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Abstract

Contests that are designed to be consumed for entertainment by non-contestants

are a fixture of economic, cultural and political life. In this paper, we examine

whether individuals prefer to consume contests that have more uncertain outcomes.

We look to professional sports and exploit injury-induced changes to teams’ line-

ups to estimate the effect of outcome uncertainty on spectator demand for contests.

Drawing on multiple seasons of game-level data from the Australian Football League,

we find that game outcome uncertainty has a large effect: a one standard-deviation

increase in the outcome uncertainty of a game causes, on average, an 11.2% increase

in attendance. We show that this effect is greater: 1) when there is more at stake on

the outcome of the contest; and, 2) for teams that have larger, more-dispersed fan

bases. Our results extend research on contest design and information preferences

by suggesting that spectators are strongly drawn to evenly-balanced contests, be-

havior consistent with people deriving entertainment utility from suspense and the

resolution of uncertainty.
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1 Introduction

Many economic, cultural, and political institutions use contests to determine how to

allocate outcomes between agents. Examples of such contests include relative reward

schemes within firms, innovation challenges, political elections, and standardized tests

for college admissions. A large body of research in economics studies how these types

of contests can serve as efficient mechanisms for resolving agency problems and eliciting

innovation (Lazear and Rosen, 1981; Prendergast, 1999; Fullerton and McAfee, 1999;

Terwiesch and Xu, 2008). However, in practice there is a diverse and economically-

significant class of contests - one that prominently includes professional sports events,

competitive ‘reality’ television programs, and ‘game’ shows - designed to serve an addi-

tional purpose: to be consumed as entertainment by non-contestants.

The American Time Use Survey reveals that adults in the United States spend

roughly one-fifth of each day consuming entertainment (Aguiar et al., 2013). To give

some sense of the economic importance of just one form of contest-based entertainment,

in 2019, the estimated revenue of the North American sports market was $73 billion,

with gate revenue alone estimated at $20 billion (PricewaterhouseCoopers, 2019). Fur-

thermore, according to Nielsen, of the top 20 most-watched primetime telecasts of 2019,

15 were live sports broadcasts and 3 were live ‘award’ contests (e.g., Academy Awards,

Golden Globes, etc) (Variety, 2019).

In this paper, we examine the idea that people derive entertainment utility from sus-

pense and the resolution of outcome uncertainty, an explanation the economics literature

commonly puts forward to explain the popularity of contest-based forms of entertain-

ment. To achieve this, we look to professional sports and use injury-induced changes

to team line-ups as a source of plausibly exogenous variation in contest outcome un-

certainty. Specifically, we construct a data set that contains attendance, team line-up,

injury, betting, and performance information for all regular season games played in the

Australian Football League (AFL) for the period 2013-2018. Our data set is unique be-

cause we are able to link injuries and line-up changes in the sample to betting, attendance

and performance data at the game level.1

A number of empirical papers in economics study contest-based forms of entertain-

ment - in particular professional sports and game shows - to understand how contest

design choices shape the incentives and behavior of contestants (Ehrenberg and Bog-

nanno, 1990; Post et al., 2008; Brown, 2011; Genakos and Pagliero, 2012). Whilst this

work has improved our understanding of the incentive effects of contests, the literature,

1The focus of this paper - and much of the literature in sports economics on the demand for sports -
is game outcome uncertainty. However, as Borland and MacDonald (2003) discusses, both intra-seasonal
and inter-seasonal outcome uncertainty also impact consumer interest in sporting contests. The former
refers to the number of teams in contention for the playoffs at a given point in the season; the latter
refers to the number of teams that are likely to win titles across seasons.
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however, provides scant insight into the behavior of spectators - i.e., the non-contestants

that consume these contests.

