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Abstract 

This study jointly examines agents’ time dependence—period effects within instantaneous utility—and 

time preference—behavior on discounting future utility. The study considers the start- and end-of-period 

effects for time dependence and exponential and hyperbolic discounting for time preference. It provides 

identification arguments and sufficient conditions for both time constructs. The data include agents’ 

work-shift schedules and daily observations in response to a firm’s non-linear compensation structure, in 

which the final payment depends on the history of performance. By illustrating how various time 

constructs jointly affect behavior, the study provides implications for designing compensation structure 

and employee-shift scheduling. Specifically, it disentangles the effects of time constructs to examine the 

effectiveness of long versus short quota-evaluation cycles, quota-bonus versus commission incentive 

schemes, and employee-shift scheduling. In addition, the study provides a field validation that compares 

post-analysis actual and counterfactual outcomes to validate the prediction accuracy of the model.   

 

Keywords: time dependence, period effects, time preference, present bias, hyperbolic discounting, 

compensation, dynamic structural models, identification.  
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1. Introduction 

Human behavior is dynamic by nature. In response to various financial incentives, agents exhibit 

forward-looking behavior to dynamically allocate their time and effort in an attempt to meet future goals. 

Over time, people evaluate how close they are to achieving the goal and, if they are close to the goal, 

exert additional effort, or are too far from it, may even give up. In so doing, individuals typically discount 

future payoffs—valuing immediate utility over delayed utility—in assessing the value of the anticipated 

reward. In addition, agents’ motivations may directly depend on specific points in time. For instance, 

some people are extra motivated during the start of a new month, while others procrastinate and wait 

before taking action. As such, the various assessments of time affect agents’ response to an organization’s 

management levers, such as compensation structure—e.g., quota-evaluation and bonus-payout cycles—

and work allocation and scheduling. Hence, understanding agents’ time constructs are important for 

management, as a means to align their motivation and incentives with those of the organization. 

Organizations in the U.S. spend more than $800 billion a year on sales force management, $200 

billion of which is devoted solely to compensation (Zoltners et al. 2013). Moreover, around 95% of U.S. 

organizations use some form of dynamic incentives to motivate their sales force, typically in the form of 

quota-based commissions and bonuses (Joseph and Kalwani 1998). Despite such large and widespread 

spending to stimulate sales agents’ dynamic behavior, there is limited understanding of how different 

elements of their time assessment affect performance. For instance, are agents more motivated during 

the start-of-quota period or the end-of-quota period, or both? What type of agents are motivated during 

such time periods? How does this interact with their time discounting? Are agents present-biased in their 

view towards future payoffs and, if so, to what degree?  

This study aims to explain how various elements of agents’ time assessment collectively influence 

their motivation and, thus, performance outcomes. The study provides a comprehensive treatment 

around agents’ time assessment, including (1) time preference: how individuals discount their future 

payoffs; and (2) time dependence: how agents’ temporal states directly influence their instantaneous 

utility. The behaviors on time assessment are then associated with various management levers, including 

temporal quota-evaluation cycles, compensation components, and employee work-shift scheduling.  
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Time (discounting) preference1 refers to the degree to which immediate utility is favored over delayed 

utility. To understand how people discount their future payoffs, studies have mainly used two models of 

time preference: exponential and hyperbolic discounting. The exponential discounting model postulates 

that people discount their future payoffs at a fixed rate (Samuelson 1937; Dhami 2016), and, thus, the 

model implies time-consistent behavior. On the contrary, the hyperbolic discounting model, often referred 

to as the Beta-Delta preference, implies time-inconsistent behavior (Phelps and Pollak 1968; Laibson 

1997). The model posits that people are short-term impatient and, thus, present-biased—i.e., they 

discount the future from the present more than they do for the same time interval in distant future 

periods. 

The models of time preference, however, do not fully capture the behavioral elements associated with 

time. For example, on New Year’s Day, people become exceptionally enthusiastic to set and work on 

their resolutions. Time sometimes directly affects an agent’s instantaneous utility, thus influencing his 

or her behavior in certain periods. These points in time, referred to as temporal landmarks (Shum 1998; 

Dai et al. 2014), are calendar events or special occasions—e.g., the beginning of a new year or a new 

semester, a birthday, or an anniversary—that psychologically demarcate the passage of time and change 

motivational behavior. This study captures such behavior through time dependence—the period effects 

within an agent’s instantaneous utility—to demonstrate how the agent’s states associated with the start 

and the end of the quota-evaluation cycle affect his or her actions. 

By demonstrating how sales agents’ time assessments—both time preference and dependence—

influence behavior in conjunction with multiple management levers, this study offers guidance to 

organizations on the optimal design of sales management policies. Specifically, the study examines 

whether agents’ motivations are time-dependent and, if so, when and for how long. In addition, it explores 

ways in which agents discount future payoffs—either time-consistent or present-biased. To do so, the 

study presents sufficient conditions to separately identify both time dependence and preference using 

naturally-occurring data. Finally, the study examines the implications of agents’ time assessment for an 

organization’s shift scheduling and compensation structure, including temporal quota-evaluation cycles 

and multiple compensation components.  

 
1 The term “time preference,” in general, includes all time constructs that influence an agent’s decision. In this study, we 
use the term to specifically denote the agent’s preference over time discounting, which is consistent with the terminology 
used in the structural econometrics literature. 
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There are some challenges in modeling and identifying agents’ time assessment. First, individual-

level data with periods granular enough to capture temporal changes in behavior are often difficult to 

obtain, as many organizations evaluate and report performance only at an aggregate level—e.g., monthly. 

Hence, existing studies have narrowed their focus to identifying a limited scope of time assessment—i.e., 

only time preference such as exponential discounting (Yao et al. 2012; Chung et al. 2014; Ishihara and 

Ching 2019) and hyperbolic discounting (Fang and Wang 2015; Abbring et al. 2018; Chung et al. 2021a). 

Second, a researcher cannot observe the agents’ effort in response to their time assessment. Rather, the 

researcher observes only the performance outcomes, which are likely correlated with the agents’ forward-

looking allocation of effort and their time dependence. This requires a behavioral assumption about the 

link between a sales agent’s motives—e.g., how close the person is to achieving quota at the end of the 

period, or how a different time horizon influences the ease and flexibility of exerting effort—and his or 

her allocation of effort over time. Lastly, and relatedly, the agent’s unobserved effort decisions are likely 

a result of time preference in conjunction with time dependence. Because the effects of the two 

unobserved time-assessment constructs on effort are interrelated, a careful econometric analysis is 

necessary to disentangle and separately identify the two constructs. 

To overcome these challenges, we collaborate with a major Swedish retail chain and formulate a 

structural model in response to various management practices, taking into account agents’ time 

assessment. Exploiting the granular daily panel data, the model embeds the key elements of agents’ time 

assessment—including time discounting, present bias, start-of-the-period and end-of-the-period effects. 

Overall, we seek to gain insights into ways in which shift scheduling and compensation structure jointly 

affect the performance of heterogeneous agents. 

This study also provides an important methodological contribution to the literature by presenting a 

formal proof of the conditions under which both time preference and time dependence are separately 

identified. We first discuss the identification conditions of time preference in a hyperbolic discounting 

model—a more general structure than an exponential discounting model. We then consider identification 

of time dependence in a fully flexible setting in which instantaneous utility depends arbitrarily on time 

and examine the associated limitations and necessary restrictions. Finally, we discuss identification 

regarding the duration of agents’ time dependence. 

Building on the identification results, the empirical application shows support for agents’ time 

preference and time dependence and reveals how agents are heterogeneous in their time assessment. 

High-type agents are forward-looking and time-dependent, strongly motivated at the start and the end 
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of a month, whereas low-type agents are myopic and show limited time dependence, exerting low effort 

throughout the month. Agents’ performance escalation towards the end of the month is a result of both 

time preference (i.e., proximity to the goal) and time dependence (i.e., end-of-period effect).   

A series of counterfactual simulations shows ways in which performance changes with alternative 

quota-evaluation cycles, compensation schemes, and shift-scheduling policies. A short quota-evaluation 

cycle motivates myopic, low-performing agents by giving them more frequent new opportunities, whereas 

a long quota-evaluation cycle motivates forward-looking, high-performing agents by offering them a shot 

at a big reward. Notably, because a short quota-evaluation cycle prevents low performers from giving up 

and helps them exert consistent effort, it reduces the sales variance across agents and, thus, allows an 

organization to better forecast and manage its sales outcomes. In terms of compensation components, 

although a bonus scheme with an adequate quota improves overall outcomes, such enhanced performance 

may come at a cost—the variance in performance across agents increases, as low-type agents are more 

likely to give up under the bonus scheme. Lastly, an organization can improve performance outcomes by 

tailoring the shift schedule to its agents’ time assessment—allocating more labor hours for forward-

looking agents during the early period and more hours for myopic agents during the later period. 

A field validation that compares the actual sales performance—following real changes in 

compensation structure—with the simulated counterfactual outcomes demonstrates the accuracy and 

applicability of the model. Hence, this study’s model can provide a practical application for organizations 

to understand their sales agents’ time assessment and to design their sales management policies 

accordingly. 

The remainder of this study is structured as follows: Section 2 summarizes the related literature. 

Section 3 describes the institutional settings and provides model-free evidence that facilitates the 

empirical analysis. Section 4 presents the modeling framework of an agent’s time assessment. Section 5 

discusses the identification of the model. Section 6 describes the estimation procedure. Section 7 discusses 

the estimation results, counterfactual simulations, and field validation. Section 8 concludes. 

2. Related Literature 

This study on time dependence and preference contributes to several streams of research. First, it 

relates to the research on time discounting and intertemporal decision making. To capture people’s 

discounting behavior of future outcomes, the literature mainly postulates two models of time preference—

exponential and hyperbolic discounting. The exponential, or geometric, discounting model assumes that 

people discount the future at a fixed rate over time (Samuelson, 1937; Dhami, 2016), representing 
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stationarity and time-consistency. In contrast, the hyperbolic discounting model, commonly referred to 

as the Beta-Delta time preference, posits that people discount the future from the present more than 

they do for the time intervals in distant future periods (Ainslie 1975; Ainslie and Herrnstein 1981; Thaler 

1981; Loewenstein and Prelec 1992; Laibson 1997; O’Donoghue and Rabin 1999), implying present bias 

and time-inconsistent behavior.  

It is typically the case that one cannot identify time preference using naturally-occurring data 

because most variables simultaneously affect contemporaneous and future utilities (Rust 1994). Thus, to 

identify time preference, one would need specific variables—exclusion restrictions—that affect only the 

agent’s future payoff but not his or her current payoff (Magnac and Thesmar 2002). Studies have used 

the concept of exclusion restrictions to identify time preference (Fang and Wang 2015; Abbring and 

Daljord 2020; Chung et al. 2021a). This study builds upon the literature and identifies the agent’s effort 

using variation in sales performance in response to his or her state. Under a nonlinear incentive contract, 

with the payoff occurring at the end of the month, the agent’s state (i.e., how close the agent is to 

meeting the quota) during the remainder of the month provides exclusion restrictions because it affects 

only the future payoff, but not the current-period payoff (Chung et al. 2014, 2021a).  

This study contributes to the literature by expanding the scope of intertemporal decision making to 

include an agent’s time dependence. The model offers a comprehensive treatment of how agents evaluate 

and respond to different points in time. Subsequently, the study provides formal conditions under which 

the agent’s time preference and time dependence are separately identified. To the best of our knowledge, 

this study’s empirical application is one of the first to jointly examine and identify the two unique time 

constructs of time dependence and preference. 

This study also relates to the strand of research on time dependence and goal-directed behavior. 

