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Abstract

We document that investment committees of major VCs use a voting rule where
one partner ‘championing’ an early-stage investment is sufficient to invest. Their
stated reason for this rule is to ‘catch outliers’. The same VCs use a more conven-
tional ‘majority’ rule for later-stage investments. This evidence points to a model in
which voting partners get signals about different project dimensions and superstar
projects excel on some dimensions even if flawed on others. In this case, if the distri-
bution of project values is sufficiently heavy-tailed, as for early-stage investments,
a champions rule is optimal, while more consensus is optimal otherwise.
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1 Introduction

Corporate decisions, whether they are about hiring, R&D financing or investment, are

often made by a committee. When the outcome of those decisions is ex-ante uncertain, the

goal of the committee is to effectively aggregate information into a decision with a positive

expected present value. Theoretical work on information aggregation in voting, going

back to the famous Condorcet’s jury theorem, has provided compelling arguments for the

benefits of the ‘majority voting rule’ (Condorcet (1785); Ladha (1992); Feddersen and

Pesendorfer (1997), Feddersen and Pesendorfer (1998)), or more generally, requiring some

consensus to change the status quo decision. Using venture capital committee investing

as a laboratory, this paper places bounds on the benefits of consensus in committee

decisions. VC investments have substantial implications for economic growth1 and as

such, understanding their decision-making process is of first-order importance.

Using new evidence from a survey of the 50 largest U.S. venture capital (VC) investors,

we show that while all use an investment committee to make decisions, a majority of these

VC firms use a voting rule (either formal or informal) where the investment committee

agrees to undertake the investment as long as at least one partner champions the deal

(even if others are not bullish on the investment). This ‘champions voting rule’ is used

primarily in seed and early stage investments, while in later stage investments, VC firms

tend to move to more consensus-based voting rules. Even if the goal in seed and early

stage investing is to ‘move quickly’ or ‘spray and pray’, it is significant that the selection

rule for investments does not prioritise options where multiple partners’ quick reaction

was positive, and instead allows for emphatic support by just one partner.

In a followup survey we sought to understand the reasons for the use of the champi-

1As Lerner and Nanda (2020) show, VC-backed firms account for 89 percent of recorded R&D, and
almost half of all non-financial IPOs in the past 20 years.
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ons rule in early-stage investments. We offered three possible explanations for the use of

champions voting rule for seed and early-stage investments but not for later-stage invest-

ments. These explanations are motivated by theory and were suggested to us by either

academics or VC practitioners. The first explanation is that the champions voting rule

is used because it is better at ‘catching outliers’ than the alternative decision rules. The

second explanation is that early-stage deals require more specialized expertise that only

few partners possess, so it makes sense to listen to whether the person with the most

experise in a particular project type champions for the deal or not. Finally, the third ex-

planation is related to effort: earlier-stage deals are smaller in the amount of investment,

so the partnership may want to have only one or few partners spend effort on diligence;

in addition, the voting champion ‘owns’ the decision and thus has stronger incentives to

ensure its success. We asked VC firms to evaluate the importance of each explanation.

While all three explanations received some support, the overwhelming response was that

firms use the rule to ‘catch outliers’, stating that the best early-stage investments are

outstanding on some but flawed on many other dimensions and requiring more consensus

risks missing the best investments as many partners would focus on the flaws. This evi-

dence flies directly in the face of conventional wisdom, where voting is often considered

valuable as a way to ‘trim outliers’ and emphasize the wisdom of the majority. These

surveys raise a natural question: under what circumstances is too much consensus a bad

thing?

To better understand the conditions under which the ‘champions voting rule’ arises

as an optimal way to catch outliers and maximize expected returns for a committee, we

evaluate our survey evidence through the lense of several canonical models of information

aggregation. It is not a general implication of information aggregation models that the

champions voting rule is optimal, even if catching right-tail outliers drives value. Thus,
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the survey evidence is helpful at differentiating between different canonical models of

information aggregation in committees.2 We show that the survey evidence is inconsistent

with models with binary project types as well as with models with infinitely many project

types in which each committee member’s signal equals the true value of the project plus

i.i.d. Normal error term, which has been a workhorse model of information aggregation in

many settings.3 In particular, in this model the champions voting rule does similarly well

at catching projects from the right tail as the majority voting rule, and even if the tail

of the distribution of project values is very heavy, we do not find the champions voting

rule to dominate the majority voting rule. Instead, we argue that the survey evidence is

more consistent with the model in which the fundamental value of a project is determined

by a number of dimensions, the quality of each dimension is independent from the other

dimensions, and each partner gets an informative signal about one dimension but not the

others.4

A key implication of this model is that the degree to which a voting rule with more

or less consensus is optimal depends on the tail behavior of the distribution from which

fundamentals are drawn. When the fundamentals observed by committee members are

drawn from a subexponential – heavy right-tailed – distribution, the champions rule

2It is important to exercise caution in interpreting the survey results due to the potential disparity
between the broad wording of the ’catching outliers’ question and the specific dimensions of our pro-
posed theory. Participants may have expressed agreement with the idea of ’catching outliers’ based on
their general understanding of its importance in VC investing, rather than explicitly aligning with the
dimensions of our voting rule.

3This is a classic setting to study information aggregation in financial markets (e.g., Hellwig (1980),
Verrecchia (1982), Goldstein and Yang (2017)). It has also been used to study information aggrega-
tion in committees (Sah and Stiglitz (1986), Csaszar and Eggers (2013)), and the optimal extent of
experimentation in innovation (Azevedo et al. (2020)).

4In interpreting the conclusions drawn from our study, it is crucial to recognize that our model relies
on the assumption that there exists information or knowledge among VC partners that cannot be shared
or conveyed. This assumption underscores the importance of orthogonal knowledge in driving the voting
process and capturing unique expertise. While we have simplified this representation by associating the
knowledge with specific dimensions, it is worth noting that this knowledge can encompass a combination
of expertise across various dimensions.
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‘catches an outlier’ with a higher probability than any other voting rule, and when the

distribution tails are sufficiently heavy, it emerges as the optimal voting rule to maximize

expected returns. In contrast, when fundamentals are distributed with thinner right tails,

majority voting rules tend to perform better.

The intuition here stems from two key attributes of heavy right-tailed distributions:

first, the fact that the distribution of project payoffs exhibits heavy right tails implies

that much of the potential value from investment comes from maximizing the probability

of finding a superstar project. Indeed, as Bill Gurley, one of the leading VC investors,

highlighted5:

. . . obviously you can’t do every deal, you can’t do every investment, you go
broke. But getting overly jazzed about correctly identifying a negative or a no,
it’s just not that big a deal. It’s not the job. The job is to find the outliers.

Second, voting rules that require many affirmative votes (such as majority or unani-

mous agreement) result in the undertaking of projects that tend to be good on many

dimensions but are likely to miss those that are exceptional on few dimensions but are

mediocre elsewhere. An important property of subexponential distributions – known as

the ‘catastrophe principle’ implies that a superstar venture is more likely to driven by

one exceptional characteristic and many mediocre ones rather than by many very good

characteristics. Together these two effects – the importance of getting decisions on su-

perstar projects correct and the fact that a superstar project is likely to be driven by

one superstar characteristic rather than many good ones – implies that the champions

rule dominates other voting rules in contexts where the distribution of information and

returns have heavy right tails. Other decision rules, such a majority rule or unanimous

agreement would vote down superstar projects with a high positive probability – because

it is possible and even likely that they have many weak characteristics.

5https://tim.blog/2023/01/25/bill-gurley-transcript/
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In Appendix D, we provide quotes from the VC investors we surveyed suggestive

of these mechanisms. Here we note two by Marc Andreessen, co-founder of VC firm

Andreessen Horowitz, which show how VCs think about early-stage investments6:

Google, Facebook, eBay and Oracle all had massive flaws as early-stage ven-
tures, but they also had overpowering strengths.

and

Aggregate scores [from all partners] don’t correlate strongly with ultimate re-
turns. With that approach, you get the mush in the middle, with no big flaws
but no great strengths.

For VCs, significant flaws are not deal-breakers, as strong negative components in valu-

ation can be compensated for by even stronger positives. Therefore, requiring consensus

when every partner cannot see all the positives or negatives themselves, can result in

rejecting the best deals.

Having discovered that the benefits from using a champions voting rule are related to

the tail behavior of the fundamentals, we next turn to analyzing whether this relation is

consistent with the results of our surveys. While finding the fundamental distributions is

out of reach, we can find the ex-post realizations of investments by round. We use novel

data on venture capital return multiples at the level of each startup’s round of financing

to calculate the distribution of return multiples for different investment stages. We are

therefore able to directly corroborate the intuition that returns of late stage investments

are substantially less skewed than seed and early-stage investments. Our estimates of the

tail index show that the distribution of returns of seed-round investing are significantly

more heavy-tailed than those of any of the other rounds, while the returns of late-round

investing are significantly less so.7 To the extent that the ex-ante valuations for these

6Eisenmann and Kind (2014), page 8.
7We use Hill’s estimator of tail indices with 20%, 10%, and 5% cutoffs, as well as a log-log rank size

regression model. A more complete description is presented in Section 4.

6



stages are distributed in a manner similar to the ex-post returns, this would provide a

rationale for why venture capital investors use the champions rule primarily in the seed

and early-stage investments and migrate to more traditional voting rules for later stage

investments. This is consistent with the literature on the topic: as documented by Hall

and Woodward (2010) and Kerr, Nanda, and Rhodes-Kropf (2014), over half of startups

receiving VC investment fail completely while a few generate enormous returns. Scherer

and Harhoff (2000) provide evidence that returns in venture capital, and for technological

innovation more generally have ‘heavy right tails’ and there have been explicit suggestions

among practitioners that early-stage VC returns follow a power law (Pareto) distribution

(Thiel and Masters 2014).

Lastly, we evaluate the quantitative importance of using a champions rule instead of

traditional voting in contexts such as seed and early-stage venture capital, by analyzing a

numerical example of the model whose inputs fit the VC context. We consider a fund with

5 partners that makes 25 investments and assume that the distribution of fundamentals

has a similar tail index to the estimate of the tail index for seed investments. In our

numerical example, the model-implied probability that the VC will be able to “catch a

unicorn” (specifically, have at least one of the investments deliver a multiple that is 10X

or more) is 3.2 times higher for the champions rule than a majority rule.

The theory provides an explanation for the use of a champions rule. And our data

on returns provides support for the underlying assumptions of the model. However, it is

possible that the correlations in the data could come from other reasons. While we have

no way to rule out every other possible explanation, the follow-up survey mentioned earlier

asked the VC firms why they use the champions rule. The overwhelming response was

that firms use the rule to ‘catch outliers’, stating that the best early-stage investments are

outstanding on some but flawed on many other dimensions and requiring more consensus
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risks missing the best investments as many partners would focus on the flaws. This

evidence supports our theory and flies directly in the face of conventional wisdom, where

voting is often considered valuable as a way to ‘trim outliers’ and emphasize the wisdom

of the majority.

The lower chance of selecting exceptional ideas in early-stage settings when the cham-

pions rule is not used is useful to put into context, because the dominance of the champions

rule for subexponential distributions relies on the assumption that committee members

have the same objective. If individual committee members have private benefits (e.g.

Scharfstein and Stein (2000)), the champions rule can result in strategic championing for

projects that are bad but have high private benefits. The cost of ‘over championing’ poor

projects can over-ride the potential benefits from selecting outlier projects. In such an

instance, more traditional voting rules are likely to be second best alternative, providing a

potential rationale for the limited observed use of this type of voting – which we document

for venture capital but does not appear to be widely used when selecting between poten-

tial projects within corporate R&D of large companies. Additionally, while there might

be other factors affecting VC voting, such as disagreement, non-rational expectations, or

inefficiencies in decision-making, we believe the simplified setting we consider captures the

intuition underlying the advantage of the champions rule at “catching outliers.” However,

we do consider a version of the model with behavioral biases in the appendix.