In contrast, there is an extensive literature in sports economics and marketing that

examines the outcome uncertainty hypothesis - the contention that sports fans prefer

contests that have more uncertain outcomes (Rottenberg, 1956; Neale, 1964). At the

core of this hypothesis is the idea that individuals are drawn to sources of information

that gradually resolve uncertainty (Caplin and Leahy, 2001; Ely et al., 2015). While

administrators of major sports competitions have implicitly used the outcome uncer-

tainty hypothesis to justify the implementation of labor market regulations and other

competitive balance policies with non-trivial welfare implications (e.g., salary caps and

drafts, free-agency restrictions), empirical evidence on the relationship between outcome

uncertainty and spectator demand for contests is at best mixed (Szymanski, 2003; Bor-

land and MacDonald, 2003).2 As few, if any, of the papers examining this topic exploit

plausibly exogenous variation in outcome uncertainty, it is difficult to evaluate the extent

to which the empirical inconsistencies in this literature are driven by omitted variables

bias and other forms of endogeneity.3

In this paper, we use an instrumental variables (IVs) research design to address

these endogeneity concerns and thereby identify the causal effect of outcome uncertainty

on spectator demand for contest-based entertainment. Following the sports economics

literature, we measure spectator demand using stadium attendance. Furthermore, we

employ a measure of contest outcome uncertainty based on game-level betting odds. Our

identification strategy separately employs two different injury measures as instruments:

1) the total number of injury-induced line-up changes made by a team for an upcoming

game; and, 2) the aggregate loss of playing ‘talent’ represented by these injury-induced

line-up changes (as captured by quantitative player ratings sourced from the league’s

data provider).

To ground our paper in earlier empirical work in sports economics and marketing, we

generate regular ordinary least squares (OLS) estimates of the effect of game outcome

uncertainty on spectator demand for sporting contests. We find that a one standard

deviation increase in game outcome uncertainty is associated, on average, with a 5.4%

increase in stadium attendance. OLS estimates also suggest that attendance at a game

is maximized when the home team is a 61% chance of winning. These results are similar

in magnitude and direction to findings previously reported in the literature (Szymanski,

2003; Borland and MacDonald, 2003; Schreyer et al., 2018).

Given our concern that these OLS estimates are biased, we use IVs to study the

2The wide-spread use of non-disclosure agreements for contestants on competitive reality television
programs and games shows is also grounded in the idea that the primary appeal of contest-based enter-
tainment is suspense - or the facilitation and eventual resolution of outcome uncertainty.

3We discuss the source and severity of these endogeneity concerns at length in Section 3.1 of this
paper.
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impact of outcome uncertainty on spectator demand for contests. We focus on variation

in game outcome uncertainty arising from game-to-game changes to the line-ups fielded

by teams competing in the AFL. Specifically, we exploit injuries to the team that enters

the week of a game as non-favorite as exogenous shocks that lower the win probability

of the non-favorite team. In turn, this decreases game outcome uncertainty (i.e., the

non-favorite becomes even less of a chance to win the upcoming game). We observe but

do not exploit as an instrument the injuries suffered by the team that enters the week

of a game as favorite as these line-up changes are not monotonically related to changes

in game outcome uncertainty.

We show that the announcement of injury-induced line-up changes are strongly cor-

related with changes in the probability of a team winning a game, and, by extension,

changes in game outcome uncertainty. To suggest that injury-induced line-up changes

are unlikely to affect attendance through channels other than game outcome uncertainty,

we show that games with greater numbers of injury-induced line-up changes (vis-a-vis

games with fewer numbers of injury-induced line-up changes) involve teams of similar

quality, are played during similar time slots during the week, and occur no later or earlier

in the season. We also show that future injury-induced changes to the line-up of the

non-favorite team are not associated with game and team attributes at period t. These

results strongly suggest injury-induced line-up changes are a plausible instrument for

game outcome uncertainty.