Although the aforementioned literature on time discounting captures some of the essentials of 

intertemporal decision making, research has shown that people do not treat time as continuous and 

fungible (Rajagopal and Rha 2009; Soman 2001). Hence, some research has sought to understand the 

nonlinear aspects of time, investigating the situational factors that observably motivate people beyond 

those explained by the Beta-Delta time preference (Thaler and Ganser 2015; Beshears et al. 2016). For 

instance, Beta-Delta preference is limited in capturing behaviors that entail up-front costs and delayed 

benefits because it posits that the past is always valued less than the future.  

One example of such situational factors is the “fresh-start effect.” People perceive time as divided 

into chunks of weeks, months, or years that are separated by temporal boundaries (Peetz and Wilson 
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2013), and research has shown that people are more likely to engage in self-controlled acts at the start 

of new cycles, such as the beginning of the week, month, or year (Marlatt and Kaplan 1972; Norcross et 

al. 2002; Dai et al. 2014). The temporal boundaries, sometimes referred to as temporal landmarks, 

demarcate the passage of time and create separate mental accounting periods for organizing activities 

and plans (LeBoeuf et al. 2014; Peetz and Wilson 2013; Robinson 1986; Soster et al. 2010; Tu and Soman 

2014). At the start of a new cycle, people perceive their previous underachievement as having occurred 

in a more distant past, and this psychological distance creates an opportunity to take on optimistic 

actions and new goals (Bandura 1997; Dai et al. 2015).  

Just as the fresh-start effect may provide support for people’s motivation at the beginning of a period, 

the goal-gradient hypothesis (Hull 1932, 1938) may support their motivation towards the end of a period. 

As people approach the end of a goal pursuit, their marginal valuation of the reward increases (i.e., the 

goal gradient becomes steeper) because the time interval between the present and the goal, which serves 

as a reference point, becomes shorter. Consequently, people become better motivated as their progress 

nears the end of the period (Cheema and Bagchi 2011; Kivetz et al. 2006; Nunes and Drèze 2006). Actions 

at the beginning and end of a period are more salient, and, as such, people adhere to their goal pursuit 

more closely during these periods (Touré-Tillery and Fishbach 2011).  

This study’s contribution to the stream of literature on time dependence is threefold. First, it 

empirically verifies time dependence using naturally-occurring data. Because people’s time-dependent 

behavior is unobserved, academics have relied mainly on lab- or survey-based experiments, both of which 

focus on imaginary responses. By identifying time dependence based on actual, rather than imaginary, 

choices in a real-work environment, the study advances the literature in finding the true behavioral 

motives created by temporal boundaries. Second, the study not only demonstrates the existence (or the 

lack) of time dependence, but it also identifies the duration of such dependence—i.e., how long the start- 

and the end-of-the-period effect persists. Lastly, the paper provides formal statements for separately 

identifying time dependence and time preference, both of which are unobserved. By disentangling the 

two confounding, yet unobserved, time constructs, the study sheds light on the collective understanding 

of agents’ time assessment.  

Finally, this study relates to the literature on sales management. Here, we focus on the stream of 

research addressing agents’ time assessment for its relevance to this study.2 The theoretical studies on 

 
2 For a more comprehensive review of the sales force management literature, see, e.g., Coughlan and Sen (1989), Albers 
and Mantrala (2008), Rouziès and Onyemah (2018), and Chung et al. (2020). 
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this topic, which focus primarily on sales force compensation, find conflicting results regarding an agent’s 

intertemporal motivation. Traditional studies on intertemporal decision making advocate a linear 

commission contract (Hölmstrom and Milgrom 1987; Lal and Srinivasan 1993). The main argument for 

such a contract is that a pure commission structure induces the agent to exert a constant level of effort 

that is unaffected by past performance. Other incentive structures, in contrast, induce the agent to find 

ways to game the system, such as manipulating the timing of sales transactions. These studies, however, 

do not account for the intertemporal differences in allocation of effort—i.e., time dependence. If an 

agent’s cost of effort varies over time, some form of non-linear compensation contract, such as a combined 

bonus-plus-commissions structure, may be effective (Schöttner 2017). For example, for agents who are 

difficult to motivate during the start of the period, the chance to earn a lump-sum bonus induces them 

to exert greater effort at the outset of the performance-evaluation period. Hence, through the bonus 

component, the firm can provide start-of-the-period motivation at a lower cost compared to a pure 

commission structure. In contrast, when agents are difficult to incentivize towards the end of the period, 

a pure commission structure becomes more effective. 

The empirical literature on sales compensation also finds conflicting results. Because of time 

discounting and intertemporal dynamics, some suggest that a linear commission scheme is optimal (Misra 

and Nair 2011; Kishore et al. 2013). However, an organization’s use of multiple compensation 

components—e.g., commission, quota bonus, overachievement commission, intermediary bonus—can 

motivate different types of agents (Chung et al. 2014). Furthermore, changes in the compensation 

structure can induce other behavior motives. For example, frequent-quota cycles can prevent low 

performers from giving up when confronted with bad luck early in the quota-evaluation cycle but may 

evoke agents to focus on low-ticket products (Chung et al. 2021b).   

This study’s contribution to the sales management literature is twofold. First, the study jointly 

addresses the implications of agents’ time preference and dependence on sales management practices. 

Existing empirical research on sales management considers only agents’ time preference, whereas this 

study considers agent’s combined assessment of two separate time constructs, thereby providing a deeper 

understanding of agents’ intertemporal motivation. Furthermore, this study examines employee-shift 

scheduling, in addition to sales compensation, as means of effectively managing an organization’s sales 

force.  
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3. Institutional Details and Descriptive Analyses 

This section describes the institutional details of the firm, including its compensation structure, 

quota-evaluation, and shift scheduling. In addition, the section presents model-free evidence on time 

dependence and preference, which leads naturally to the formulation of a model that includes 

intertemporal dynamics in Section 4. 

3.1. Institutional Details 

The firm under study is a Swedish electronics retailer that, at the time of the study (2015), operated 

about 100 company-owned stores. Its products include consumer electronics such as computer peripherals, 

mobile devices and their accessories, smart home and security devices, speakers and headsets, and car 

electronics and GPS devices. Product prices range from $1 to $500 or more, with an average price of 

about $20. 

The typical roles of a salesperson include determining customers’ needs, locating suitable products 

in the adjacent warehouse and finalizing the sale. The firm frequently trains its salespeople about sales 

techniques and products’ technical specifications. Its loyal, primary customer base consists of tech-savvy 

consumers seeking the technical expertise of the salespeople. Therefore, personal selling plays a critical 

role in the firm’s go-to-market strategy, and, thus, properly motivating salespeople and managing their 

activities are of vital importance to the firm’s management. 

The data consist of salespeople’s daily sales revenue and their shift scheduling—workdays in a month 

and labor (working) hours for each workday—over a four-month period from January through April 2015. 

The study focuses on salespeople who stayed3 with the firm for the entire analysis period and those 

individuals with ten or more daily observations. After data clean-up, the final data comprise of 21,481 

observations across 384 salespeople. Table 1 shows the descriptive statistics of monthly sales, labor 

hours, and sales per hour (SPH). 

The firm’s compensation structure consists of a fixed salary and a variable multi-tier-quota system. 

The rate of the variable commission is determined by a salesperson’s average SPH in a given month. 

Table 2 provides the specifics of the quota-commission structure, and Figure 1 shows a graphical 

illustration. A salesperson’s average SPH at the end of the quota-evaluation cycle (i.e., a month) 

determines the commission rate, categorized in five tiers, with the salesperson receiving a commission for 

every dollar of sales at the respective rate. For example, if a salesperson’s monthly sales total $24,500 by 

 
3 The firm has low employee attrition. Only 1.42% of salespeople left the firm during the analysis period. 
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working 100 hours in that month, the person’s average SPH of $245 would fall into tier 4 (and just short 

of tier 5). Hence, the salesperson would make 1.5% of $24,500 in sales, which equals $368 in commission 

pay for that month.  

A few additional points about the compensation structure are noteworthy. First, the commission 

structure based on average SPH naturally controls for the variation in labor hours and, in turn, provides 

a fair and equitable measure across salespeople. Second, even if a salesperson reaches the highest 

commission tier during a month, his or her motivation remains intact because the high commission rate 

is applied to the realized sales amount at the end of the month; thus, in a sense, there is no cap on 

commission. Third, as a salesperson achieves each tier, he or she receives a step jump in pay from the 

discretely accelerating commission rates (as illustrated in Figure 1). Lastly, the cumulative nature of 

the payout structure raises potential concerns that salespeople who fall short early in a month lose 

motivation and give up because their chance of attaining quota by the end of the month is low. 

Before the start of each month, the firm plans salespeople’s monthly shift schedules, consisting of 

workdays in a month and labor hours for each workday. Once salespeople’s shift schedules are set, the 

firm rarely alters them during the month, except under extraordinary circumstances. Hence, the 

salespeople take their assigned schedules as given and plan their effort accordingly. 

3.2. Model-Free Evidence 

Figure 2 shows the average performance in SPH by calendar days across the entire sales force. 

Notice the clear increase in performance around the start and the end of the month. There are two likely 

explanations: (1) during the earlier and later periods, sales agents become more psychologically motivated 

and, thus, incur lower disutility of effort—i.e., their utility is time-dependent; or (2) specifically towards 

the end of the month, compensation is less discounted due to temporal proximity, and, thus, agents exert 

more effort—i.e., their time preferences influence behavior.  

The following subsections provide more-detailed evidence of time dependence and preference.  

3.2.1. Time Dependence 

Table 3 reports the results of a regression analysis with SPH as the dependent variable and time-

dependence variables as the explanatory variable. The two time-dependence variables—start of the 

period and end of the period—are set as the first and last five workdays, respectively, of each sales agent. 

Note that, due to differences in agents’ shift schedules, there is variation in their starting and ending 
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days. The results in the first column show positive and highly significant effects for both time dependent 

behaviors, consistent with the illustration in Figure 2. 

Another possible reason for the increase in performance during the start and the end of the month 

is demand seasonality— i.e., consumers are more likely to shop in these periods. The variation in starting 

and ending days, to a certain degree, mitigates such a concern. Nevertheless, we test for statistical 

evidence of seasonality in the data. The second column in Table 3 reports the results of a restricted 

analysis, which excludes observations from the first and last five “calendar” days. Hence, the analysis 

captures the start- and the end-of-period effects that arise only during mid-month— i.e., from the agents 

whose workdays start late or end early during the month. Consistent with the above results, the time-

dependence variables remain significant, and, thus, we find no direct statistical evidence of demand 

seasonality. 

3.2.2. Time Preference 

The relation between sales agents’ cumulative performance—distance-to-quota (DTQ)—and 

temporal proximity to compensation provides evidence of time preference—forward-looking behavior 

(Chung et al., 2014, 2021a). Proximity to compensation affects only the performance of agents with a 

reasonable chance of making the quota and not that of agents who are unlikely to meet the quota and, 

thus, give up. Hence, we divide agents by their cumulative SPH achieved: if SPH > $90, there is some 

probability of making the lowest-tier quota of $140; if SPH < $90, meeting the quota is unlikely. 

Furthermore, as the month nears its end and performance accumulates, the opportunity for a rebound 

diminishes. Table 4 reports the results of regression analyses with daily sales as the dependent variable 

and the cumulative SPH (DTQ) as the explanatory variable, separately for the two groups of agents and 

for each of the four quartiles of a month. As forward-looking behavior suggests, the cumulative SPH is 

significant throughout the month for agents who have exceeded $90. However, for agents below $90, the 

variable becomes insignificant towards the end of the month, when they give up on the incentive.  

4. Model 

This section presents a dynamic model of an agent’s decision making that takes into account time 

dependence and preference. The discussion proceeds in three parts: (i) sales response and utility functions; 

(ii) compensation and state variables; and (iii) agent’s time dependence and preference.  

