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Abstract

We study competitive two-part tariffs in a model of asymmetric duopoly firms that offer
(vertically and horizontally) differentiated products. We show that the sign of the markup for
each product depends on the average expected demand among all customers as well as the
marginal rate of substitution of the demand for access between the marginal price and fixed
fee. We also provide necessary and sufficient conditions for marginal-cost pricing to be an
equilibrium. Under the logit demand system with an outside option, we show that competitive
two-part tariffs, even in the symmetric setting, are not efficient. When firms are asymmetric, our
results indicate that the equilibrium strategy in two-part tariffs involves “cross-subsidization”
between the marginal price and fixed fee for the less efficient firm, with the efficient firm offering
a marginal price above its marginal cost.
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1 Introduction

Two-part tariffs (2PTs) are prevalent in many industries. Examples include credit cards, membership
retail stores (e.g., Costco and Sam’s Club), and TV and wireless carrier subscriptions, among others.1

The liberalization of the British electricity market at the end of the 1990s is perhaps one of the best
examples of competition in 2PTs between asymmetric firms. The retail sector was divided into 14
monopolized regional markets before it was opened to competition. In the years before and after
liberalization, firms predominantly offered single 2PTs. However, after liberalization, these markets
were characterized by the considerable variability of the tariffs offered in each region at each point
in time.

How do firms compete in 2PTs in the presence of consumer heterogeneity? Are competitive
2PTs efficient in the sense that the price is equal to marginal cost? When do the firms engage in
cross-subsidization strategy by pricing below marginal cost and extracting consumer surplus using a
high fixed fee? In this paper, we answer these questions by studying competitive 2PTs in a general
model of multidimensional consumer heterogeneity, using both the Hotelling and a general discrete
choice approach to horizontal differentiation.

To study these issues in more detail, we construct a model with two asymmetric firms (with
asymmetric marginal costs and differentiated products), both offering 2PTs and competing for
horizontally differentiated consumers with heterogeneous tastes for product quality and variable
demands.2 Initially, we study a model in which consumers have uniformly distributed horizontal
brand preferences, à la Hotelling.3 We show that, under this assumption, the sign of the markup of
the marginal price for each firm is determined by the average expected demand among all customers
who choose the firm’s product as well as the marginal rate of substitution of the demand for access
(MRSA)—or the probability of participation—between the marginal price and the fixed fee. The
MRSA describes the demand of the set of marginal consumers who are indifferent between accepting
the 2PTs from the firm and from its rivals. We further provide necessary and sufficient conditions
for marginal-cost-based 2PTs to be an equilibrium. The conditions require that, for each firm’s

1The largest membership (or subscription) business model, Amazon Prime, Amazon’s loyalty program, has driven
Amazon’s share of U.S. internet retailing to up to 52% of the market in 2018 (Wells et al., 2019). In January 2020, CEO
Jeff Bezos announced that “the company’s Amazon Prime membership program now boasts more than 150 million
paying customers across the globe” (Del Rey, 2020). Amazon has expanded Amazon Prime, offering various benefits:
access to Amazon Instant Video, free cloud storage through Amazon Web Services, access to special deals (Lightning
Deals) on Prime Days, shipping on everyday essentials (Prime Pantry) and groceries (Amazon Fresh). More recently,
internet-enabled subscription services have expanded exponentially: business-to-consumer (B2C) subscription services
have been growing at 200% annually since 2011 (McCarthy and Fader, 2017). B2C subscription businesses sell a wide
variety of products, including meal kits (Hello Fresh and Blue Apron), grooming products (Dollar Shave Club), and
clothes (Stitch Fix and Trunk Club) (for details, see McCarthy and Fader (2017)). In all of the above examples,
consumers pay a positive fixed fee that allows them to buy products and services at a given (positive or zero) unit
price, a characteristic of 2PTs.

2We assume that consumer heterogeneity is described by a horizontal brand preference parameter and multidi-
mensional taste parameters for product quality.

3For most of this paper, we assume that consumers are single-homing and that the market is fully covered; that
is, all consumers buy from one firm and both firms sell strictly positive quantities. In Section 5, we consider a
general discrete choice model of consumer demand allowing for outside options, which includes an example of the
logit demand with an outside option.
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product, when the price is equal to the marginal cost, the average expected demand among all
customers who choose the product equals the MRSA between the marginal price and the fixed fee.
Our analysis further indicates that if the marginal costs are asymmetric and the products of the
two firms are symmetric, then the above conditions are easily violated.

We present two special settings of our model in which marginal-cost pricing is not a Nash
equilibrium. In the first setting, two firms have symmetric demands but asymmetric marginal costs.
We show that the optimal strategy for the less efficient firm (the firm with a higher marginal cost)
is to set its marginal price below its own marginal cost and compensate for this loss with a fixed
fee. On the other hand, the optimal strategy for the efficient firm is to set its marginal price above
its own marginal cost but below that of its rival.4 In the second setting, two firms have symmetric
marginal costs but asymmetric demands. Here, the equilibrium involves the inferior firm pricing
below its marginal cost, whereas the optimal strategy for the firm with superior vertical goods is to
set its marginal price above its rival’s price (and above the common marginal cost). Hence, in both
settings, the disadvantaged firm cross-subsidizes between the tariffs (i.e., sets its marginal price
below its marginal cost, and charges a positive fixed fee), and the advantaged firm sets its marginal
price above its marginal cost.

We extend our analysis by considering a discrete choice model of consumer demand. The qual-
itative results described above still hold. For instance, the sign of the markup for each firm is
determined by the average expected demand among all customers who choose the firm’s product as
well as the MRSA. Surprisingly, our results indicate that when consumers’ horizontal preferences are
represented by logit with an outside option, marginal-cost pricing, even in the symmetric setting,
is not an equilibrium. The equilibrium, in this case, involves both firms pricing above the marginal
cost, resulting in inefficiency.

2PTs were traditionally viewed as “price discrimination devices, employed exclusively by firms
with market power” (see Hayes, 1987).5 When consumers are homogeneous, a monopolistic firm
could price efficiently at the marginal cost and use a fixed fee to fully extract the consumer’s
surplus. However, marginal-cost pricing under 2PTs may not be optimal for the monopolist facing
heterogeneous consumers. In the presence of one-dimensional heterogeneity of consumer tastes,
Schmalensee (1981) shows that the price-cost markup is determined by the difference between the
average demand of the participating consumers and the demand of the marginal consumer (see
Varian, 1989, for a summary). Thus, the optimal monopolistic 2PTs involve cost-based pricing
only when the average consumer has the same efficient demand as the marginal consumer. If
the marginal consumer demands more than the average consumer, the optimal price in the 2PTs
would be less than the marginal cost. We provide a similar intuition for cross-subsidization in our
model with competition and full market coverage in which consumers are horizontal and vertically
differentiated. We find that in the context of multidimensional consumer heterogeneity, the MRSA

4This result contrasts with the one in a model in which both firms use linear pricing (LP): as the number of
tools available to firms increases (from one to two), they have incentives to establish “cross-subsidies” across the tariff
instruments (fixed fee and marginal price), which is not possible in the LP model.

5A seminal contribution on monopolistic 2PTs is the study by Oi (1971).
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of a firm provides a more general description of the consumers’ participation incentives than the
demand of the marginal consumer regarding the monopoly 2PTs in the context of one-dimensional
consumer heterogeneity.6

The early literature on competitive price discrimination typically assumes horizontally differen-
tiated consumers with homogeneous tastes for quality (or homogeneous demand) and symmetrically
competing firms; that is, firms with symmetric marginal costs and product demands. However, these
assumptions are restrictive for many applications of interest and do not match the main character-
istics of the industries that use 2PTs. In many of the examples mentioned above, firms compete by
offering 2PTs, and they share some common features. First, consumers are heterogeneous in multi-
ple dimensions (e.g., their tastes for product quality as well as their horizontal brand preferences).
Second and more importantly, firms are often asymmetric; that is, they usually have asymmetric
marginal costs and offer asymmetrically differentiated products. The liberalization of the British
electricity market at the end of the 1990s is perhaps one of the best examples of competition in
2PTs between asymmetric firms. According to Davies et al. (2014), in two-thirds of the cases, the
entrant offered a lower unit price with a higher fixed fee than the incumbent.7 Moreover, they show
that this tariff asymmetry was persistent. Indeed, some of the industries in which 2PTs are widely
practiced have evolved from being natural monopolies before the recent worldwide liberalization of
their sectors (e.g., energy and communication) and have experienced competition from more efficient
firms (i.e., lower marginal costs) with new products and differentiated demands.

The recent literature on competitive price discrimination shows that when the market is fully
covered and when symmetric firms offer nonlinear pricing schedules, there exists an equilibrium in
which each firm offers a simple 2PT contract with a marginal price equal to the marginal cost.
A seminal contribution to this literature is Armstrong and Vickers (2001), who study competitive
nonlinear pricing when consumers are differentiated à la Hotelling, have private information about
their tastes for quality, and purchase all products from a single firm (one-stop shopping). Rochet and
Stole (2002) interpret the quantity in Armstrong and Vickers (2001) as quality (so consumers choose
a price-quality pair) and show that if firms are symmetric and transportation cost is low enough to
guarantee full coverage, in equilibrium, firms offer a cost-plus-fee pricing schedule.8 However, this
surprisingly simple yet elegant result depends on the assumption of symmetry of the firms (and full
market coverage), thus excluding cases in which firms may have different marginal costs or may
offer asymmetrically differentiated products.9

6Under monopoly, with one dimensional consumer heterogeneity the MRSA between the marginal price and fixed
fee is the demand of the set of marginal consumers in the participation set.

7In this market, there are other types of asymmetries not considered in our paper. In particular, most of the
electricity suppliers were also active in the gas market. Some of the firms were vertically integrated into electric
generation; National Grid provides transmission, and there is a monopoly distributor in each of these regions. For a
complete description of the British electricity market, see Davies et al. (2014).

8Note that if firms are symmetric and the market is competitive (all consumers buy from at least one firm), the
results of Armstrong and Vickers (2001) and Rochet and Stole (2002) imply that there would be an efficient quantity
(or quality) provision supported by the marginal-cost-based 2PTs.

9Armstrong and Vickers (2010) generalize the model in Armstrong and Vickers (2001) by assuming that consumers
are allowed to multi-shop (buy from both firms or from just one) and find that in equilibrium, firms offer marginal-
cost-based 2PTs. Hoernig and Valletti (2011) consider a version of the model in Armstrong and Vickers (2010) in
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Our analysis extends the findings of Armstrong and Vickers (2001) and Rochet and Stole (2002)
in two ways. First, we provide necessary and sufficient conditions under which marginal-cost-based
2PTs are an equilibrium, given horizontally differentiated consumers with heterogeneous quality
preferences and asymmetric firms. These necessary and sufficient conditions allow us to identify
environments in which marginal-cost-based 2PTs are not an equilibrium. Given that the strategy
space of non-linear tariffs used by Armstrong and Vickers (2001) is larger than the set of 2PTs that
we have focused on, our results therefore also lay out the conditions under which a pair of 2PTs
cannot be a Nash equilibrium in a larger strategy space, such as nonlinear tariff space. Similarly,
we show that even if firms are symmetric, marginal-cost-based 2PTs may not be an equilibrium,
such as in the logit model with an outside option. Second, we characterize the equilibrium outcome
of the model when a pair of marginal-cost-based 2PTs is not an equilibrium and show that in
two special settings—asymmetric marginal costs or asymmetric demands—the equilibrium involves
cross-subsidization between the marginal price and the fixed fee for the less efficient firm.

Yang and Ye (2008) consider a model similar to Armstrong and Vickers (2001) and Rochet and
Stole (2002), and study the case in which consumer types on the vertical dimension are not fully
covered; that is, they consider a model in which the lowest consumer type covered (in the market)
is endogenously determined. They show that when the market structure moves from monopoly to
duopoly, more types of consumers are served and quality distortions decrease. Based on a model
similar to Yang and Ye (2008), Shen et al. (2016) provide conditions under which entry prompts
an incumbent to expand or contract its low end of the product line. Note that in our model, we
assume that all consumer types on the vertical dimension are covered; that is, firms do not exclude
the low/mid end of the market.

Yin (2004) analyzes a model of 2PT competition with horizontal consumer heterogeneity in which
the quantity interacts with the transportation cost (for example, a “shipping” cost) in consumers’
utility and consumers have homogeneous tastes for quality. He shows that marginal prices are equal
to marginal costs if and only if the demand of the marginal consumer is equal to the average demand.
For instance, if the horizontal taste parameter is additively separable from the price (transportation
cost is a “shopping” cost), marginal price is equal to the marginal cost in equilibrium. We show
that this result does not hold if consumers have heterogeneous taste preferences and firms have
asymmetric marginal costs or asymmetric demands. In this case, the less efficient firm (the one
with the higher marginal cost) sets its prices below its own marginal cost.

Hoernig and Valletti (2007) consider a model where consumers are horizontally differentiated,
à la Hotelling, and mix goods offered by two firms. They show that when both firms use 2PTs,
marginal prices are equal to the marginal costs if and only if both firms are located at the same spot.
Griva and Vettas (2015) study a duopoly model in which firms use 2PTs and offer homogeneous
goods to a population of vertically differentiated consumers (heterogeneous usage rate). They show
that when one price of the components is fixed for both firms, the market is segmented; that is,

which vertical and horizontal taste parameters are correlated. They show that neither 2PTs, nor full exclusivity, can
arise in equilibrium. For a review of this literature, see Armstrong (2016).

5



low-usage consumers choose the low-fee firm and high-usage consumers choose the low-rate firm.
Our analysis does not consider any of these factors (e.g., interaction of the transportation cost with
the quantity or location decisions), and thus the reasons for marginal-cost-based 2PT being an
equilibrium in our study are different from those in their models.

Also related to our study is the literature on cross-subsidization under linear pricing by mul-
tiproduct firms that often price some products below marginal costs, and subsidize the resulting
loss of the profits from other products. This literature provides different explanations for compet-
itive cross-subsidization. DeGraba (2006) shows that pricing below cost could serve as a strategy
to screen the most profitable consumers in a setting in which firms face heterogeneous consumers.
Chen and Rey (2012) show that pricing below marginal cost for products on which a large firm
competes with a smaller rival, and increasing the price on other products, allows the large firm to
discriminate between multi-shoppers and one-stop shoppers. Note that in this context, loss-leading
serves as an exploitative device rather than as an exclusionary instrument. Chen and Rey (2019)
study multiproduct firms with different comparative advantages competing for customers with het-
erogeneous transaction costs. They show that firms price strong products (on which they have a
comparative advantage) above cost, and price weak products below cost. Ellison (2005) examines
an “add-on pricing” game in which add-on prices are unobserved and firms advertise a base good
in the hope of selling add-ons at high unadvertised prices. In equilibrium, firms may price the base
product below cost to subsidize the loss with the profit from add-on prices. A driving force behind
this result is the correlation between the vertical taste and the horizontal preferences. Assuming in-
dependent vertical and horizontal consumer heterogeneity, Verboven (1999) obtains a similar result
of high prices for add-ons. Complementary to the above studies in this literature, our paper provides
a different rationale for cross-subsidization: the less efficient firm is the one that has incentives to
cross-subsidize between the tariffs (fixed fee and marginal price) as an optimal strategy to extract
consumer surplus.