Turning to our main results, we find that the relationship between game outcome

uncertainty and spectator demand is strong and economically large: a one standard de-

viation increase in game outcome uncertainty causes, on average, an increase in stadium

attendance of at least 11.2% - an effect equivalent to an additional 3,700 spectators per

game. Our IV results are at least twice as large as those obtained using OLS, which

suggest large negative biases in OLS estimates. We also employ our empirical strat-

egy to estimate the ‘optimal’ level of outcome uncertainty. We find that attendance is

maximized when the home team has a win probability of approximately 53% - close to

the theoretical inflection point that would arise if spectators cared purely about game

uncertainty of outcome.

Next, we explore two different sources of heterogeneity in the effect of game out-

come uncertainty on spectator demand. First, we show that outcome uncertainty and

attendance are very strongly associated for games where a play-off position is likely to

still be at stake for at least one of the competing teams (we label these ‘significant’

games in the context of the championship race). We do not observe that outcome uncer-

tainty increases spectator demand for games featuring only teams that have very likely

already secured a place in the finals or very likely already been ruled out of contention

for play-offs.
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Second, we show that game outcome uncertainty causes particularly large increases

in attendance for established teams that have larger, more-dispersed supporter bases

(i.e., teams most likely to have higher proportions of casual fans). We also show that

newer, less-established clubs - teams more likely to have smaller supporter bases made

up of higher proportions of die-hard fans - face relatively inelastic demand with respect

to game outcome uncertainty.

To establish the validity of our identification strategy, we conduct a number of robust-

ness checks. Specifically, we show that our results are unlikely to arise due to endogenous

‘misreporting’ of injuries (e.g., teams resting players). We also show that our injury in-

struments appear unlikely to be violated by superstar effects or consumer preferences

for high scoring games. As a final check of our identification strategy, we show that our

results also hold up when we use league-enforced line-up changes (‘suspensions’) as an

alternative instrument.

The rest of the paper reads as follows. Section II discusses the literature related to

this study. Section III describes the setting and data. Section IV outlines our empirical

strategy. Section V presents our main results. Section VI documents a series of robust-

ness checks. Section VII provides additional cross-sectional analysis of our main results.

Section VIII offers concluding remarks.

2 Related Literature

Our study most directly contributes to the literature on contest design (Lazear and

Rosen, 1981; Green and Stokey, 1983; Nalebuff and Stiglitz, 1983). This body of re-

search has focused on examining the incentive effects of tournaments and understanding

how a range of contest design parameters - e.g., prize size, information disclosure policy,

entry conditions - affect the behavior of contestants (Ehrenberg and Bognanno, 1990;

Becker and Huselid, 1992; Knoeber and Thurman, 1994; Moldovanu and Sela, 2001;

Casas-Arce and Mart́ınez-Jerez, 2009). A number of papers in this literature exploit

settings in professional sports to consider how outcome uncertainty affects the behavior

of contestants. Examining the adverse incentive effects of competing with superstars,

Brown (2011) uses data from professional golf tournaments to show that the introduc-

tion of large skill differences between competitors (i.e., decreases in outcome uncertainty)

reduce contestant effort and lower performance. Conversely, in studying weightlifters’

behavior in multi-round tournaments, Genakos and Pagliero (2012) shows that leaders

take greater risks but perform worse when competition is more intense (i.e., when out-

come uncertainty is greater). We extend research on contest design by identifying how

uncertainty affects the behavior of spectators, a group of stakeholders whose behavior

has not been explicitly studied in this literature. By showing that spectators have strong
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preferences for contests that have uncertain outcomes, our paper suggests that adminis-

trators who design contests that are consumed for entertainment need to consider both

the ‘incentive effects’ of outcome uncertainty (i.e., the impacts on the behavior of con-

testants) and the ‘consumption effects’ of outcome uncertainty (i.e., the impacts on the

behavior of spectators). Consideration of only the former may lead administrators to

design contests that have desirable incentive properties but that are sub-optimal from

a consumer demand perspective (e.g., unbalanced contests where competitors maximize

aggregate effort but spectators ‘tune out’).

