lim
m→∞

∑m
i=1 E(U

(ℓ)
i )− τk(F, n−m)√

m
= 0

Proof Utilizing Lemma S1, we have that:
∣∣∣∣∣

m∑

i=1

E(U
(ℓ)
i )− τk(F, n−m)

∣∣∣∣∣ ≤
1

L

L∑

ℓ=1

|E(τ̂ ℓk(F, n−m))− τ ℓk(F, n−m)|

=
1

L

L∑

ℓ=1

EZ−ℓ

(
O(

1

m
)

)
= O

(
1

m

)
.

where the first equality follows because the estimator for each fold τ̂ ℓk(F, n − m) is
equivalent to the non-cross-fitting estimator under m samples and so Lemma S1 is
applicable. Thus,

lim
m→∞

∑m
i=1 E(Ui)− τk(F, n−m)√

m
≤
√
mO

(
1

m

)
≤ 1√

m
→ 0

✷

Lemma S7 lim
m→∞

sup
i,j:i 6=j i,j≥m

|Corr(Ui, Uj)| → 0.

Proof Assumption 5 implies that V(Ui) and V(Uj) are positive and finite unless

f̂
(ℓ)
k (X

(ℓ)
i ) = 0 for all i and ℓ, in which case the convergence result follows trivially.

Thus, we only need to focus on proving Cov(Ui, Uj)→ 0:

Cov(Ui, Uj)

=K2Cov

(
1

L

L∑

ℓ=1

f̂ ℓ
k(X

(ℓ)
i )Y

(ℓ)
i

(
T

(ℓ)
i

q
− 1− T

(ℓ)
i

1− q

)
,
1

L

L∑

ℓ=1

f̂ ℓ
k(X

(ℓ)
j )Y

(ℓ)
j

(
T

(ℓ)
j

q
−

1− T
(ℓ)
j

1− q

))

=
K2

L2

L∑

ℓ=1

L∑

ℓ′=1

Cov

(
f̂ ℓ
k(X

(ℓ)
i )Y

(ℓ)
i

(
T

(ℓ)
i

q
− 1− T

(ℓ)
i

1− q

)
, f̂ ℓ′

k (X
(ℓ′)
j )Y

(ℓ′)
j

(
T

(ℓ′)
j

q
−

1− T
(ℓ′)
j

1− q

))

Using the proof of Lemma S2, we have:

Cov(Ui, Uj) ≤
K2

L2

L∑

ℓ,ℓ′=1

Cov
(
f̂ ℓ
k(X

(ℓ)
i )(Y

(ℓ)
i (1)− Y

(ℓ)
i (0)), f̂ ℓ′

k (X
(ℓ′)
j )(Y

(ℓ′)
j (1)− Y

(ℓ′)
j (0))

)
+O

(
1

m

)

≤K
2

L2

L∑

ℓ,ℓ′=1

Cov(τ̂ ℓk, τ̂
ℓ′

k ) +O

(
1

n

)

≤K
2

L2

L∑

ℓ,ℓ′=1

V(τ̂ ℓk) +O

(
1

m

)

Assumption 6 implies that V(τ̂ ℓk)→ 0, therefore Cov(Ui, Uj)→ 0. Note that the final
expression is independent of i, j and thus the bound applies to all i, j and also the
supremum. Therefore, we are done. ✷

Finally, we use the Ibragimov’s CLT as introduced as Theorem S1. By con-
struction, Ui − τk(F, n − m) is a strictly stationary process. Lemma S6 guarantees
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lim
m→∞

√
mE(Ui−τk(F, n−m)) = 0. Lemma S7 guarantees lim

m→∞
sup

i,j:i 6=j i,j≥m
|Corr(Ui, Uj)| →

0. By the existence of third moments for Yi(t) and V(Yi(t)) > 0 (t = 0, 1), we have
E(|Uk|2+δ) < ∞, 0 < V(Ui) < ∞, and lim

m→∞
σ2
n = ∞. Thus, all conditions of Ibragi-

mov’s CLT are satisfied, and we directly apply the theorem to Ui − τk to obtain the
final result.

S9 Proof of Theorem 7

The proof follows similarly to that of Theorem 3. The results for the variance terms
follow directly from combining Theorem 3 with the additional efficiency gain, i.e.,
E(S2

Fk),E(S
2
Fkk′), under cross-fitting as introduced in Equation (S12).

To prove the asymptotic convergence result, we write,

τ̂ =
1

n

m∑

i=1

Ui (S15)

where Ui ∈ Rk with elements:

Uik :=
1

L

L∑

ℓ=1

(Kf̂ ℓ
k(X

(ℓ)
i )− 1)Y

(ℓ)
i

(
T

(ℓ)
i

q
− 1− T

(ℓ)
i

1− q

)
. (S16)

As before, we prove the following lemmas.