The paper proceeds as follows. Section 2 sets up the model. In Section 3, we study some general
properties of our model. Section 4 provides two settings in which marginal-cost-based 2PTs are
not a Nash equilibrium and the equilibrium involves cross-subsidization by the less efficient firm.
Section 5 extends our analysis based on the Hotelling specification to allow for general market share
functions. Section 6 concludes.

2 Model

Two firms, A and B, offer differentiated products to a population of heterogeneous consumers.
We assume that both firms can produce their products at constant marginal costs, denoted by
cA and cB, respectively. We start with a single-homing (one-stop shopping) Hotelling model with
consumers buying all products from one or the other firm or else consuming their outside option.10

10In Section 5, we analyze a general discrete choice model of random utility maximization.
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Each consumer is endowed with a type (x,θ), where x is uniformly distributed on the unit interval
independently of the distribution of θ ≡ (θ1, ..., θn) ∈ Θ ≡

[
θ, θ̄
]n, which is continuously distributed

with cumulative distribution G (·). The consumer’s preferences for the two differentiated products
can be represented by the utility function uA (qA,θ)−tx if she buys from A and uB (qB,θ)−(1− x) t

if she buys from B, where x is the distance to firm A (and 1 − x the distance to firm B), t > 0 is
the consumer transportation cost per unit of distance, measuring the degree of horizontal product
differentiation, and θ represents the “vertical” taste parameter for quality.

The next assumption describes the set of utility functions.

Assumption 1. The utility function ui (qi,θ) : R+ ×Θ → R+ is twice continuously differentiable
and satisfies ∂ui(qi,θ)

∂qi

∣∣∣
qi=0

> ci,
∂2ui(qi,θ)

∂q2i
< 0 for θ ∈ Θ and ∂2ui(qi,θ)

∂qi∂θk
> 0, for k ∈ {1, 2, ..., n}.

The firms use 2PTs, which include a marginal (unit) price, pi, and a lump-sum fee, Fi, for
i ∈ {A,B}. To avoid expositional complications, we define the set of feasible unit prices of both
firms as P. Given (pi, Fi), a consumer with taste parameter θ ∈ Θ decides to buy qi : P ×Θ→ R+

units from firm i ∈ {A,B}, where

qi (pi,θ) = arg max
qi∈R+

{ui (qi,θ)− piqi} .

The net utility Ui (pi, Fi,θ) is
Ui (pi, Fi,θ) ≡ vi (pi,θ)− Fi,

where vi (pi,θ) is the indirect utility “offered” by firm i, defined by

vi (pi,θ) ≡ max
qi∈R+

{ui (qi,θ)− piqi} .

We will focus on the case with E [vi(ci,θ)] > 0, where vi(ci,θ) is the maximum surplus offering
a good at the marginal cost, ci, by firm i ∈ {A,B} for any θ ∈ Θ.

Note that (A1) implies that the buyer’s demand function and the monopoly profit function—
qi (pi,θ) and πi (pi,θ) = (pi − ci) qi (pi,θ), respectively—are continuously differentiable and that
qi (pi,θ) is strictly decreasing in pi and increasing in θ, for i ∈ {A,B}. Moreover, the indirect utility
function, vi (pi,θ), satisfies qi (pi,θ) = −∂vi(pi,θ)/∂pi by Roy’s identity ∂2vi(·)

∂pi∂θk
< 0 for all i ∈ {A,B}

and for k ∈ {1, 2, ..., n} (due to A1), which implies that −vi (pi,θ) satisfies the increasing differences
property. That is, vi (pi,θ)− vi (p′i,θ) must be monotonically nondecreasing in θ for all pi, p′i ∈ P
and pi ≤ p′i for i ∈ {A,B}.

In order to simplify our analysis, we assume full market coverage in which all consumers buy
from at least one firm i ∈ {A,B}, and both firms sell strictly positive quantities. This assumption is
equivalent to assuming a lower and an upper bound for t, which will depend on the model considered
in each section.

Let µi (pi) ≡ − E[qi(pi,θ)]

E[q′i(pi,θ)]
to be the reciprocal of the quasi-elasticity of expected demand, where

q′i (pi,θ) ≡ ∂qi(pi,θ)
∂pi

.
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Assumption 2. dµi(pi)
dpi

< 1, for i ∈ {A,B}.11

Under (A2), the expected value of the conditional monopoly profit function,

E [πi (pi,θ)] = E [qi (pi,θ)] (pi − ci) ,

is single-peaked in pi, and hence there is a unique optimal monopoly price pmi ∈ P.
Due to the full market coverage assumption, the share of θ-consumers who decide to buy from

firm i ∈ {A,B} is

si (pi, Fi, pj , Fj ;θ) ≡ 1

2
+
vi (pi,θ)− vj (pj ,θ)− Fi + Fj

2t
, (1)

and the share of firm j 6= i is sj (pj , Fj , pi, Fi;θ) = 1− si (pi, Fi, pj , Fj ;θ). The problem of each firm
i ∈ {A,B} is

max
pi,Fi

E {si (pi, Fi, pj , Fj ;θ) [πi (pi,θ) + Fi]} (2)

for j 6= i.
In our single-homing model with 2PTs, we can interpret the permission to allow consumers to

enter the shop as the first product (product 1) and its price to be equal to the fixed fee Fi, and treat
the real product offered by firm i as product 2, with a price equal to pi. In that sense, the expected
demand for product 1 of firm A is E[sA(pA, FA, pB, FB;θ)]. Note that ∂E[sA]/∂pA = −E[qA(pA,θ)]/2t

and ∂E[sA]/∂FA = −1/2t, so that the marginal rate of substitution of the demand for access (MRSA)
between pA and FA is

MRSA ≡ ∂E[sA]

∂pA
/∂E[sA]

∂FA
= E[qA(pA,θ)], (3)

which is the expected demand for the product (product 2) conditional on access.
In our analysis, we consider both homogeneous and heterogeneous taste preferences.12 We

explore also the implications of two special asymmetric settings: In the first setting, we assume that
the indirect utilities provided by both firms are equal—that is, vi (p,θ) = vj (p,θ) = v(p,θ) for all
p ∈ P and θ ∈ Θ where v (p,θ) satisfies (A1)—but that the marginal cost for firm A, the efficient
firm, is lower than the marginal cost for firm B, the less efficient firm, that is, cA < cB. The second
special setting assumes that both firms have symmetric marginal costs but offer differentiated goods
in the sense that the product offered by firm A is vertically superior to the product offered by firm
B; that is, vA (p,θ) > vB (p,θ) for all p ∈ P and θ ∈ Θ.

11Armstrong and Vickers (2001) have a similar assumption in a model with consumers with homogeneous tastes for
quality and symmetric firms with a common marginal cost, c. They assume ς ′ (u) ≤ 0, where ς (p) = − q

′(p)
q(p)

(p− c)
for u = v (p). The function ς (p) represents the elasticity of demand expressed in terms of the markup (p− c) rather
than in terms of the price p. It is straightforward to show that µ′ (p) < 1 implies that ς ′ (u) ≤ 0. Likewise, Carrillo
and Tan (2015) use such an assumption in a model of platform competition.

12Note that the terms “homogeneous” and “heterogeneous” refer to the taste parameter θ. We will denote “homoge-
neous preferences” when θ is constant and “heterogeneous preferences” when θ follows a distribution G (·) independent
of x. In both cases, consumers’ preferences are horizontally differentiated.
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3 Marginal-cost Pricing in Two-part Tariffs

In this section, we study first some general properties of our model. The set of feasible unit prices
is P = [0, p̄] , where p̄ = max {pmA , pmB}. Due to the full market coverage assumption, the market
share and the problem of firm i ∈ {A,B} are defined by (1) and (2), respectively.

The first-order condition of firm i with respect to pi yields

(pi − ci)E
[
2t · q′i (pi,θ) si (pi, Fi, pj , Fj ;θ)− qi (pi,θ)2

]
(4)

+E [qi (pi,θ) (t+ vi (pi,θ)− vj (pj ,θ))] + E [qi (pi,θ)] (Fj − 2Fi) = 0.

There are two main differences between using 2PT and LP. When both firms use LP (i.e., Fi =

Fj = 0), the first and the second term on the left-hand side of (4) characterize the best response
function of each firm i.13 Note that if Fi is a positive number, there is a direct effect of using 2PT
that shifts the quasi best-response curve, defined by (4) for firm i, to the left, in the (pi, pj) plane
for j 6= i.14 This implies that firm i reacts more aggressively with its marginal price for each value
of pj . Now, if Fj is also positive, there is an indirect effect that shifts the quasi best-response curve
for firm i in the opposite direction: as Fi increases, firm j reacts more aggressively by decreasing pj
for each value of pi, and by increasing Fj . In other words, when firms are allowed to use 2PTs, firms
react aggressively by setting low marginal prices, allowing them to attract consumers and extract
surplus more efficiently with the fixed fee, which does not depend directly on the curvature of the
demand. The fixed fee is determined by the following first-order condition:

Fi + E [πi (pi,θ)]− t− 1

3
E [vi (pi,θ) + πi (pi,θ)− vj (pj ,θ)− πj (pj ,θ)] = 0. (5)

Due to the Hotelling specification, the left-hand sides of (4) and (5) are linear in Fi and Fj . As
such, we can easily eliminate Fi and Fj to get the following conditions which determine the quasi
best-response functions,

pi − ci = ωi (pi)E [si]

(
E [si · qi (pi,θ)]

E [si]
− E [qi (pi,θ)]

)
, (6)

where 1/ωi(pi) ≡ Var [qi (pi,θ)]− 2t · E [q′i (pi,θ) si] > 0, and

si ≡
1

2
+

1

2t
(vi (pi,θ)− vj (pj ,θ)) +

1

6t
E [πi (pi,θ)− πj (pj ,θ)− 2vi (pi,θ) + 2vj (pj ,θ)] (7)

is the market share of firm i, which depends on pi, pj and θ, after taking into account the optimal
choices of fixed fees by both firms.

13If both firms use LP, the problem of firm i is: maxpi E

{(
1
2

+
v(pi,θ)−v(pj ,θ)

2t

)
πi (pi,θ)

}
.

14By quasi best-response functions, we refer to the best-response functions only in terms of pA and pB after taking
into account the optimal choices of the fixed fees.
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Proposition 1. Suppose that (A1) and (A2) hold. In any pure strategy Nash equilibrium in two-part
tariffs, for each i ∈ {A,B}, the markup pi − ci has the same sign as E[si·qi(pi,θ)]

E[si]
− E [qi (pi,θ)] .

Proposition 1 indicates that the sign of the markup for each firm is determined by two factors:
the first is the average expected demand among all customers who choose the firm’s product, and
the second is the marginal rate of substitution of the demand for access (or the probability of
participation) (MRSA) between the marginal price and fixed fee as defined in (3).15 Under the full
market coverage, the proportion of customers who choose the firm’s product is the expected market
share of the firm. Then, the average expected demand is the expected unconditional demand
divided by the expected market share. Also, under full market coverage, the MRSA of a firm
describes the demand of the set of marginal consumers who are indifferent between accepting the
2PTs from the firm and from its rivals. In our setting, consumer heterogeneity is described by n+ 1

dimensional types: consumers’ preferences for the firms’ products are horizontally differentiated and
they also have heterogeneous vertical tastes (n-dimensional). Thus, the set of marginal consumers,
is described by an n-dimensional manifold. Note that if the average demand is higher than the
MRSA, the firm sets its prices above the marginal cost and extract surplus with both the marginal
price and the fixed fee. On the other hand, if the average demand is lower than the MRSA, the
only way the firm can increase its market share and profits is by decreasing its price even below its
marginal cost and compensate the loss with the fixed fee.

Schmalensee (1981) and Varian (1989) provide a similar condition under monopoly. In their set-
ting with one-dimensional type of heterogeneous consumer tastes, the MRSA between the marginal
price and fixed fee is simply the demand of the marginal consumer. We find that it is better to
use the MRSA between the marginal price and fixed fee to describe the consumers’ participation
incentives and compare it to the average expected demand. This new terminology of MRSA also
works better in more general settings like the one described in Section 5. Moreover, under the full
market coverage for all vertical types, the MRSA between pi and Fi is completely determined by
consumers’ preferences for firm i’s product (which is the unconditional expected demand) but is
independent of firm j’s offer. However, the average expected demand for i’s product depends on
its market share, which depends on consumers’ preferences for both product i and product j. In
other words, the average expected demand for firm i’s product relies also on firm j’s price pj . If
the market is not fully covered (or under monopoly), the MRSA between the instruments pi and Fi
describes the demand of the set of marginal consumers in the participation set.

As we mentioned earlier, in the Hotelling model with linear transportation cost and uniform
distribution of consumer locations, the market share for each firm (defined in (1)) is linear in the
difference between the two indirect utilities, vi (pi,θ)−vj (pj ,θ), and linear in the difference between
the two fixed fees, Fi and Fj . Therefore, a simpler condition for the sign of the markup for each

15Note that the market share si, defined in (1), is linear in both the indirect utility and fixed fee of firm i, vi (pi,θ)
and Fi, respectively. Then, marginal changes in si, after changes in vi (pi,θ) or Fi, are constant and independent of
θ, explaining why the MRSA between pi and Fi is E [qi (pi,θ)], which is the conditional expected demand. If the
market is not fully covered for all θ, both terms will need to be slightly modified.
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firm is presented in the following corollary.

Corollary 1. Suppose that (A1) and (A2) hold. In any pure strategy Nash equilibrium in two-part
tariffs, the markup pi − ci of each firm has the same sign as Cov (vi (pi,θ)− vj (pj ,θ) , qi (pi,θ)) .

3.1 Marginal Cost Pricing

Proposition 1 and Corollary 1 imply a necessary condition (without second-order conditions) for any
pure-strategy Nash equilibrium in 2PTs involving marginal cost pricing. If marginal-cost pricing
arises in any pure-strategy Nash equilibrium in 2PTs, then the following condition holds:

E [si · qi (pi,θ)]

E [si]
− E [qi (pi,θ)] = 0

for pi = ci for i ∈ {A,B}, or equivalently

Cov (si, qi (pi,θ)) = 0, (8)

for pi = ci for i ∈ {A,B}, where si is defined in (7).16 Thus, in any Nash equilibrium in 2PTs that
involves marginal-cost pricing, the average expected demand for the firm i is equal to the MRSA
between pi and Fi.

In the next proposition, we provide sufficient conditions for marginal-cost-based 2PT to be a
unique equilibrium.

Proposition 2. Suppose that (A1) and (A2) hold. If for any pi, pj ∈ P, i, j ∈ {A,B} and i 6= j

Cov (vi (pi,θ)− vj (pj ,θ) , qi (pi,θ)) = 0, marginal-cost-based 2PT is a unique equilibrium.

Proposition 2 states that if for firm i ∈ {A,B} the demand is independent of the market share
for all feasible prices then marginal-cost-based 2PT is a unique equilibrium.17 In this case, there are
no gains of reducing or increasing the marginal price below or above the marginal cost to increase
the number of participating consumers.