Relatedly, this paper’s findings are especially relevant to the design of innovation con-

tests. For these types of contests, audience interest is crucial for attracting contestants

from a wide-range of technology areas - e.g., DARPRA and X-prize ‘grand challenges’

(Murray et al., 2012; Galasso et al., 2018). A number of studies on innovation challenges

show that contestants are motivated by social distinction and respond strongly to public

recognition (Frey and Gallus, 2017; Gallus et al., 2020). Our paper suggests that the

designers of innovation challenges may be able to use outcome uncertainty to better

engage spectators, and thereby attract contestants seeking public recognition.

Our paper also provides empirical evidence that complements theoretical research in

the literature on belief-based utility and information preferences (Golman et al., 2017).

A stream of this research formalizes preferences over the resolution of uncertainty (Kreps

and Porteus, 1978). Caplin and Leahy (2001) applys a framework that suggests agents

bet on their favourite team so as to increase the amount of suspense they will experience

while watching a sports game. Relatedly, Ely et al. (2015) introduces a framework

in which a Bayesian audience derives entertainment utility from anticipated changes in

beliefs about outcomes (i.e., suspense). We extend this literature by showing empirically

that individuals actively seek out suspense and consume sources of information that

gradually resolve uncertainty - e.g., attending a high-stakes game in person, rather than

simply looking up the outcome of a game upon its completion. More broadly, we show

that preferences for suspense, rather than simply inscrutable tastes, drive demand for

contest-based entertainment.

Finally, our paper contributes to the sports economics literature on uncertainty of

outcome (Rottenberg, 1956; Neale, 1964; Borland and MacDonald, 2003; Szymanski,

2003). Whilst a large body of empirical research has tested the outcome uncertainty

hypothesis in a range of different settings (Forrest and Simmons, 2002; Benz et al., 2009;

Coates and Humphreys, 2012; Cox, 2018), this literature has yet to robustly identify

the effect of outcome uncertainty on spectator demand for contest-based entertainment.

We build on this research by exploiting a source of plausibly exogenous variation in

outcome uncertainty. To the best of our knowledge, we provide the first causal estimates

of the effect of game outcome uncertainty on spectator demand for contests. From a
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policy perspective, by showing that outcome uncertainty causes increased attendance

at live sports, our paper lends support to the competitive balance policies implemented

by many sports leagues around the world. The findings in our paper also inform the

broader legal debate around the trade offs between consumer and labor welfare, and the

antitrust implications of competitive balance policies in professional sports (Szymanski,

2003; McKeown, 2010; McCann, 2010).

3 Setting & Data Description

3.1 The Australian Football League

Founded in 1897, the Australian Football League is the world’s premier Australian-rules

football competition. Australian-rules football is the most popular sport in Australia,

and the AFL is by the far the country’s most commercially-successful and well-supported

sports competition.4 AFL games typically draw crowds of 30,000-35,000 supporters,

comparable to match day attendance for the major European soccer leagues.5 Further-

more, AFL teams have some of the largest fan bases in professional sports, with the

league’s largest clubs having up to 100,000 season-ticket holders. Whilst a large portion

of individuals in attendance at a given game are season-ticket holders, single entry tickets

may also be purchased for a game. Teams vary the price of these tickets from game to

game, and these prices are typically set at the start of each season. A small, ‘legitimate’

secondary market for tickets also exists, but the AFL requires all tickets to be re-sold at

face value.

The AFL season runs annually from March to September, with each of the League’s

18 teams playing a total of 22 regular season games over 23 weeks. All games are

broadcast on television.6 Free-to-air television screens several games a week (with this

fixture set prior to the start of the season), whilst cable stations and streaming services

show all games live.7 Winning a game earns a team 4 points, and upon completion of

4As per its annual report, the AFL generated $668 million AUD in revenue during the 2018 season.
For comparison, the National Rugby League - the second-largest sports league in Australia - reported
$500 million AUD in revenue for the 2018 season.

5AFL teams play out of large capacity, multi-use stadiums. As such, sell outs during the regular
season are very uncommon in the AFL. This is not the case in other major sports leagues (e.g. NFL,
EPL, etc) where sell outs occur frequently and attendance-based measures of demand are likely to be
censored from above (i.e. ‘desired’ attendance and ‘actual’ attendance depart due to supply constraints).