Literature Review

The paper is primarily related to a large literature on decision making in committees

whose members have dispersed information, surveyed in Gerling et al. (2005). Most of

the literature on committee decision-making and voting focus attention on the setting with

binary states and signals. Sah and Stiglitz (1988) present a theory of optimal committee
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voting rules in this environment, building on their earlier insights in Sah and Stiglitz

(1986). In this framework, the problem of finding the optimal voting rule reduces to a

statistical problem of finding the number of positive signals at which the committee is

just indifferent between investing and not investing. While this setting can generate the

optimality of requiring no consensus, it does not capture the intuition that the champions

rule is better at ‘catching outliers’, while the majority rule results in ‘mush in the middle’

projects.

Two other strands of the literature on committee decision-making are related. First,

several papers analyze models with the same information structure that we find most

consistent with our survey evidence: the value of a project is a linear function of multiple

independent signals, and each committee member learns one of them (Moldovanu and

Shi (2013); Malenko (2014); Name-Correa and Yildirim (2019)). In particular, Section

5.3 of Name-Correa and Yildirim (2019) studies optimal voting rules in this model when

the distribution of signals is an interval and the uninformed decision-maker is indifferent

between the two actions. The element that we focus on is the relation between the tail

behavior of the state and signal distributions and the optimal voting rule.

Second, several existing papers establish the optimality of the unanimity rule in various

environments (Coughlan (2000); Bond and Eraslan (2010); Jackson and Tan (2013); Chan

et al. (2018)). In Coughlan (2000), unanimity can be optimal if committee members can

communicate all information prior to the vote and they have similar preferences. In

Bond and Eraslan (2010), the unanimity rule is beneficial because it incentivizes the

proposer to make a proposal that is attractive to the rest of the group. In Jackson and

Tan (2013), the unanimity rule is beneficial because it encourages committee members

to disclose verifiable information prior to the vote. Finally, in Chan et al. (2018), the

unanimity rule can be beneficial because in an environment with committee members
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with heterogeneous discount factors unanimity makes makes patient members pivotal,

leading to more information acquisition and more precise decisions. However, since the

unanimity rule is the opposite of the champions rule, the forces highlighted in these papers

work against explaining the use of the champions rule by VC investment committees.

Our work also builds on a long literature that has examined venture capital’s role

in financing innovation. In particular, this research has fleshed out many of the tools

venture capital investors use to improve the outcome of the startups they back, such as

staged financing (Gompers 1995; Bergemann and Hege 1998), securities that have state-

contingent cash flow and control rights (Hellmann 1998; Cornelli and Yosha 2003; Kaplan

and Strömberg 2003) and the active role of venture capital investors on boards of port-

folio companies (Hellmann and Puri 2000, 2002; Lerner 1995). Our work builds on the

nascent literature on understanding decision making in venture capital partnerships in-

cluding how venture capital investors select investments (Kaplan, Sensoy, and Stromberg

2009; Gompers et al. 2020), which is an important element to understanding the role of

venture capital investors in financing innovation (Lerner and Nanda 2020). This work

is related to the broader literature on the incentive, agency and organizational frictions

among intermediaries financing innovation (Manso 2011), the role this can play in sur-

facing transformational ideas (Bloom et al. 2020) and the fact that radical innovations

that upend existing firms often arise from venture capital despite the much larger R&D

expenditure directed towards the financing of innovation in large companies across the

world (Kortum and Lerner 2000).

The remainder of the paper is organized as follows: Section 2 provides survey evidence

on voting practices and justifications for VCs. Section 3 lays out a model of voting and

shows conditions for the optimality of a champions voting rule. Section 4 shows empirical

evidence consistent with the conditions from Section 3 and provides a quantitative exercise
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to measure the size of the benefits. Section 5 concludes.

2 Survey Evidence on VC Voting Rules

Venture capital provides a unique context within which to examine empirical patterns

related to committee decision making for several reasons. First, VC partnerships view

project selection as among the most important determinants of their success (Gompers

et al. (2020)) and in addition appear to exhibit substantial heterogeneity in the ways in

which they make investment decisions. Second, it has been well-documented that venture

capital returns are driven by a few outliers (e.g., Hall and Woodward (2010) and Scherer

and Harhoff (2000)), often referred to as ‘home runs’ by practitioners. Indeed, there has

even been explicit suggestions among practitioners that early-stage VC returns follow a

power law (Thiel and Masters (2014)). We conducted two surveys, the key questions of

which can be seen in Appendix D.

2.1 Evidence on Voting Rules

We follow the examples of Graham and Harvey (2001) and Gompers et al. (2020) to

survey VC investors on their voting practices. While our empirical approach builds on

and is most similar to Gompers et al. (2020), we note some key differences. Gompers et al.

(2020) have an extensive survey of over 650 VC investors across a wide range of topics.

Our approach focuses in more detail on voting practices within investment committees,

and also aims to look at those who invest across multiple stages so as to get within-VC

variation in voting practices across rounds. Since it is only larger VC funds that typically

have the ability to invest across seed, early and late stage, we focus our survey on U.S

based managing partners at 55 the largest VC firms that make investments into U.S
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startups. Our measure of size is based on the cumulative fund raising over the 2016-2018

period as calculated from Pitchbook. Figure 12 documents the key questions used for

this analysis as they were posed in the survey. As can be seen from the questions, we

asked about both the formal voting process used in these VC firms as well as the informal

process. We received responses from 35 of these 55 firms, implying a response rate of

nearly two-thirds.

As noted above, the VC firms we targeted were larger investors. Despite our focus on

a narrow sample of VCs, it is important to recognize that these investors are responsible

for a disproportionate share of the dollars invested into VC-backed startups in U.S. and

hence are more representative of VC investing than might be expected. For example,

Lerner and Nanda (2020) examine fund raising by VC investors between 2014 and 2018

and find that the top 50 VCs (or approximately 5% of those who raised funds in that

period) accounted for half of the total capital raised over that period.

The average investment committee at the VC firms we surveyed had 10.4 partners

compared to an average of 4.8 partners in the VC firms surveyed by Gompers et al.

(2020). Despite this difference and the fact that over half our sample comprised VCs

investing from funds over $500 million, the partnership size in VCs remained relatively

small. VC firms in the 75th percentile in our sample had 13 partners on their investment

committee. In other words, the size of investment committees in VC firms appears not

to scale proportionately to the size of the funds. This lack of scaling among the partners

on investment committees is an interesting fact, one that seems different from partners

at other professional service firms such as lawyers and management consultants.

Having documented the characteristics of the VC firms and the questions asked of the

respondents, we turn next to outlining the key results. The charts report results broken

down by the stage of the investment being considered when the partners are voting. The
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first bar corresponds to “Seed” stage investments, which are the earliest investments into

startups and are believe to have the most skewed returns. The next bar corresponds to

“Early Stage” investments, typically considered to be Series A and at times, Series B

investments. The final bar corresponds to later stage or “Growth Stage” investments,

which are typically made into more mature startups which have already shown some

degree or product market fit, are often generating some revenue and hence are the least

skewed in terms of the profile of returns.8

Within each of these stages, we further break down the results by share of the firms

that report using different types of voting rules. As can be seen from the bars in Figure 1,

60% of all VCs in our sample decide whether to deploy capital into a Seed stage startup

by using a champions voting rule in their investment committee, where a single partner

can go ahead and do the deal regardless of what the others feel. A further 30% of VCs

use a variant of the champions rule, where a single champion can do the deal as long

as there is no veto. For investments into early-stage ventures, the share of VCs using

champions voting falls to 20% and a much larger proportion of VCs use some form of

majority or consensus to decide which investment to make. By the growth stage, this

share falls even further. It is worth emphasizing that since most of these VCs invest across

all stages, a shift in the share of VCs voting using the champions rule across the different

stages is evidence of the same VCs changing their voting rule across stages. This provides

compelling evidence of voting rules shifting by stage, as the variation being documented

is “within VC” as opposed to “across VCs”, the latter of which is much more subject to

concerns about unobserved heterogeneity.

In Figure 2, we further document that this pattern continues to exist in a very similar

manner when one examines the informal voting practices within the investment commit-

8We use novel data to validate the difference in skew across rounds of financing in Section 4.
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tees. At the Seed stage, an enthusiastic champion is sufficient for investment in 90%

of investment committees regardless of the formal voting rule in place, implying that in

practice the veto is rarely used. However, this deference to the enthusiastic champion

on the investment committee falls within the same VC firm by the Early stage, with a

greater proportion of investment committees requiring either a majority of individuals to

be enthusiastic, or all individuals to be enthusiastic. By the growth stage, the informal

process reflects even less deference to an enthusiastic champion.

2.2 Evidence on Voting Reasons

We turn next to understanding why these different voting practices might be undertaken

at VC firms, in particular the emphasis on champions voting when investing in extremely

early stage startups.

The same set of 55 firms were sampled, and we received 19 responses, implying a

response rate of a little over a third. The average investment committee at the responding

firms had 12.8 partners. The most recent fund raised for 16 of the 19 respondents was at

least $500 million, while the remaining three were between $150 million and $500 million.

We told the participants the results of our initial survey: that champions voting ap-

pears to be prevalent on early-stage deals, and proposed three explanations, suggested to

us by colleagues that we shared the results of our initial survey with. The first explanation

was that “earlier-stage deals require[d] more specialized expertise than late-stage deals, so

partnerships give people with expertise greater discretion in doing earlier-stage deals but

not later-stage deals.” Formally, only one or few partners get informative signals about

early-stage deals, but more partners get informative signals about later-stage deals. The

second explanation was that “the best early-stage investments can be extremely promis-

ing in some dimensions but flawed in others. Requiring too much consensus can therefore
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lead partnerships to pass on the best deals.” The formal model that shows this logic is

presented in the following section. The last explanation was that “VCs care less about

smaller deals, and don’t want too many partners to spend effort on diligence. Leaving the

decision to a champion for these smaller deals also incentivizes greater effort on the part of

the champion.” Formally, each partner needs to incur an effort cost to get an informative

signal about the project. If there is a fixed cost of effort, it can be optimal to have only

one partner acquire information.9 If degree of signal precision is endogenous and one very

precise signal is better than several moderately precise, then concentrating information

production on one partner can result in a better decision.10 For each explanation, the

participants were asked if they “strongly agreed”, “somewhat agreed”, “neither agreed

nor disagreed”, “somewhat disagreed” or “strongly disagreed”.

We present the key results in two figures. In the first, Figure 3, we show the percentage

of respondents who agreed with the three explanations we offered. The first set of three

bars shows the percentage who either “somewhat agreed” or “strongly agreed”, while the

second set shows the percentage who “strongly agreed”. The dark blue bars correspond

to the “catching outliers” explanation; the light blue bars correspond to the “expertise”

explanation, while the grey bars correspond to the “effort” explanation. While all three

enjoy at least some support, that support is clearly greatest for the “catching outliers”

explanation, with over half (58%) of respondents strongly agreeing with it, and 84% at

least somewhat agreeing.

The second, Figure 4 shows the percentage of the time one explanation was ranked

more highly by respondents than others. The first set of three bars shows the fraction

9See Yung (2005) for a model based on this logic that shows that underwriters benefit from restricting
participation in an IPO.

10See Khanna and Mathews (2011) for a model in which herding on an initial decision in a multistage
context can result in more informative and better outcomes due to a related intuition.
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of the responses that had each explanation as the joint or outright leader; the second

set shows the fraction of responses that had each explanation as the outright leader; the

third set shows the fraction of responses that had each explanation dominated by at

least one other. Again, “catching outliers” is most frequently the favorite explanation

from respondents, dominating 84% of the time, while it is only dominated by another

explanation in 16% of responses.