Proposition 2 is related to the result in Mathewson and Winter (1997) for goods that are strongly
complementary in demand. To see the connection we can interpret the permission to allow consumers
to enter the shop by firm i as the first product with price Fi, and treat the real product offered
as product 2 with price pi. The demand for product 1 is the expected market share for firm i’s
product, E [si (pi, Fi, pj , Fj ,θ)], and the demand for product 2 is the expected value of the market
share multiplied by the individual demand for that product, E [si (pi, Fi, pj , Fj ,θ) qi (pi,θ)] (i.e.,

16Note that condition (8) is a sufficient statistic for general demand patterns in our duopoly setting. Since both
market shares and sales quantities can be observed, condition (8), and the general condition in Proposition 1 can
be potentially tested empirically. We show in Section 5 that condition (8) needs to be modified under a general
specification of market share functions.

17Note that our game is neither a game with strategic complementarities as in Vives (1990) nor a supermodular
game as in Milgrom and Roberts (1994). The reason is that the product under consideration and access by each firm
are complements to consumers, not substitutes. These two “products” are therefore substitutes across the firms but
complements within each firm.
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the expected unconditional demand). Note that due to the heterogeneity of the consumer’s vertical
preferences, the ratio of the demands for the two products may or may not be independent of Fi. If
condition (8) holds, then the ratio of the two demands is equal to E [qi (pi,θ)], which is independent
of the fixed fee, Fi. Hence the two “products” are strong complements in the sense of Mathewson
and Winter (1997). Using their Proposition 5, we could conclude that the profits for firm i are
maximized at pi = ci. However, as we will illustrate later, in the presence of heterogeneity in
consumers vertical preferences, condition (8) can easily be violated.

To illustrate Proposition 2, we consider two important cases. In the first case, consumers are
homogeneous in their tastes for quality, whereas their horizontal brand preferences remain unknown
to the firms. In the second case, we assume that firms are symmetric.

Corollary 2. Suppose the analogues of (A1) and (A2) for θ identical for all consumers hold. Then,
marginal-cost-based 2PT is a unique equilibrium.18

Corollary 2 shows that if consumers are homogeneous in their tastes for quality, under the as-
sumption of full market coverage, the equilibrium strategy for each firm is to set its prices equal
to its marginal costs and extract surplus through the fixed fee. Following the above interpreta-
tion, the demand for product 1 is the market share of firm i’s product, si (pi, Fi, pj , Fj), and the
demand for product 2 is the market share multiplied by the individual demand for that product,
si (pi, Fi, pj , Fj) qi (pi). Note that the ratio of the two demands is qi (pi), which is independent of
the fixed fee, Fi, and then Mathewson and Winter (1997) result applies. Hence, each firm always
charges the price of its second product at marginal cost, independently of its rival’s choices. Note
that in this case, the marginal costs of the two firms may be different, which implies that the
marginal prices (and fixed fees) may also be different.19

In the second case, we show in the next corollary that if firms are symmetric the ratio of the
demands for the two products at pi = ci remains independent of Fi. Hence, from Mathewson and
Winter’s result we know that marginal-cost pricing is part of the equilibrium.20

Corollary 3. Suppose that (A1) and (A2) hold and that ci = cj = c and vi (p,θ) = vj (p,θ) for all
p ∈ P, θ ∈ Θ and j 6= i. Then, any pure-strategy Nash equilibrium in 2PT involves marginal-cost
pricing.

18In equilibrium, F ∗i = t+
vi(ci)−vj(cj)

3
for i ∈ {A,B} and j 6= i. Note that if t < vA(cA)−vB(cB)

3
, then there exists a

corner equilibrium in which firm B sets pB = cB and FB = 0 while firm A sets pA = cA and FA = t
2

+ vA(cA)−vB(cB)
2

.
For the rest of the paper we consider only interior equilibria.

19Corollary 2 is also related to Yin (2004), who considers a model where consumers are horizontally differentiated
and have homogeneous taste preferences (i.e., one-dimensional horizontal consumer heterogeneity). He shows that if
there is an interaction between the horizontal taste (or location) parameter and the consumer’s utility with variable
quantity (i.e., the cross-partial of the net utility with the quantity and location parameter is different from zero),
marginal-cost pricing is an equilibrium if the demand of the marginal consumer is equal to the average demand.
Also, if if there is no interaction between the horizontal taste parameter and the consumer’s utility with variable
quantity (e.g., the effect of the horizontal preference parameter on utility is additively separate from the effect of the
quantity)—the transportation cost is a shopping cost—firms set marginal prices equal to marginal cost.

20Marginal-cost-based 2PT is also an equilibrium if, for example, the indirect utilities offered by the two firms are
such that vi (p,θ)− vj (p,θ) = K, where K is a constant for all p ∈ P and θ ∈ Θ.
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Corollary 3 is consistent with the result by Armstrong and Vickers (2001) and Rochet and Stole
(2002) that a pair of 2PTs with marginal-cost pricing is an equilibrium in a symmetric model in
which firms choose nonlinear tariffs. For instance, Rochet and Stole (2002) show that the upward
and downward incentive constraints do not bind for the firms and hence there is an equilibrium in
which each firm sells efficient quality levels (e.g., cost-plus-fixed-fee pricing). This general result
by Armstrong and Vickers (2001) and Rochet and Stole (2002) depends on the assumption of the
symmetry of the firms. Although we consider a smaller strategy space (2PT instead of nonlinear
pricing), our result does not rely on symmetry. Moreover, if marginal-cost pricing is not a Nash
equilibrium in the space of 2PTs, it will not be a Nash equilibrium in a larger space of nonlinear
pricing. Finally, as pointed out by Rochet and Stole (2002), departures from the assumption of
independence between the vertical taste parameter and the horizontal preferences, may alter the
conclusion that a pair of 2PTs is a Nash equilibrium.

3.2 Deviation from Marginal-cost Pricing in Two-part Tariffs

As discussed earlier, (8) is a necessary condition for marginal-cost-based 2PT as a Nash equilibrium.
This condition can easily be violated.21 We would normally expect that the MRSA between pi and
Fi would be lower than the average expected demand; in this case, the price charge would be greater
than the marginal cost. That is, if the MRSA between the instruments pi and Fi is low relative
to the average expected demand, firms do not need to set prices at or below the marginal cost
to attract more customers. Instead, firms can extract surplus with both marginal price and fixed
fee. However, the MRSA between pi and Fi may be higher than the average expected demand. In
this case, the equilibrium marginal price would be less than the marginal cost. The greater the
demand response to increases in the marginal price, the more likely it would be the firm decreases
its marginal price below its marginal cost to attract more customer, subsidizing the losses with the
fixed fee.

Beyond the above two special cases, the ratio of the two demands by heterogeneous consumers
in general depends on fixed fees. To evaluate possible deviations from marginal-cost pricing in 2PTs,
we use the following assumption on consumers’ vertical tastes preferences.

Assumption 3. θ is strictly associated.

A vector θ of random variables is associated if Cov[f (θ) , g (θ)] ≥ 0 for all nondecreasing func-
tions f and g for which E [f (θ)], E [g (θ)], and E [f (θ) g (θ)] exist. We use a strict version of
association for the rest of the paper.22

If θ is strictly associated and if vi (ci,θ) − vj (cj ,θ) is monotonic increasing or decreasing (de-
pending on marginal costs and the functional form of vi (·) for i ∈ {A,B}) with respect to θ, since

21Note that in our previous example, the two goods (product 1 and 2) are complements, then pi and Fi should go
in opposite directions and their directions depend on the average expected demand and the MRSA between them.

22For a complete reference on association of random variables and its properties, see Esary et al. (1967). See also
Holmstrom and Milgrom (1994) and Milgrom and Weber (1982) for economic applications.
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qi (ci,θ) is monotonic increasing in θ, then (8) can easily be violated. In these cases, marginal-cost
pricing is not an equilibrium. Two special cases are provided in the following corollary.

Corollary 4. Suppose that (A1)-(A3) hold. Marginal-cost-based 2PT is not a Nash equilibrium if
either (i) ci 6= cj and vi (p,θ) = vj (p,θ) = v(p,θ) for all p ∈ P and θ ∈ Θ; or (ii) ci = cj and
vi (p,θ)− vj (p,θ) is strictly monotonic with respect to θ for all p ∈ P.23

Corollary 4 shows that if marginal costs are asymmetric and the products of the two firms are
symmetric, then (8) evaluated at the marginal costs does not hold and hence marginal cost-based
2PT is not an equilibrium. Likewise, if marginal costs are symmetric but the difference in the
indirect utilities, vi (p,θ) − vj (p,θ), is monotonic with respect to θ, then (8) does not hold either
and hence marginal-cost pricing is not an equilibrium.

To illustrate Corollary 4, consider the following class of examples (considered in Section 4) in
which firms have symmetric marginal costs and for any p ∈ P and θ ∈ Θ, the indirect utility
offered by firm i is v (p,θ) (which satisfies A1) and the indirect utility offer by firm j, j 6= i, is
α · v (p,θ) for any α ∈ (0, 1), which means that product A is “vertically” superior to product B.
Then, marginal-cost pricing is not an equilibrium.24

The reason for the contrast between Corollaries 3 and 4 is related to the dependence of the fixed
fees and marginal prices on the distribution of θ. Note that from Corollary 2 we know that marginal-
cost-based 2PT is a unique equilibrium if θ is complete information for firms. If both marginal costs
and indirect utilities (demand for the two goods) are symmetric, both the equilibrium marginal price
and the fixed fee do not depend on the distribution of θ. Thus, the marginal price and the fixed fee
remain an equilibrium even when θ is unknown for both firms. However, if marginal costs or the
products offered by the two firms are asymmetric, the fixed fee or the marginal price would depend
on the distribution of θ.

4 Cross-subsidization by the Less Efficient Firm

In this section we provide two classes of examples in which marginal-cost-based 2PT is not a Nash
equilibrium and the equilibrium involves the less efficient firm prices below its marginal cost. In the
first class, the indirect utilities offered by the two firms are symmetric but the firms have different
marginal costs. In the second class, both firms have the same marginal cost, c, but the demands

23The monotonicity of the utility difference between the two products with respect to θ can be interpreted as
follows: vi (p,θ)− vj (p,θ) is monotonic with θ means that vA (p,θ) + vB (p,θ′) > vA (p,θ′) + vB (p,θ) for θ,θ′ ∈ Θ
such that θ > θ′ (“high” and “low” type).

24In previous versions of this paper, we also studied under what conditions marginal-cost-based 2PT is an equilib-
rium if both firms use nonlinear tariffs. We showed that any equilibrium involves marginal-cost-based 2PTs if and
only if for i, j ∈ {A,B} and j 6= i, vi (ci,θ)− vj (cj ,θ) is constant over θ ∈ Θ (i.e., the difference between the utilities
offered by the two firms at their marginal costs, or the efficient utilities, is independent of consumer taste θ)—this
result extends Proposition 5 in Armstrong and Vickers (2001) and Proposition 6 in Rochet and Stole (2002) to allow
for general asymmetric demands and costs). The following two examples satisfy this condition. In the first, firms
have symmetric costs, vA (p,θ) = v (p,θ) and vB (p,θ) = v (p,θ)+k, where k ∈ R and v (p,θ) is derived from a utility
function that satisfies (A1). In the second example, firms have asymmetric marginal costs, vA (p,θ) = v (p,θ) and
vB (p,θ) = αv (p,θ), where α ∈ (0, 1), v (p,θ) = h (θ) v (p), v (·) is strictly decreasing and h (·) is strictly increasing.
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for their products are not symmetric. We show that when firms have asymmetric marginal costs or
asymmetric demands, information about vertical taste preferences has a substantial effect on the
equilibrium pricing strategy, and in particular, in equilibrium the less efficient firm “cross-subsidizes”
between the fixed fee and the marginal price.

4.1 Asymmetric Costs and Symmetric Demands

Without loss of generality, we assume that the marginal cost of firm A, the efficient firm, is lower
than that of firm B, the less efficient firm; that is, cB > cA ≥ 0. The set of feasible unit prices
for both firms is P = [0, pmB ] , where pmB corresponds to the monopoly price of firm B.25 Given the
symmetric demands, the equilibrium conditions (5) and (6) can be simplified as follows

Fi = t+
1

3
E [v (pi,θ) + πi (pi,θ)− v (pj ,θ) + πj (pj ,θ)]− E [πi (pi,θ)] , (9)

and

pi − ci = ωi (pi) Cov (v (pi,θ)− v (pj ,θ) , q (pi,θ)) , (10)

where 1/ωi(pi) ≡ Var [q (pi,θ)]− 2t · E [q′ (pi,θ) si] and si is defined as in (7).
The equilibrium condition (10) has several implications. First, in equilibrium the two firms

cannot charge the same marginal prices. Second, the efficient firm A should charge a lower marginal
price than the less efficient firm B. Otherwise, pA > pB would imply that the covariance on the
right-hand-side of (10) is negative for i = A and positive for i = B, since −v(p,θ) has increasing
difference property and θ is associated, which in turn implies negative markup for firm A and
positive markup for firm B. This contradicts the assumption that firm A has lower marginal cost
than firm B has. Moreover, the same logic implies that in equilibrium, the efficient firm indeed has
positive markup while the less efficient one has negative markup. We summarize these findings in
the following proposition and the formal proof is presented in the Appendix.

Proposition 3. Suppose that (A1)-(A3) are satisfied. In any pure-strategy Nash equilibrium in
2PTs, the following hold:

(i) cA < p∗A < p∗B < cB and
(ii) the expected market share, per-customer profits and total revenue are greater for firm A than

those for firm B.26

Why the more-efficient firm, A, sets its marginal price above its marginal cost and the less
efficient firm, B, below its marginal cost? The intuition follows from Proposition 1. Suppose that

25Since B is the less efficient firm, p̄ = max {pmA , pmB } = pmB .
26We show in the proof of Proposition 3 that if the difference between cB and cA is small, then FA > FB . A formal

definition of the upper bound of cB , as a function of cA, is provided in the proof of Proposition 3. From the Implicit
Function Theorem, it follows that given cA, as cB increases, FA increases and FB decreases. In summary, in any
equilibrium, the efficient firm charges a lower marginal price and a higher fixed fee than those of the less efficient
firm.
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initially both firms offer their products at the marginal cost and charge a positive fixed fee. Then,
it follows that the average expected demand is greater (lower) than the MRSA between pA and
FA for firm A (B).27 Thus, in order for firm B to attract more customers it needs to decrease the
marginal price even below its own marginal cost and compensate the losses with the fixed fee. On
the other hand, firm A’s average expected demand is higher than the MRSA between pA and FA.
Then, firm A does not need to decrease its marginal price below its own marginal cost to increase
its market share and the share of revenues extracted with the fixed fee.

Part (ii) follows from (i), (9), and the fact that the expected market share is a linear function
of the difference of the expected surplus from both firms. In any equilibrium p∗A < p∗B, then, the
expected total surplus and the market share are greater for firm A that for firm B. Moreover, since
cA < p∗A < p∗B < cB, the expected revenue per consumer is greater for firm A than for firm B.