An agent derives utility from compensation and disutility from effort. Compensation is nonlinear 

and cyclical, and it depends on the history of performance within a compensation cycle (month). At the 
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beginning of each compensation cycle, the agent knows of his or her predetermined shift schedule—

workdays and labor hours per each work day.  

4.1. Sales Response and Utility Functions 

Agent i in month m at time t (day) generates sales revenue rimt such that 

      ,imt imt imtr h q       (1) 

where himt is the labor hour and qimt is sales per hour (SPH).4 The SPH is a function of the agent’s baseline 

ability i, his or her effort eimt,5 and an idiosyncratic shock imt such that  

exp( )imt i imt imtq e        (2) 

or in a logarithmic form, ln( )imt i imt imtq e    . The idiosyncratic shock imt follows a normal 

distribution with mean zero and variance 2
 . The agent knows the distribution of the shock but does 

not observe its realization when making his or her effort decision. 

The sales response functions in Equations (1) and (2) associate unobserved effort eimt with 

observed revenue rimt. The agent’s daily performance rimt accumulates over time through the evolution of 

state variables , 1 ( , ; )i t imt imt ims f r s   , where f() denotes the state transition function. At the end of the 

quota-evaluation cycle,6 the accumulated performance, together with total labor hours, determines the 

agent’s average SPH and, in turn, the amount of compensation Wimt (Section 4.2 presents details of the 

state variables and the compensation scheme).  

At each time t, the agent derives instantaneous utility based on compensation and effort such that 

( ) ( ).imt imt imtU M W C e       

The positive monetary utility M(Wimt) is a function of compensation Wimt. The agent concurrently incurs 

disutility C(eimt) as a function of effort eimt, which, in turn, affects the sales performance in the 

contemporaneous period. Note that the agent exerts effort each day, whereas he or she earns 

compensation only at the end of the quota-evaluation cycle. 

The above utility function is ex-post in the sense that the performance shock imt, which affects Wimt 

through qimt, is as yet unrealized by the agent when making his or her effort choice. Hence, the agent 

 
4 The notation m is necessary because an agent’s shift schedule (workdays and labor hours for each workday) varies across 
months. 
5  In the study’s empirical application, effort is normalized by labor hours. However, the model easily extends to 
accommodate total effort.  
6 The quota-evaluation cycle in the empirical setting is a month. Note again that the unit of observation is a day. 
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takes expectation of compensation Wimt, conditional on effort eimt and current states simt, when making 

his or her effort decision. In this regard, the ex-ante utility function becomes 

E[ ( ) | , ] ( )imt imt imt imt imtU M W e s C e  , 

where functions M and C take the following parametric structure:  

The monetary utility function M takes a mean-variance utility form such that 

E[ ( ) | , ] E[ | , ] Var[ | , ]imt imt imt imt imt imt i imt imt imtM W e s W e s W e s  , 

where i represents the agent’s risk preference.7 The vector of state variables simt contains information 

related to compensation, including the shift schedule—remaining number of workdays in the month and 

labor hours for each of those days—and the performance history—cumulative revenue and cumulative 

labor hours—until day t.  

The disutility function C is quadratic in effort, augmented by labor hours, such that 

      2( ) ( ; )imt imt imt imtC e c z h e    ,     (3) 

where ( ; )imtc z   denotes the level of disutility. It represents the agent’s ease and flexibility in exerting 

effort across time. We model an agent’s time dependence by allowing a vector of time states zimt to affect 

the level of disutility ( ; )imtc z  , where vector  includes the corresponding parameters of time dependence. 

In this manner, these time states affect the agent’s level of effort (Section 4.3 presents details of time 

dependence). The functional form in Equation (3) implies that disutility is strictly increasing and 

convex in effort eimt; and increasing in labor hours himt. The unit of effort is normalized per hour, per the 

sales response function in Equation (2). 

Given the above specifications, the agent’s instantaneous utility at time t becomes 
2E[ | , ] Var[ | , ] ( ; ) .imt imt imt imt i imt imt imt imt imt imtU W e s W e s c z h e        (4) 

4.2. Compensation and State Variables 

The commission tier Qimt—determined by an agent’s average SPH—represents the firm’s 

compensation structure.8 Formally, Qimt is as follows: 

 
7 The mean-variance utility implies constant absolute risk aversion (CARA). 
8 Although illustrated based on the institutional setting, this study’s model is applicable to a wide class of nonlinear and 
cyclical compensation systems. 
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1, , 1 2, , 1 2, , 1

1, , 1 2, , 1 2, , 1

1, , 1 2, , 1 2, , 1

1, , 1 2,

 0.0027 if 140 / 180 and ,
 0.0067 if 180 / 200 and ,
 0.0090 if 200 / 235 and ,
 0.0150 if 235 /

im t im t im t im

im t im t im t im

im t im t im t im
imt

im t

s s s H
s s s H
s s s H

Q
s s

  

  

  



  
  
  
 , 1 2, , 1

1, , 1 2, , 1 2, , 1

250 and ,
 0.0200 if 250 /  and ,
 0 otherwise.

im t im t im

im t im t im t im

s H
s s s H

 

  

    

 

The state variables s1,imt and s2,imt denote an agent’s cumulative sales and his or her cumulative labor 

hours, respectively, by the end of the previous shift; and Him denotes the total hours assigned to the 

agent by the firm in month m.  

Given the commission tier Qimt, the agent receives compensation WimtW(rimt, himt, simt; Qimt) based 

on performance rimt, labor hours himt, and state simt. The end-of-month commission is distributed in the 

following form: 

 1, .imt imt imt imtW s r Q    

Note, again, that the Qimt allocates compensation only on the last day of each month—i.e., s2,im,t+1=Him. 

During the other days of the month, Wimt = 0, and, thus, an agent’s instantaneous utility depends solely 

on his or her disutility.  

The state variables directly linked to compensation include: (i) the cumulative sales within the month 

s1,imt; and (ii) the cumulative labor hours within the month s2,imt. The state variables evolve as follows: 

1. Cumulative sales 

 1,
1, , 1

 0 if 1,
 otherwise.

itm
im t imt

t
s

s r

   
  

2. Cumulative labor hours 

 2,
2, , 1

 0 if 1,
 otherwise.

imt
im t imt

t
s

s h

   
 

The cumulative sales evolve stochastically, based on the agent’s effort. The cumulative labor hours evolve 

deterministically, based on the agent’s monthly shift schedule 1, 2, ,{ , ,... }im im T imh h himH , predetermined 

by the firm for t = 1, 2, .. ., T, where T is the total number of work days in each month.9 The vector 

simt  {s1,imt, s2,imt, zimt, T, Him} represents the state variables that directly affect compensation. 

 
9 The number of work days differs across agents and over months. For notational brevity, we omit the dependence of T 
on i and m. 
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4.3. Time Dependence and Preference 

The utility function in Equation (4), when linked with the aforementioned course of actions, 

performance outcomes, and state transitions, naturally leads to a dynamic formulation of the model. The 

discussion proceeds with the two aspects of agents’ time assessment: time dependence and time preference. 

4.3.1. Time Dependence 

To examine whether agents are more/less likely to exert effort at the start and/or end of a period, 

we associate their time dependence in the disutility function in Equation (3) by including the respective 

times in state zimt. Let the level of disutility take the form of 

0 1 1, 2 2,( ; ) ,imt imt imtc z z z       

where the time states z1,imt and z2,imt denote the start-of-the-period and the end-of-the-period, respectively. 

More formally, 

1,

2,

 1  if  and 0 otherwise,
 1  if  and 0 otherwise,

imt S

imt E

z t D
z T D t

     
 

where DS and DE denote the duration of time dependence—in terms of workdays—which we are also able 

to identify from the data (see Section 5.2.1 for details). Hence, the parameter 0 represents an agent’s 

time-independent disutility; and his or her disutility shifts by 1 and 2 if the workday falls within the 

first DS days and last DE days, respectively, of the shift schedule. The vector = {0, 1, 2} consists of 

these parameters. 

4.3.2. Time Preference 

An agent’s effort today yields a higher chance of achieving greater compensation at the end of the 

month. Hence, the agent’s time preference plays an important role in determining his or her optimal 

effort. On the one hand, if an agent is perfectly forward-looking, he or she will effectively distribute effort 

throughout the month, thereby exerting close to a constant level of effort, which minimizes the overall 

disutility over time. On the other hand, if an agent is myopic and heavily discounts the future, he or she 

will have less incentive to exert effort in the earlier days of a month.  

To capture the agents’ time preferences, this study posits a quasi-hyperbolic discounting model. The 

model postulates that the utility from the j-th day in the future is discounted by j for j = 1, 2, ..., T1, 

where (0,1]   and (0,1)  . The standard discount factor  features exponential discounting—



15 
 

geometric decay—and captures time-consistent discounting behavior. The present-bias factor  uniformly 

discounts all future utility; thus, it captures the short-term impatience and time-inconsistent-discounting 

behavior of the agent. Also note that the conventional exponential discounting model is a special case of 

the quasi-hyperbolic discounting model when = 1.  

The agent maximizes the expected sum of current and discounted future utilities over discrete time 

periods (t = 1, 2, ..., T). Thus, the choice-specific value function V(), defined as the discounted present 

value of the expected utility stream conditional on the choice of effort eimt and state simt, becomes 

1
E max | , .

im

T
t

imt imt im imt imt
et

V U U e s






  

 

      
  

In the conventional exponential discounting model (where = 1), one can formulate the above 

dynamic problem as a recursive system of U and V. However, the quasi-hyperbolic discounting model 

requires an additional nuisance value function to make the problem a recursive system: 

, 1
, 1E max | , ,

im t
imt imt im t imt imt

e
V U V e s




    
 

     (5) 

where 

, 1
, 1E max | , .

im t
imt imt im t imt imt

e
V U V e s




      
      (6) 

Hence, the flow of future utility involves an additional value function imtV  caused by the agent’s time 

inconsistency. That is, the agent is present-biased, and, thus, the optimal choice of effort in the present 

becomes different from that in the future. The vector = {, } consists of the time- preference 

parameters. 

5. Identification 

This section presents identification arguments of the model parameters from the observed data. The 

data consist of a series of (rimt, himt, simt) for i = 1, 2, ..., N, m = 1, 2, 3, 4 and t = 1, 2, ..., T, with the standard 

assumption that observations are independently and identically distributed across agents.  

The discussion proceeds as follows: first, identification of the sales response function; second, 

identification of disutility, risk aversion, time preference and time dependence via solving the agent’s 

objective function using backward induction; third, intuitive discussion of identification. The 

identification setup follows the empirical setting of this study. In the appendix, we provide identification 

arguments for a general infinite-horizon model that includes terminal actions.  
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5.1. Sales Response Function 

The challenge in identifying the sales response function in Equations (1) and (2) is that the three 

components—the baseline ability i; the optimal effort *
imte ; and the idiosyncratic sales shock imt—are 

all unobserved. The agent’s behavior in response to a nonlinear compensation structure provides 

conditions for separately identifying the baseline ability and the optimal effort. The key is to use the 

observations in which the optimal effort is trivially a corner solution (Chung et al. 2021a). 

Assumption 1 (Corner Solution). There exists a subset S with a positive probability measure in the 

support of s such that ( , )/ 0V e s e    for any e 0 and s S.  

The assumption states that the derivative of an agent’s value function with respect to effort is non-

positive when his or her state lies in S, and, thus, the agent has no incentive to exert any effort. For 

example, S includes the case in which an agent is far from quota and, therefore, has given up on earning 

compensation for the quota-evaluation cycle. In such a case, because the optimal effort is trivially zero, 

the agent’s baseline ability is separately identified from his or her effort. The optimal effort as a function 

of the state variables is identified using a nonparametric regression method. Identification of the 

distribution of the remaining sales shock also follows. 

Proposition 1. Under Assumption 1, the agent’s baseline ability i, the optimal effort *
imte  and the 

distribution of sales shock  are identified. 