Given that VCs tend towards champions voting, and that their justification for doing

so explicitly refers to catching outliers, we next set up and solve a model to find the

conditions under which doing so would maximize expected value.

3 Interpreting Survey Evidence via Models of Infor-

mation Aggregation in Committees

To sum up, the evidence from our surveys and the stated reasons why VC investment

committees use certain voting rules can be summarized in the following way:

• Investment committees use the champions rule for seed and sometimes for early-

stage investment proposals. The same investment committees tend to shift to the

majority rule when they evaluate potential investment in later-stage projects.

• When asked why they adopt the champions voting rule, the explanation that receives

the most support is that the champions voting rule performs better at “catching

outliers” than other voting rules.

• There is belief that requiring a lot of consensus results in “mush in the middle”

investment decisions, with no big flaws but no great strenghts.
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Our next goal is understand which models of committee decision-making are consistent

with these facts. While “effort” and “expertise” expalantions received some support in

our second survey, they are not the explanation that received the most support. As a

consequence, we abstract away from the issues of effort in information acquisition and

from asymmetric expertise among committee members and focus on purely information

aggregation models with symmetric committee members.

Specifically, suppose that there are N partners at a venture capital firm, who need to

decide whether to accept (a = 1) or reject (a = 0) a project. The project has an upfront

investment cost I > 0 and yields a payoff V upon success. Each partner gets a signal

θi about payoff V . We consider voting mechanisms where every partner simultaneously

submits a binary vote vi ∈ {0, 1}. The project is deemed worthy of investment if and

only if the total number of votes exceeds some cut-off k, i.e.,
∑N

i=1 vi ≥ k. This voting

mechanism captures as special cases the following three decision-making rules:

1. Champions rule (k = 1): The fund undertakes the investment if and only if there

is at least one partner that votes (“champions”) for it.

2. Simple majority rule (k = N+1
2

): The fund undertakes the investment if and only if

N+1
2

or more partners vote for it.

3. Unanimity rule (k = N): The fund undertakes the investment if andonly if no

partner objects to it.

A natural question in this voting model (and many others) is why agents do not just

announce their information to the group, thus always achieving the best outcomes. As we

show in two extensions at the end of this section, communication, even noisily can weaken

the results of the model, but in the absence of perfect communication, the paper’s results
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will hold. We assume for all of our results that perfect communication of a partner’s

private information is impossible (or alternatively, so prohibitively costly as to never be

optimal).

This setup captures a general model of information aggregation in committees. The

specific models differ in their assumptions about the joint distribution of project payoffs

and signals (V, θ1, ..., θN). Ideally, one would estimate this joint distribution from the

data. This, however, is not feasible. Instead, our approach is to analyze the empirical

evidence through the lense of several canonical models of information aggregation, and

conclude which ones of them, if any, is consistent with the empirical evidence.

3.1 Models with Binary Signals

Models with binary signals are probably the most common models used in the literature

on information aggregation in voting and committee decision making.

A natural starting point to think about optimal voting rules in committees is Sah and

Stiglitz (1988), who studied optimal voting rules in a committee when there are two kinds

of projects (good and bad) and each committee member gets a binary signal about the

project’s type, independent conditionally on the project’s type. In this case, the search

for the optimal voting rule is equivalent to a statistical problem of finding the ratio of

positive to negative signals at which the committee is indifferent between investing and

not investing. The optimal voting rule is determined by the fraction of good projects in

the pool and costs of Type I and Type II errors. The champions rule is optimal if the

cost of Type-II error is sufficiently higher than the cost of Type-I error and the prior

probability that the project is good is sufficiently high. In the application to early-stage

VC investments, the first condition is very likely to be satisfied: The cost of missing on a

good investment is much higher than the cost of making a bad investment. In contrast,
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the second condition is likely to be violated: VCs invest in a very small fraction of early-

stage investments they evaluate, so the prior probability that the project is good is very

low. Nevertheless, if the first force is sufficiently powerful, the champions rule can be

optimal in this setting.

However, a model with two project types cannot distinguish between good projects

and outstanding projects, so there are no notions of “passing on the best deals” and “the

mush in the middle.” So overall we conclude that these models do not do a very good job

at capturing the empirical evidence on the behavior of VC investment committees.

3.2 Model with Signals Equal to State Plus i.i.d. Noise

We next consider a model in which each committee member i receives a signal that equals

the true value of the project with i.i.d. noise:

θi = V + εi,

where εi is an i.i.d. draw from some distribution F (·). When distribution of noise is

Normal, this setup captures a workhorse model of information aggregation in financial

markets (e.g., Hellwig (1980), Verrecchia (1982), Goldstein and Yang (2017)). In the

case of aggregation of information in committees, this setup has been used in Sah and

Stiglitz (1986) and Csaszar and Eggers (2013), among others. In the context of innova-

tion, Azevedo et al. (2020) use this additive setup with normally distributed errors and

value being drawn from a distribution with fat tails to study the optimal extent of exper-

imentation. In equilibrium, each committee member i votes for the project if and only if
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her signal θi exceeds the threshold level θ∗k, determined by

E [V |θ1 = θ∗k; θ2, ..., θk ≥ θ∗k; θk+1, ..., θN ≤ θ∗k] = I. (1)

Intuitively, a committee member i knows her signal θi and anticipates that her vote only

matters when the votes of others are split: k − 1 other committee members vote for

the project and N − k committee members vote against the project. This event implies

that k − 1 signals are above the equilibrium threshold θ∗k and N − k signals are below

θ∗k. Condition (1) means that the committee member with signal θ∗k is just indifferent

between investing and not investing given this information.

Since this model does not admit analytic solutions, we analyze whether this model can

explain the empirical evidence on voting in venture capital committees by simulations.

Specifically, we simulate draws of V from Pareto distribution with various degrees of scale

and shape parameters. Our baseline case has N = 5 committee members, shape α = 1.7

(corresponding to the empirical estimate in Section 4), the investment cost I = 1, the scale

parameter xm = 0.25, and the standard deviation of signal error of one, but we repeat the

analysis for many other parameter values. After numerically calculating the equilibrium

threshold θ∗k for each decision rule k, we perform three analyses. First, we calculate

the optimal decision rule, i.e., find the value of k at which the expected value from the

investment decision is maximized. We do this for a range of different parameters. Second,

for each decision rule k, we calculate the distribution of payoffs of accepted projects

that are implied by each decision rule. Finally, for each decision rule we calculate the

probability that a project with value V gets accepted, pk (V ). We find that the champions

decision-making rule is not optimal regardless of shape αofdistributionofV.

For our baseline parameters, the optimal decision rule is simple majority (k = 3). In
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fact, keeping the other parameters constant, the majority rule is optimal for any shape α

of distribution V . When the investment cost I is sufficiently high (or, equivalently, scale

xm is sufficiently low), we obtain that the optimal decision rule requires k = 4 positive

votes out of N = 5.

Further, we find that the decision-making rule has little effect on the investment in

superstar (very high V ) projects and primarily changes investment decisions in marginal

projects.

This effect can be seen in Table 5 and Figures 8 and 9. Figure 9 plots the distribution

of values of accepted projects for the champions, majority, and unanimity decision-making

rules, respectively. As one can see, different decision rules imply different return distri-

butions on accepted projects that the partnership is getting. However, these differences

do not occur for projects in the right tail. Intuitively, conditional on a project having

extremely high fundamental value, it is very likely that each partner’s signal will also be

high, and so the project would receive support in any decision rule. The differences are

pronounced among low-quality (V < 1) and medium quality (V ∈ (1, 2)) projects, where

the majority rule achieves a better distribution of project returns (more high-quality and

fewer low-quality projects) than the champions rule. Table 5 corroborates this evidence

with quantile statistics. In particular, it shows that the right tail behavior of project

payoffs is quite similar across the decision rules, but quite different for projects in the

bottom 50% of values.

Figure 8 plots probabilities of a project with value V getting accepted for three de-

cision rules for different values of V . It shows that projects from the right tail of the

distribution of values get accepted with probability close to one regardless of the decision

rule. Intuitively, for any distribution of noise, if V is sufficiently high, the probability

that signal V + εi exceeds the equilibrium voting cutoff is close to one. However, the
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majority rule is significantly more efficient at selecting moderately good projects (e.g.,

V ∈ (1, 2)) than either the champions or the unanimity rules. This result captures a

common intuition that the majority rule is good at averaging out the noise and trimming

outliers.

Overall, this model illustrates the intuition that the majority rule is good at trim-

ming outliers. However, the implications of this model are clearly inconsistent with our

empirical evidence on decision-making in VC committees.

3.3 Model where State Equals the Sum of Characteristics

Finally, we consider another canonical model from the literature on decision-making in

committees. In this model, the project is determined by the values of a set of M -many

characteristics where M ≥ N :

V = θ1 + θ2 + ...+ θM . (2)

All M characteristics are distributed i.i.d. over [−l,∞) (for some constant l ∈ R) accord-

ing to a distribution function F (·) with density f (·). Let G (·) denote the implied distri-

bution of V . Each partner i perfectly observes the value of characteristic i. Thus, partner

i learns θi but only knows the distribution of the other characteristics. This model has

been quite popular in the literature on decision-making in committees and organizations

more generally, in particular, because it leads to tractable solutions. Variations of this

model have been studied by Moldovanu and Shi (2013), Malenko (2014), Name-Correa

and Yildirim (2019), Harris and Raviv (2005), and Harris and Raviv (2008). As we will

argue below, this model is most consistent with our empirical evidence on decision-making

in VC committees.
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Independence of characteristics is a strong assumption, but is used in this case to

highlight the value of additional information that each partner brings; also note that as

characteristics become perfectly correlated then voting is no longer needed. One can more

generally interpret θi as the portion of partner i’s information about residual uncertainty

of the project’s value. For example, if the value of each characteristic were a sum of

the common factor Z and an idiosyncratic factor and each partner learned the values

of both, the model becomes similar, as we can simply subtract the common factor from

the investment cost. Intuitively, the idea behind (2) is that different partners at a firm

might have different, and orthogonal areas of expertise in assessing a company’s value,

and will be better placed to assess the values of those characteristics. For example, one

partner can be an expert in assessing the technology, another partner can be an expert

in assessing potential demand for the product, while the third partner can be an expert

in assessing the quality of managerial team of the start-up.

The assumption in our model that each VC partner focuses on a single dimension was

made for the purpose of providing clarity and intuition. In reality, this simplification does

not imply that partners exclusively consider a single dimension. Rather, it signifies the

presence of orthogonal knowledge that is not fully conveyed. This remaining orthogonal

knowledge represents unique insights and expertise that contribute to the voting process.

Future research could explore more nuanced decision-making frameworks that incorporate

multiple dimensions of knowledge within the VC partnership.

We assume that E [V ] ≤ I, which is equivalent to ME[θ] ≤ I. In the context of

early-stage investment, it is natural to model F as having heavy tails. As we show in the

next section, this assumption fits the empirical evidence: heavy tails of the characteristic

distributions imply in the model heavy tails of the return distribution, which is strongly

supported by the data, especially for early-stage investments. Further, venture capital
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firms find it very important to “catch the unicorn” (i.e., find and invest in projects with

very high V s). In contrast, in later stage investments, it is natural to expect that the

distribution of valuations has thinner tails: a project is unlikely to be superstar if it does

not already have high profile by then.

3.3.1 Optimality of the Champions Rule when Tails are Sufficiently Heavy

We next solve for the optimal voting rule k. In particular, we are interested in the

conditions under which the champions rule (k = 1) arises as the optimal one.