In sum, in any equilibrium, the expected market share, profits, total revenue per consumer, and
total revenue are greater for firm A than for firm B. In particular, note that the marginal price is
lower and the fixed fee is higher for the efficient firm than for the less efficient one (see Footnote
26). These results may explain the empirical regularities observed in the British electricity market
and highlighted by Davies et al. (2014); if the entrant firms are more efficient than the incumbent,
we should expect lower marginal prices and higher fixed fees for the entrant.28

Proposition 3 contrasts with Chen and Rey (2012) who consider a model in which a large retailer,
supplying a broad range of products, competes with a smaller retailer that focuses on a narrower
product line. They consider two products (or product lines) and assume that the first product is
monopolized by the large firm, whereas both firms can supply the second product. They assume
that consumers incur a shopping cost for visiting a store.29 They show that whenever the large
retailer enjoys a comparative advantage over the small retailer, the pricing strategy involves loss
leading: the large retailer sells the competitive product below cost in order to discriminate between
single-homing shoppers and multi-homing shoppers. Similarly, Proposition 3 contrasts with Chen
and Rey (2019) who consider a model in which two firms with different comparative advantages
(each firm has a strong and a weak product) compete for consumers with heterogeneous shopping
patterns. In equilibrium, firms sell their weak products below cost, earn zero profit from one-stop
shoppers, and extract profits from multi-homing shoppers, who pay a higher price for their strong
product. Note that in our case, in equilibrium, the less efficient firm sets its price below its marginal
cost and compensate the loss with the fixed fee, whereas the firm with the advantage sets its price
above its marginal cost.

To determine the sufficient condition for the uniqueness of equilibrium, we need to introduce
27Remember that in the symmetric case the average expected demand is equal to the MRSA between the instru-

ments pi and Fi for both firms.
28As we mentioned before, there are other types of asymmetry that are important in the British electricity market.

Some of the firms were integrated upstream into generation and some were active in the gas market. Although Davies
et al. (2014) suggest small costs asymmetries between firms, we need to assume that these other type of asymmetry
can be projected into the firms’ marginal costs. This may result in firms with asymmetric marginal costs.

29Intuitively, consumers with a low shopping cost take advantage of multi-homing, whereas those with higher
shopping cost favor one-stop shopping.
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a new assumption that helps us to analyze the slope of the quasi best-response functions.30 We
introduce the following definition:

Definition 1. v (p,θ) : P×Θ→ R+ is separable if there exist functions v : P → R+, h : Θ→ R
and l : Θ→ R, where v (·) is strictly decreasing such that for all (p,θ) ∈ P ×Θ,

v (p,θ) = v (p)h (θ) + l (θ) .

Assumption 4. v (p,θ) : P ×Θ→ R+ is separable.

Examples of the classes of indirect utilities that satisfy (A4) are: (i) the power functions (or
constant elasticity demand) e.g., suppose that u (q, θ) = θ

√
q then v (p, θ) = θ2

4p ; (ii) the log function,
e.g., u (q, θ) = θ log q, then v (p, θ) = θ (log θ − 1)−θ log p; and (iii) the linear demand-type function,
e.g., u (q, θ) = αq − θq2

2 , then v (p, θ) = (α−p)2
2θ . Also, (A4) allows us to simplify (10) and show in

Lemma 1 (see the Appendix) that the slope of the implicit functions defined by (10) for each firm
i, Ri (pA) : P → P, is positive, where Ri

(
p̃iA
)

= p̃iB is such that p̃iA and p̃iB satisfy (10) for each
i ∈ {A,B}.

Although both firms are using fixed fees to extract surplus, both quasi best-response functions
in terms of the unit prices are increasing, as in the standard LP game. Note that if consumers have
homogeneous taste parameters for quality, the quasi-best response function is vertical for firm A

and horizontal for firm B, which contrasts with Lemma 1.
Note that (A4) allows us to express (10) as a function of θ̄ ≡ E [h (θ)] and σ ≡ Var [h (θ)]. Using

Lemma 1, we show the uniqueness of the pure strategy Nash equilibrium in 2PTs in the following
proposition.

Proposition 4. Suppose that (A1)-(A4) are satisfied and that 3σ > θ̄2 and cB−cA < −q(cB)/3q′(cA).31

Then there exists a unique equilibrium in 2PTs in which p∗i ∈ P is determined by (10) and F ∗i sat-
isfies (9) for i ∈ {A,B}.

From Proposition 3 we know that the two implicit functions, RA (pA) and RB (pA) derived from
(10) for i ∈ {A,B} cross at least once in the set (cA, cB)2 (see Figure 1). Next, from Lemma 1 we
know that the slopes of the implicit functions RA (pA) and RB (pA) are positive. For uniqueness,
we show that in the set (cA, cB)2 the slope of RA (pA) is greater than the slope of RB (pA).

30Note that (10) implicitly defines a quasi best-response function for each i ∈ {A,B} as a function of (pA, pB).
31The condition, cB − cA < −q(cB)/3q′(cA), establishes an upper bound for cB − cA. The latter condition combined

with 3σ > θ̄2 allows us to simplify our proof of uniqueness. A more tedious proof, in which these two assumptions
are not used is available upon request.
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Figure 1: Equilibrium with Asymmetric Cost

Note: Figure 1 shows the inverse of the quasi best-response function of firm A as a function of pA and the quasi
best-response function of firm B as a function of pA.

Given the uniqueness of the pure-strategy Nash equilibrium in 2PTs, we next provide a set of
comparative static properties of the equilibrium with respect to asymmetry of the firms and the
heterogeneity or consumers’ vertical tastes.

Corollary 5. In equilibrium, as both cB and cA go to c, p∗i converges to c and F
∗
i to t for i ∈ {A,B}.

Corollary 5 follows from Corollary 3 and Proposition 3. As the marginal costs for both firms
converge to a common value c (i.e., as the asymmetry between the two firms vanishes) both marginal
prices tend to the marginal cost and both fixed fees to the transportation cost, t (see, e.g., Armstrong
and Vickers, 2001).

Corollary 6. In equilibrium,
(i) as σ → 0, pA → cA and pB → cB;
(ii) as σ →∞, pA → p̄A and pB → p̄B where cA < p̄A < p̄B < cB.

Corollary 6(i) follows from Corollary 4 and the monotonicity of the quasi best-response functions
with respect to the marginal prices for both firms. Note that when σ = 0, the quasi best-response
function for firm A is a vertical line at pA = cA in the (pA, pB) plane, and for firm B it is a
horizontal line at pB = cB. From numerical simulations, we find that as σ increases, pA increases
and pB decreases. That is, as σ increases, the quasi best-response function rotates to the right
around (cA, cA). Similarly, for firm B, as σ increases, the quasi best-response function rotates to
the left (counterclockwise) around (cB, cB). Thus, for pi > ci, as σ increases, firm i reacts less
aggressively (sets a higher price) for each pj , for j 6= i. However, for pi < ci, as σ increases, firm
i reacts more aggressively (sets a lower price) for each pj , for j 6= i. This explains why marginal-
cost-based 2PT is not a Nash equilibrium, when consumers are heterogeneous in their tastes. In
particular, it explains why the optimal strategy for the less efficient firm is to set its marginal price
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below its own marginal cost and to compensate for this loss with the fixed fee. On the other hand,
the optimal strategy for the efficient firm is to set its marginal price above its own marginal cost but
below that of its rival. Finally, from Corollary 6(ii), note that as σ increases, the marginal change
of pA and pB decreases.

4.2 Asymmetric Demands and Symmetric Costs

This subsection introduces the second type of asymmetry related to the goods offered (or equivalently
to the demand) by the two firms, but assumes that both firms have the same marginal cost, c.
Without loss of generality, we assume that the indirect utility offered by firm A is higher than the
one offered by firm B: vA (p,θ) − vB (p,θ) > 0 for all p ∈ P and θ ∈ Θ. To simplify the analysis,
we introduce the following assumption:

Assumption 5. Let vA (p,θ) = v (p,θ) and vB (p,θ) = αv (p,θ) for α ∈ (0, 1), where v (p,θ) is
separable.

Intuitively, (A5) implies that for any p ∈ P and for θ,θ′ ∈ Θ such that θ > θ′ (e.g., high and
low type, respectively), the sum of the indirect utilities offered by firms A and B to the high and
low type, respectively, is higher than the sum of the indirect utilities offered by firm A and B to
the low and high type, respectively, so that, vA (p,θ) + vB

(
p,θ′

)
> vA

(
p,θ′

)
+ vB (p,θ). Thus,

product A is “vertically” superior to product B.32 Let αA and γB be such that

v(αA) = αv(c) and v (c) = αv (γB) . (11)

From (A5) and (11), it follows that αA > c and γB < c. We restrict our analysis to the set of indirect
utilities that satisfy (A1) such that γB is strictly positive. This condition implies that the difference
between the two indirect utilities is bounded.33 We proceed to characterize the equilibrium of the
game following a strategy similar to that in the previous subsection. Given the symmetric cost c
and (A5), the equilibrium conditions (5) and (6) can be simplified as follows

Fi = t+
1

3
E [vi (pi,θ) + πi (pi,θ)− vj (pj ,θ) + πj (pj ,θ)]− E [πi (pi,θ)] , (12)

and

pi − c = ωi (pi) Cov (vi (pi,θ)− vj (pj ,θ) , qi (pi,θ)) , (13)

where 1/ωi(pi) ≡ Var [q (pi,θ)]− 2t · E [q′ (pi,θ) si] and si is defined as in (7).
The equilibrium condition (13) has several implications. First, in equilibrium the two firms

cannot use marginal cost pricing. Second, firm B should charge a marginal price below the marginal
32For example, if uA (q, θ) = θ

√
q and uB (q, θ) = θ

√
αq, then vA (p, θ) = θ2

4p
and vB (p, θ) = α θ

2

4p
, which satisfies

(A5). Note that (A5) excludes functions such that the two indirect utilities offered by both firms differ by an additive
constant.

33Equivalently, we can say that the difference between the demands of the two products offered by the firms is
bounded.
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cost, while firm A should charge a marginal price above the marginal cost; this is implication of
assumption (A5). We summarize these findings in the following proposition and the formal proof is
presented in an Appendix.

Proposition 5. Suppose that (A1)-(A3) and (A5) are satisfied and that 3σ > θ̄2 and αA − γB <

−q(αA)/3q′(γB). Then there exists a unique equilibrium in 2PTs in which p∗i ∈ P is determined by
(13) and F ∗i satisfies (12) for i ∈ {A,B}. Moreover, p∗B < c < p∗A.

For the proof of Proposition 5, we first show that no solution exists for (pA, pB) outside the
set Ω, where Ω ≡ {pA, pB ∈ P |(pA, pB) ∈ [c, αA]× [γB, c]} , which implies that if any equilibrium
of the game exists, it must be in the set Ω. Next we show that for (pA, pB) ∈ Ω, the slope of the
implicit functions defined by (13) for i ∈ {A,B}, R̃i (p) : P → P, where R̃i

(
p̃iA
)

= p̃iB, are such
that p̃iA and p̃iB satisfy (13) for i ∈ {A,B}, is positive.

Figure 2: Equilibrium with Asymmetric Demands

Note: Figure 2 shows the inverse of the quasi best-response function of firm A as a function of pA and the quasi
best-response function of firm B as a function of pA.

We show that there exists at least one Nash equilibrium, that is, the two implicit curves defined
by (13) for i ∈ {A,B} always cross each other in the region Ω.34 For uniqueness, we show that in
the set Ω the slope of the implicit function R̃A (pA) is greater than the slope of R̃B (pA).

Proposition 5 says the disadvantaged firm (vertically inferior product demand) sets its marginal
price below its rival’s price and below its marginal cost, while the advantaged firm (vertically superior
product demand) offers a unit price above its marginal cost and its rival’s marginal price. The

34Particularly, note that as pA → c in (13) for i = A, we have that pB → γB > c, and as pA → γA, pB → c where
γA is such that (γA, c) satisfy (13) for i = A. Similarly, from (13) for i = B, as pA → c, we have that pA → αB , while
as pA → αA, pB → c, where αB is such that (c, αB) satisfy (13) for i = B and αB > γB . Similarly, we show that as
pA → γA in (13) for i = B, pB → δB < c. Thus, both curves cross each other at least once in the set Ω (see Figure
2).
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disadvantaged firm compensates for the loss of subsidizing the marginal price below the marginal
cost with a positive fixed fee that is below that of its rival’s fixed fee, which translates into an
average expected demand strictly less than the MRSA between the instruments pB and FB. This
result contrasts with Proposition 3 in which the disadvantaged firm sets a higher unit price (but
below its own marginal cost) and a lower fixed fee than those of its rival. In the Asymmetric Costs
Model, the efficient firm sets a marginal price below its rival’s price but above its own marginal cost,
while in the Asymmetric Demands Model, if the advantaged firm offers a price below the common
marginal cost, it would have to compensate for this loss by increasing the fixed fee and decreasing
its market share. Hence, firm A has incentives to deviate and offer a higher price than firm B, due
to its advantage in product demand.

Note that as the difference between the indirect utilities offered by the two firms tends to 0 (i.e.,
α tends to 1) for any pi ∈ P, i ∈ {A,B}, and θ ∈ Θ, both marginal prices tend to the marginal
cost, c, and the fixed fees become independent of θ, equal to t (the standard result of 2PTs).35

We may reconcile Proposition 5 with the empirical regularities observed in the British electricity
market (described by Davies et al., 2014, i.e., the entrant firm offers a lower marginal price and a
higher fixed fee than the marginal price and fixed fee, respectively, offered by the incumbent) in the
following way: Suppose that the marginal cost of firm A is lower than that of firm B (i.e., cA < cB).
Likewise, suppose that vA (p,θ) = v (p,θ) and vB (p,θ) = αv (p,θ) for α ∈ (0, ᾱ], where ᾱ > 1

and is such that an interior equilibrium exists, v (p,θ) = h (θ) v (p), v (·) is strictly decreasing, and
h (·) is strictly increasing. Then, from Propositions 3 and 5 and the Implicit Function Theorem, it
follows that there exist α1 < 1 and α2 ∈ (1, ᾱ) such that for α ∈

(
α1, α2

)
, cA < p∗A < p∗B < cB, and

F ∗A > F ∗B. That is, if α ∈
(
α1, α2

)
, firm A offers a lower marginal price and a higher fixed fee than

firm B, as in the British electricity market for the entrants and the incumbent firm, respectively.

5 General Market Share Functions

In this section, we extend our previous analysis based on the Hotelling specification to allow for
general market share functions. Following Armstrong and Vickers (2001), we consider a discrete-
choice model with a mass of consumers with types (ξ,θ), where ξ ≡ (ξA, ξB, ξ0) is distributed
independently of the distribution of θ. Consumer’s preference for the two differentiated products
can be represented by the utility function uA (qA,θ) + ξA if she buys from A, uB (qB,θ) + ξB if she
buys from B, and u0 + ξ0 if no purchase is made. Consumers buy all products from one or the other
firm, or else take their outside option. Given two-part tariffs (pi, Fi), the share of θ-consumers who
choose to buy from firm A is s (vA (pA,θ)− FA, vB (pB,θ)− FB) and the share of consumers who
choose firm B is s (vB (pB,θ)− FB, vA (pA,θ)− FA), where vi (pi,θ) is the indirect utility offered
by firm i, defined as before, for i ∈ {A,B}. Moreover, both firms can produce their products at
constant marginal costs, cA and cB, respectively.