6The literature has primarily looked at the association between game outcome uncertainty and at-
tendance. However, more recent work has sought to estimate the effect of game outcome uncertainty
on other forms of consumption - i.e. TV viewership (Forrest et al., 2005; Allan and Roy, 2008; Dang
et al., 2015). Consistent with the former approach, this study takes as its measure of interest consumer
demand as proxied by attendance.

7These broadcast arrangements remained stable for the period of the sample examined in this study.
This alleviates the concern that changes to the screening of live games may at least partially be driv-
ing the results documented in this paper (i.e. consumers substituting television consumption for live
consumption - or vice versa - due to some structural change).
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the regular season, the top 8 teams in the standings (as per total points accumulated)

qualify for the finals. The league employs a four-week playoff tournament in the finals,

culminating in a ‘grand final’, the winner of which is awarded the ‘premiership’ (i.e. the

league title).

The ‘evenness’ of the AFL as a competition has been widely attributed to the league’s

aggressive implementation and maintenance of competitive balance policies, most no-

tably player drafts, free agency restrictions, revenue sharing, and strictly-enforced salary

caps. Many of these policies are similar to the competitive balance measures employed

in the major North American sports competitions (e.g., NFL, NBA, etc). Reflected in

the words of the league’s CEO, the AFL has justified these policies on the grounds that

spectators strongly prefer more even contests (Australian Football League, 2016):

We have pursued a managed competition with these policies instead of one

left to free market forces so that every club has the opportunity to be suc-

cessful on-field and to give their members and supporters hope. Having a

competition in which there are uncertain outcomes each week with every

club capable of beating the other on any given day or night is fundamental

to driving interest in our game and building attendances, club memberships

and national television and digital media audiences.

Nonetheless, these policies have faced resistance from a range of different stakehold-

ers.8. The competition’s ‘mega clubs’ (teams like Richmond, Collingwood, and West

Coast, who have upwards of 85,000 season-ticket holders) have at times been vocal

proponents of deregulating the competition - the thinking being that attendance is best

maximized when the most popular teams enjoy continued success (The Australian, 2016).

Whilst generally supportive of competitive balance, the AFL Players’ Association has

also raised concerns over the manner in which the AFL’s trade regulations and salary

cap may dampen wages and redistribute rents from players to owners/teams.9

3.2 Team Announcements, Injuries, and Betting Markets

AFL policy requires clubs to announce their team line-up several days prior to an up-

coming game.10 This involves each team identifying the 22 players they have selected to

8Dabscheck and Opie (2003) write at length about issues related to legal regulations in Australian
sporting labor markets. The authors specifically address the topic of industrial relations in the AFL.

9Theoretical models in economics show that the distributional effects of free agency and player drafts
on the player market as a whole are not clear (Zimbalist and Storey, 1992). For example, increased
expenditure on free agents caused by competition for their services might lead to a reduction of investment
in the development of rookie talent or lower salaries on average for players bound by labor restrictions.

10For Thursday games, line-ups are announced on Wednesday. For Friday and Saturday games, line-
ups are announced on Thursday. For Sunday games, line-ups are usually announced on Friday.
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play in that week’s game.11

When line-ups are announced, teams explicitly identify two ‘sets’ of players: ‘ins’ and

‘outs’. ‘Ins’ are players that did not feature in the previous week’s line-up and have been

brought into the team for the upcoming week’s game. Typically, these are players that

are returning from injury, or have been promoted from the club’s ‘feeder’ (or reserve)

teams. ‘Outs’ are players that featured in the previous week’s line-up but are not in the

team named for the upcoming week’s game. Typically, these are players that have been

injured in the previous week’s game or during mid-week training in preparation for the

upcoming week’s game. These players may also be uninjured athletes who have been

dropped due to poor form.