Consider a voting rule that requires k positive votes for approval of the project. Under

this rule, each partner will vote for the project if and only if her characteristic’s value

exceeds some cut-off θ̂k. Threshold θ̂k is the value such that each partner is exactly

indifferent between investing and not investing, given her characteristic and the fact that

her vote is pivotal:

θ̂k + (k − 1)E
[
θ|θ ≥ θ̂k

]
+ (N − k)E

[
θ|θ ≤ θ̂k

]
+ (M −N)E [θ] = I. (3)

Equation (3) pins down the voting threshold θ̂k. It satisfies the intuitive property that

θ̂k is decreasing in k. This follows from monotonicity of E
[
θ|θ ≥ θ̂

]
and E

[
θ|θ ≤ θ̂

]
in

θ̂. Intuitively, each partner is more aggressive about voting for the project if more votes

are needed to approve the project.

From (3), it is easy to see the pros and cons of the champions rule and more con-

ventional voting rules, such as simple majority. On the one hand, a good project but

with only few “superstar” characteristics will be rejected by the majority rule, if its other

characteristics are weak. In contrast, the committee will invest in this project under the

champions rule, because the partner with a very strong characteristic will champion for
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it. On the other hand, a good project with many good characteristics will not be invested

in under the champions rule, if none of its characteristics are of superstar quality. Since

these two types of projects potentially result in very different return profiles, the choice

of the information aggregation rule is akin to the choice of the return profile implied by

each rule.

Our first proposition shows that the champions rule does particularly well in pick-

ing “superstar” projects if the distribution of characteristics has sufficiently heavy tails

(formally, it is subexponential):

Proposition 1. Suppose that F is subexponential, and let dk (θ) ∈ {0, 1} denote the

investment decision under voting rule k when the realized vector of characteristics is θ.

Consider any voting rule k > 1. If Pr (dk (θ) = 1)−Pr (d1 (θ) = 1) is either non-positive or

positive but not too high, then limV̂→∞ Pr
(
dk (θ) = 1|V > V̂

)
< limV̂→∞ Pr

(
d1 (θ) = 1|V > V̂

)
,

that is, the champions rule accepts a superstar project with a strictly higher probability.

Subexponential distributions is a subclass of heavy-tailed distributions whose tails

decrease slower than any exponential tail. Almost all commonly-used heavy-tailed dis-

tributions are subexponential: for example, Pareto (power law), Weibull (with α < 1),

and lognormal distributions. This class of distributions is used frequently in the analysis

of insurance claims and rare events. The reason for Proposition 1 comes from an im-

portant property of subexponential distributions called the “catastrophe principle.” The

catastrophe principle says that the distribution of a sum of N subexponential random

variables in the tail is similar to the distribution of the maximum element in the sum.

Informally, it means that a superstar project is much more likely to be driven by one su-

perstar characteristic and many mediocre ones rather than by all very high characteristics.

This property is consistent with the fact that Facebook, Google, eBay, and other super-
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star companies all had many flaws as early-stage ventures but also some overpowering

strengths, as Marc Andreessen’s quote above asserted.

The intuition for Proposition 1 is that if a superstar project is driven by one superstar

characteristic and one of the partners gets an informative signal about it, the champions

rule would accept this project, since the informed partner would champion for it. In

contrast, any other voting rule would reject this project with positive probability, which

happens if the other N − 1 characteristics that partners get signals about are relatively

weak. The role of the condition on the unconditional probability of investment in the

proposition is the following. If the characteristic that drives the superstar project is not

learned by any of the partners, then the probability of catching this project is given by

the average probability of investment. As long as it is either lower under voting rule k

than under the champions rule or higher but not too much higher, the effect that the

probability of investment is highest under the champions rule when one of the partners

gets a signal about a superstar characteristic dominates.11 Note that the fact that F is

subexponential is an important condition for Proposition 1. Specifically, if F has light

tails (e.g., Normal), a superstar project is typically driven by many characteristics that

are pretty good rather than by one superstar characteristic. In this case, the advantage

of the champions rule over other decision making rules in identifying superstar projects

is lost.

While Proposition 1 implies that the champions rule is more likely to identify projects

with superstar payoffs than any other voting rule if the distribution of characteristics is

subexponential, it does not imply that it leads to a higher expected payoff because it may

be more likely to miss non-superstar good projects, and a typical project is the latter.

11In all our examples, the probability of investment is higher under the champions rule than under any
other voting rule, so this condition is trivially satisfied.
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However, as the next two propositions show, this will be the case if the right tail of the

characteristic distribution12 are sufficiently important.

Proposition 2. Suppose that the right tail is sufficiently important in the sense that∫∞
θ̂1
θdF (θ) is sufficiently close to E [θ] and 1−F

(
θ̂1

)
is sufficiently close to zero. Then,

the champions rule has a higher expected value than any voting rule k > 1.

The intuition for Proposition 2 naturally follows from Proposition 1. Recall that

Proposition 1 shows that when the distribution of characteristics has heavy tails, the

champions rule is better at identifying superstar projects than any other decision making

rule. Proposition 2 shows that if identifying projects in the tail is sufficiently important,

then the advantage of the champions rule outweighs the advantage of other decision

making rules.

While Proposition 2 helps at showing the intuition, one may wonder if it is relevant in

realistic settings. The next result specializes to the case of Pareto (power law) distribution,

which is a popular distribution to depict returns on venture capital investments, and

obtains a cut-off α̂ on the shape parameter, such that the champions rule is optimal for

any α ≤ α̂.

Proposition 3. Suppose that θs are distributed according to the Pareto Type 1 distribution

with shape parameter α. For any fixed and finite mean level of the characteristic E [θ],

there exists cut-off shape parameter α̂, such that the champions voting rule is optimal for

any α ≤ α̂.

The argument for Proposition 3 is related to Proposition 2, and the broad intuition

remains the same. If the tails of the distribution are sufficiently heavy (i.e., α is sufficiently

12And consequently, of the return distribution, since for subexponential distributions, the tail distri-
butions of the characteristic and the sum coincide.
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low), then (1) correctly identifying projects with very high payoffs is a bigger driver of

value than correctly identifying projects with moderately high payoffs; and (2) these

projects are more likely to be driven by one very high realization of θ rather than by

multiple moderately high ones.

3.3.2 Illustration and Comparisons

Figure 5 illustrates Proposition 3. Here, under the assumption that characteristics are

distributed according to a Pareto distribution with shape parameter α, we plot the optimal

value of k as a function of α and the number of investors N . It is clear to see that the

champions rule (dark blue color) is often the optimal rule for even moderate values of

α, but that, more pertinently, for every value of N , there is a threshold α below which

champions rule is always optimal.

By analogy with Figures 8 and 9 and Table 5, we show the analogous statistics for

the model in which the true value of the project equals the sum of independent project

characteristics, and each partner learns one of them. Figure 11 plots the distribution

of values of accepted projects for the additive model for the champions, majority, and

unanimity decision-making rules, respectively. Similarly to Figure 9, different decision

rules imply different return distributions on accepted projects. However, unlike in the

case of Figure 9, now different decision rules imply very different return distributions

in the right tail. Specifically, projects in the right tail are much more common for the

champions rule than for majority and unanimity rules. Table 5 illustrates this point via

quantile statistics. For example, the 99th percentile of the payoff of accepted projects (as

a multiple of the investment cost) is 7.8 for the champions rule, but 3.6 for the majority

rule and 1.6 for the unanimity rule. In contrast, projects around the zero-NPV threshold

are more common for majority and unanimity decision rules than for the champions
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rule. In this respect, the majority rule selects “the mush in the middle.” Figure 10 plots

probabilities of a project with value V getting selected for the three decision rules. The

champions rule is much more likely to accept any project, both good and bad, than other

decision rules, but the difference is especially pronounced for projects with values in the

right tail.13

Overall, this model is more consistent with our empirical evidence than the alterna-

tives. In particular, it captures three motivating pieces of empirical evidence. First, the

champions rule is optimal for seed projects but not for later-stage investments. This

is because the distribution of payoffs (and, thus, signals) has significantly fatter tails for

seed projects than for later-stage investments. Second, the reason why the champions rule

is optimal in the model is consistent with the explanation provided by the VC commit-

tees that the champions rule performs better at “catching outliers.” Finally, this model

predicts that decision rules that require more consensus result in “mush in the middle”

projects.

Finally, it is worth contrasting the case in which superstar projects are driven by few

superstar characteristics with the opposite case in which for a project to be successful,

all its characteristics must be of sufficiently high quality. Specifically, suppose that the

mapping of project characteristics into project value is not additive, as in (2), but rather

V = min {θ1, ..., θM}. In other words, the value of each project is determined by its worst

characteristic. This specification can be motivated in the same way as the O-ring theory

of economic development (Kremer (1993)): one bad component can make an otherwise

successful project fail, as in the case of the O-ring imperfection leading to a collapse of the

space shuttle Challenger. The next proposition shows that the consensus rule is optimal

13We expect the reality to be not as extreme as illustrated in Figure 10 for two reasons. First, in reality
the values of different characteristics are likely positively correlated, rather than uncorrelated. Second,
in reality some of the information gets aggregated in pre-vote communication.
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for projects of this type:

Proposition 4. Suppose that V = min {θ1, ..., θM}. Then, regardless of the distribution

of characteristics, the optimal voting rule is consensus (k = N).

Intuitively, unlike any other decision rule, the consensus rule ensures that all charac-

teristics are above a certain bar, which is very valuable when the value of the project is

determined by its weakest characteristic. In fact, as we show in the proof, the consensus

rule implements the same investment decision as the planner with knowledge of all M

characteristics θ1, ..., θM . Thus, the consensus rule is optimal among not only all voting

rules but also among all general mechanisms.

3.4 Extensions

Til now we have precluded partners from communicating with each other prior to voting.

The assumption of imperfect communication is required to set up any voting model with

common interests - if agents could perfectly communicate, there would be no need to

vote, as they would always perfectly agree on the correct course of action. However, we

can also accommodate partial communication in our framework. Specifically we consider

two extensions to the model in which the value equals the sum of signals. In the first

every partner i can noisily communicate their private θi to their colleagues. In the second,

every partner has a positive but non-guaranteed probability of perfectly communicating

their private θi to their colleagues.

3.4.1 Voting with Noisy Communication

Suppose that partners are allowed communicate with each other, but can only do so

noisily. As before, assume that V = θ1 + ...+ θM , and that agent i sees θi perfectly. For
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simplicity, assume that there are as many agents as dimensions of valuation (N = M).14

As before, each θi is distributed independently over [−l,∞) with l > 0, with distribution

function F (·) and density f(·). Each partner i communicates a message ti about θi to

all of her colleagues. Let h (θi|ti) denote the posterior distribution of characteristic θi

conditional on message ti. Assume that likelihood ratio h(θi|ti)
h(θi|t′i)

is strictly increasing in θi

for any ti and t′i < ti, and normalize messages so that each message equals the posterior

expected value of a characteristic: ti = E [θi|ti]. Then, we can write down the value of

the project as

V =
M∑
i=1

ti +
M∑
i=1

(θi − ti) .

Put differently, we can reframe posterior expectations such that the common value to

all voters is not the ex-ante expectation E [V ], but the post-communication expectation

E [V |t1, ..., tM ] =
∑M

i=1 ti. Then each agent i’s private information is not their signal θi,

but the uncommunicated part of that signal εi = θi − ti. In general, the optimal voting

rule k will depend on the distribution of uncommunicated parts of the signal εi and on

how much information was communicated (
∑M

i=1 ti). Nevertheless, notice that if εi is

distributed subexponentially and
∑M

i=1 ti ≤ I, then Propositions 2 and 3 apply to this

model directly, i.e., the champions rule is optimal under similar conditions.