35Moreover, from the Implicit Function Theorem, it follows that p∗A and F ∗A decrease and p∗B and F ∗B increases as
α increases, for α close to 1, which implies that F ∗A > F ∗B .
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We impose the following regularity assumptions:36 First, s (uA, uB) is increasing with respect to
uA and decreasing with respect to uB. Second, s(uA,uB)/s1(uA,uB) is weakly increasing with respect
to uA and weakly decreasing with respect to uB.37

The problem of each firm is

max
pi,Fi

E [s (vi (pi,θ)− Fi, vj (pj ,θ)− Fj) (πi (pi,θ) + Fi)] (14)

for i, j ∈ {A,B} and j 6= i.
We first provide a similar condition to the one presented in Proposition 1 to determine the sign

of the markup pi − ci in any pure strategy Nash equilibrium in 2PTs. Second, when consumers
have homogeneous vertical taste preferences, we show that marginal-cost-based 2PT is a Nash
equilibrium, similarly to Corollary 2. Third, we show that when the market shares are determined
by logit with outside option, marginal-cost-based 2PT is not a Nash equilibrium even when firms
are symmetric (i.e., identical marginal cost and symmetric product demand), contrary to Corollary
3. And finally, we consider a setting with general market share, asymmetric costs, and with discrete
types and show that the qualitative results of Section 4 hold.

Note that in this case the MRSA between pi and Fi is

MRSA ≡ ∂E[si]

∂pi
/∂E[si]

∂Fi
=
E [s1 · qi (pi,θ)]

E [s1]
.

Proposition 6. In any pure strategy Nash equilibrium in two-part tariffs, for each i ∈ {A,B}, the
markup pi − ci has the same sign as E[s·qi(pi,θ)]

E[s] − E[s1·qi(pi,θ)]
E[s1]

.

Note that the sign of the markup for each firm is determined by two factors: the average
expected demand among all customers who choose the firm’s product, and the MRSA between the
two instruments pi and Fi, as in Proposition 1.

5.1 Marginal Cost Pricing

To study necessary conditions under which marginal-cost-based 2PT is an equilibrium, let

φi (θ) ≡
s
(
v∗i (θ) , v∗j (θ)

)
E
[
s
(
v∗i (θ) , v∗j (θ)

)] − s1

(
v∗i (θ) , v∗j (θ)

)
E
[
s1

(
v∗i (θ) , v∗j (θ)

)]
where v∗i (θ) ≡ vi (ci,θ)− F ∗i and F ∗i is implicitly defined by

36For the θ-consumer, the aggregate consumer utility is

V (uA (θ) , uB (θ)) = Eξ [max {uA (θ) + ξA, uB (θ) + ξB , u0 + ξ0}] .
By the envelope theorem, V1 (uA (θ) , uB (θ)) ≡ s (vA (pA,θ)− FA, vB (pB ,θ)− FB) is the share of θ-consumers
who choose to buy from firm A. We assume that consumers’ tastes for the two firms’ products are symmetrically
distributed, i.e., V (uA (θ) , uB (θ)) = V (uB (θ) , uA (θ)).

37Armstrong and Vickers (2001) make a similar assumption.
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F ∗i =
E
[
s
(
v∗i (θ) , v∗j (θ)

)]
E
[
s1

(
v∗i (θ) , v∗j (θ)

)] (15)

for j 6= i and i, j ∈ {A,B}. Note that φi (θ) is equal to the average expected demand for the firm i

minus the MRSA between the instruments pi and Fi, at pi = ci. If a pure-strategy Nash equilibrium
in 2PTs involves marginal-cost pricing then the following condition holds:

Cov (φi (θ) , qi (ci,θ)) = 0 (16)

for j 6= i and i, j ∈ {A,B}, which we formally summarize in the next corollary.

Corollary 7. For a given ci, cj ∈ P, if a pure-strategy Nash equilibrium involves marginal-cost-based
2PT then (16) holds for i, j ∈ {A,B} and j 6= i.

Corollary 7 follows from Proposition 6. That is, if the equilibrium in 2PTs involves setting prices
equal to the marginal costs then the average expected demand for firm i equals the MRSA between
the instruments pi and Fi. Intuitively, since qi (·) is increasing with respect to θ, condition (16)
means that the equilibrium profit margins are constant over taste preferences, θ, at pi = ci.38 For
the specific case in which ξi is distributed uniformly (à la Hotelling), condition (16) reduces to the
independence between each firm’s efficient quantity qi (ci,θ), and the difference between the efficient
consumer surpluses offered by the two firms, vi (ci,θ)− vj (cj ,θ), as we showed in Corollary 1. For
the general model presented here, the market share may not be linear with respect to the difference
between the efficient consumer surplus offered by the two firms. That is, condition (16) depends on
the behaviors of market share functions and not on the difference between the efficient consumer
surpluses offered by the two firms as in Corollary 1.

If consumers have homogeneous tastes for quality, (16) is trivially satisfied for each firm i ∈
{A,B}. We show in the next corollary that in this case, marginal-cost-based 2PT is an equilibrium.

Corollary 8. Suppose consumers have homogeneous vertical tastes and vi (ci) >
s(0,0)
s1(0,0)

for i ∈
{A,B}. Then, marginal-cost-based 2PT is an equilibrium, where the fixed fees are given by F ∗i =

vi (ci)− v∗i and v∗i are implicitly defined by vi (ci) = v∗i +
s(v∗i ,v∗j )
s1(v∗i ,v∗j )

for i, j ∈ {A,B} and j 6= i.39

Corollary 8 extends Armstrong and Vickers’ Proposition 1 to allow for asymmetric firms. Here,
firms set their marginal prices equal to the corresponding marginal costs. Corollary 8 shows that,

38Condition (16) provides a similar intuition to the one provided by Rochet and Stole (2002) for marginal-cost
pricing to be an equilibrium. They consider a model in which under general market share functions, firms offer
nonlinear pricing schedules. Their condition (equation 12 in Rochet and Stole, 2002) follows from two observations:
First, in the unrestricted model where firms use nonlinnear pricing, a necessary and sufficient condition for efficient
quantities is that S∗i (θ) − ui (θ) is constant, where S∗i (θ) is the surplus generated from efficient consumption by
consumer θ from trade with firm i, ui (θ) ≡ maxq θq − Pi (q), and Pi (q) is the price schedule chosen by firm i.
Second, an efficient equilibrium arises if and only if at the equilibrium utilities of the restricted game (where firms
are restricted to cost-plus-fixed-fee pricing), the equilibrium profit margins are constant over taste preferences, θ.

39Additional conditions can be imposed to guarantee uniqueness of F ∗i and, in consequence, uniqueness of the Nash
equilibrium. These conditions are satisfied by the logit model with and without outside option.
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if consumers have homogeneous tastes for quality, the optimal strategy for each firm is to set the
unit price equal to its marginal cost and extract surplus with the fixed fee. From Corollary 8, it
follows that if, for example, ξi follows a type-I extremum distribution (i.e., logit market shares),
marginal-cost-based 2PT is an equilibrium.40

Note that vi (ci) is the efficient (maximum) surplus offered by firm i to the consumers and v∗i
is the net surplus when competing firms engage in efficient surplus extraction. In the case of a
monopoly, the firm would set F ∗i = vi (ci) and hence the net consumer surplus would be zero (full
extraction). In the presence of competition, full extraction is not possible and hence consumers
earn positive surplus, v∗i > 0. The equilibrium net surpluses

(
v∗i , v

∗
j

)
are determined by the above

equations, which imply that 0 < v∗i < vi (ci) for each i ∈ {A,B}. The ratio
s(v∗i ,v∗j )
s1(v∗i ,v∗j )

represents the

competitive effect that prevents firms from full extraction. Moreover, the firm that provides the
higher surplus (at its own marginal cost) has the higher fixed fee, market share and total profits,
similar to the model in Section 3; that is, if vi (ci) > vj (cj), then F ∗i > F ∗j , s

∗
i > s∗j and Πi > Πj

for i 6= j and i, j ∈ {A,B}.
In summary, if consumers have heterogeneous tastes for quality, and if firms are symmetric (i.e.,

ci = cj and vi (p,θ) = vj (p,θ) for all p ∈ P and θ ∈ Θ and for i 6= j) then marginal-cost-based
2PT may not be an equilibrium. For the model presented here, even if the market share is constant
with respect to θ in equilibrium (e.g., symmetric firms and no outside option), the left-hand side
of (16) may be different from zero (e.g., if s1(·)

E[s1(·)] is monotonic with respect to θ). Thus, necessary
and sufficient conditions such that any pure-strategy Nash equilibrium involves marginal-cost-based
2PT depend on both s (·) and s1 (·).

5.2 Logit Market Shares with an Outside Option

To illustrate Proposition 6 and Corollary 7 in the case of symmetric firms, we allow for an outside
option and assume that ξi follows a type-I extremum distribution. The market share of firm i is

s (ui, uj) ≡
eui

eui + euj + eu0
,

where ui ≡ v (pi,θ)−Fi for i, j ∈ {A,B}, j 6= i, and u0 is the value of the outside option. Note that
in a symmetric equilibrium, the covariance between

(
s

E[s] −
s1

E[s1]

)
and the firm’s efficient quantity

would be positive, since s (v∗ (θ) , v∗ (θ)), and s1 (v∗ (θ) , v∗ (θ)) are increasing with respect to θ, but
the rate of increase is higher for s (v∗ (θ) , v∗ (θ)) than for s1 (v∗ (θ) , v∗ (θ)). Thus if θ is associated,
(16) is not satisfied.

Proposition 7. In a symmetric model with logit market shares and an outside option, any sym-
metric pure-strategy Nash equilibrium in 2PTs involves pricing above marginal cost.

Proposition 7 contrasts with Corollary 8, which shows that marginal-cost pricing is an equi-
librium for a general market share setting (including logit) when consumers have homogeneous

40See Yin (2004) for a similar result in the case of logit market shares without outside option.
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taste preferences.41 Likewise, Proposition 7 contrasts with Corollary 3, which shows that any pure
strategy Nash equilibrium involves marginal-cost-based 2PT when consumers are differentiated á
la Hotelling and have heterogeneous tastes for quality and firms have identical marginal costs and
product demand (i.e., firms are symmetric, as in Proposition 7). Proposition 7 also contrasts with
Armstrong and Vickers (2001) and Rochet and Stole (2002) who consider a setting in which firms
offer nonlinear pricing schedules. The authors show that in the symmetric equilibrium each firm
offers a cost-plus-fee pricing schedule and each customer consumes the efficient allocation from one
of the two firms. Their result relies upon the inverse hazard rate of the market share being constant
over θ in equilibrium for each firm,42 which in turn relies upon full market coverage and symme-
try of firms.43 Remember that in the Hotelling model, the market share is linear with respect to
the difference in the consumer surplus offered by the two firms, which simplifies the necessary and
sufficient conditions for marginal-cost pricing (Proposition 2).

5.3 General Market Shares and Asymmetric Marginal Costs

We explore whether the equilibrium strategy for the less efficient firm involves cross-subsidization
between the unit price and the fixed fee in a general market share setting with asymmetric marginal
costs and no outside option. We suppose that firms have identical product demand but asymmetric
marginal costs. To illustrate, we suppose θ is drawn from the distribution on Θ = {θL, θH}, where
θL < θH (low and high type), with probabilities λ and 1 − λ, respectively. The next proposition
generalizes Proposition 3, allowing for a general market share without outside option.

Proposition 8. In any pure-strategy Nash equilibrium in two-part tariffs cA < p∗A < p∗B < cB.

The result in Proposition 8 (and the strategy used for its proof) is similar to that of Proposition
3. That is, when consumers are heterogeneous in their tastes for quality, firms have incentives to
deviate from marginal-cost pricing. The efficient firm increases its marginal price—keeping it below
its rival’s price—and slightly decreases its fixed fee. On the other hand, the less efficient firm has
incentives to decrease the marginal price below its own marginal cost, so that the revenue losses
arising from this strategy are more than offset by the revenue gains obtained from an inverse in
fixed fee.

5.4 An Example

In the two previous subsections, we studied a symmetric logit market share model with outside
option and an asymmetric general market share setting without outside option. The analysis with
asymmetric firms and general market shares with outside option is complicated, so here, we present
a numerical example for the logit market share model with asymmetric firms. We consider constant

41When consumers are homogeneous, a 2PT game is formally equivalent to a linear pricing game with logit market
shares—as was pointed out by Nocke and Schutz (2018),—which has a unique equilibrium.

42The inverse hazard rate for firm A is equal to s (uA (θ) , uB (θ)) / ∂s(uA(θ),uB(θ))
∂uA

.
43Rochet and Stole (2002) observed that their condition for cost-plus-fixed-fee pricing equilibrium (equation 12 in

Rochet and Stole, 2002) does not apply if there is an outside option of fixed value in the logit market share case.
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elasticity demand and two types of vertical tastes. That is, suppose θ is drawn from a distribution
on Θ = {θL, θH}, where θL < θH (low and high type), with probabilities λ and 1− λ, respectively.

We assume the following functional form: u (q, θ) = θ
η 1
ε
q1−

1
ε

1− 1
ε

, and hence q (p) = η
(
θ
p

)ε
, v (p) =

1
(ε−1)

ηθε

pε−1 , and q′ (p) = −ηε θε

pε+1 . We use the following parameters: cA = 0.2, cB = 0.25, η = 0.2,
ε = 2, θL = 0.3, and θH = 0.5. We normalized the value of the outside option equal to zero (i.e.,
exp (u0) = 1). Figures 3(i) and 3(ii) show the changes in marginal prices and fixed fees, respectively,
when λ (x axis) varies from 0 to 1. Note that marginal prices are always above marginal costs for
both firms, which is consistent with Proposition 7, and lower for firm A than for firm B, while fixed
fees are always higher for firm A than for firm B.

Figure 3(i): Marginal Prices Figure 3(ii): Fixed Fees

Note: Figure 3(i) shows the changes in marginal prices for firm A (left y-axis, blue line) and firm B (right y-axis,
red line) when λ (x axis) varies from 0 to 1. Similarly, Figure 3(ii) shows the changes in fixed fees for firm A (blue
line) and firm B (red line), when λ (x axis) varies from 0 to 1

In the logit model with an outside option, firms also compete with the outside option, but the
outside option does not react to the changes in marginal prices (or fixed fees) of any of the firms.
Hence, firms react less aggressively to their competitor’s pricing strategy than they do in the logit
model without an outside option, allowing them to set prices above the marginal costs.