The proposition allows identification of the optimal effort as a function of state variables. Hereafter, we 

treat *
imte  as if the value is observed. The distribution of the sales shock imt and the finite-horizon 

structure allows the backward induction of future payoffs. 

5.2. Utility Function 

Aside from the sales response function, the parameters of interest include those of time preference 

= {, }, disutility with time dependence = {0, 1, 2}, and risk aversion . Conditional on a known 

sales response function, one can identify these parameters by solving the agent’s maximization problem 

via backward induction—beginning from the last day of the compensation cycle and moving backward 

each period. Backward induction applies to any cyclical compensation structure, which depends on a 

history of performance over a finite horizon. For the remainder of this section, subscripts i and m are 

suppressed, whenever possible, for brevity. 
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5.2.1. Disutility, Risk Aversion, and Time Preference  

For exposition purposes, we first illustrate identification of an agent’s disutility, risk aversion and 

time preference, assuming that disutility is time-independent; thus, z1t = z2t = 0 for any t, and the level 

of disutility is constant across time at 0. Subsequently, we relax this assumption and discuss 

identification of time dependence, 1 and 2. 

Consider an agent’s optimization problem at T, the last period of the quota-evaluation cycle. Because 

there is no future payoff in the optimization problem, the agent’s optimal effort is a solution to the static 

problem given by 

 2
0max max max E[ | , ] Var[ | , ]

T T T
T T T T T T T T

e e e
V U W e s W e s h e       , 

which is equivalent to the utility function in Equation (4) for t=T. The first-order condition for the 

maximization problem is given by 
* *

*
0

E( | , ) Var( | , ) 2 0T T T T
T T

T T

W e s W e s h e
e e

       
 

.   (7) 

The values E( | , )T TW e s  and Var( | , )T TW e s  are trivially obtained, given the distribution of the 

idiosyncratic shock . Conditional on the optimal effort *
Te  obtained from Proposition 1, the first-order 

condition in Equation (7) can be viewed as a regression of *E( | , )T T TW e s e   on *Var( | , )T T TW e s e   

and *2 T Th e  with coefficients  and 0, respectively. Thus, the identification argument follows directly 

from that of a standard linear regression model. 

Next, at T1, the agent’s maximization problem becomes 

 
1 1

2
1 0 1 1 11max max + E[max | , ] .

T T T
T T T T TT

e e e
V h e V e x 

 
        

For T1, the primitives of time preference,  and , are not separately identified, and only their product 

  is. Further, note that time inconsistency, caused by disproportionate discounting between 

immediate and distant future payoffs, does not occur here because there is only one future payoff. The 

optimality condition for T1 is given by 

     
* *

1 1 *
0 1 1

1

E[ ( , ) | , ] 2 0T T T T
T T

T

V e s e s h e
e

  
 



    


.   (8) 

Because VT is obtained in the previous step, one can trivially compute *
1 1E[ ( , | , )]T T T TV e s e s   and its 

derivative. The optimal effort *
1Te   and disutility 0 are identified from Proposition 1 and Equation (7), 
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respectively; thus, the product of discount factors  is the only unknown in Equation (8), and, similar 

to the previous step, identification of  ( ) is straightforward. 

By solving the agent’s problem on day T2, one can separately identify the two discount factors 

within . At T2, the agent’s problem involves two future payoffs: 

 
2 2 1

2
2 0 2 1 , 2 , 22max max e + E[max | , ] .

T T T
T T T im T im TT

e e e
V h V e x 

  
          

Different from the previous steps, the time-inconsistency problem arises from T2. Note that the future 

value function in the above maximization equation is the nuisance, present-unbiased value function 1TV   

in Equation (6) and not the present-biased value function 1TV  , as in Equation (5). 

Recall that the nuisance value function is defined as  

2
1 1 1 0 1 1E max | ,

T
T T T T T T

e
V V e s h e     

      
  , 

which does not include the present-bias discount factor . Let 1Te   denote the value that maximizes 

1TV  . Thus, the optimality condition to maximize 1TV   is given by 

      
*

1 1
0 1 1

1

E[ ( , ) | , ] 2 0T T T T
T T

T

V e s e s h e
e

  
 



    


   ,   (9) 

which reflects the dependence of 1Te   on . Note that the condition in Equation (9) has a different 

discount factor from the optimality condition in Equation (8). Hence, *
1 1T Te e  , and, thus, the 

nuisance optimal effort 1Te  , as a function of sT1 and , needs to be separately obtained using the 

identified values of 0 and VT. 

Reconstructing the value function 2TV  , using 1Te   and *
Te , yields 

*
1 1 2 2

2 2 22 2 0 1 2 2 0 21 2

E[E[ ( , ) | , ] | , ]
max max

           E[ | , ]T T

T T T T T T
T

e e T T T TT T

V e s e s e s
V

h e e s h e


 
   


      

            




. 

Thus, the optimality condition is given by 

     
* 2

1 1 2 2 1 2 21 *
0 2 2

2 2

E[E[ ( , ) | , ] | , ] E[ | , ] 2 0T T T T T T T T TT
T T

T T

V e s e s e s h e e s h e
e e

       
 

 

       
 
 

. (10) 

The only remaining unknown in the above equation is  since  and 0 were identified in the previous 

steps. By solving this equation, one can identify  and, thus, can recover  from = /. Hence, we can 

separately identify the standard discount factor  and the present-bias factor . 

The rank conditions below are sufficient to identify time preference. 
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Assumption 2 (Full Rank Conditions). For the initial three steps in the backward induction, the 

following conditions are satisfied: 

(1) E(AA) has a full rank, where the random vector A is defined as 
*

*

Var( | , )/
2

T T T

T T

W e s eA
h e

         
, 

(2) 
* *

1 1

1

E[ ( , | , )]E 0T T T T

T

V e s e s
e

 



     
, 

(3) 
* *

1 1 2 2

2

E[E[ ( , | , )] | , ]E 0T T T T T T

T

V e s e s e s
e
   



     


. 

Proposition 2. Under Assumptions 1 and 2, risk aversion , time-independent disutility 0 and time 

preference —the present-bias factor  and the standard discount factor —are identified. 

Assumption 2-(1) implies that an agent’s effort affects the uncertainty in compensation and disutility 

in a linearly independent manner. This is necessary to identify risk aversion  separately from disutility 

0 in the first step of the backward induction. The assumption holds if Var( | , )T TW e s  is not a quadratic 

function of eT, which is readily satisfied under various non-linear compensation structures in practice, 

including the piecewise linear scheme used in this study’s empirical application. Assumptions 2-(2) and 

2-(3) serve as rank conditions for the second and third steps of the backward induction, respectively, 

which are required for identifying hyperbolic time preference. They require the choice of effort to have a 

lasting effect for at least two days. Otherwise, the agent's choice of effort would simply be static and 

unaffected by the discount factors.  

5.2.1. Time Dependence 

To identify time dependence (1,2), we present the identification results in two steps. First, we 

consider a general time dependence that is fully flexible, allowing the disutility parameters to depend on 

time t in an arbitrary fashion, and discuss the necessary restrictions for identification. Second, we apply 

the restriction to the study’s empirical setting and discuss identifying the duration of time-dependence. 

To illustrate identification under general time dependence, let us restate an agent’s disutility as a 

series of parameters t = {1, 2, ..., T} so that the disutility is fully time-dependent— i.e., each day has 

its own disutility parameter. In this case, identification of  and T using the maximization condition at 

time T still holds. However, consider the problem at day T1 and its optimality condition in Equation 
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(8). The disutility function now depends on T1, which is different from T and, thus, is not identified. 

Hence, the equation holds even if  and T1 are multiplied by a constant. In other words, the scale of 

time preference  ( ) and time-dependent disutility T1 is not identified—only their ratio is.10 

Intuitively speaking, suppose that one observes an agent to exert a high value of effort at T1. If 

disutility is set to be fully flexible over time, one cannot distinguish between a high discount factor 

(future compensation at T is not discounted much) and low disutility (effort is not too costly). In an 

extreme case, any data can be rationalized by a model in which = = 1; that is, there is no discounting, 

and t rapidly changes over time. 

Facilitating identification of time dependence requires restricting the variation in the agent’s 

unknown disutility. Specifically, because there are two time-preference primitives  and , the reduction 

must occur for at least two dimensions in the parametric space.  

Assumption 3 (Rank Condition under Dimension Reduction). For general time dependence, the 

following conditions are satisfied: 

(1) The disutility parameters = {1,2, ...,T} satisfy restrictions 1

2

( )
( ) 0

( )
r

R
r

         
 with

2Rrank
       

. 

(2) 
*

1 1E[ ( , ) | , ]E 0t t t t

t

V e s e s
e

 
           

 
 for all t=1,2,...,T1. 

Assumption 3-(1) imposes two restrictions on the time-dependence parameters, requiring that the 

restrictions be linearly independent with each other. Assumption 3-(2) implies that the standard discount 

factor  has some effects on the first-order condition associated with the nuisance value function for any 

time t; if this is violated, the effects of  and  become identical and, thus, are not separately identified. 

Proposition 3. Suppose that Assumptions 1, 2-(1) and 3 hold. Then, t for t = 1, 2, ..., T are identified 

subject to the dimension restriction. The time preference ,  and risk aversion  are separately identified. 

 
10 The ratio is identified as * * * 1

1 1 1 1 1 12 { E[ ( , | , )] }T T T T T T T Th e V e s e s e  
         . 
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The proposition states that, for model identification, one needs to reduce the dimension of time 

dependence to T2 or less.11 In this study’s empirical setting, the dimension of disutility is set at three—

start-of-the-period, middle-of-the-period, and end-of-the-period—and the disutility does not vary within 

each period group. More formally, 

    
0 1

0

0 2

  if ,
  if ,
  if ,

S S

M S E

E E

t D
D t T D
T D t

  
 
  

           

    (11) 

for the duration of time dependence DS and DE. Here, the first DS workdays are the start-of-the- period, 

and the last DE workdays are the end-of-the-period, with parameters 1 and 2 capturing time dependence 

of disutility in the respective periods. 

The following proposition identifies the duration of time dependence. 

Proposition 4. Suppose that Assumptions 1, 2-(1) and 3-(2) hold. Then, the time-independent and time-

dependent disutility (0, 1, 2) and the duration of each period TS and TE are identified under the 

specification in Equation (11). 

5.3. Intuitive Discussion of Identification 

In addition to the formal identification arguments described above, we discuss model identification 

in our empirical context. First, we provide intuition regarding the identification of static utility. Then, 

we discuss identification regarding time dependence and preference. 

To identify unobserved effort and utility parameters, we turn to the relation between an agent’s 

performance and his or her state variables. The agent likely exerts more effort when he or she is close to 

quota than when far from quota. Thus, differences in sales performance at different DTQ identify effort 

and, thus, facilitate identification of the associated agent’s disutility (Misra and Nair 2011; Chung et al. 

2014, 2021a). Suppose that there are two agents at the same DTQ, but one’s performance is higher than 

the other’s. This implies that the agent with better performance has lower disutility of effort. Similarly, 

suppose that there are two agents whose DTQ is far from quota— i.e., neither of them has any chance 

of meeting the quota, but one’s performance is higher than the other’s. This implies that the agent with 

better performance has higher baseline ability. The variation in sales, given effort and baseline ability, 

identifies the distribution of the idiosyncratic shock. The extent to which an agent over- or underperforms 

 
11 In practice, depending on the structure of the data, additional restrictions, such as the one used in this study’s empirical 
application, may be necessary to make the model tractable and parsimonious.  
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on quota identifies the risk-aversion parameter: a risk-averse agent would over- or underachieve in 

compensation-payout periods, whereas a risk-neutral agent would just meet quota.  