Lemma S8 lim
m→∞

sup
i,j:i 6=j i,j≥m

|Corr(Ui,Uj)| → 0.

Proof We calculate the correlation elementwise and then bound it. Note that we
have, for any k, k′ ∈ {1, · · · , K}:

(Corr(Ui,Uj))kk′ = Corr(Uik, Ujk′)

Assumption 2 implies that V(Uik),V(Ujk′) are positive and finite. Therefore, we only
need to show that Cov(Uik, Ujk′)→ 0. First, we show it for the case that k = k′:

|Cov(Uik, Ujk)|

=

∣∣∣∣∣Cov
(
1

L

L∑

ℓ=1

(Kf̂ ℓ
k(X

(ℓ)
i )− 1)Y

(ℓ)
i

(
T

(ℓ)
i

q
− 1− T

(ℓ)
i

1− q

)
,
1

L

L∑

ℓ=1

(Kf̂ ℓ
k(X

(ℓ)
j )− 1)Y

(ℓ)
j

(
T

(ℓ)
j

q
−

1− T
(ℓ)
j

1− q

))∣∣∣∣∣

≤ 1

L2

L∑

ℓ,ℓ′=1

Cov

(
(Kf̂ ℓ

k(X
(ℓ)
i )− 1)Y

(ℓ)
i

(
T

(ℓ)
i

q
− 1− T

(ℓ)
i

1− q

)
, (Kf̂ ℓ′

k (X
(ℓ′)
j )− 1)Y

(ℓ′)
j

(
T

(ℓ′)
j

q
−

1− T
(ℓ′)
j

1− q

))

≤ 1

L2

L∑

ℓ,ℓ′=1

∣∣∣CovZ

(
(Kf̂ ℓ

k(X
(ℓ)
i )− 1)

(
Y

(ℓ)
i (1)− Y

(ℓ)
i (0)

)
, (Kf̂ ℓ′

k (X
(ℓ′)
j )− 1)

(
Y

(ℓ′)
j (1)− Y

(ℓ′)
j (0)

))∣∣∣

+O

(
1

m

)

where the last inequaliity follows from Lemma S3, and the law of total covariance.
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Using the argument that is similar to the proof of Lemma S7, we can bound this
covariance term by:

|Cov(Uik, Ujk)| ≤
K2

L2
V(τ̂ ℓk − τ̂ ) +O

(
1

m

)
= O

(
1

m

)
→ 0

where the last equality follows from the fact that under Assumption 6, V(τ̂ ℓk) → 0.
Since this expression is independent from i, j, the bound is valid for all Cov(Uik, Ujk),
and the supremum of Cov(Uik, Ujk) over i, j.

Following the same logic, for k 6= k′, we have:

|Cov(Uik, Ujk′)|

≤ 1

L2

L∑

ℓ,ℓ′=1

∣∣∣CovZ

(
(Kf̂ ℓ

k(X
(ℓ)
i )− 1)

(
Y

(ℓ)
i (1)− Y

(ℓ)
i (0)

)
, (Kf̂ ℓ′

k′(X
(ℓ′)
j )− 1)

(
Y

(ℓ′)
j (1)− Y

(ℓ′)
j (0)

))∣∣∣

+O

(
1

m

)

≤K
2

L2

√
V(τ̂ ℓk − τ̂)V(τ̂ ℓk′ − τ̂ ) +O

(
1

m

)

=O

(
1

m

)
→ 0

Thus, by taking the maximum of these two bounds, we have a valid bound on
supi,j:i 6=j |Corr(Ui,Uj)| that is O( 1

m
). ✷

Lemma S9 lim
m→∞

∑m
i=1 E(Ui)√

m
= 0

Proof This follows directly from Lemma S6 and HF0, which asserts that τk(F, n−
m) = τ for all k. ✷

Finally, we use the multivariate Ibragimov’s Central Limit Theorem, introduced as
Theorem S2. By construction, Xi is a strictly stationary process. Lemmas S8 and S9
guarantee lim

m→∞
sup
i,j

Corr(Ui,Uj)→ 0 and lim
m→∞

√
mE(Ui) = 0. Assumption 2 implies

E(‖Xk‖2+δ
2 ) < ∞, 0 < V(Ui)jj < ∞, and lim

m→∞
diag(Σm) = (∞, · · · ,∞). Thus, all

conditions of Ibragimov’s CLT are satisfied, and we directly apply the theorem to the
Ui defined in Equation (S16) to obtain the final result.
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