From previous results, we may expect that as the value of the outside option u0 varies from−∞ to
0, the less efficient firm again sets prices below the marginal cost. Figures 4(i) and 4(ii) demonstrate
equilibrium values of pA and pB, respectively, when the outside option u0 varies from −∞ to 0 (x
axis is equal to exp (u0)). Notice that there is a non-monotonic, inverse U-shaped between the
outside option value and pA and pB, respectively. Moreover, as u0 → −∞, pA → p̂A > cA and
pB → p̂B < cB. When the outside option is not attractive (i.e., uo is sufficiently low), the less
efficient firm sets its marginal price below the marginal cost, consistent with Proposition 8.
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Figure 4(i): pA Figure 4(ii): pB

Note: Figure 4(i) shows the equilibrium values of pA (y-axis) for different values of the outside option, u0. Similarly,
Figure 4(ii) shows equilibrium values of pB for different values of u0.

6 Concluding Remarks

In this paper, we study competitive two-part tariffs between asymmetric firms in a general model of
multidimensional consumer heterogeneity. The model assumes that consumers have elastic demands
and private information regarding their horizontal brand preferences and tastes for product quality.
Using both the Hotelling and general discrete choice approaches to horizontal differentiation, we find
that two major factors determine the sign of the markup for each firm, as well as the marginal-cost
pricing that arises in equilibrium. The first is the average expected demand among all customers
who choose the firm’s product. The second is the marginal rate of substitution of the demand for
access or participation between the marginal price and fixed fee, which provides a more general
description of the consumers’ participation incentives than the demand of the marginal consumer
that has been identified in the literature regarding monopoly two-part tariffs in the context of
one-dimensional consumer heterogeneity.

Moreover, in the model with consumer horizontal preferences described à la Hotelling, we show
that when firms have asymmetric marginal costs but symmetric demand, the equilibrium strategy
involves cross-subsidization between the marginal price and fixed fee for the less efficient firm, with
the efficient firm always offering a marginal price above its marginal cost. A similar pattern of
cross-subsidization holds when both firms have identical marginal costs but asymmetric product
demands. When consumers’ horizontal preferences are represented by logit with an outside option,
our results indicate that marginal-cost pricing, even in the symmetric setting, is not an equilibrium,
and the equilibrium in two-part tariffs involves both firms pricing above the marginal cost, resulting
in inefficiency.
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A direct extension of our analysis would be to consider a setting in which firms offer more than
one product. Furthermore, we could consider more than two firms, using a general discrete choice
model of random utility maximization. It would also be interesting to understand the impact of
mergers on equilibrium two-part tariffs and consumer welfare. Since firms compete aggressively
with their marginal prices and set them close to their marginal costs, mergers between the efficient
and less efficient firms may have a substantial effect on other competing firms that also offer 2PTs
and hence on consumer welfare.
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Appendix: Proofs

Proof of Proposition 2. We split the proof in two steps: In (i) we show that the objective
function of firm i is single-peaked so that it has a global maximum if for any pi, pj ∈ P,44

Cov (vi (pi,θ)− vj (pj ,θ) , qi (pi,θ)) = 0. (A.17)

In (ii) we show that for p∗i = ci and p∗j = cj , there do not exist pi, pj ∈ P with pi 6= p∗i and pj 6= p∗j ,
such that the first order conditions are satisfied.

(i) We solve the two-variable optimization problem of firm i sequentially. First, note that from
the first order condition with respect to Fi, (5), it follows that the profit function is quadratic and
strictly concave in Fi, thus, for any pi ∈ P, Fi is uniquely defined by (5). Next, firm i chooses pi to
maximize its profits (we substitute F ∗i (pi) in the objective function of firm i)

E [si (pi, F
∗
i (pi) , pj , Fj ;θ) (πi (pi,θ) + F ∗i (pi))] , (A.18)

where 4t ·si (pi, F
∗
i (pi) , pj , Fj ;θ) = t+vi (pi,θ)−vj (pj ,θ)+Fj+πi (pi,θ). The derivative of (A.18)

with respect to pi, after using the envelope theorem, (5), and (A.17), is

− (pi − ci)
{

Var [qi (pi,θ)]− 2tE
[
q′i (pi,θ) si (pi, F

∗
i (pi), pj , Fj ;θ)

]}︸ ︷︷ ︸
>0

. (A.19)

Given pj ∈ P and Fj ≥ 0, for any θ ∈ Θ, si (pi, F
∗
i (pi) , pj , Fj ;θ), is strictly decreasing

with respect to pi for any pi > ci. Note that if there exists a p̃i ∈ P and a θ ∈ Θ, such that
si

(
p̃i, F

∗
i (p̃i) , cj , F

∗
j ;θ

)
= 0, then for any pi ≥ p̃i (pj , Fj) ≡ supθ∈Θ p̃i (pj , Fj ;θ) the profit is zero.

Then, for any pj ∈ P and Fj ≥ 0, note that (A.19) is positive for pi < ci and it is negative for any
pi ∈ (ci, p̃i (pj , Fj)). Thus, (A.18) is single-peaked in pi and reaches a unique maximum at pi = ci.
Analogously, the profit function for firm j 6= i in terms of pj is single-peaked in pj and reaches a
unique maximum at pj = cj .

(ii) We now show that if (A.17) is satisfied, there do not exist pi, pj ∈ P with p∗i 6= ci and
p∗j 6= cj , such that the first order conditions are satisfied. From equation (6) and (A.17) we get

(pi − ci)
{

2t · E
[
q′i (pi,θ) si

]
−Var [q (pi,θ)]

}
= 0. (A.20)

where si is given by (7). If we take the derivative to both sides of (A.17) with respect to pi, multiply
by pi − ci and substitute in (A.20) we get

E
[
q′i (pi,θ) (pi − ci)

]{
t+

1

3
E [vi (pi,θ) + πi (pi,θ)− vj (pj ,θ)− πj (pj ,θ)]

}
= 0. (A.21)

44Note that the necessary condition (without second-order conditions) is implied by Proposition 1 and Corollary 1.
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Note that if pi 6= ci the left-hand side of (A.21) implies that E [πi (pi,θ)]+Fi = 0 for i ∈ {A,B}.
However, both firms have a profitable deviation by setting marginal prices equal to marginal costs
and the fixed fee equal to F ∗i = t +

E[vi(ci,θ)−vj(cj ,θ)]
3 . If both firms have strictly positive profits,

the second term of the left side of (A.21) is strictly positive, then pi = ci for i ∈ {A,B}. Thus,
marginal-cost pricing is a unique equilibrium.

Proof of Corollary 2. We solve the two-variable optimization problem of firm i sequentially.
First we show that for any pi ∈ P, firm i chooses Fi to maximize its profits. The first order condition
with respect to Fi yields

si (pi, Fi, pj , Fj)−
1

2t
[πi (pi) + Fi] = 0. (A.22)

The profit is quadratic and strictly concave in Fi, and the unique solution is given by

2F ∗i = t+ vi (pi)− vj (pj) + Fj − πi (pi) . (A.23)

Next, firm i chooses pi to maximize its maximum profits (we substitute F ∗i (pi) in the objective
function of firm i)

si (pi, F
∗
i (pi) , pj , Fj) [πi (pi) + F ∗i (pi)] . (A.24)

The derivative of (A.24) with respect to pi, after using the Envelope Theorem, is

q′ (pi) (pi − ci) si (pi, F
∗
i (pi) , pj , Fj) = 0. (A.25)

Given pj ∈ P and Fj ≥ 0, s (pi, F
∗
i (pi) , pj , Fj) = 1/4t {t+ vi (pi)− vj (pj) + Fj + πi (pi)}, is strictly

decreasing with respect to pi for any pi > ci. Thus, if there exists a p̃i (pj , Fj) ∈ P, such that
s (p̃i, F

∗
i (p̃i) , pj , Fj) = 0, then, for any pi ≥ p̃i the profit is zero. Then, for any pj ∈ P and Fj ≥ 0,

note that (A.25) is positive for pi < ci and it is negative for any pi ∈ (ci, p̃i (pj , Fj)). Thus, (A.24)
is single-peaked in pi and reaches a unique maximum at pi = ci. Analogously, the profit function
for firm j 6= i in terms of pj is single-peaked in pj and reaches a unique maximum at pj = cj . Thus
the equilibrium is unique, and it follows that F ∗i = t+

vi(ci)−vj(cj)
3 for j 6= i and i, j ∈ {A,B}.

Proof of Corollary 3. It follows directly from Proposition 1.

Proof of Corollary 4. It follows directly from Proposition 1 and Corollary 1.

Proof of Proposition 3.
(i) We first show that for every pA, pB∈ P that satisfies (10) for i = A, if pA > cA then pA < pB.

Second we show that for every pA, pB ∈ P that satisfy (10) for i = B, if pB ≥ cB, then pB < pA

which is a contradiction. Thus we conclude that no equilibrium exists for values of pB ≥ cB. (iii)

We show that for every pA, pB ∈ P satisfying (10) for i ∈ {A,B}, pA > cA. Finally we show that
the two curves defined by (10) for i ∈ {A,B} cross each other at least once in the set [cA, cB]2.

Let us first show that for every pA, pB∈ P that satisfy (10) for i = A, if pA > cA then pA < pB.
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From (10)

0 < pA − cA = ωA (pA) Cov (v (pA,θ)− v (pB,θ) , q (pA,θ)) .

Since θ is associated and ωA(pA) > 0, it follows that pA ≤ pB. In fact, pA < pB, since pA = pB

gives us the contradiction cA = cB. Thus we conclude that if pA, pB∈ P satisfy (10) for i = A, if
pA > cA has to be true that pA < pB. Similarly, we can show that for every pA, pB ∈ P that satisfy
(10) for i = B, if pB ≥ cB, then pB < pA, which is a contradiction. Thus we conclude that no
equilibrium exists for values of pB ≥ cB. Also, pA cannot be smaller than cA, because if pA < cA, by
equation (10) for i = A, pA > pB, and then by equation (10) for i = B, pB > cB, which gives us the
contradiction cA > cB. If pA = cA, we get the contradiction cA = cB. Thus, for every pA, pB ∈ P
satisfying (10) for i ∈ {A,B}, pA > cA.

Now let us prove existence. Note that as pA → cA in (10) for i = A, we have that pB → cA, and
as pA → cB (from the previous paragraph), we know that pB → αA > cB. Similarly, from (10) for
i = B, note that as pA → cA

0 ≥ pB − cB = ωB (pB) Cov (v (pB,θ)− v (cA,θ) , q (pB,θ)) ,

which implies that pB → αB > cA since the term Cov (v (pB,θ)− v (cA,θ) , q (pB,θ)) must be
negative. Finally, from (10) for i = B, as pA → cB, pB → cB. Note that the quasi best-response
functions, (10) for i ∈ {A,B}, are differentiable and therefore continuous for every (pA, pB) ∈
[cA, cB]2 (see also Lemma 1).

(ii) It follows from substituting F ∗i for i ∈ {A,B} in the expected market share and the fact
that in any pure-strategy Nash equilibrium, cA < p∗A < p∗B < cB.

Lemma 1. Suppose that (A1)-(A4) are satisfied. Then the slope of the implicit functions defined
by (10), ∂Ri(pA)

∂pA
for i ∈ {A,B}, is positive for (pA, pB) ∈ [cA, cB]2.

Proof of Lemma 1. Note that (A4) allows us to express (10) as a function of σ ≡ Var [h (θ)]

and θ̄ ≡ E [h (θ)], in the sense that (10) is equivalent to the equation ξi (p) = 0, where

ξi (p) := (v (pi)− v (pj)− φi (pi))σ − hi (pi) (pi − ci) θ̄
{
t+ θ̄

TSi (pi)

3
− θ̄ TSj (pj)

3

}
, (A.26)

p ≡ (pi, pj), hi (p) ≡ − q′(p)
π′i(p)

, φi (p) ≡ q(p)2(p−ci)
π′i(p)

, q (p) ≡ −∂v(p)
∂p , πi (p) ≡ q (p) (p− ci), and TSi (p) ≡

v (p) + πi (p) for i ∈ {A,B} and j 6= i.

(i) ∂RA(pA)
∂pA

> 0: In Proposition 4 we show that −∂ξA

∂pA
> ∂ξB

∂pA
, and in part (ii) of this proposition

we show that ∂ξB

∂pA
> 0. Thus, we just need to show that ∂ξA

∂pB
> 0. Note that

∂ξA

∂pB
= q (pB)σ + hA (pA) (pA − cA) θ̄2 · TS

′ (pB)

3︸ ︷︷ ︸
>0

> 0,

31



since TS′ (pB) > 0 for pB < cB. Then from the Implicit Function Theorem we conclude that
∂RA(pA)
∂pA

> 0 for (pA, pB) ∈ [cA, cB]2.

(ii) ∂RB(pA)
∂pA

> 0: In Proposition 4 we show that ∂ξA

∂pB
< −∂ξB

∂pB
. In part (i) we showed that

∂ξA

∂pB
> 0. Thus, we just need to show that ∂ξB

∂pA
> 0 for (pA × pB) ∈ [cA, cB]2. Note that

∂ξB

∂pA
= q (pA)σ + hB (pB) (pB − cB) θ̄2 · TS

′(pA)

3︸ ︷︷ ︸
>0

> 0,

since TS′(pA) (pB − cB) > 0 for any (pA, pB) ∈ [cA, cB]2. Then from the Implicit Function Theorem
we conclude that ∂RB(pA)

∂pA
> 0 for (pA × pB) ∈ [cA, cB]2.

Before we show the proof for Proposition 4, first, we introduce the following assumption.
Assumption A1.

cB − cA < −
q (cB)

3q′ (cA)
.

Proof of Proposition 4. We split the proof in two steps: (i) using the result in (ii), we show
that the objective function of firm i is single-peaked so that it has a global maximum. (ii) For p∗A
and p∗B defined by (10) for i ∈ {A,B},45 we show that there do not exist (pA, pB) ∈ (cA, cB)2 with
pA 6= p∗A and pB 6= p∗B, such that the first order conditions are satisfied.

(i) We show that the objective function of firm i is single-peaked so that it has a global maximum.
We fix firm j’s strategy to Fj = F ∗j and pj = p∗j , and solve the two-variable optimization problem
of firm i sequentially. First we show that for any pi ∈ P, firm i chooses Fi to maximize its profits.
The first order condition with respect to Fi yield

2F ∗i = t+ E
[
v (pi,θ)− v

(
p∗j ,θ

)]
+ F ∗j − E [πi (pi,θ)] . (A.27)

The profit is quadratic and strictly concave in Fi and the unique solution is given by (A.27).
Next, firm i chooses pi to maximize its profits (we substitute F ∗i (pi) in the objective function of
firm i)

E
[
s
(
pi, F

∗
i (pi) , p

∗
j , F

∗
j ;θ

)
(πi (pi,θ) + F ∗i (pi))

]
, (A.28)

where 4t · E
[
s
(
pi, F

∗
i (pi) , p

∗
j , F

∗
j ;θ

)]
= t + E

[
v (pi,θ)− v

(
p∗j ,θ

)]
+ F ∗j + E [πi (pi,θ)]. The

derivative of (A.28) with respect to pi, after using the envelope theorem and (A.27), is

Cov
(
v (pi,θ)− v

(
p∗j ,θ

)
, q (pi,θ)

)︸ ︷︷ ︸
=:T1(pi)

− (pi − ci)
{

Var [q (pi,θ)]− 2tE
[
q′ (pi,θ) si (pi, Fi, pj , Fj ;θ)

]}
,

(A.29)
45We showed that such a pair exists in the proof of Proposition 3.
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Note that for any θ ∈ Θ, s
(
pi, F

∗
i (pi) , cj , F

∗
j ;θ

)
is strictly decreasing with respect to pi for any

pi > ci. Note that if there exists a p̃i ∈ P and a θ ∈ Θ, such that s
(
p̃i, F

∗
i (p̃i) , cj , F

∗
j ;θ

)
= 0, then

from (A3), it follows that for any pi ≥ p̃i the profit is zero for all θ ∈ Θ. We show that (A.29) is
single peaked for each firm i ∈ {A,B}.