In addition to explicitly identifying each of the ‘outs’, teams must also disclose the

reason for the line-up change. If a player is injured, the specific injury or illness is

disclosed. If a player is dropped, he is listed as ‘omitted’. As such, a player who the

team was unable to select (due to injury) can be distinguished from a player who the

team chose not to select (due to form).

Weekly team line-up announcements are closely followed by the public (line-ups

are discussed intensely on local sports television programs and on the Internet) and by

bookmakers. Sports betting in Australia is legal and betting on the outcome of individual

AFL games is extremely active.12 Bookmakers set their ‘opening odds’ for an upcoming

AFL game at the start of each week (typically, this occurs each Monday during the

season). Over the course of the week, bookmakers will adjust these odds in response to

market forces and the disclosure of information material to the outcome of the upcoming

game (e.g., weather forecasts, interviews and press conferences with players and coaches,

etc). In this way, the betting odds come to impound the information contained in line-up

announcements. In particular, the disclosure of injuries to specific players can lead to

large changes in the betting odds for a specific game. These changes reflect shifts in the

public’s expectations of which team will win the upcoming game. Bookmakers continue

to take bets and adjust the odds up until the start of each game, at which point the

‘closing’ odds are set.

3.3 Measures

We use game-level data on all regular season AFL games played between 2013-2018.

This data set contains information on game-day attendance, betting odds, team line-ups,

player performance ratings, and game results. The data set was constructed from three

11Teams also declare a set of ‘emergency’ players, who can be brought into the line-up in the event
that any of the starting 22 players are required to pull out prior to the game. Prior to 2018, teams
named 3 emergency players; from 2018, teams have been required to name 4 emergency players.

12According to Australian Gambling Research Centre (2017), sports betting generated $1.06 billion
AUD worth of winnings for the industry in 2016. Per capita gambling in Australia is more than double
the level observed in the U.S. Around 7% of all sports bets made in Australia are placed on AFL games.
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different sources: official AFL match reports, online bookmaking sites, and performance

data generated by the AFL’s data provider, Champion Data (see Appendix - Data for

details). Given our study exploits the announcement of game-to-game line-up changes

induced by injuries, we drop from our sample all games from the first week of each season

(by definition, there are no ‘changes’ at the start of the season). As such, our data set

has a total of 1,133 game-level observations.13

In this paper, the outcome measure of interest is attendanceijs, the total number

of spectators (‘000) in attendance at the game between home team i and away team j

in season s. Based on game-day swipe-in data from entry gates at each of the league’s

stadiums, these figures are sourced from official AFL match reports.

To proxy for uncertainty of game outcome, we employ a construct based on Theil’s

inequality measure. This is a widely-used game uncertainty of outcome proxy that is

based on the distribution of a game’s possible outcomes (Peel and Thomas, 1996; Benz

et al., 2009; Pawlowski and Anders, 2012; Schreyer et al., 2018). Specifically, we calculate

the measure as follows:

outcome uncertaintyijs = probijs log

(
1

probijs

)
+
(
1 − probijs

)
log

(
1

1 − probijs

)

where probijs is the probability of home team i defeating away team j in season s. As

draws are very uncommon in Australian rules football (unlike soccer), we only consider

the probability of a home win/loss in our construction of this measure. Our proxy is

increasing in game outcome uncertainty, with a value of 0 indicating a certain home

team win (loss), and a value of 0.7 indicating a ‘50-50’ game (i.e. the home and away

teams are equal favorites to win).

We use the average closing odds on the betting market for a home team win as our

estimate of the home team’s expected win probability.14 Consistent with the use of

this measure in the literature, we calculate the bookmaker’s margin and then deduct

this from the closing odds to arrive at an unbiased estimate of the home team’s win

probability (Benz et al., 2009). We classify the non-favorite as the team that started

the week of the game with an opening-odds-implied win probability of below 50%. The

13We have 6 seasons of data with 18 teams competing each season in 11 ‘unique’ games. This give
us 6*11*18 = 1,188 observations. We drop games from the first round of each season: 1,188 - (6*9) =
1,134. Finally, due to a cancelled game in 2015 season (the fixture between Adelaide and Geelong was
called off due to the death of Adelaide coach, Phil Walsh), we have 1,134-1 = 1,133 observations.