3.4.2 Voting with Imperfect Communication

Another way to think of communication is to instead assume that each i, with some

probability p, is able to perfectly communicate the value of θi to her colleagues. With

probability 1−p, partner i communicates nothing, and her colleagues maintain their prior

beliefs about θi. Therefore, after communication of all agents, some subset S ⊂ {1, ..., N}
14Relaxing this assumption will change nothing besides some notation.
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of agents will have communicated their beliefs perfectly, (where |S| = n is the number of

partners that successfully communicated their signals) while the remaining subset T =

{1, ..., N} − S have failed to communicate at all. Therefore, among N partners, each

partner i ∈ S has no private information at the voting stage, while each partner i ∈ S

privately knows θi.

We next argue that Proposition 1 extends to this model. Again, for simplicity we focus

on the case M = N . Consider a project with V > V̂ for the limit case V̂ →∞. Since F (·)

is subexponential, the distribution of V in the right tail coincides with the distribution of

its highest characteristic max {θ1, ..., θn}. There are two possible cases. With probability p,

the highest characteristic is communicated successfully prior to voting. With probability

1− p, it is not communicated prior to voting. In the former case, the project is accepted

with certainty under any voting rule. In the latter case, the project is accepted with

certainty under the champions rule (k = 1), but with probability strictly below one for

any voting rule k > 1. This follows directly from the proof of Proposition 1 (under

the assumption that M = N) and the fact that no signal is communicated with strictly

positive probability. Thus, the result of Proposition 1 also holds in this model.

Similarly, if the communicated signals are such that the post-communication expected

value of the project,
∑

i∈S θi + (M − n)E [S], is weakly below its investment cost, then

the arguments of Propositions 2 and 3 apply.

These two extensions should reassure the reader that communication does not negate

the fundamental conclusions of our model. However, it remains the case that communi-

cation will typically tend to reduce the importance of any voting rule, as the problem of

information aggregation in voting will be weakened.
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3.4.3 Other Extensions

We have analyzed three other extensions. For brevity, we omit the details and only

offer brief discussions. First, the model can be extended to capture “veto” votes, a

property we observed in the survey. Specifically, suppose that the value of the project

is given by V = θF (θ1 + ... + θM), where θF is distributed Bernoulli, and is supposed to

capture fraudulent behavior. The idea is that no matter how good the characteristics

of a company, if it is fraudulent (θF = 0) then the investment is worthless. In addition

to observing θi, each partner gets a binary signal, denoted si, about the project being

fraudulent. If the project is not fraudulent (θF = 1), then si = 1 for every i. If the

project is fraudulent (θF = 0), then si = 0 with probability z and si = 1 otherwise,

conditionally independent across partners. Intuitively, signal 0 captures an idea of a “red

flag” observed by a partner. In this case, allowing the option to veto a project improves

decision-making. In equilibrium, a partner vetoes a project if and only if she gets signal

0, a red flag. If a partner observes no red flag, her decision problem is identical to the

problem in the basic model (up to a constant multiple). Intuitively, because every voter

only considers the cases when her vote is pivotal, she only considers the cases where the

veto has not been used. Thus, the results of the baseline model hold (up to a constant

multiple), with the added benefit that the model rationalizes the use of veto in voting.

Second, the baseline model can be extended to capture an idea that expertise of a

partner is a necessary condition for championing for the project. Specifically, suppose

that for any particular investment opportunity only a subset K of the N many partners

have expertise in the sector in question and observe characteristics θi. The remaining

N −K partners are uninformed. In this case, since the prior about the project is that it

is non-positive NPV, every uninformed partner does not vote for the project under the
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champions voting rule. Then, the analysis of decisions of informed partners is identical

to the baseline model with K partners.

Finally, we considered an extension of the baseline model in which each partner i

does not observe characteristic θi precisely but instead gets a noisy signal Si about it

with errors of signals being independent across partners. This extension is presented

in Section C.3 of the appendix. We show that this model is equivalent to the baseline

model with the difference that the distribution is signals is a primitive rather than the

distribution of characteristics.

4 Empirical Evidence and Quantitative Importance

4.1 Empirical Evidence

Our model suggests that the champions rule dominates other voting rules, but only in

settings where the distributions of fundamental characteristics has heavy right tails. The

model can therefore also rationalize the survey evidence that VCs start with a champi-

ons rule for early-stage investments and migrate to more conventional voting rules for

later-stage investments. This would be the model’s prediction if the distribution of char-

acteristics for early-stage had heavy right tails, but that this was not as true for late stage

investments.

While it is not possible to validate the distribution of individual characteristics of a

startup, we are able to examine the ex post returns across a wide cross section of venture

capital investments. If we find that the returns of later stage investments are less skewed,

this would certainly be consistent with the premise the fundamental characteristics for

these investments are potentially also less skewed. In the model, if characteristics are

subexponentially distributed, then the return distribution is also subexponential with the
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same tail as the characteristic distribution. Thus, the empirical evidence on the return

distribution across different stages will be consistent with the premise of the model.

Systematic data on returns at the investment level is not available from standard

datasets. We received anonymized data on round level returns from Correlation Ventures,

a venture capital firm that collects and makes investments in venture capital startups

based on quantitative investment strategies. As such, they have a strong incentive to

collect, improve and validate the quality of the data they get from standard commercial

databases.

The data filter used for the analysis was to first select startups whose headquarters

were in the US and had received at least one round of institutional venture capital financ-

ing between January 1 2006 and December 31, 2015, and had a realized exit by December

31, 2019. We were provided data on 19,882 rounds of financing in this period with la-

bels corresponding to whether the round of financing was “Seed”, “Series A”, “Series B”,

“Series C” or “Series D+”. In other words, while there were slightly more than 19,882

rounds of financing, the rounds including Series D and beyond were aggregated together.

Correlation Ventures imputes multiples where these are missing, but for the analysis we

conduct, we focus on the subset of 8,603 rounds of financing where the multiple is not

missing.

For these rounds, we show the distribution of multiples in Figure 6. As can be seen,

nearly 50% of all (non-imputed) returns at the round-level are zero, consistent with the

very high failure rates reported in Kerr, Nanda, and Rhodes-Kropf (2014). Table 1 breaks

the returns by round, further aggregating those that are in Series C and beyond into a

“Series C+” bucket. As can be seen from this, the Seed rounds (and to some extent

Series A) stands apart from the other rounds in terms of the skewness of returns. While

the median round in the later stages returns a gross return multiple of 0.3, the gross
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return for even the 75th percentile Seed round is zero. On the other hand, looking at

the 99th percentile shows that which the 99th percentile Series C+ investment returns a

gross return of 20, the 99th percentile gross return of a Seed round of financing in the

data is 125.

In Figure 7 we compare the distributions of return multiples for each round of financ-

ing. For a given point (percentile) in the distribution, we divide the return multiple for

each round at that percentile by the return multiple for the overall dataset at the same

percentile. We then plot these ratios for all points in the distribution. If the resulting

curve for a round has a positive slope, it is because that round has a fatter right tail than

the overall distribution. If the resulting curve has a negative slope, it is because that

round has a thinner right tail than the overall distribution. The level of the curves (as

opposed to the slope) indicate the average return multiple of the round as compared to

the overall distribution, and center around 1. We find that Seed is the steepest upward

sloping, followed by Series A, while the slopes of Series B and Series C+ are decreasing -

indicating that the distribution of returns has the fattest tail at the earliest stage and is

less so as the rounds progress.

We also empirically test the return data to estimate the tail index of their respective

distributions. The first estimate we use is the truncated Hill’s estimate.15 It is defined as

α̂Hill ≡
n∑n

k=1 log(Xk)− log(Xn)

where n is the number of observations in the truncated distribution (we truncate the

distribution of each return at the highest 5%, 10%, and 20% of returns), and Xk is

the return of observation k. These coefficients are plotted in Table 2. The estimated

15For implementation guidance and advice for these tests, we are grateful to Rustam Ibragimov and
Ibragimov, Ibragimov, and Walden (2015).
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tail indices for the Seed round are statistically significantly lower than any of the other

rounds for all three cutoffs chosen, indicating that the seed round return distribution is

the heaviest-tailed of the four. The other three distributions are ranked by stage (later

stages have higher coefficients) though the results are not always statistically significant.

We also use the method (and Matlab code) of Huisman et al. (2001) to account for the

potential of small sample issues in these estimates, and we attain qualitatively similar

outcomes as shown in Table 3.

The second estimate we use is the coefficient from a log-log rank-size regression. Here

we order the observed returns by size, truncate each distribution to restrict to only positive

returns and sort observations by returns. We then estimate the following regression:

log(k) ≈ A− α log(Xk)

where k is the rank of a return Xk. The results here are reported in Table 4. Again the

estimated αs increase in the stage of the investment, where the seed stage has the lowest

estimated α by a statistically significant margin, while the C+ round has the highest

estimated α.

Our results on the round level returns therefore provide suggestive evidence that is

consistent with early stage – and in particular seed stage – fundamental characteristics

being much more skewed than those at later (Series C and beyond) stages. Thus, the

model could potentially rationalize the use of champions rule for seed and early-stage

investments as well as a shift towards a majority voting rule for later stage investments.
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4.2 Quantitative Example

To assess quantitative importance of alternative decision making rules, we analyze a

numerical example of the model, whose inputs fit the VC context reasonably well. Specif-

ically, we assume that individual characteristics are driven from Pareto (power law) dis-

tribution with tail parameter 1.7, which is close to our estimate of the Hill’s tail index for

seed investments of 1.62. This implies that the right tail of the return distribution also

follows Pareto (power law) distribution with the same tail parameter 1.7. The committee

consists of five members. The total number of relevant characteristics is 20, which implies

that at most the committee can learn a quarter of the value-relevant information about

the project.16 The other parameter of the Pareto distribution is calibrated so that under

the champions rule 1% of projects are accepted on average. Regardless of its quality,

each project is assumed to fail with probability 50% returning zero payoff and to return

a non-zero payoff equal to the sum of characteristics with probability 50%. Overall, this

distribution means that a typical project considered by the committee is clearly bad, but a

very small fraction of projects are exceptionally promising. We keep the assumption that

characteristics observed by partners are independent.17 Three decision rules are compared

in this setting: (1) champions (one positive vote out of five is needed for investment); (2)

majority (three out five); (3) unanimity (five out of five).

This example produces the following results. In this example, the champions rule is

optimal, yielding higher values to the partnership than the alternatives. More interest-

ingly, it leads to investment in projects with a very different profile than the majority and

unanimity rules. Projects funded under the champions rule have significantly higher av-

16We have also analyzed quantitative examples with five and ten relevant characteristics and five
partners. In these cases, the probability that the champions rule catches an outlier is higher than with
20 characteristics, but the conceptual comparison with the other decision rules is unchanged.

17The assumption of independent characteristics exaggerates the difference between the champions
rule.
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erage payoffs, higher variance, and higher skewness. For example, the standard deviation

of payoffs for the champions, majority, and unanimity rules are 4.50, 1.42, and 0.96 per

dollar of investment, respectively. Skewness (also normalized per dollar of investment)

are 60.44, 3.65, and 0.29, respectively. The 95th quantile of the realized per-investment

multiple (including both zero and positive payoffs) is 4.78 for the champions rule, 3.10

for majority, and 2.24 for unanimity. The corresponding numbers for the 99th quantile

are 10.61, 5.54, and 3.15, respectively.18 In other words, the payoff distribution is right-

skewed under any decision rule, which is simply due to the nature of investments, but it

is significantly more right-skewed under the champions rule. Different project profile im-

plies that the probability of “catching a unicorn” is significantly higher for the champions

rule than the alternatives. The model-implied probability of getting a realized payoff per

investment exceeding multiple 10x, adjusted for the time value of money, is 1.12% for the

champions rule and 0.21% for the majority rule. The model-implied probability of getting

a realized payoff per investment exceeding multiple 10x, unadjusted for the time value of

money,19 is 2.89% for the champions rule and 0.7% for the majority rule. For example,

if we consider a fund with 25 uncorrelated investments, then the probability that it least

one of these investments will deliver such a multiple is 52% for the champions rule and

16.1% for the majority rule.