For the time-preference parameters, an agent’s DTQ in non-bonus periods acts as an exclusion 

restriction to separately identify the standard discount factor and present-bias factor. Suppose that there 

are two agents who exert same amount of effort (and, thus, show similar performance) at the end of the 

month. However, suppose also that, in earlier days, one agent performs better than the other, even 

though both are at the same DTQ. This implies that the agent with high performance in these periods 

is more persistent, having a higher discount factor (lower discount rate). The hyperbolic discounting 

model is identified if there exist more than two periods with exclusion restrictions. The performance of 

an exponential discounter would be smoother over time than that of a hyperbolic discounter. 

The time-dependence parameters are identified when there are any over- or underachievement, after 

accounting for time discounting, during the specified periods. For example, since time discounting posits 

that the value of the earlier period is always weakly lower than that of the future, any performance 

increase during the first several workdays, compared to the mid-month, identifies the start-of-the-period 

effect. The duration of time dependence is identified at the location in which the difference in 

excess/lesser performance is the most noticeable. 

6. Estimation 

The core of the estimation relies on solving the agent’s finite-horizon problem via backward induction 

from the last period t = T, using the two choice-specific value functions given by Equations (5) and 

(6). The present-biased choice-specific value function in Equation (5) determines the optimal, yet 

present-biased, effort eit and, thus, performance qit, which enters the likelihood function for each period. 

The present-unbiased choice-specific value function in Equation (6) determines the optimal present-

unbiased effort, which shapes the future value functions in the subsequent backward induction— i.e., the 

future values from previous periods. Note that, in each period, the optimal effort, either present-biased 

or present-unbiased, is the solution to the maximization problem across the choice-specific value functions, 

conditional on the agent’s states.  

6.1. Individual Likelihood 

From the inferred sales performance qit, obtained through the estimation procedure, one can compute 

the likelihood of the agent’s observations. Given the data of an agent with observations over T periods, 

the agent’s likelihood is  
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where the vector { , , , , }i i i i i        is the set of parameters of time preference, time dependence, 

risk aversion, and the sales response function; itq  is the observed sales performance; and ,i denotes the 

probability density function of a normal distribution with mean zero and variance 2
 . 

6.2. Unobserved Heterogeneity 

Discrete segments accommodate unobserved heterogeneity (Kamakura and Russell 1989). Assume 

that sales agent i belongs to segment k  {1, ... , K}, with relative probabilities 

exp( )
exp( )

k
k

kk

j 
 

  . 

Let Lk,imt = L(k | k ; qimt, ximt) be the likelihood of parameters for agent i in month m at day t, conditional 

on unobserved segment k, given his or her data. Then, the likelihood of the segment-level parameters 

upon observing the agent’s history is  

,
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By summing over all of the unobserved segments k  {1, ... , K}, the overall likelihood of agent i 

becomes 

1

( ; , ) ( ; , )
K

k k
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where = {1,...,k} contains the segment-level parameters. Hence, the log-likelihood over the N 

sample of individuals becomes 
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             
   i iq x . 

7. Results 

This section first presents the estimation results and discusses their implications. Then, it presents 

the results of counterfactual simulations that address the substantive question that this study poses: how 

should an organization design its shift schedule and compensation structure, taking into account agents’ 

time dependence and preference? Finally, we compare simulated and actual sales from the post-data-
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analysis period—accompanied by real changes in the firm’s quota-evaluation cycle—to validate the 

model’s prediction accuracy. 

7.1. Parameter Estimates 

The analysis reveals that the two-segment model, with the duration of time dependence D = 2,12 

shows the best fit in terms of the Bayesian information criterion. Table 5 reports the parameter 

estimates of the model. The time-independent disutility 0, which represents the cost of effort, is 23.05 

and 11.03 for segments 1 and 2, respectively. In a sense, the cost of effort is high for segment 1 (hereafter 

referred to as the low type) and low for segment 2 (hereafter referred to as the high type). The high types 

show time dependence with the start- and the end-of-the-period effects at 0.34 and 1.42, respectively, 

shifting the cost of effort during those periods. Hence, these agents are more motivated—i.e., they incur 

lower disutility of effort during the start and the end of their quota-evaluation cycles. In contrast, the 

low types show limited time dependence with a smaller end-of-the-period effect and a statistically 

insignificant start-of-the-period effect.  

For time preference, the standard discount factor  is 0.72 and 0.99 and the present-bias factor  is 

0.88 and 0.83 for the low and the high types, respectively.13 The low types profoundly discount their 

future payoffs, whereas the high types do not discount as much. Both segments show present-bias 

behavior. 

Table 6 shows the share of the two segments and their descriptive characteristics. The low-type 

segment has a smaller share, at 38.96%, whereas the high-type segment represents a bigger share of 

61.04%. Consistent with the parameter estimates, compared to the high types, the low types achieve 

lower sales and SPH despite similar working hours. The high types perform better, with higher SPH. 

In summary, the following pattern appears in terms of agents’ behavior. Regarding time preference, 

the high-type agents’ motivation is intact throughout the month in attempt to maximize their less-

discounted end-of-period compensation, whereas the low-type agents are myopic and continuously exert 

low effort. Regarding time dependence, the high type agents start off with extra effort at the outset of 

the month, but this strong motivation tends to wane after a couple of days. Towards the end of the 

period, both the low- and the high-type agents become extra motivated due to their time preference (i.e., 

 
12 In the empirical application, we infer DS = DE = D for simplicity.  
13 Though the discount factor for the low type seems rather low, the range is consistent with studies that discuss 
psychological aspects such as pain and effort (Frederick et al. 2002). 
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temporal proximity to the goal) and time dependence (i.e., end-of-the-period effect). The combined effect 

of these two time constructs explains high performance at the end of the month, shown in the model-

free analysis (Section 3.2).  

7.2. Counterfactual Simulations 

This section presents the results of counterfactual simulations that examine the effect of agents’ time 

assessment—dependence and preference—on their behavior, which can help organizations with their sales 

management practices. The counterfactuals evaluate agents’ sales performance and compensation 

according to changes in: (i) the quota-evaluation cycle; (ii) compensation schemes; and (iii) shift-

scheduling.  

The counterfactual simulations suppose that, given the segment sizes reported in Table 6, there are 

39 low-type and 61 high-type sales agents, for a total of 100. For each regime, we simulate 200 paths per 

individual, using the parameter estimates of the model. The benchmark is the current sales management 

policy: the multi-tier-quota compensation structure at a monthly quota-evaluation cycle. Given the 

average monthly labor hours of 112, we set the shift schedule such that the agents work 7.5 hours a day 

for 15 days. Table 7 reports the simulation results of the benchmark. 

7.2.1. Alternative Quota-Evaluation Cycle  

One of the primary tasks in setting a proper sales objective—the quota—is to determine its evaluation 

cycle. The theoretical predictions are that if the quota-evaluation cycle is long, the agents may put in 

extra effort to achieve a big reward, whereas if it is short, the agents benefit from constant motivation 

because they get a fresh start in each period (Chung et al. 2021b; Dai et al. 2014; 2015; Schöttner 2017). 

But how would heterogeneous agents respond to different quota cycles, taking into account their time 

assessment? To understand the mechanism, the first counterfactual examines a change in the quota-

evaluation cycle from monthly to daily, while keeping other components constant.  

Table 8 depicts the performance and compensation outcomes of the counterfactual simulation. The 

new regime leads to, on average, a 2.92% decrease in monthly sales. The change in performance is positive 

for the low-type segment but negative for the high-type segment. The daily-quota policy, by giving 

agents a fresh start each day while removing the role of time discounting and period-effects, benefits the 

low performers. The policy, however, turns the agents’ decision mostly static and, thus, eliminates the 

motivational role of a big reward, thereby discouraging the high performers. 
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Given the overall revenue decrease, are there any upsides to the daily quota-evaluation? The analysis 

reveals an interesting benefit: the variability (interpreted through the standard deviation) of performance 

across agents decreases significantly compared to that under the current policy (see Table 8). To 

understand why, note the negative feature of the benchmark monthly-quota cycle: if an agent is far from 

meeting quota, he or she likely gives up. Because each day is independent under the new policy, it 

mitigates agents’ giving-up behavior and help them to exert consistent effort throughout the period. As 

a result, the variation across agents’ performance decreases. The stability in sales can help organizations 

better forecast and manage their sales outcomes across agents and, thus, the sales performance of the 

outlets where they work. 

Such a benefit, however, comes at an extra cost. To maintain a daily-quota cycle, the organization 

has to distribute 30% more in compensation. This is because the new policy is aimed at motivating the 

low-performing sales agents—the ones more difficult to motivate and, thus, whose marginal returns on 

compensation are smaller.  

Overall, the counterfactual demonstrates the trade-off between long- and short-quota cycles. While 

reducing the quota cycle helps motivate the low-type performers and, in turn, decreases sales variation 

across agents, it also reduces the motivation for agents to stretch for the big award, thereby demotivating 

the high-type performers. 

7.2.2. Alternative Compensation Schemes 

The focal firm’s existing variable compensation structure is a multi-tier-quota system. To understand 

the effect of each individual component of the compensation structure—commissions and bonuses by 

each tier—on agents’ behavior, we use a second counterfactual to disentangle them and evaluate their 

effectiveness. More specifically, the counterfactual evaluates the outcomes of four plans: (i) a lump-sum 

bonus with the quota set at SPH $140/Hr; (ii) a lump-sum bonus with the quota set at SPH $180/Hr; 

(iii) a lump-sum bonus with the quota set at SPH $200/Hr14; and (iv) a pure-commission structure.  

The alternative plans are set to be cost-equivalent. That is, the bonus amount or the commission 

rate for each plan is determined such that the resulting total incentive amount matches the benchmark 

at $93/person. The resulting bonus amounts are $123.87, $223.54, and $295.49 for the bonus with quotas 

$140/Hr, $180/Hr, and $200/Hr, respectively; the flat-rate commission is $0.59/$Sales. Figure 3 

 
14 The $235/Hr and $250/Hr plans exhibit outcomes similar to that of the $200/Hr plan and are omitted for brevity. 
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illustrates the alternative compensation structures, and Table 9 shows the results of the counterfactual 

simulations.  

Though one may intuitively expect lump-sum bonuses to better motivate the high types and 

commissions to help motivate the low types, we find a discrepancy across bonus plans in motivating 

different types of sales agents, depending on the level of the quota. The low-tier bonus (SPH $140/Hr) 

helps motivate the low-type agents by reducing the bonus threshold. However, the low-tier bonus 

demotivates the high-type agents once they have secured the reduced bonus amount, which is within 

easy reach. Average performance is lower than the benchmark, but performance variation across agents 

also decreases. As the bonus moves up the tiers (SPH $180/Hr and $200/Hr), the high-type agents 

become motivated by the increased bonus amount; however, the higher quota levels induce low-type 

agents to give up.  

The pure-commission plan decreases performance significantly. The demotivation of high-type agents 

is intuitive—the big-reward bonus is no longer in place, and the policy’s upside potential is smaller 

compared to the benchmark. Interestingly, however, the performance of the low-type agents also declines. 

To understand why, note that the pure-commission plan compensates for every unit of sales (see Figure 

3), whereas the benchmark and other plans have a quota floored at $140/Hr before any compensation is 

made. Because, now, the firm must pay for any performance, the amount of compensation to subpar 

performers increases. This implies that, to be cost-equivalent with the benchmark, the commission rate 

would go down and, thus, the pure-commission plan fails to motivate either group of agents.  

Overall, from a pure return-on-investment perspective, a quota-bonus plan with an aspirational quota 

produces good performance outcomes. However, the benefits come at the cost of a large variation in sales 

across agents and over time.  