14Betting odds are averaged over the largest bookmakers in the Australian sports betting market (e.g.
Sportsbet, Bet365, etc). For games that occur early in our sample, the betting market contains 10
bookmakers; for games that occur later in our sample, the betting market contains 12 bookmakers (2
bookmakers entered the market in the period 2013-2018). See Appendix - Odds for further discussion of
betting odds data.
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implicit assumption here is that the team that starts the week as non-favorite remains

so at least up until the moment line-ups are announced for the upcoming game.

To capture injury shocks, we employ two measures. The first of these measures is

defined as follows: Number of injuries ijs is the total number of injury-induced line-up

changes made by the non-favorite for the game between home team i and away team j in

season s. To reiterate, by injury-induced line-up changes, we mean players who appeared

for the non-favorite in game t− 1 but due to injury were not selected for game t. This

measure is constructed using data sourced from the official team line-up announcements.

We also use an alternative injury shock measure that is designed to capture differences

in the quality of players that are lost due to injury. The use of this measure is motivated

by the idea that not all injury-induced line-up changes will impact game outcome un-

certainty to the same extent. For instance, an injury to an average player will not lower

the affected team’s probability of winning to the same degree as an injury to an above

average or star player. This measure uses the game-level player performance ratings

generated by Champion Data - the AFL’s official data and sports analytics provider.15

Specifically, we calculate the average performance rating received by a player over the

course of each season and sum together these ratings for the players from the non-favorite

who due to injury withdrew from game ijs. This results in a summary measure of the

total playing talent that is missing due to injury. This alternative injury shock measure

is defined as follows: Rating of injuries ijs is the total number of player rating points

‘lost’ by the non-favorite due to injury-induced line-up changes for the game between

home team i and away team j in season s.

We also employ a number of control variables in our analysis. To capture competition

between specific teams, we employ an indicator variable in our analysis that controls for

local rivalries between clubs. This measure is defined as follows: rivals ij is equal to one

if the home team i and away team j are football clubs based in the same city. Known as

‘derbies’, games between teams from the same city are typically fiercely contested and

draw especially large crowds. To control for the time-varying quality (or form) of the

teams involved in each game, we also construct and use Elo-based team performance

ratings for the home and away teams.16 These ratings are updated after each game and

take into account the historical performance of each team.

15Champion Data rates player performance using a single metric that is tied to a large number
of quantitative performance measures. The objective of this rating is to capture a player’s over-
all contribution to his team’s performance. More information on the player rating can be found at
https://www.afl.com.au/news/453167/player-ratings-frequently-asked-questions.

16First developed to rank players in chess, Elo ratings are commonly used in games and sport to
measure the quality of participants. A contestant’s Elo rating is represented by a number which increases
or decreases depending on the outcome of games between rated contestants.
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4 Empirical Strategy

4.1 Identification

In this section, we develop an empirical approach to identify the effect of contest outcome

uncertainty on spectator demand.17 The standard approach used in the literature to

evaluate the impact of uncertainty of outcome on attendance is to regress attendance on

game outcome uncertainty after conditioning on a vector of game-level covariates and

including a range of fixed effects - for examples see Forrest and Simmons (2002), Benz

et al. (2009), Coates and Humphreys (2012), Cox (2018). This approach is typically

implemented by estimating the following type of reduced-form equation:

log(attendance)ijs = α0 + α1outcome uncertaintyijs + αXijs + φi + ωj + χw + εijs

where attendanceijs is the total number of people that attended the game between

home team i and away team j in season s.18 outcome uncertainty ijs is a measure of

the uncertainty of the outcome of the game between home team i and away team j in

season s, Xijs is a vector of game-level covariates, φi is a home-team fixed effect, ωj is

an away-team fixed effect, χwis a week-of-season (or round) fixed effect, and εijs is an

idiosyncratic error term.