18Compared to the example in Section 3, in this example, each investment project returns zero with
probability 50%. Thus, the equilibrium voting thresholds and return distributions are different from the
numbers in Table 5.

19Assuming a 5-year investment horizon and the discount rate of 12%, this implies the adjusted multiple
of 6.2.
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5 Conclusion

We provide novel empirical evidence on the voting practices of venture capital investors

in the US, showing that investors use different voting rules for different types of invest-

ments, and importantly different voting rules than would appear to be optimal based

on received wisdom. For early-stage investments, they tend to favor champion voting

rules, where one partner can unilaterally make the decision to invest, while for later stage

investments, their strategies shift towards more consensus based rules, like majority or

unanimity. When asked why they do it, venture capital investors overwhelmingly say that

the champion voting rule maximizes the chances of ‘catching outliers’. We next analyze

this survey evidence through the prism of existing canonical models of information aggre-

gation in committees. We conclude that the model that is most consistent with the survey

evidence is one in which the value of the project depends on multiple project attributes, an

extremely strong attribute can overcompensate for the presence of other weak attributes,

and each partner gets a signal about one attribute but not the others. In this model,

distributions with heavy right tails (similar to the distribution of early-stage investments)

are ones where a champions voting rule is optimal. In contrast, later stage investments

where distributions have significantly less fat tails imply that ‘majority’ or ‘unanimous’

voting rules are optimal. We then confirm that these conditions, which justify champions

voting rules, are satisfied by the ex-post returns of early-stage investments, while they

are not by later stage investments, thus validating the voting rules seen in practice.

While venture capital provides a useful empirical setting in which to test and validate

the model, the implications of the paper are more wide-ranging: effectively any decision

made by a group could benefit from lower levels of consensus if the options being consid-

ered satisfy a few conditions: first, that they are not ex-ante perfectly observable; second
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that the members of the group cannot perfectly communicate their information to one

another; third that the ex-ante distribution of outcomes for each option has a sufficiently

large right tail. This type of setting could be applicable to hiring decisions, research and

development, innovation, financial investment, and more.
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A Figures and Tables

Figure 1: Breakdown of Formal Voting by stage of investment: This figure shows the results from survey
question 3 from Figure 12. The three bars correspond, for left to right, to the voting rules for seed, early
and growth investment rounds. The bars all add up to 100% and are broken down into different voting
rules.

Percentile

25th 50th 75th 90th 95th 99th
Seed 0.00 0.00 0.00 3.25 8.81 124.58
Series A 0.00 0.00 2.56 8.80 20.15 77.65
Series B 0.00 0.26 2.56 6.56 11.14 36.10
Series C+ 0.00 0.30 1.87 4.01 6.23 19.76

Total Sample 0.00 0.00 2.13 5.98 11.21 49.71

Table 1: Return multiple percentiles for overall data, as well as by round of financing.
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Figure 2: Breakdown of Informal Voting by stage of investment: This figure shows the results from survey
question 4 from Figure 12. The three bars correspond, for left to right, to the voting rules for seed, early
and growth investment rounds. The bars all add up to 100% and are broken down into different voting
rules.

Hill’s Tail Index Estimate

Seed Round Series A Series B Series C+
20% Cutoff Estimate 0.62 2.00 2.64 3.12

(0.055) (0.09) (0.11) (0.13)
10% Cutoff Estimate 1.53 2.24 3.01 3.26

(0.19) (0.15) (0.18) (0.20)
5% Cutoff Estimate 1.62 2.76 3.03 3.04

(0.29) (0.26) (0.25) (0.18)

Table 2: This table shows the Hill estimator of the tail index for each round, along with standard errors
for each round.
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Figure 3: This figure shows the support for each suggested explanation for champions rule voting. The left
hand bars correspond to the fraction of respondents who gave each explanation their highest (possibly joint
highest) rating. The right hand bars correspond to the fraction of respondents who gave each explanation
their strongest, exclusive support.

Small Sample Tail-Index Estimate

Seed Round Series A Series B Series C+
Small Sample Estimate 0.1978 0.7718 0.6901 0.7380

(0.0128) (0.0007) (0.0006) (0.0006)

Table 3: This table shows the Tail-index estimate in small samples of Huisman et al. (2001), using a
20.7% cutoff.

Log-Log Tail Index Estimate

Seed Round Series A Series B Series C+
Coefficient Estimate 0.35 0.49 0.49 0.61

(0.02) (0.009) (0.009) (0.01)

Table 4: This table shows the coefficients from the log-log rank-size regressions for each round, along with
standard errors for each round.
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Figure 4: This figure shows the relative dominance for each suggested explanation for champions rule
voting. The first set of bars correspond to the fraction of respondents that rated no other explanation more
highly; the second set of bars correspond to the fraction of respondents that rated no other explanation as
highly; the last set of bars correspond to the fraction of respondents that rated other explanations more
highly.

Figure 5: This figure shows the optimal voting rule k as a function of the number of in-
vestors/characteristics N , under the assumption that the characteristics are distributed according to a
Pareto distribution with shape parameter α. Darker colors correspond to lower values of k (the dark blue
corresponds to champions rule, while lighter colors correspond to higher values of k.
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Figure 6: This figure shows the distribution of return multiples for the total sample of investments.

Figure 7: This figure shows the ratio of return multiples for a given round to the total sample of invest-
ments.
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Figure 8: This figure shows the distribution of the probability of accepting different projects under three
different voting rules, when the information setup is truth plus noise.
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Figure 9: This figure shows the distribution of ex-post returns of projects under three different voting
rules, when the information setup is truth plus noise.
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Figure 10: This figure shows the distribution of the probability of accepting different projects under three
different voting rules, when the information setup is the sum of signals.
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Figure 11: This figure shows the distribution of ex-post returns of projects under three different voting
rules, when the information setup is the sum of signals.
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Truth + Noise Setup
percentile Champions Majority Unanimity

25th 85% 119% 114%
50th 196% 194% 196%
75th 330% 305% 319%
90th 568% 525% 550%
95th 855% 790% 827%
99th 2209% 2050% 2142%

Additive Signals Setup
percentile Champions Majority Unanimity

25th 104% 81% 78%
50th 124% 95% 89%
75th 163% 117% 95%
90th 239% 155% 112%
95th 333% 195% 127%
99th 779% 365% 162%

Table 5: This table shows the quantiles of the distribution of gross returns for different voting rules under
two different informational setups.
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B Appendix

B.1 Proofs

Proof of Proposition 1 Consider the distribution of project values V , conditional on V ≥ V̂

for a very large V̂ . By the catastrophe principle of subexponential distributions, this distribution

is similar to the distribution of max(θ1, ..., θN ):

Pr
(
θ1 + θ2 + ...+ θM > V̂

)
∼ Pr

(
max (θ1, ..., θM ) > V̂

)
.

Intuitively, extreme project values are driven by extreme realizations of one characteristic rather

than by very high realizations of many characteristics. There are two possible cases. The first

case is max (θ1, ..., θN ) = max (θ1, ..., θM ), i.e., the extreme characteristic is learned by one

of the N partners. The second case is max (θ1, ..., θN ) < max (θ1, ..., θM ), i.e., the extreme

characteristic is not learned by one of the N partners. By independence, these cases occur with

probabilities N
M and M−N

M , respectively.

Consider the first case. Given a voting rule k, the probability that a project with extreme

value gets rejected is

lim
V̂→∞

Pr
(
dk (θ) = 0|V > V̂ ,max (θ1, ..., θN ) = max (θ1, ..., θM )

)
= lim

V̂→∞
Pr
(
dk (θ) = 0|max (θ1, ..., θN ) > V̂

)
= lim

V̂→∞
Pr

(
N∑
i=2

vi < k − 1|θi < θ1, i ∈ {2, ..., N} , θ1 > V̂

)

=

 0, if k = 1,∑k−2
m=0C

m
N−1

(
1− F

(
θ̂k

))m
F
(
θ̂k

)N−1−m
, if k ≥ 2.

The first equality holds by the catastrophe principle. The second equality holds by the fact that

the project gets rejected if and only if out of N − 1 partners who do not get an extreme signal,
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there are fewer than k − 1 votes “for” (the partner that gets an extreme signal always votes

“for”). Finally, the last equality holds by the fact that the distribution of each θi, i ∈ {2, ..., N},

conditional on max {θ1, ..., θN} = θ1, is the distribution of θi, truncated at θ1, and as θ1 becomes

infininite, it approaches the distribution of θi. Thus, the probability of rejection is zero when

k = 1 and strictly positive when k > 1. Therefore, conditional on the maximum characteristic

being learned about (which occurs with probability N
M ), the champions rule never rejects high

value projects, while any voting rule k > 1 rejects them with positive probability.

Consider the second case in which max (θ1, ..., θN ) < max (θ1, ..., θM ). This case occurs with

probability M−N
M . In this case,

lim
V̂→∞

Pr
(
dk (θ) = 0|V > V̂ ,max (θ1, ..., θN ) < max (θ1, ..., θM )

)
= lim

V̂→∞
Pr
(
dk (θ) = 0|max (θN+1, ..., θM ) > V̂

)
= Pr (dk (θ) = 0) .

The first equality holds by the catastrophe principle, and the second equality holds by indepen-

dence of all M characteristics.

Adding up the two cases, we obtain that the probability of catching a “superstar” for voting

rule k is

N

M
+
M −N
M

Pr (d1 (θ) = 1) (4)

for the champions rule (k = 1), and

N

M

(
N−1∑

m=k−1
CmN−1

(
1− F

(
θ̂k

))m
F
(
θ̂k

)N−1−m)
+
M −N
M

Pr (dk (θ) = 0) (5)

for any other voting rule k.

Clearly, if Pr (dk (θ) = 1) ≤ Pr (d1 (θ) = 1), then (4) exceeds (5), as the first term is strictly

higher and the second term is weakly higher. Alternatively, if Pr (dk (θ) = 1) > Pr (d1 (θ) = 1),
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then (4) exceeds (5) if

N

M −N

(
k−2∑
m=0

CmN−1

(
1− F

(
θ̂k

))m
F
(
θ̂k

)N−1−m)
> Pr (dk (θ) = 1)− Pr (d1 (θ) = 1) . (6)

In particular, this condition is always satisfied if Pr (d1 (θ) = 1) ≥ Pr (dk (θ) = 1). Alterna-

tively, for any Pr (dk (θ) = 1)−Pr (d1 (θ) = 1), (6) is satisfied if the ratio of learned to unknown

characteristics is sufficiently high.

Proof of Proposition 2. We start by showing that the model with M > N is equivalent to

the model with M = N and a modified investment cost. Then, given this result, it is sufficient

to prove this and the subsequent propositions for the case of M = N only.

Let us decompose the value of the project into a potentially learned part and an unknown

part:

V = V1 + V2 − I,

where V1 =
∑N

i=1 θi and V2 =
∑M

i=N+1 θi. By independence of θi, the expected value of any

decision rule k is equal to the expected value of the same decision rule if each project’s value is

given by

Ṽ = V1 − Ĩ ,

where Ĩ = I − (M −N)E [θ] is the investment cost modified by the expected value of the

unlearned characteristics. Indeed:

E

[(
M∑
i=1

θi − I

)
dk (θ1, ..., θN )

]

= E

[
E

[(
M∑
i=1

θi − I

)
dk (θ1, ..., θN ) |θ1, ..., θN

]]

= E

[(
N∑
i=1

θi − Ĩ

)
dk (θ1, ..., θN )

]
,

where we use dk (θ1, ..., θN ) ∈ {0, 1} to denote the investment decision under voting rule k when
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the realized vector of learned characteristics is (θ1, ..., θN ).