7.2.3. Redesigning the Shift Schedule 

The counterfactual in this section discusses a more direct application of understanding agents’ time 

dependence and preference. The results in Section 7.1 illustrate how the high types are forward-looking 

and have a positive start-of-the-period effect, whereas the low types are myopic and have limited time 

dependence during the outset of the period. This naturally implies that the former group of agents are 

better motivated in the earlier period and the latter in the later period.  

Under the hypothetical scenario that the firm has knowledge of agents’ time dependence and 

preference, we redesign the shift schedule to better align it with each type’s characteristics. That is, 
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instead of allocating a flat 7.5 labor hours for all agents, we allocate more labor hours for the high types 

during the earlier days (and fewer during the later days) and more hours for the low types during the 

later days (and less during the earlier days). More specifically, the high types are assigned 10 hours for 

the first 7 days, 7.5 hours for the 8th day, and 5 hours for the remaining 7 days; and, conversely, the low 

types are assigned 5 hours for the first 7 days, 7.5 hours for the 8th day, and 10 hours for the remaining 

7 days. To keep the daily total labor hours constant at the firm level, the reassignment is made only for 

39 agents (the size of the low-type segment) in each segment, for a total of 78 agents.15 The remaining 

22 agents in the high-type segment were assigned a flat 7.5 hours for 15 days. 

Table 10 shows the effectiveness of the redesign. Overall performance increases by 1.88%, with both 

segments reporting increased performance. Compensation also increases to accompany the increase in 

performance. Although organizations typically have some information about their employees’ 

characteristics, we would like to caution the reader regarding this counterfactual, as it relies on the 

assumption that the firm has precise knowledge of agents’ time assessment. Nevertheless, this 

counterfactual demonstrates the value of understanding agents’ time dependence and preference.  

7.2.1. Effect of Time Assessment 

To determine the effect of various elements of time assessment on the firm’s sales outcome, the last 

counterfactual simulation examines alternative scenarios in which the agents are not influenced by time. 

For instance, the effect of agents’ overall time assessment is captured by the change in sales without 

time preference (==1) and time dependence (1=2=0). Hence, it provides a comparative static of 

the effect of agents’ time assessment on the firm’s sales outcome. Table 11 shows the results. 

As expected, the absence of agents’ time preference has a positive effect on sales. More specifically, 

if agents do not discount their future payoffs, performance will increase by a significant 17.11%. In terms 

of time dependence, the start-of-period effect, seen among the high-type agents, has a slightly positive 

effect of 0.31% on sales. The stronger end-of-period effect encourages sales by 2.80%. With the two effects 

combined, agents’ time dependence results in a positive effect of 3.06% on sales.  

Overall, the comparative static shows how agents’ time assessment has a considerable effect on the 

firm’s performance. Hence, to maintain sales force motivation, an organization must first understand 

how agents assess time and then undertake proactive measures to mitigate the negative effects—e.g., 

 
15 The reassignment complies with Swedish regulations. 
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offering goal reminders or providing daily performance feedback—and promote the positive effects—e.g., 

making the start and the end of period more salient. 

7.4. Field Validation 

In May 2015, the focal firm changed its quota-evaluation cycle from monthly to daily. This section 

validates the accuracy of our model by comparing the actual data and the simulated outcomes based on 

the counterfactual analysis. Different from the previous section, the current analysis simulates based on 

the actual shift schedule—work days and labor hours—obtained from the new data. 

Figure 4 compares the actual (dotted line) and projected (solid line) performance outcomes. The 

simulated data mimic the general trend, though are slightly less cyclical. Overall, the simulated 

performance fits the actual outcomes well, with a mean absolute percentage error of 1.90% on aggregate. 

Therefore, the comparison attests to the model’s accuracy in capturing agents’ causal behavior and its 

ability to predict and evaluate counterfactual outcomes under various alternative settings.  

8. Conclusion 

Understanding how agents assess their time is important for organizations for a number of reasons. 

First, it provides guidance on the design of an effective compensation structure. Various compensation 

systems, which are often dynamic in nature, appeal to different types of agents who are heterogeneous 

in their time assessment. Moreover, it also has implications for determining how often performance should 

be evaluated. Myopic agents are likely better motivated under the short-evaluation cycle, whereas 

forward-looking ones may put in extra effort to achieve a big reward under the long-evaluation cycle. 

Lastly, agents’ time assessment affects their performance in response to shift schedules. By understanding 

when and for how long agents’ motivations are intact, an organization can tailor the shift schedule to 

different types of agents according to their time assessment.  

This study develops and estimates a dynamic structural model of agents’ time assessment. The model 

considers behavioral elements of time dependence and preference, which are unobserved yet latent in 

agents’ dynamic allocation of effort. By illustrating how sales agents assess their time, the study has 

implications for determining the duration of the quota-evaluation cycle, selecting the right compensation 

schemes, and designing shift schedules.  

The following summarizes the results. First, a short quota-evaluation cycle benefits the myopic low 

performers by giving them more frequent fresh starts, whereas a long quota-evaluation cycle benefits the 

forward-looking high performers by offering a chance at a big reward. Furthermore, a short quota-
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evaluation cycle reduces the variability of performance across agents: it mitigates the agents’ giving-up 

behavior and helps them exert consistent effort throughout the period, thereby allowing an organization 

to better forecast and manage its sales outcomes.  

Second, a quota-bonus plan with an appropriate quota improves overall outcomes, driven mainly by 

the improved performance by the high-type agents. However, the performance increase comes at a cost—

the low-type agents are more likely to give up, resulting in greater variation in sales across agents and 

time. 

Third, an organization can redesign its shift schedule to better align with agents’ time assessment. 

By allocating more labor hours during the early period for the forward-looking agents who possess strong 

start-of-period motivation and more hours during the later period for the myopic agents who are less 

time-dependent, an organization can improve on its sales outcomes. 

Methodologically, the study provides formal identification conditions for which time preference and 

dependence are separately identified. Specifically, it considers identification of time dependence and its 

duration in a fully flexible setting under which instantaneous utility depends arbitrarily on time. The 

restrictions for identifying the two unobserved elements of time assessment are discussed and sufficient 

conditions are provided. 

In addition, the study provides a field validation, which compares post-analysis actual and 

counterfactual outcomes to verify the accuracy of the model. Such validation attests to the predictability 

and applicability of the model under alternative compensation and shift-schedule designs. Hence, this 

study offers a practical tool for organizations to understand how and when their agents are best motivated 

and, thus, to effectively align their sales management practices with their agents’ time assessment. 

In summary, this study offers a rigorous, yet practical, treatment of time assessment that is readily 

applicable in practice. We believe that understanding how agents’ motivations vary over time will help 

organizations better align their sales agents’ interests with their own and, therefore, benefit both parties 

alike. 
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Table 1: Descriptive Statistics 

Variable Mean S.D. 

Monthly sales  16,917 5,544 

Monthly labor hours  112 25 

Sales per hour 150 31 

Number of sales agents 384 
Notes. Sales are in U.S. dollars, converted using an approximate exchange rate for 
confidentiality.  

 

 

Table 2: Variable Compensation Structure 

Tier 1 2 3 4 5 

  Sales per hour 140 180 200 235 250 

  Commission rate (%) 0.27 0.67 0.90 1.50 2.00 
Notes. Sales are in U.S. dollars, converted using an approximate exchange rate for confidentiality.  

 

 

Table 3: Performance and Time Dependence 

Variable 
Sales per hour 

Full Restricted 
Intercept 
 

148.22 
(0.61) 

148.18 
(0.60) 

Start-of-the-period 
 

5.85 
(0.96) 

2.55 
(1.24) 

End-of-the-period 
 

7.53 
(0.96) 

2.09 
(1.29) 

Number of observations 21,481 14,390 

Notes. Dependent variable: sales per hour. The full analysis includes all observations; the 
restricted analysis excludes the first and last five calendar days. Standard errors are in 
parentheses. Significance at the 0.05 level appears in boldface. 
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Table 4: Performance and Time Preference 

State Variable Daily performance 
Q1 Q2 Q3 Q4 

Sales per 
hour 
> 90 

Intercept 
 

612.59 
(29.06) 

724.81 
(32.14) 

652.55 
(31.64) 

784.39 
(35.52) 

Cumulative sales per hour 
(distance to quota) 

4.20 
(0.13) 

5.18 
(0.16) 

5.45 
(0.16) 

5.95 
(0.18) 

Labor hour 
 

143.65 
(2.99) 

139.24 
(3.20) 

123.65 
(3.08) 

142.73 
(3.41) 

Sales per 
hour 
< 90 

Intercept 
 

278.52 
(146.96) 

384.34 
(151.36) 

464.90 
(148.18) 

441.29 
(235.59) 

Cumulative sales per hour 
(distance to quota) 

4.46 
(1.62) 

6.39 
(1.59) 

7.50 
(1.63) 

3.99 
(2.87) 

Labor hour 
 

88.77 
(11.58) 

67.71 
(12.58) 

72.83 
(10.99) 

117.91 
(17.95) 

Notes. Dependent variable: daily sales. Cumulative sales per hour (SPH) are those by the previous day. Each 
column shows results for quartile periods of a month. The top and bottom half of the table show results of sales 
agents whose states are SPH > 90 and SPH < 90, respectively. Standard errors are in parentheses. Significance 
at the 0.05 level appears in boldface. 

 

Table 5: Parameter Estimates 

Parameter  Segment 1 Segment 2 
Time preference   
   Standard discount factor,  
 

0.72 
(0.29) 

0.99 
(0.01) 

   Present-bias factor,  
 

0.88 
(0.32) 

0.83 
(0.09) 

Utility function – Time dependence   
   Disutility of effort, 0 

 
23.05 
(0.23) 

11.03 
(0.15) 

   Start-of-the-period, 1 

 
7.01 
(6.58) 

0.34 
(0.01) 

   End-of-the-period, 2 

 
1.04 
(0.18) 

1.42 
(0.09) 

   Risk aversion,  
 

0.00 
(0.00) 

0.00 
(0.00) 

Sales response function   
   Baseline performance,  
 

4.82 
(0.00) 

   SD of performance shock,  

 
0.45 
(0.05) 

Segment probability,  0.64 1.000 
Log-likelihood 13,216 
Bayesian information criterion    26,583 

Notes. Significance at the 0.05 level appears in boldface. SD denotes standard 
deviation. 
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Table 6: Segment Characteristics 

Variable Segment 1 Segment 2 

Monthly sales  13,674 19,290 

Monthly labor hours  109 114 

Average SPH ($sales/hour) 126 168 

Segment Size (%) 38.96 61.04 
Notes. Sales and SPH are in U.S. dollars, converted using an approximate 
exchange rate for confidentiality.  

 

Table 7: Counterfactual Simulation: Benchmark 

Counterfactual simulation 
 

Total 
Within segment 

 Segment 1 Segment 2 
Current policy     
   Monthly sales Mean 17,983 15,461 19,596 

 SD 4,446 1,879 4,829 

   Monthly variable 
compensation  

Mean 93 21 139 

SD 152 26 179 
Notes. Monthly sales and compensation amount are in U.S. dollars, converted using an approximate 
exchange rate for confidentiality. SD denotes standard deviation. 