1. Suppose i = A and j = B. Note that T1 (pA) > (<) 0 if pA < (>) p∗B, by the increasing
difference property and the fact that θ is strictly associated. Finally, note that the second
term of (A.29) is negative for pA ∈ (cA, p̃A). So if pA > p∗B, (A.29) is negative. From the
second part of the proof, we know that there do not exist (pA, pB) ∈ (cA, cB)2 with pA 6= p∗A
and pB 6= p∗B such that (A.29) is zero; by continuity, we conclude that (A.29) is negative for
pA > p∗A.

46 To show that (A.29) is positive for any pA < p∗A, note that (A.29) is positive for
pA = cA and we know that there do not exist (pA, pB) ∈ (cA, cB)2 with pA 6= p∗A and pB 6= p∗B
such that (A.29) is zero, by continuity, (A.29) is positive for any pA < p∗A.

2. Suppose i = B and j = A. Note that (A.29) is negative for all pB > cB. Since there do not
exist (pB, pA) ∈ (cA, cB)2 with pB 6= p∗B and pA 6= p∗A such that (A.29) is zero, by continuity,
it follows that (A.29) is negative for all pB > p∗B. Similarly, note that (A.29) is positive for
pB ≤ p∗A, and since there do not exist (pB, pA) ∈ (cA, cB)2 with pB 6= p∗B and pA 6= p∗A such
that (A.29) is zero, (A.29) is positive for pB ≤ p∗B.

We conclude that (A.28) is single-peaked in pi for pi ∈ [min {ci, cj} , p̃i) and hence has a unique
maximum at pi = p∗i .

(ii) We now show that there do not exist (pA, pB) ∈ (cA, cB)2 with pA 6= p∗A and pB 6= p∗B such
that (A.29) is zero. To prove this claim we show that ∂RA(pA)

∂pA
> ∂RB(pA)

∂pA
, i.e.,

−
∂ξA/∂pA
∂ξA/∂pB

> −
∂ξB/∂pA
∂ξB/∂pB

. (A.30)

From Lemma 1 (upward sloping quasi best-response functions for any (pA, pB) ∈ (cA, cB)2) and
(A.30) it follows that there do not exist (pA, pB) ∈ (cA, cB)2 with pA 6= p∗A and pB 6= p∗B such that
(A.29) is zero.

We first show that −∂ξA/∂pA > ∂ξB/∂pA. Next we show that −∂ξB/∂pB > ∂ξA/∂pB.

(ii.a) −∂ξA/∂pA > ∂ξB/∂pA. We need to show that

q (pA)σ + hB (pB) (pB − cB) θ̄2 · TS
′(pA)

3
<
(
q (pA) + φ′A (pA)

)
σ+

[
∂

∂pA
hA (pA) (pA − cA)

]
θ̄ · TRA + hA (pA) (pA − cA) θ̄2 · TS

′(pA)

3
,

where TRA ≡
{
t+ θ̄ TS(pA)3 − θ̄ TS(pB)

3

}
.

46Note that continuity follows from Lemma 1.
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Note that −hB (pB) (pB − cB) < 1 and that TS′(pA) = q′ (pA) (pA − cA) thus we need to show
that

0 <
θ̄2 · q (pA)

3

(
q′ (pA) (pA − cA)

π′A (pA)

)
+ φ′A (pA)σ +

[
∂

∂pA
hA (pA) (pA − cA)

]
θ̄ · TRA.

In Lemma A1 we show that ∂
∂pA

hA (pA) (pA − cA) > 0. Given that q′ (pA) (pA − cA) > −q (pA)

and TRA > 0, it is enough to show that

−θ̄2 q (pA)2

3π′A (pA)
+ φ′A (pA)σ > 0,

which follows from Lemma A2.
(ii.b) −∂ξB/∂pB > ∂ξA/∂pB. We need to show that

0 < θ̄2
q′ (pA) (pA − cA)

π′A (pA)

q′ (pB) (pB − cB)

3
+ φ′B (pB)σ +

[
∂

∂pB
hB (pB) (pB − cB)

]
θ̄ · TRB

−q
′ (pB) (pB − cB)

π′B (pB)
θ̄2 · q

′ (pB) (pB − cB)

3
,

where TRB ≡
{
t+ θ̄ TS(pB)

3 − θ̄ TS(pA)3

}
.

In Lemma A3 we show that if cB satisfies (A-A1), ∂
∂pB

hB (pB) (pB − cB) > 0. Next, note that

by (A-A1) it follows that − q′(pA)(pA−cA)
π′A(pA)

< 1
2 and − q′(pB)(cB−pB)

π′B(pB)
< 1

2 for pA ∈ (cA, cB) if cB satisfies
(A-A1). Thus, it is enough if we show that

0 < − θ̄
2q′ (pB) (pB − cB)

3
+ φ′B (pB)σ,

which follows from Lemma A2 and 3σ > θ̄2.

Lemma A1. ∂
∂pA

hA (pA) (pA − cA) > 0.
Proof of Lemma A1. The proof of this lemma follows from the observation that

∂

∂pA
hA (pA) (pA − cA) =

−q′ (pA)π′A (pA) + (pA − cA)
{

2q′ (pA)2 − q′′ (pA) q (pA)
}

π′A (pA)2
.

From (A2) it follows that 2q′ (pA)2 − q′′ (pA) q (pA) > 0. Thus, ∂
∂pA

hA (pA) (pA − cA) > 0.

Lemma A2. φ′A (pA)− q(pA)
2

π′A(pA)
> 0.

Proof Lemma A2. Note first that
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φ′A (pA)− q (pA)2

π′A (pA)
=
π′A (pA) q (pA)π′A (pA) + πA (pA) q′ (pA)π′A (pA)

π′A (pA)2
(A.31)

−πA (pA) q (pA)π′′A (pA)

π′A (pA)2
− qA (pA)2

π′A (pA)
.

Substituting π′A (pA) = q (pA) + q′ (pA) (pA − cA) and π′′A (pA) = 2q′ (pA) + q′′ (pA) (pA − cA) in
(A.31), gives us

φ′A (pA)− q (pA)2

π′A (pA)
=
q (pA) (pA − cA)2

π′A (pA)2

{
2q′ (pA)2 − q′′ (pA) q (pA)

}
> 0,

by (A2).

Lemma A3. ∂
∂pB

hB (pB) (pB − cB) > 0.
Proof of Lemma A3. Note that

∂

∂pB
hB (pB) (pB − cB) = − ∂

∂pB

q′ (pB) (pB − cB)

π′B (pB)

=

−q′ (pB) (q (pB)− q′ (pB) (pB − cB)) + (cB − pB) q′′ (pB) q (pB)︸ ︷︷ ︸
>0

π′B (pB)2
.

Now, (q (pB)− q′ (pB) (pB − cB)) > 0 if cB satisfies (A-A1) and pB ∈ (cA, cB). Thus, we
conclude that ∂

∂pB
hB (pB) (pB − cB) > 0.

Proof of Corollary 5. From the proof of Proposition 3 we know that as pA → cA in (10) for
i = A, we have that pB → cA and as pA → cB, pB → αA > cB. Similarly, from (10) for i = B, as
pB → cB we have that pA → cB, while as pA → cA, pB → αB > cA. As cA, cB tends to c, αA and
αB also tend to c. Thus, the two best response functions intersect each other only at pi = ci.

Proof of Corollary 6. It follows from the proof of Lemma 1, specifically from equation (A.26),
from the proof of Proposition 4, and by the monotonicity of the quasi best-response functions with
respect to the unit prices for both firms.

Before we show the proof for Proposition 5, we introduce the following assumption.
Assumption A2.

αA − γB < − q (αA)

3q′ (γB)
.

Proof of Proposition 5. We split the proof in five steps. (i) We first show that no solution
exist for (pA, pB) outside the set Ω, where Ω ≡ {pA, pB ∈ P |(pA, pB) ∈ [c, αA]× [γB, c]}. (ii) We
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show existence of (p∗A, p
∗
B) ∈ Ω solving (13) for i ∈ {A,B}. (iii) Using the result in (v), we show

that the objective function of firm i is single-peaked so that it has a global maximum. (iv) We show
that the slope of the implicit functions defined by (13) is positive. (v) We show that for p∗A and p∗B
defined by (13) for i ∈ {A,B}, there do not exist (pA, pB) ∈ Ω with pA 6= p∗A and pB 6= p∗B, such
that the first order conditions are satisfied. The proof of part (iii) is very similar to the Proof of
Proposition 4 so we omit it.

(i) We assume that pA, pB ∈ P satisfy (13) for i ∈ {A,B}. We first show that pB ≤ c. Assume
pB > c. From (13) for i = B, it follows that

0 < pB − c = ωB (pB) Cov (αv (pB,θ)− v (pA,θ) , qB (pB,θ)) .

Since ωB(pB) > 0, from (A4) it follows that

qB (pB) (αv(pB)− v(pA))Var[h(θ)] > 0.

Since α ∈ (0, 1), then v(pB) > v(pA), which implies that pA > pB (> c). Thus, from (13) for
i = A, we get a contradiction, v(pA) − αv(pB) > 0. Similarly we show that pA ≥ c. Suppose that
pA < c. From (13) for i = A it follows that pA < c < pB, which from (13) for i = B would be a
contradiction, pA > pB.

Now we show that pB ≥ γB. By contradiction; assume pB < γB, then αv(pB) > αv(γB) =

v(c) ≥ v(pA). We showed that pA ≥ c, then, it follows that αv(pB) − v(pA) > 0 implying that
pA < c, which is a contradiction. Finally, we show that pA ≤ αA. Suppose pA > αA, then, v(pA) <

v(αA) = αv(c) ≤ αv(pB) (recall pB ≤ c), which implies that pA < c, which is a contradiction.
Thus, we conclude that no equilibrium exists outside the set Ω.
(ii) Let ϕ(pA, pB;θ) ≡ v(pA,θ)− αv(pB,θ). Note that as pA → c in (13) for i = A,

ξ̃A (c, pB) = (v(c)− αv(pB)) · q(c) ·Var[h(θ)] < 0. (A.32)

It is not true that pB → c, since ϕ (c, c;θ) > 0 for all θ ∈ Θ. Thus, from part (ii),47 we conclude
that pB → γ̃B < c, as pA → c, where γ̃B is such that ξ̃A (c, γB) = 0, that is

E [ϕ (c, γB;θ)] =
E [q (c,θ)ϕ (c, γB;θ)]

E [q (c,θ)]
.

Similarly, as pB → c in (13) for i = B,

ξ̃B (pA, c) = (αv(c)− v(pA)) · q(c) ·Var[h(θ)] > 0. (A.33)

From part (ii) we conclude that pA → αA > c, with ξ̃B(αA, c) = 0.48 Likewise, as pA → c in
(13) for i = B, we have

47Note that ξ̃A (c, pB) > 0 if pB = c.
48Note that ξ̃B (pA, c) < 0 if pA = c.
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ξ̃B(c, pB) = (αv(pB)− v(c)) · q(pB) ·Var[h(θ)]︸ ︷︷ ︸
>0

+ (pB − c)
{

2t · E
[
sB (pB, F

∗
B, c, F

∗
A,θ) q′ (pB,θ)

]
− αVar [q (pB,θ)]

}︸ ︷︷ ︸
>0

> 0.

Note that if pB = c, ξ̃B (c, c) < 0, so from part (ii) we know that as pA → c in (13) for i = B,
pB → αB < c, with ξ̃B(c, αB) = 0. It is easy to show that αB > γB. If we suppose that is not true,
i.e., γB ≥ αB then

ξ̃B(c, γB) = E [q (γ̃B,θ)]E [ϕ (c, γB;θ)]− E [q (γB,θ)ϕ (c, γB;θ)]

+ (γB − c)
{

2t · E
[
sB (γB, F

∗
B, c, F

∗
A,θ) q′ (γB,θ)

]
− αVar [q (γB,θ)]

}︸ ︷︷ ︸
>0

.

From (A.32), γB is such that

E [ϕ (c, γB;θ)] =
E [q (c,θ)ϕ (c, γB;θ)]

E [q (c,θ)]
. (A.34)

Thus,

ξ̃B (c, γB) >
E[q(γB,θ)]

E[q(c,θ)]
E[q (c,θ)ϕ (c, γB;θ)]− E [q (γB,θ)ϕ (c, γB;θ)] > 0,

since γB < c. So from part (ii) we conclude that αB > γB. Finally, note that as pB → c in (13) for
i = A, pA → γA > c, since

ξ̃A(pA, c) = (v(pA)− αv(c)) · q(pA) ·Var[h(θ)]︸ ︷︷ ︸
<0

+ (pA − c)
{

2t · E
[
sA (pA, F

∗
A, c, F

∗
B,θ) q′ (pA,θ)

]
− αVar [q (pA,θ)]

}︸ ︷︷ ︸
<0

< 0,

and ξ̃A(c, c) > 0, where γA is such that

ξ̃A(γA, c) = E [q (γA,θ)ϕ (γA, c;θ)]− E [q (γA,θ)]E[ϕ (γA, c;θ)] (A.35)

+(γ̃A − c)
{

2t · E
[
sA (γA, F

∗
A, c, F

∗
B,θ) q′ (γA,θ)

]
− αVar [q (γA,θ)]

}︸ ︷︷ ︸
<0

= 0.

Note that as pA → γA in (13) for i = B and pB = c,

ξ̃B(γA, c) = E [q (c,θ)]E[ϕ (γA, c;θ)]− E [q (c,θ)ϕ (γA, c;θ)] , (A.36)
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substituting (A.35) in (A.36)

ξ̃B(γA, c) <
E[q(c,θ)]

E[q(γA,θ)]
E [q (γA,θ)ϕ (γA, c;θ)]− E [q (c,θ)ϕ (γA, c;θ)] < 0,

since γA > c. Thus we conclude that as pA → γA in (13) for i = B, pB → δB < c. Thus, both
curves cross each other at least once in the set Ω.

(iv) Next, we show that for (pA, pB) ∈ Ω the slope of the implicit functions defined by (13) for
i ∈ {A,B}, R̃i (p) : P → P, where R̃i

(
p̃iA
)

= p̃iB is such that p̃iA and p̃iB satisfy (13) for i ∈ {A,B},
is positive. Note that from (A4) and part(ii), every claim in the proof of Lemma 1 holds. It follows
that if the following inequalities are satisfied (we prove them in part (v)),

−∂ξ̃
A

∂pA
>
∂ξ̃B

∂pA
and

∂ξ̃A

∂pB
< −∂ξ̃

B

∂pB
,

the slope of the implicit functions defined by (13) is positive, i.e.,

∂R̃A (pA)

∂pA
> 0 and

∂R̃B (pA)

∂pA
> 0.