Given this result, without loss of generality, consider the case M = N . Let U∗ (k) be the

expected value from voting rule k. We can write it as:

U∗ (k) =
N∑

m=k

CmN

(
1− F

(
θ̂k

))m
F
(
θ̂k

)N−m (
mE

[
θ|θ ≥ θ̂k

]
+ (N −m)E

[
θ|θ < θ̂k

]
− I
)
(7)

Note that

E [θ] = F
(
θ̂k

)
E
[
θ|θ < θ̂k

]
+
(

1− F
(
θ̂k

))
E
[
θ|θ ≥ θ̂k

]
.

If
∫∞
θ̂1
θdF (θ) is arbitrarily close to E [θ], then

∫ θ̂1
0 θdF (θ) is arbitrarily close to zero. Consider

(7) for k = 1. Since 1 − F
(
θ̂1

)
→ 0 and

(
1− F

(
θ̂1

))
E
[
θ|θ ≥ θ̂1

]
→ E [θ], all terms in the

summand (7) other than m = 1 are infinitesimal. Hence,

U∗ (1)→ N
(

1− F
(
θ̂1

))(
E
[
θ|θ ≥ θ̂1

]
− I
)

= NE [θ] .

This limit is the maximal expected value that the decision-maker with perfect knowledge of the

project value could realize. In contrast, for any k > 1, U∗ (k) is bounded away from NE [θ],

since a project with θi > θ̂1 for one of i ∈ {1, ..., N} is missed with strictly positive probability.

Hence, k = 1 is optimal.

Proof of Proposition 3. By the result at the beginning of the proof of the previous

proposition, it is sufficient to consider the case of M = N .

Let U
(
k, θ̂
)

be the expected value from a decision rule that requires k approval votes for

investment, if each if each partner votes for if and only if her signal exceeds θ̂. We can re-write
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it as:

U
(
k, θ̂
)

=
N∑

m=k

CmN

(
1− F

(
θ̂
))m

F
(
θ̂
)N−m (

mE
[
θ|θ ≥ θ̂

]
+ (N −m)E

[
θ|θ < θ̂

]
− I
)

=

N∑
m=k

(
1− F

(
θ̂
))m

F
(
θ̂
)N−m

×

 N !

(m− 1)! (N −m)!

∫∞
θ̂

(
θ − I

N

)
dF (θ)

1− F
(
θ̂
) +

N !

m! (N −m− 1)!

∫ θ̂
0

(
θ − I

N

)
dF (θ)

F
(
θ̂
)


= (NE [θ]− I)

(
1− IF(θ̂) (N − k, k)

)
+ Ck−1N−1

(
1− F

(
θ̂
))k−1

F
(
θ̂
)N−k (∫ ∞

θ̂
(Nθ − I) dF (θ)

)
,

where CmN = N !/ (m! (N −m)!) and Ix (a, b) is the regularized incomplete beta function. Let

U∗ (k) be the equilibrium value of the project under decision rule k, i.e., U
(
k, θ̂
)

evaluated at the

equilibrium voting cut-off θ̂. Since all committee members have the same utility functions, this

is the game of common interest, and thus θ̂ that maximizes U
(
k, θ̂
)

constitutes an equilibrium

(McLennan (1998)). Thus,

U∗ (k) = max
θ̂
U
(
k, θ̂
)

= max
p
Ū (k, p) , (8)

where

Ū (k, p) = (NE [θ]− I) (1− I1−p (N − k, k)) + Ck−1N−1p
k−1 (1− p)N−k

(∫ 1

1−p
(Nu (z)− I) dz

)
,(9)

u (z) = F−1 (z) ,

(for convenience, we introduced changes in variables). Intuitively, p = 1−F
(
θ̂
)

is the probability

that a committee member votes for the project, implied by threshold θ̂, and u (z) is the value

of a characteristic in the zth quantile.

Under Pareto distribution with shape α,
∫ 1
1−p (Nu (z)− I) dz = N α

α−1xmp
1− 1

α − Ip, where
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xm = −l. Hence, (9) simplifies to

Ū (k, p) = (NE [θ]− I) (1− I1−p (N − k, k)) + Ck−1N−1p
k−1 (1− p)N−k

(
N

α

α− 1
xmp

1− 1
α − Ip

)
.

(10)

We first consider the case in which the project is ex-ante zero-NPV (NE [θ] = I), and then

consider the more realistic case in which it is negative NPV (NE [θ] < I).

Case 1: NE [θ] = I. In this case, the first term in (10) equals zero, so (8) simplifies to

U∗ (k) = Ck−1N−1 max
p
pk−1 (1− p)N−k

(
N

α

α− 1
xmp

1− 1
α − Ip

)
The zero-NPV condition implies Nxm = α−1

α I. Therefore, I = N α
α−1xm. Hence,

U∗ (k) = Ck−1N−1 max
p
pk−1 (1− p)N−k

(
α

α− 1
p1−

1
α − α

α− 1
p

)
Nxm.

Consider the ratio of U∗ (k + 1) to U∗ (k):

U∗ (k + 1)

U∗ (k)
=

N − k
k

maxp p
k (1− p)N−k−1

(
α
α−1p

1− 1
α − α

α−1p
)

maxp pk−1 (1− p)N−k
(

α
α−1p

1− 1
α − α

α−1p
)

=
N − k
k

maxp p
k (1− p)N−k−1

(
p1−

1
α − p

)
maxp pk−1 (1− p)N−k

(
p1−

1
α − p

)
We will show that U∗(k+1)

U∗(k) < 1 for all k ∈ {1, ..., N − 1} for α→ 1. Notice that

lim
α→1

(
p1−

1
α − p

)
= 1− p ∀p ∈ (0, 1) .
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Therefore,

lim
α→1

U∗ (k + 1)

U∗ (k)
=

N − k
k

maxp p
k (1− p)N−k

maxp pk−1 (1− p)N−k+1
=
N − k
k

kk (N − k)N−k

(k − 1)k−1 (N − k + 1)N−k+1

=
kk−1 (N − k)N−k+1

(k − 1)k−1 (N − k + 1)N−k+1
=

(
k

k − 1

)k−1( N − k
N − k + 1

)N−k+1

Taking a natural logarithm, limα→1
U∗(k+1)
U∗(k) < 1 is equivalent to

(k − 1) (ln (k)− ln (k − 1)) + (N − k + 1) (ln (N − k)− ln (N − k + 1)) < 0

Consider f (x) = x ln
(
1 + 1

x

)
.

f ′ (x) = ln

(
1 +

1

x

)
−

1
x

1 + 1
x

= ln

(
1 +

1

x

)
− 1

x+ 1

lim
x→0

f ′ (x) = ∞

f ′′ (x) = − x

x+ 1

(
1

x2

)
+

1

(x+ 1)2

=
1

(x+ 1)2
− 1

x (x+ 1)
=
x− (x+ 1)

x (x+ 1)2
< 0

lim
x→∞

f ′ (x) = lim
x→∞

(
ln

(
1 +

1

x

)
− 1

x+ 1

)
= 0

Hence, f ′ (x) is strictly decreasing in x starting from infinity for x → 0 to zero for x → ∞.

Hence, f ′ (x) > 0 for all x. Therefore, f (x) = x ln
(
1 + 1

x

)
is maximized at x → ∞, in which

case

lim
x→∞

x ln

(
1 +

1

x

)
= 1
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Consider g (x) = (x+ 1) ln
(
1 + 1

x

)
:

g′ (x) = ln

(
1 +

1

x

)
− (x+ 1)

1
x2

1 + 1
x

= ln

(
1 +

1

x

)
− x+ 1

x2 + x
= ln

(
1 +

1

x

)
− 1

x

g′′ (x) = −
1
x2

1 + 1
x

+
1

x2
=

1

x2

(
1− 1

1 + 1
x

)
> 0

For x = 1: g′ (x) = ln (2) − 1 < 0, and for x → ∞: limx→∞
(
ln
(
1 + 1

x

)
− 1

x

)
= 0. Since g′ (x)

is strictly increasing in x, we have that it must be the case that g′ (x) < 0 ∀x. Hence, the

minimum of g (x) is reached at x→∞, in which case it is:

lim
x→∞

(x+ 1) ln

(
1 +

1

x

)
= 1.

Combining:

(k − 1) (ln (k)− ln (k − 1))− (N − k + 1) (ln (N − k + 1)− ln (N − k))

= (k − 1) ln

(
1 +

1

k − 1

)
− (N − k + 1) ln

(
1 +

1

N − k

)
< max

x

{
x ln

(
1 +

1

x

)}
−min

x

{
(x+ 1) ln

(
1 +

1

x

)}
= 1− 1 = 0.

Therefore, U∗(k+1)
U∗(k) < 1 for α → 1, and by continuity for all α sufficiently close to one. Since

U∗ (k) is strictly decreasing in k in this case, k = 1 is optimal.

Case 2: NE [θ] < I. In this case, the first term in (10) is negative. We first show that the

equilibrium probability of the affirmative vote in the champions model, p∗1 ≡ arg maxp Ū (k, p),

approaches zero, i.e., the same value as in the zero-NPV case. Denoting NPV0 ≡ NE [θ] − I,
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Pareto distribution implies Nxm = (I +NPV0)
α−1
α . Thus,

p∗1 = arg max
p
NPV0

(
1− (1− p)N−1

)
+ (1− p)N−1

(
N

α

α− 1
xmp

1− 1
α − Ip

)
= arg max

p
(1− p)N−1

(
N

α

α− 1
xmp

1− 1
α − Ip−NPV0

)
= arg max

p
(1− p)N−1

(
(I +NPV0) p

1− 1
α − Ip−NPV0

)

When α→ 1, p1−
1
α → 1 for any p ∈ (0, 1), so

p∗1 → arg max
p

(1− p)N = 0.

Next, re-write (8) as

U∗ (k) = U∗1 (k) + U∗2 (k) ,

where

U∗1 (k) = NPV0

(
1− I1−p∗k (N − k, k)

)
,

U∗2 (k) = Ck−1N−1 (p∗k)
k−1 (1− p∗k)

N−k
(∫ 1

p∗k

(Nu (z)− I) dz

)
,

where p∗k ≡ arg maxp Ū (k, p). We will show that in the limit α → 1, U∗2 (1) > U∗2 (k) and

U∗1 (1) > U∗1 (k) ∀k > 1.

The proof of U∗2 (1) > U∗2 (k) ∀k > 1 is as follows:

lim
α→1

U∗2 (1) = lim
α→1

max
p

(1− p)N−1
(

α

α− 1
p1−

1
α − α

α− 1
p

)
Nxm

> lim
α→1

max
p
Ck−1N−1p

k−1 (1− p)N−k
(

α

α− 1
p1−

1
α − α

α− 1
p

)
Nxm

≥ lim
α→1

U∗2 (k)

for all k > 1. Here, the first equality is from the fact that p∗1 → 0 for both the negative-NPV
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case and the zero-NPV case; the first inequality is from the fact that

lim
α→1

max
p
Ck−1N−1 max

p
pk−1 (1− p)N−k

(
α

α− 1
p1−

1
α − α

α− 1
p

)
Nxm

is strictly decreasing in k, established in the proof of the zero-NPV case; and the second in-

equality is from the fact that U∗2 (k) cannot exceed the point at which

Ck−1N−1p
k−1 (1− p)N−k

(
α

α− 1
p1−

1
α − α

α− 1
p

)
Nxm

is maximized over p.