 

Table 8: Counterfactual Simulation: Quota-Evaluation Cycle 

Counterfactual simulation 
 

Total 
Within segment 

 Segment 1 Segment 2 
Daily-quota cycle     
   Monthly sales Mean 17,457 16,298 18,199 

 (Change) 2.92% 5.41% 7.13% 

 SD 2,293 1,931 2,172 

   Monthly variable 
compensation  

Mean 121 97 137 

(Change) 30.54% 356.88% 1.23% 

 SD 59 49 59 
Notes. Monthly sales and compensation amount are in U.S. dollars, converted using an approximate 
exchange rate for confidentiality. The change denotes percentage changes compared to the 
benchmark. SD denotes standard deviation. 
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Table 9: Counterfactual Simulation: Compensation Structure 

Counterfactual simulation 
 

Total 
Within segment 

 Segment 1 Segment 2 
1-1. Bonus: $123.87 if SPH is above $140/Hr 
   Monthly sales Mean 16,538 15,633 17,116 

 (Change) 8.04% 1.12% 12.65% 

 SD 1,740 1,852 1,354 

1-2. Bonus: $223.54 if SPH is above $180/Hr 

   Monthly sales Mean 18,079 15,399 19,793 

 (Change) 0.54% 0.40% 1.01% 

 SD 3,348 1,923 2,885 

1-3. Bonus: $295.49 if SPH is above $200/Hr 

   Monthly sales Mean 18,425 15,361 20,385 

 (Change) 2.46% 0.65% 4.03% 

 SD 4,168 1,855 4,029 

2. Commission: $0.59/Sale 

   Monthly sales Mean 15,676 15,400 15,853 

 (Change) 12.83% 0.39% 19.01% 

 SD 1,894 1,825 1,892 
Notes. Monthly sales and compensation amount are in U.S. dollars, converted using an approximate 
exchange rate for confidentiality. The change denotes percentage changes compared to the 
benchmark. Bonus plans for SPH above $235/Hr and $250/Hr show similar patterns and are 
omitted for brevity. SD denotes standard deviation. 

Table 10: Counterfactual Simulation: Shift Schedule 

Counterfactual Simulation 
 

Total 
Within Segment 

 Segment 1 Segment 2 
Daily Quota-Evaluation     
   Monthly Sales Mean 18,322 15,479 20,139 

 (Change) 1.88% 0.12% 2.77% 

 SD 4,805 1,971 5,168 

   Monthly variable  Mean 109 21 166 

   compensation (Change) 17.56% 0.37% 19.23% 

 SD 172 28 200 
Notes. Monthly sales and compensation amount are in U.S. dollars, converted using an approximate 
exchange rate for confidentiality. The change denotes percentage changes compared to the 
benchmark. SD denotes standard deviation. 
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Table 11: Impact of Time Assessment  

Change in sales (%) under absence of  Total 
Within segment 

Segment 1 Segment 2 

Time assessment (==1; 1=2=0) 10.18 3.32 13.63 

   Time preference (==1) 17.11 3.69 23.88 

      Time discounting (=1) 1.93 3.08 1.35 

      Present bias (=1) 14.21 0.08 21.34 

   Time dependence (1=2=0) 3.06 0.02 4.60 

      Start-of-period effect (1=0) 0.31 0.00 0.47 

      End-of-period effect (2=0) 2.80 0.02 4.20 
Notes. The change denotes percentage changes compared to the benchmark considering agents’ time 
assessment—when both time preference and time dependence are present.  
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Figure 1: Relation Between Sales and Compensation 

 
Notes. The figure illustrates monthly compensation, conditional on sales, for a 
salesperson assigned 100 hours a month. 

 
 

Figure 2: Performance over Time 

 
Notes. The y-axis depicts performance (sales per hour), and the x-axis shows the 
day in a month. 
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Figure 3: Counterfactual Simulation: Alternative Compensation Structures 

 
Notes. The figure illustrates the payoffs from cost-equivalent compensation structures, conditional on sales, 
for a salesperson assigned 100 hours a month. 

 

Figure 4: Field Validation 

 
Notes. On May 1, 2015, the firm changed its quota-cycle from monthly to daily while keeping all other 
compensation components constant. The dotted line represents the actual outcome; the solid line 
represents the projected outcome (simulations) using the model parameters. The y-axis depicts the daily 
sales revenue across all sales agents, and the x-axis depicts dates during the post-analysis period. 
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Appendix 

A. Proofs 

Proof of Proposition 1. The agent, with knowledge of individual heterogeneity (i), chooses effort 

after observing state variables (sit), and, thus, his or her optimal effort policy eit is a function of sit and 

i—i.e., eit=e(sit, i). Hence, the sales response function can be represented as 

ln(qit) = i + e(sit, i)+ it, 

where qit and sit are observed; i and it are not.  

By Assumption 1, if sit S, the value function is a decreasing function of effort. Hence, the optimal 

effort is zero (i.e., e(sit, i)= 0 for sit S), and, thus, sales become: ln(qit) = i + it. Independence between 

it and sit implies 

E[ ln( ) | ] E[ | ] ,it it i it it iq s S s S        

from which i is identified.16 

Once i is identified (from observations sit S), the sales response (when sit S) takes the form of a 

nonparametric regression with a known intercept. That is, e(sit, i) is now a regression function of 

ln(qit) i on observed sit and a known i. The optimal effort eit is identified from E(ln(qit) i | sit, i). 

The distribution of the residuals is a consistent estimator for the distribution of it. 

(Q.E.D.) 

Proof of Proposition 2. Reordering Equation (7) leads to 
* *

*E[ | , ] Var[ | , ] 2T T T T
T T

T T

W e s W e s h e
e e

      
 

. 

Multiplying the above by A, as defined in Assumption 2, and taking expectations on both sides yields 

*E[ | , ]E E[ ]T T

T

W e sA AA
e



             

. 

Because E[AA] is invertible by Assumption 2, the following holds:  

 
16 The individual-specific fixed effect i is consistently estimated in the case of a large T (i.e., T). The empirical 
analysis estimates the fixed-effects parameters per segment, using daily observations for four months.  
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 

*
1

12* * *
*

* 2* *

E[ | , ]E[ ] E

Var[ | , ] Var[ | , ] Var[ | , ]2
E E

Var[ | , ]2 2

T T

T

T T T T T T
T T

T T

T T
T T T T

T

W e sAA A
e

W e s W e s W e sh e
e e

W e sh e h e
e








              
                                    

*

*
*

E[ | , ]

.
E[ | , ]2

T T

T T

T T
T T

T

W e s
e e

W e sh e
e

         

 

Hence,  and  are identified. 

Given that  and VT are identified, one can obtain the following via Equation (8): 

1* *
1 1*

1 1
1

E[ ( , | , )]2 E[ ] E ,T T T T
T T

T

V e s e sh e
e

 


 
 



       
 

which uses the assumption that 
* *

1 1

1

E[ ( , | , )]E 0T T T T

T

V e s e s
e

 



     
. 

Viewing Equation (10) as a function of , define 

* * 2 *
1 1 2 2 1 2 21 *

2 2
2 2

E[E[ ( , | , ) | , ] E[ | , ]( ) 2T T T T T T T T TT
T T

T T

V e s e s e s h e e s h e
e e

          
 

 

        
 
 

. 

Then, the true value of  satisfies () = 0. For the remainder of the proof, it suffices to show that the 

rank condition is satisfied—i.e., ( )/ 0     . 

Because 1Te   solves the maximization problem with respect to 1TV  , it satisfies the first-order 

condition in Equation (9). By the envelope theorem, 
2 * * 2 2 *

1 1 2 2 1 2 21

2 2

E[E[ ( , | , ) | , ] E[ | , ] 0T T T T T T T T TT

T T

V e s e s e s h e e s
e e

 
 

      

 

     
   
 

. 

Therefore, 
* *

1 1 2 2

2

( ) E[E[ ( , | , ) | , ]T T T T T T

T

V e s e s e s
e

  


   



  
 


. 

By Assumption 2, the rank condition is satisfied and, thus,  is identified. 

(Q.E.D.) 

Proof of Proposition 3. The proof proceeds in two steps. In the first step, we show that the time- 

dependence parameters are identified without restrictions if the time-preference parameters  and  are 

given. In the second step, the parameters  and  are determined under Assumption 3. 
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Step 1. Let  and  be given. At time T, the disutility T and risk aversion  are identified per Proposition 

2. 

At time T1, the maximization condition in Equation (8), with  replaced by T1, becomes  

* *
1 1 *

1 1 1
1

E[ ( , | , )] 2 0T T T T
T T T

T

V e s e s h e
e

  
  



    


. 

With known , , VT and *
1Te  , T1 is identified as a function of  and  such that 

 
* * 11 1 *

1 1 1
1

E[ ( , | , )]( , ) E 2ET T T T
T T T

T

V e s e s h e
e

   
 

  


           
, 

given that *
1 1E 0T Th e      —i.e., there exist some agents who exert effort at T1. 

At time T2, the maximization condition in Equation (10), with  replaced by T2, becomes 

*
1 1 2 2 *

2 2 2
2

E[ ( , | , )] 2 0T T T T
T T T

T

V e s e s h e
e

    
  



    


 
. 

Again, T1 is identified as a function of  and  such that 

 
* 11 1 2 2 *

2 2 2
2

E[ ( , | , )]( , ) E 2ET T T T
T T T

T

V e s e s h e
e

   
   

  


           

 
. 

In a similar manner, t is identified as a function of  and  for tT3 given by 

 
* 11 1 *E[ ( , | , )]( , ) E 2Et t t t

t t t
t

V e s e s h e
e

   
            

 
. 

Hence, the time-dependent disutility t = {1, 2, ..., T} is identified given  and . 

Step 2. Because we have  determined conditional on  and , the restrictions on , per Assumption 

3(1), can be also represented as a function of  and . 

*( , ) ( ( , ))R R     . 

Because the true values of time preference ={, } satisfy the two restrictions, they are identified using 

the restrictions if the solution is unique. Once  and  are identified, the identification of the time-

dependent disutility parameters follows from the function t(,). 

A sufficient condition for identification is that the restrictions satisfy the full-rank condition with 

regard to  and . That is, the Jacobian matrix 
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* *
1 1

* *
2 2

*

( , )

r r

r r

R  

 
 

 
 

 
 

         
 

has a full rank. By chain rule, 
*

( , ) ( , )
R R
   
   

  
. 

Under the assumption that   2rank R    and  ( , ) 2rank     , * ( , )R     has a full rank. 

The first assumption that   2rank R    states that the restrictions are linearly independent, which 

is easy to verify. 

To verify the second assumption, observe that 

   
* *1 11 1 1 1* *E[ ( , | , )] E[ ( , | , )]E 2E 2E Et t t t t t t tt

t t t t
t t

V e s e s V e s e sh e h e
e e

  
 

    
                                    

  
. 

Meanwhile, 

*
1 1E[ ( , | , )]E 0t t t t

t

V e s e s
e

 
           

 
 

because 1tV   is not dependent on the present-bias factor by construction. Therefore, 

 
* 11 1 *E[ ( , | , )]E 2Et t t tt

t t
t

V e s e s h e
e

 


            

 
. 

The rank condition requires / and / to be linearly independent, which is satisfied if 

 *
1 1E E[ ( , | , )] 0t t t t tV e s e s e         

  . Hence,  and  are identified. 

(Q.E.D.) 

Proof of Proposition 4. We first show that B, M, and E are identified assuming that T0 and T1 are 

given. Subsequently, we discuss identification of T0 and T1. 

Given T0 and T1, the restrictions, as discussed in Assumption 3(1), are represented as 
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 
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





 

One can show that the rank of R/ is T3, and, thus, Assumption 3(1) is satisfied if T 5. 

If T is strictly greater than 5, there are extra restrictions available. Hence, the extra restrictions can 

be used to determine T0 and T1 if they are unknowns. Regardless of T0 and T1, the assumption that each 

period contains at least two days implies that 1 = 2 and T = T1. Because the two restrictions are 

sufficient to identify the general time-dependence structure in t for t = 2, 3, ..., T1, one can determine 

the point at which the disutility parameters exhibit discontinuities. Such discontinuities identify T0 and 

T1. 

(Q.E.D.) 
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B. Identification of General Infinite-Horizon Model  

This part of the appendix provides identification arguments for a general model that includes 

terminal actions (i.e., agents’ stay/leave decision). Incorporating terminal actions naturally leads to an 

infinite-horizon setting because the agent’s decision to leave the firm is permanent, and, thus, the agent’s 

dynamic optimization problem is based on his or her lifetime expected payoffs. The notation follows the 

main paper unless defined otherwise. 