(v) Finally, we show that the slope of the implicit function defined by (13) for i = A is greater
than the slope defined for i = B, that is, ∂R̃

A(pA)
∂pA

> ∂R̃B(pA)
∂pA

for any (pA, pB) ∈ Ω.

• Inequality −∂ξ̃A/∂pA > ∂ξ̃B/∂pA holds if Lemma A1, Lemma A2, −h(pB)(pB − c) < 1, and
3σ > θ

2 hold. Note that Lemma A1 follows from pA > c and (A2). Also, Lemma A2 holds
whenever (A2) holds. Finally, inequality −h(pB)(pB − c) < 1 holds for any pB < c.

• Inequality−∂ξ̃B/∂pB > ∂ξ̃A/∂pB holds if ∂
∂pB

hB (pB) (pB − c) > 0, − q′(pA)(pA−c)
π′A(pA)

< 1
2 , −

q′(pB)(c−pB)
π′B(pB)

<

1
2 , and 3σ > θ

2 hold. The previous claims follow from (A2) and the fact that pB < c < pA.

Then, in equilibrium

−
∂ξ̃A/∂pA
∂ξ̃A/∂pB

> −
∂ξ̃B/∂pA
∂ξ̃B/∂pB

.

Proof of Proposition 6. The first order conditions for firm i ∈ {A,B} are

[pi] : E
[
s (vi (pi,θ)− Fi, vj (pj ,θ)− Fj)π′i (pi,θ) (A.37)

−s1 (vi (pi,θ)− Fi, vj (pj ,θ)− Fj) q (pi, θ) (πi (pi,θ) + Fi]) = 0

and

[Fi] : E [s (vi (pi,θ)− Fi, vj (pj ,θ)− Fj)− (A.38)

s1 (vi (pi,θ)− Fi, vj (pj ,θ)− Fj) (πi (pi,θ) + Fi)] = 0.
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Let v∗i (pi,θ) ≡ vi (pi,θ) − F ∗i for i ∈ {A,B}. From (A.38), for each pi ∈ P, F ∗i is implicitly
defined by

F ∗i =
E
[
s
(
v∗i (pi,θ), v∗j (pj ,θ)

)
− s1

(
v∗i (pi,θ), v∗j (pj ,θ)

)
πi (pi,θ)

]
E
[
s1

(
v∗i (pi,θ), v∗j (pj ,θ)

)] . (A.39)

From (A.39) and (A.37), it follows that

pi − ci =
E [s]E [s1 · qi (pi,θ)]− E [s1]E [s · qi (pi,θ)]

E [s · q′i (pi,θ)]E [s1]− E
[
s1 · q2i (pi,θ)

]
E [s1] + E [s1 · qi (pi,θ)]2

(A.40)

where s and s1 are evaluated at (v∗i (pi,θ), v∗j (pj ,θ)). Given that s ≥ 0, s1 ≥ 0 and q′i (pi,θ) < 0

for all pi ∈ P and for all θ ∈ Θ, it follows that the denominator of the right-hand side of (A.40) is
negative if

−E
[
s1q

2
i (pi,θ)

]
E [s1] + E [s1qi (piθ)]2 ≤ 0,

which is equivalent to

E

[
s1

E [s1]
qi (pi,θ)

]2
≤ E

[
s1

E [s1]
q2i (pi,θ)

]
. (A.41)

Inequality (A.41) follows from Kimball’s inequality (Lemma 2.2.1 in Tong (1980)).49 Thus from
(A.40), pi − ci has the same sign as

E [sqi (pi,θ)]

E [s]
− E [s1qi (pi,θ)]

E [s1]
.

Proof of Corollary 7. The proof of this corollary immediately follows from Proposition 6.

Proof of Corollary 8. The problem of each firm is

max
pi,Fi

s (ui (pi, Fi) , uj (pj , Fj)) [πi (pi) + Fi] .

where the utility offered by firm i ∈ {A,B} is ui (pi, Fi) = vi(pi) − Fi. We solve the two-variable
optimization problem of firm i sequentially. First we show that for any pi ∈ P, firm i chooses Fi to
maximize its profits. The first order condition with respect to Fi yields

πi (pi) + F ∗i =
s (ui (pi, F

∗
i ) , uj (pj , Fj))

s1 (ui (pi, F ∗i ) , uj (pj , Fj))
. (A.42)

The profit is strictly log-concave in Fi, and the unique solution is implicitly determined by
(A.42). Next, firm i chooses pi to maximize its maximum profits (we substitute F ∗i (pi) in the

49Notice that we are applying Kimball’s inequality with respect to the positive finite measure s1
E[s1]

dG (θ).
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objective function of firm i)

s (pi, F
∗
i (pi) , pj , Fj) [πi (pi) + F ∗i (pi)] . (A.43)

The derivative of (A.43) with respect to pi, after using the Envelope Theorem, is

q′ (pi) (pi − ci) s (pi, F
∗
i (pi) , pj , Fj) (A.44)

Given pj ∈ P and Fj ≥ 0, it follows from (A.42) and the Implicit Function Theorem that
s (pi, F

∗
i (pi) , pj , Fj), is strictly decreasing with respect to pi for any pi > ci. Thus, if there exists

a p̃i (pj , Fj) ∈ P, such that s (p̃i, F
∗
i (p̃i) , pj , Fj) = 0, then, for any pi ≥ p̃i the profit is zero. Then,

for any pj ∈ P and Fj ≥ 0, note that (A.44) is positive for pi < ci and it is negative for any
pi ∈ (ci, p̃i (pj , Fj)). Thus, (A.43) is single-peaked in pi and reaches a unique maximum at pi = ci.
Analogously, the profit function for firm j 6= i in terms of pj is single-peaked in pj and reaches a
unique maximum at pj = cj . Thus the equilibrium is unique, and it follows that F ∗i is implicitly
determined by:

F ∗i =
s
(
v∗i , v

∗
j

)
s1

(
v∗i , v

∗
j

) , (A.45)

where v∗i ≡ vi (ci)− F ∗i .
Next, we show that F ∗i , in equilibrium, is well defined. Using the dual approach, we show that

there exist F ∗i , F
∗
j that satisfy (A.45) for j 6= i and i, j ∈ {A,B}.

To simplify the notation, let ui ≡ vi (ci)−Fi. Then we show that there exist ui = v∗i and uj = v∗j
that satisfy

s (ui, uj)

s1 (ui, uj)
− vi (ci) + ui = 0, (A.46)

for ui, uj ∈ U and i ∈ {A,B}.50 First, note that from the analogue of (A.46) for firm j and the
Implicit Function Theorem there exists a function Rj (ui) : U → U , where Rj (ui) = uj is such that
ui and uj satisfy (A.46) for j 6= i. Note that

∂Rj (ui)

∂ui
=
−γ2

(
Rj (ui) , ui

)
1 + γ1 (Rj (ui) , ui)

> 0, (A.47)

where γ (ui, uj) ≡ s(ui,uj)
s1(ui,uj)

, γ2 (ui, uj) < 0 and γ1 (ui, uj) > 0 for ui, uj ∈ U . We show in two steps
that there exists a unique ui = v∗i that satisfies (A.46).

1. First note that as ui → 0, Rj (ui)→ α > 0: For ui = 0, Rj (0) is implicitly defined by uj such
that

vj (cj)− uj = γ (uj , 0) . (A.48)

Note that the RHS of (A.48) is increasing with respect to uj , and as uj → 0, the RHS of
50U is the set of feasible utility offered to consumers defined by U = [0, v (c)].
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(A.48)→ γ (0, 0) > 0. Similarly, note that the LHS of (A.48) is decreasing with respect to
uj , and as uj → 0, the LHS of (A.48)→ vj (cj) > γ (0, 0), and as uj → vj (cj), the LHS of
(A.48)→ 0. Thus, as ui → 0, from (A.47) and continuity we conclude that there is a unique
value Rj (ui) > 0 that satisfies

vj (cj)−Rj (ui) = γ
(
Rj (ui) , ui

)
.

2. By assumption, we know that vi (ci) > γ (0, 0) > γ
(
0, Rj (0)

)
. Then, as ui → 0, the LHS

of (A.46)→ γ
(
0, Rj (0)

)
− vi (ci) < 0. Similarly, as ui → vi (ci), the LHS of (A.46)→

s
(
vi (ci) , R

j (vi (ci))
)
> 0. Thus existence follows.

Remember that the profit is strictly log-concave in Fi, thus, we conclude that there exist F ∗i , F
∗
j

implicitly determined by (A.45).

Proof of Proposition 7. Note that for any u ∈ R

s (u, u) ≡ eu

2eu + eu0
and s1 (u, u) = s (u, u) (1− s (u, u)) . (A.49)

Let u∗ ≡ v (p∗,θ)− F ∗. From Corollary 7, p∗ > c if

Cov

 s (u∗, u∗)

E [s (u∗, u∗)]
− s1 (u∗, u∗)

E [s1 (u∗, u∗)]︸ ︷︷ ︸
≡φ(u∗,θ)

, q (p∗,θ)

 > 0. (A.50)

Since θ is strictly associated, (A.50) holds if φ(u∗,θ) is strictly increasing in θ. Note that from
(A.49)

s (u∗, u∗)

E [s (u∗, u∗)]
− s1 (u∗, u∗)

E [s1 (u∗, u∗)]
=
s (u∗, u∗)

(
s (u∗, u∗)E [s (u∗, u∗)]− E

[
s (u∗, u∗)2

])
E [s (u∗, u∗)]E [s1 (u∗, u∗)]

which is strictly increasing in θ. Thus, in equilibrium p∗ > c.

Proof of Proposition 8. For completeness of the proof we first show that marginal-cost-based
2PT is not an equilibrium. Next, we show that in any equilibrium, cA < p∗A < p∗B < cB. Finally,
we show existence. The first order conditions are

[pi]
∑

k∈{L,H}

λks (v (pi, θk)− Fi, v (pj , θk)− Fj)π′i (pi, θk) (A.51)

−
∑

k∈{L,H}

λks1 (v (pi, θk)− Fi, v (pj , θk)− Fj) q (pi, θk) (πi (pi, θk) + Fi) = 0
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and
[Fi]

∑
k∈{L,H}

λks (v (pi, θk)− Fi, v (pj , θk)− Fj) (A.52)

−
∑

k∈{L,H}

λks1 (v (pi, θk)− Fi, v (pj , θk)− Fj) (πi (pi, θk) + Fi) = 0.

Let

s (u (pi, Fi) , u (pj , Fj) ;θ) ≡

[
λLs (u (pi, Fi, θL) , u (pj , Fj , θL))

λHs (u (pi, Fi, θH) , u (pj , Fj , θH))

]
,

where u (pi, Fi, θk) ≡ v (ci, θk)− Fi, and similarly for s1 (u (pi, Fi) , u (pj , Fj) ;θ). Let also

q (pi;θ) =

[
q (pi, θL)

q (pi, θH)

]

and similarly for q′ (pi;θ) and q (pi;θ)2. Finally, let

γ (u (ci, Fi) , u (cj , Fj) ; θH) ≡ γ (u (ci, Fi, θH) , u (cj , Fj , θH)) .

(i). Here, we show that marginal-cost-based 2PT is not an equilibrium. Let us suppose is not
true, i.e., suppose cost-based 2PT is an equilibrium. Then, from (A.51),

Fi =
s (u (ci, Fi) , u (cj , Fj) ;θ)′ q (ci;θ)

s1 (u (ci, Fi) , u (cj , Fj) ;θ)′ q (ci;θ)
. (A.53)

Note that from (A.52) and (A.53),

λ (1− λ)
s1 (u (ci, Fi, θL) , u (cj , Fj , θL)) s1 (u (ci, Fi, θH) , u (cj , Fj , θH))

A
(q (ci, θH)− q (ci, θL))

×{γ (u (ci, Fi) , u (cj , Fj) ; θH)− γ (u (ci, Fi) , u (cj , Fj) ; θL)} = 0,

where
A ≡ s1 (u (ci, Fi) , u (cj , Fj) ;θ)′ q (ci;θ) ,

which is a contradiction since

γ (u (ci, Fi) , u (cj , Fj) ; θH) > γ (u (ci, Fi) , u (cj , Fj) ; θL)

for ci < cj , given that s(·)
s1(·) is increasing (following a similar strategy as in Quint, 2014, Theorem

1), and by the increasing differences property, v (ci, θH) − Fi − v (cj , θH) + Fj > v (ci, θL) − Fi −
v (cj , θL) + Fj .

(ii). Note that from (A.51) and (A.52), in equilibrium we have

(pi − ci)
{

s (ui, uj ;θ)′ q′ (pi;θ)− s1 (ui, uj ;θ)′ q (pi;θ)2 (A.54)
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+s1 (ui, uj ;θ)′ q (pi;θ)×

[
s1 (ui, uj ;θ)′ q (pi;θ)

s1 (ui, uj ;θ)′ · 1[2,1]

]}
+

+

{
s (ui, uj ;θ)′ q (pi;θ)− s1 (ui, uj ;θ)′ q (pi;θ)×

s (ui, uj ;θ)′ · 1[2,1]

s1 (ui, uj ;θ)′ · 1[2,1]

}
,

where ui = u (pi, Fi) and uj = u (pj , Fj). We first show that the expression inside the first big
bracket is negative. Thus, for pi > ci, the expression in the second big bracket must be positive.
Now let’s analyze the first big brackets (ui, uj ;θ)′ q′ (pi;θ)︸ ︷︷ ︸

<0

− s1 (ui, uj ;θ)′ q (pi;θ)2︸ ︷︷ ︸
A

+ s1 (ui, uj ;θ)′ q (pi;θ)︸ ︷︷ ︸
B

×

[
s1 (ui, uj ;θ)′ q (pi;θ)

s1 (ui, uj ;θ)′ · 1[2,1]

]
︸ ︷︷ ︸

C

 ,

where
−A+B × C =

−D · [q (pi, θH)− q (pi, θL)]2 < 0

and
D ≡ λ (1− λ) s1 (u (pi, Fi, θH) , u (pj , Fj , θH)) s1 (u (pi, Fi, θL) , u (pj , Fj , θL))

s1 (ui, uj ;θ)′ · 1[2,1]

> 0.

Now we show that the second big bracket is positive only if pi < pj . That is,{
s (ui, uj ;θ)′ q (pi;θ)− s1 (ui, uj ;θ)′ q (pi;θ)×

s (ui, uj ;θ)′ · 1[2,1]

s1 (ui, uj ;θ)′ · 1[2,1]

}

= D · [q (pi, θH)− q (pi, θL)]

× [γ (u (pi, Fi) , u (pj , Fj) ; θH)− γ (u (pi, Fi) , u (pj , Fj) ; θL)] ,

since γ (ui, uj) is increasing with respect to ui, and by the increasing differences property, pi < pj .
Thus we conclude that there is no equilibrium in which pB > cB. Moreover, in any equilibrium,
cA < p∗A < p∗B < cB.
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