The proof of U∗1 (1) > U∗1 (k) ∀k > 1 is as follows. Note that limα→1 U
∗
1 (1) = 0, since

limα→1 p
∗
1 = 0. In contrast, for any k > 1, limα→1 U

∗
1 (k) < 0, since NPV0 < 0 and p∗k > 0.

Since U∗2 (1) > U∗2 (k) and U∗1 (1) > U∗1 (k) ∀k > 1, U∗ (1) > U∗ (k) for any k > 1. Therefore,

k = 1 is optimal.

Proof of Proposition 4

Consider the problem of a planner who observes N out of M signals (all signals observed by N

partners) and decides on the investment decision. The expected value of investment is

E [min {θ1, ..., θM} |θ1, ..., θN ] = E
[
min

{
θ̃(1:N), θ̃(N+1:M)

}
|θ̃(1:N)

]
,

where θ̃(A:B) ≡ min {θA, θA+1, ..., θB}. The equality follows from independence of all character-

istics. Notice that this expression is a strictly increasing function of θ̃(1:N): this follows from

min
{
θ̃(1:N), θ̃(N+1:M)

}
being weakly increasing in θ̃(1:N) and θ̃(N+1:M) taking values below θ̃(1:N)

and above θ̃(1:N) with positive probabilities for any finite θ̃(1:N) > −l. Therefore, the optimal

decision of the planner is to invest in the project if and only if θ̃(1:N) ≥ θ̃∗, where threshold θ̃∗

is given by

E
[
min

{
θ̃∗, θ̃(N+1:M)

}]
= I.
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Next, we show that the voting rule k = N implements this optimal decision of the planner.

To do this, we show that voting threshold θ̂ = θ̃∗ corresponds to a Nash equilibrium in the

voting game when k = N . Consider member i with signal θi. Her vote is pivotal if and only if

all N − 1 committee members vote for the project, which implies that all of their signals exceed

θ̂. Consider member i’s forecast of V , conditional on her signal θi and on the information that

her vote is pivotal. If θi ≤ θ̂, then

E [V |θi, P ivi] = E
[
min

{
θ̃(1:N), θ̃(N+1:M)

}
|θi, θj ≥ θ̂ ∀j 6= i, j ≤ N

]
= E

[
min

{
θi, θ̃(N+1:M)

}]
≤ E

[
min

{
θ̂, θ̃(N+1:M)

}]
.

The second equality follows from min
{
θ̃(1:N)

}
= θi, when θi ≤ θ̂ and member i is pivotal.

The inequality follows from weak monotonicity of the minimum function in θi and the fact that

θi ≤ θ̂. If θi ≥ θ̂, then

E [V |θi, P ivi] = E
[
min

{
θ̃(1:N), θ̃(N+1:M)

}
|θi, θj ≥ θ̂ ∀j ≤ N

]
≥ E

[
min

{
θ̃(1:N), θ̃(N+1:M)

}
|θi = θ̂, θj ≥ θ̂ ∀j ≤ N

]
= E

[
min

{
θ̂, θ̃(N+1:M)

}]

The inequality follows from weak monotonicity of the minimum function in θi and the fact that

θi ≥ θ̂. The equality follows from θ̃(1:N) = θ̂ when θi = θ̂ and θj ≥ θ̂ ∀j ∈ {1, ..., N}. We can see

that the strategy profile with voting threshold θ̂ = θ̃∗ constitutes a Nash equilibrium. Indeed,

if θ̂ = θ̃∗ and θi ≤ θ̃∗, member i is better off voting against the project since E [V |θi, P ivi] ≤

E
[
min

{
θ̃∗, θ̃(N+1:M)

}]
= I; if θ̂ = θ̃∗ and θi ≥ θ̃∗, member i is better off voting for the project

since E [V |θi, P ivi] ≥ E
[
min

{
θ̃∗, θ̃(N+1:M)

}]
= I. Since the consensus voting rule implements

the planner’s optimal decision, no other voting rule can improve on it. Therefore k = N must

be optimal.
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C Extensions

C.1 Model with Heterogeneous Preferences

Given the apparent value to investors using the champions models in such contexts, it seems

interesting that this practice is observed in VC but has not been noted in other contexts such

as corporate R&D. In this extension of the model, we provide one potential explanation: the

fact that the champions model loses its value if each committee member may prefer to vote for

the project for a private, rather than common, reason.

Consider the following variation of the baseline model. Suppose that with probability π

each partner wants to either do the project or not do a project (with equal probabilities) for a

private reason irrespectively of its quality (i.e., the project is a private benefit or private cost

project). This may be due to agency conflicts or due to career concerns in the organization. In

contrast, with probability 1 − π, the partner is unbiased and wants to maximize the expected

value. Suppose that the realizations of whether the project is partner i’s private benefit project

are independent across partners.

On one extreme, if π = 0, then all partners have common objectives of maximizing the value

of the project - which reverts to the model of the previous section. On the other extreme, if

π = 1, then all partners have private values.

Under this model, each partner will vote for the project in two scenarios. First, she will

vote for the project with probability 1
2π, irrespectively of the realization of her signal. Second,

with probability 1− π, she will vote for the project if and only if it exceeds some cut-off θ̂k(π).

Cut-off θ̂k is implicitly defined by the following equation:

θ̂k + ((k − 1)E [θi|i votes for] + (N − k)E [θi|i votes against]) = I (11)

To see the role of private benefits, consider what happens in the extreme case of π → 1.

In this case, the vote of each other partner is determined fully by private benefits (or costs) of
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the project. Thus, these votes are uninformative about the partners’ signals, so the equilibrium

cut-off of the benevolent partner will be θ̂k = I−(N − 1)E [θ]. In particular, her voting strategy

is independent of the rule k. Consider k = 1. Compared to the case of π = 0, each partner will

now overchampion for the project for two reasons. First, she will overchampion if she wants to

do the project for a private benefit reason, since the probability of approval vote in this case

(12) exceeds that of p1 in Proposition 3 (below 1
N for any α). Second, and more interestingly,

she will overchampion even if she is benevolent: This will happen because the negative votes of

others do not reveal negative information about other characteristics of the project when the

votes occur primarily for private benefit reasons.

It is easy to see why the champions model will be suboptimal for a sufficiently high π in

this case. While the champions model is still useful at identifying tail projects if the champion

happens to be benevolent, most projects get championed for private benefit reasons. Since ex-

ante an average project has negative NPV, it is optimal to increase k to reduce the probability

of investment for private benefit reasons. Decision making rules that require more consensus

among committee members are better in this case, because they curb overchampioning.

C.2 Fat Left Tails

The model can be symmetrically applied to study investments in projects with fat left tails.

We can turn the parameters of the model of the previous sections on their head to analyze

this question. Suppose now that, as before, the valuation of the company is as before: V =

θ1+θ2+...+θM ., but now suppose that each of the M characteristics is distributed independently

over [−∞, r) (where r > 0) according to a distribution function H(·) with density h(·). Further

assume, as before that G and g are such that E[θi] = 0 for all i. This distribution is meant to

capture the shape of late stage investment decisions (or, alternatively, the payoff profile of debt

contracts as opposed to equity contracts). Under this profile, the conclusions of the previous

section reverse:
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Proposition 5. Suppose that H is subexponential. Then, the unanimity rule rejects a project

with V → −∞ with probability one. In contrast, any k < N rule accepts such a project with a

strictly positive probability.

The intuition of this proposition is very similar to that of proposition 1: unanimity and

champions rules are two sides of the same coin. Under unanimity only one partner needs to

object to the project to reject it; under the champions rule only one partner needs to support

the project to accept it.

C.3 Model with Noisy Signals of Partners

In the main model, we assume that partners get perfectly precise signals about attributes of the

project. In this extension, we show that this assumption is not critical, and results continue to

hold when signals of partners contain noise.

Suppose that partner i observes signal Si distributed with density g (Si), which is informative

about θi , but uninformative about any other characteristic of the project. Let h (θi|Si) denote

density of characteristic θi, conditional on partner i’s signal being Si. We assume that (Si, θi)

satisfy the strict monotone likelihood ratio property: likelihood ratio h(θi|Si)
h(θi|S′i)

is strictly increasing

in θi for any Si and S′i < Si. Intuitively, higher realizations of signal Si are more indicative of

higher values of characteristic θi. We also normalize, without loss of generality, the conditional

expected value of θi to be equal to Si:
∫
θih (θi|Si) dθi = Si.

20 Intuitively, signal Si is defined

as the best guess of partner i about characteristic Si.

Example. As an example of this setting, consider θi = AiSi, where Si follows Pareto

distribution with shape α and scale xm, and Ai is lognormal with a mean of one, independent

from all other random variables of the model. Intuitively, Si captures the best guess of partner

i about the value of her characteristic, while Ai captures the possibility that partner i is wrong

(the greater the variance of Ai the less precise signal Si is).

20See, e.g., DeMarzo, Kremer, and Skrzypacz (2005) for a similar normalization.
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From this point, the analysis repeats the analysis of Section 3.3 with the change that we

now use the distribution of signals as a primitive rather than the distribution of characteristics.

In particular, if the voting protocol requires k or more positive votes for investment, then each

partner votes for investment if and only if her signal exceeds cutoff Ŝk, given by

Ŝk + (k − 1)E
[
S|S ≥ Ŝk

]
+ (N − k)E

[
S|S ≤ Ŝk

]
+ (M −N)E [θ] = I.

Since the model is equivalent to the model of Section 3.3, variants of Propositions 1-3 in which

we substitute distribution of signals for distribution of characteristics, also hold. The proofs of

these propositions are identical to the proofs in the main model.
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D Survey Questions and Quotations

D.1 Survey Questions

 

Figure 12: Key Survey Questions used in Analysis: This figure is a screenshot of two of the survey
questions asked to VC investors about the formal and informal voting processes their firms use to make
decisions.
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Figure 13: Key Survey Questions used in Analysis: This figure is a screenshot of the survey question
asked to VC investors about the reasons for champions voting processes their firms use to make decisions.
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D.2 Quotations

Here we provide some quotations from the anonymous participants in our surveys:

We use champion voting. The primary reason is that successful early-stage VC re-
quires people to ”think differently” from the pack (either by being early to a trend or
literally interpreting the same fact set differently). Requiring consensus risks cau-
tious investments that regress to the mean. [One investment] is a great example of
a ”Think Differently” investment that yielded a big return for us but was unpopular
in the partnership initially.

At least in our firm we recognize that most of our alpha comes from early-stage
conviction, but that this conviction requires often a deep up close study of a trend
or prospect, and that knowledge can be hard to communicate to a larger group. So we
leave early stage dealmakers alone on early stage decisions worried that if we provide
too much feedback they’ll lose that conviction on the deals that matter. It should
also be noted that some of the best investments are both weird/different and can be
at valuations that don’t always completely compensate for this weirdness (because
there’s momentum) - and so the early stage conviction of the champions can be
fragile if they hear lots of pushback from their partners. We have many examples
of an investor building conviction early in their career on a future potential fund
moving deal only to have that conviction shattered by an errant comment by an ”old
dog” investor.

It’s mostly because in early stages neither the trend nor the metrics are obvious and
committee decisions can result in the firm losing out on outliers

We care more about early stage deals since we can get more ownership at a lower
price, but have a partner conviction model since our partners each have different
areas of expertise. Our partner conviction model also stands for later stage deals,
but more people are involved in diligence to help the partner make a better decision.

In practice, there is 1-2 partners who are responsible for ongoing support for the
portfolio. It is more important to have strong support from 1 partner, vs. luke-
warm support from multiple partners. In the latter case no one will truly assume
responsibility for post investment support.
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