B.1. Utility Function with Stay-or-Leave Decision 

Agent i in month m at time t (day) derives utility based on a sequence of actions—whether to stay 

with the firm (dimt) and, conditional on staying, how much effort to exert (eimt) such that  

0

, if 1,
, if 0.

imt imt imt
imt

imt imt

u d
U

u d



     

 

If the agent decides to stay with the firm (dimt = 1), he or she exerts effort (eimt) and receives instantaneous 

utility 
2( ,s ; ) E[ | , ] Var[ | , ] ( ; )imt imt imt imt imt imt i imt imt imt imt imt imtu u e W e s W e s c z h e        , 

as previously defined in Equation (4). Subsequently, the agent’s performance is determined by the sales 

response functions given by Equations (1) and (2). In contrast, if the agent decides to leave the firm 

(dimt = 0), he or she exerts zero effort (eimt = 0) and receives reservation utility u , which represents the 

value of the outside option. The decision to leave is an absorbing state (i.e., permanent and irrevocable). 

More formally, if dimt = 0, then dik = eik = 0 for all km and  t.  

To accommodate the stay/leave decision, the agent’s utility includes a structural error term 

0 1( , )imt imt imt   , which represents the states unobserved by the researcher but observed by the agent 

in making the stay-or-leave decision dimt. The structural error is specific to the stay-or-leave decision and, 

thus, does not depend on the agent’s choice of effort.  

B.2. Recursive Representation 

The agent maximizes the discounted present value of the expected utility stream. Under the quasi-

hyperbolic discounting model, the choice-specific value function is represented as the infinite sum of 

discounted future utilities such that 

,1
E max | , , .

im im

t
imt imt im imt imt imt

d et
V U U d e s

 





 




 

      
  



48 
 

Exploiting additive separability of imt, let us define ( , , ) imt imtv d e s V    as the choice-specific 

deterministic value, which separates out the unobserved utility imt from the value function. Hence, if the 

agent chooses to stay with the firm, then 

,1
( 1, , ) E max | 1, , .

im im

t
imt imt imt imt im imt imt imt

d et
v d e s u U d e s

 





 




 

       
  

In contrast, if the agent chooses to leave the firm, the absorbing state implies that the agent’s choice-

specific deterministic value degenerates to a constant. Denote this constant as  such that 

( 0, 0, )imt imt imtv d e s    . 

The agent’s dynamic problem can be represented by a recursive system with two value functions: 

,
( , ; ) E max ( , , ) | 1, , , if 1,

( , , )
, if 0,

d
d e

u e s v d e s d e s d
v d e s

d

 


 

              


  (B.1) 

where 

,
( , ; ) E max ( , , ) | 1, , , if 1,

( , , )
, if 0.

d
d e

u e s v d e s d e s d
v d e s

d

 


 

              


   (B.2) 

In the above equations, the prime () symbol represents the subsequent period for the respective variable. 

Due to the time inconsistency caused by the quasi-hyperbolic discounting, the recursive form requires an 

additional nuisance value function for the future maximization problem, similar to Equations (5) and 

(6) in the main paper. 

B.3. Identification  

The identification arguments proceed in two steps: first, the choice-specific deterministic values 

between stay vs. leave are identified from the conditional choice probabilities; and, second, the structural 

parameters of utility functions are parametrically identified by showing how the rank conditions are 

satisfied. 

Because the structure of the sales response function is identical to that in the main paper, Proposition 

1 holds under the infinite-horizon setting. Hence, by Proposition 1, the agent’s optimal effort, conditional 

on staying with the firm, is identified as a function of the state variables.  

B.3.1. Value Function and Time Preference. The agent’s decision of whether to stay with the firm 

is made by the following rule: 
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0 1

0 1

1, if (1, , ) ,
0, if (1, , ) .

imt
v e s

d
v e s

  
  

       
 

Assumption B.1. The unobserved utilities 1imt and 0imt are independently drawn from a Type-I extreme 

value distribution with location parameter zero and scale parameter  and are independently and 

identically distributed across agents and over time. 

Proposition B.1. Under Assumption B.1, the difference in choice-specific deterministic values scaled 

by , ( (1, , ) ) /v e s   , is nonparametrically identified. 

Proof.17 Conditional on the state variable s, the probability of staying with the firm is given by  

1 0

0 1

Pr( 1 | ) Pr( (1, , ) )
(1, , )                Pr

(1, , )                ,

d s v e s
v e s

v e sF

 



  
 

 




    
       
       

 

where F is the cumulative distribution function of 0 1( )/    . By Assumption B.1, F is known. The 

conditional probability Pr( 1 | )d s  is identified from the data. Thus, the difference in the choice-specific 

value function scaled by  is identified by 

1(1, , ) [Pr( 1 | )]v e s F d s





   . 

(Q.E.D.) 

Although the value function v is identified up to location and scale, the identification of the nuisance 

value function v  is not straightforward. For identification, we make use of the model feature in which 

v  cancels out in the system of equations by expressing v  in terms of v and the primitives. Multiplying 

Equation (B.2) by  and then subtracting it from Equation (B.1) yields 

1 1(1, , ) ( , ; ) (1, , ).v e s u e s v e s
 
    

Substituting this back into Equation (B.1) leads to 

      1 0(1, , ) ( , ; ) E max{( 1) ( , ; ) (1, , ) , } | 1, , .v e s u e s u e s v e s d e s                  
 (B.3) 

Equation (B.3) is the key identifying equation for a general infinite-horizon model. If the exponential 

discounting model is used, then = 1, and, thus, the subsequent period utility function ( , ; )u e s    is 

 
17 The proof builds upon the arguments in Magnac and Thesmar (2002). 
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canceled out inside Equation (B.3). Hence, from the identification results in Magnac and Thesmar 

(2002), the utility function is nonparametrically identified, given that there exist some variables satisfying 

the exclusion restrictions.  

However, under the hyperbolic discounting model,  1, and the identification argument does not 

directly apply because the expected future value depends on the unknown instantaneous utility function 

in Equation (B.3). More specifically, the maximization and expectation operators taken on the 

unknown function create an ill-posed problem, and, as a result, it is difficult, if not impossible, to 

nonparametrically identify the utility function. Hence, following Chung et al. (2021a), we exploit 

parameterization of the instantaneous utility function to facilitate identification. Under the parametric 

specification (given by Equation (4)), the instantaneous utility function u is known up to a finite-

dimensional set of parameters. Let  be the vector of the structural parameters ( , , , , )      . Also 

let ( ) ( (1, , ) )/s v e s     , which was previously identified by Proposition B.1. 

Subtract  from both sides of Equation (B.3) to obtain 

1 0( ) ( , ; ) E max{( 1) ( , ; ) ( ) , } | 1, , .s u e s u e s s d e s                          
 

By the extreme value distribution assumption for , we can compute the expectation of the maximum 

conditional on the state variable as 

1 0( | ) E max{( 1) ( , | ) ( ) , } |

( 1) ( , | ) ( )           ln exp exp | .

s u e s s s

u e s s s






 

       

    
 

               
                               

 

Thus, the expected future utility in the value function can be written as 

1 0E max{( 1) ( , | ) ( ) , } | 1, , ( | ) ( | , ) ,u e s s d e s s f s e s ds                           

where ( | , )f s e s  is the probability density function of s conditional on d = 1 and (e, s). 

Define  

( | ) ( , | ) ( ) ( | ) ( | , ) .s u e s s s f s e s ds               

Then, the parameters that satisfy Equation (B.3) also satisfy ( | ) 0s  . Hence, the solution to 

( | ) 0s   is the true parameters, provided that the solution is unique. A sufficient condition for the 

uniqueness of the solution to this problem is the rank condition.  
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Assumption B.2. (Rank Condition). There exists a subset { : 1,2,..., }js j J  in the support of s such 

that the matrix  ( | )/ : 1,2,...,js j J     has a rank greater than or equal to the dimension of . 

Proposition B.2. Under Assumptions B.1 and B.2, the parameter vector ( , , , , )       is identified. 

B.3.2. Time Dependence. Let time dependence be fully flexible, allowing the disutility parameters to 

depend on time t in an arbitrary fashion such that 

( , )imt tc z   . 

Under this specification, we derive the rank condition for identification. Some algebra, using the ( | )s  

expression defined above, yields 

( | ) ( | , ) ( | ) [ ( , ; ) ( )] ( | , ) ,

( | ) ( | , ) ,

1 ,

(1 )( ) ( | ) ( , ; ) ( | , ) ,

Var[ | , ] (1 ) ( | ) V

s f s e s ds s u e s s f s e s ds

s f s e s ds

s s u e s f s e s ds

W e s s





      
   







    
  

   


                

    

  


          

     


 





2 2

ar[ | , ] ( | , ) ,

(1 ) ( | ) ( ) ( | , ) ,t t
t

W e s f s e s ds

z h e s z h e f s e s ds   


 

             






 

where zt is the dummy variable for the t-th day of a month and 

exp[(( 1) ( , ; ) ( ) )/ ]( | ) .
exp[(( 1) ( , ; ) ( ) )/ ] exp[ / ]

u e s ss
u e s s

 

  

     
      

   
    

 

Here, we focus on the derivative with respect to t for its relevance. The first term is the effect of t on 

the instantaneous utility, and the second term captures the effect on the expected future value. They 

must be linearly independent to satisfy Assumption B.2. The sufficient conditions for the rank condition 

are 

Condition B.1. The conditional distribution of s given (e, s) is complete for any value of s. 

Condition B.2. The values ( )s , Var[ | , ]W e s  and 2
tz h e   for 1,2,...t T  are linearly independent 

and not constant functions of s. 

Condition B.1 is a completeness assumption that is often used for identification. A distribution f(x) 

is said to be complete if ( ) ( ) 0g x f x dx   holds only when g(x) = 0. If ( | )f x y  is complete for all y, linear 
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independence of two functions, g1(x) and g2(x), translates into linear independence of 1( ) ( | )g x f x y dx  

and 2( ) ( | )g x f x y dx . The completeness assumption is satisfied if the distribution belongs to the 

exponential family of distributions. For instance, the log-normal distribution of the sales shock, used in 

the paper’s empirical setting, readily satisfies the completeness assumption. 

Condition B.2 is a linear independence assumption on functions that are identified (up to scale) 

without the knowledge of . By construction, 2{ : 1,2,... }tz h e t T    are linearly independent as long as 

2 0t th e   for some observations in each day t. If Condition B.2 holds, one can show that ( | )s   and 

( | )s   are also linearly independent using their specific functional forms. Thus, combining Conditions 

B.1 and B.2, we obtain the rank condition for identification. 

We further note that, different from Proposition 3 in the main paper, time preference  and time 

dependence  are identified without any dimension reduction imposed under the infinite-horizon setting. 

The difference stems from how the identifying equation is obtained. In the finite-horizon model, the 

identifying equation is derived from the agent's dynamic choice of effort for each day. The optimal effort 

is chosen to balance the trade-off between present disutility (associated with time dependence) and 

expected future utility (associated with time preference). The intertemporal optimization provides the 

ratio between the two parameters but does not provide scale normalization. Consequently, two 

restrictions are needed to pin down the scale of the parameters. 

The identifying equation in the infinite-horizon model, in contrast, is derived from the agent's 

stay/leave decision, as discussed in Proposition B.1. It is not an intertemporal optimization, but a static 

choice between stay and leave. The value of leaving the firm does not depend on time preference or 

dependence and, thus, provides a time-constant normalization to the model. The distributional 

assumption on the unobserved utilities associated with the stay/leave decision helps identify the value 

function. Although the value function itself is identified only up to location () and scale (), time 

preference and dependence are identified because they have linearly independent variations of the location 

and scale parameters. Thus, as long as the rank condition holds, no more restrictions are needed for 

location and scale normalization. 

 

 