For the above empirical specification to identify α1, the effect of uncertainty of out-

come on attendance, outcome uncertainty ijs and εijs must be uncorrelated. This as-

sumption is challenging, as uncertainty of outcome is likely to be endogenous, even

when attendance is conditioned on a large number of covariates and fixed effects.19

A range of unmeasured confounders may give rise to this endogeneity problem. For

instance, if increased advertising and promotion activity boost attendance, competition

administrators or the teams themselves might more heavily promote games that are

17There are only two prior studies that explore this topic in the context of the AFL. Borland and Lye
(1992) looks at the association between game outcome uncertainty and attendance. This study fails to
find a relationship between attendance and game outcome uncertainty (as measured using the absolute
difference in league standings of the competing teams). In contrast, Dang et al. (2015) documents a
strong positive association between game outcome uncertainty and TV viewership. Neither papers’
estimates are ‘causally identified’.

18Attendance is strictly positive, typically takes large integer values, and usually heavily right-skewed.
As such, models of attendance in the literature work with the natural logarithm of attendance. This
serves to reduce the influence of extreme values or outliers on the estimates produced by the model.
Log-linear models also generate coefficients with an appealing interpretation: %∆y = 100 ∗ (eα1∗∆x− 1)

19Szymanski (2003) notes that “there have been relatively few attempts to analyze causality empirically
in the sports literature”. Szymanski (2001) is perhaps the only prior study that provides a causal estimate
of the effect of seasonal outcome uncertainty (or championship inequality) on fan interest. Our paper
is distinct from Szymanski (2001) in that we provide causal estimates of the effect of game outcome
uncertainty on attendance.
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expected to not be especially close (McDonald and Rascher, 2000). As many of these

promotions and advertising campaigns are unobservable (from the perspective of an

empiricist looking to employ a research design), these marketing practices might serve to

bias downwards estimates of the effect of game uncertainty of outcome on attendance.20

Alternatively, if not controlled for, weather may may lead to a correlation between

uncertainty of outcome and the error term - e.g., forecasted wet weather may make games

closer in expectation but reduce attendance as spectators do not wish to potentially sit or

stand in the rain) (Cairns, 1984). This would also lead OLS estimates to underestimate

the effect of outcome uncertainty on attendance.

Selection on observables may also be violated through other channels. Known as

load management, teams occasionally rest star players for games that are likely to be

‘blow outs’ (Soligard et al., 2016). As the presence of star players is associated with

attendance as well as the uncertainty of the outcome of a game, load management likely

acts to positively bias estimates of the effect of game outcome uncertainty on demand

(Hausman and Leonard, 1997; Ormiston, 2014). Game outcome uncertainty will also be

endogenous if administrators schedule games that are expected to be close in time slots

that are more attractive to spectators (Jakee et al., 2010). This would also positively

bias estimates of the effect of game outcome uncertainty on attendance. Alternatively,

ticket prices - on either the primary or secondary markets - may also vary with game

outcome uncertainty (Diehl et al., 2016). If teams or individual ticket sellers expect

demand to be dampened for games that are unlikely to be close, we should expect to

see prices lowered for tickets to these particular games. This would negatively bias OLS

estimates of the effect of game uncertainty of outcome. As these examples highlight,

outcome uncertainty ijs may be correlated with εijs in a variety of ways that may work

to either negatively or positively bias estimates of the effect of game outcome uncertainty

on spectator demand for contests.

In this paper, we use instrumental variables (IVs) to overcome this problem. The

main advantage of using IVs is that we are explicit about the source of variation used

to evaluate the impact of game uncertainty of outcome on attendance. Specifically, we

use the announcement of injury-induced changes to the line-up of the non-favorite team

to instrument for the uncertainty of a game’s outcome.21

A valid IV is required to meet two criteria: 1) the instrument must be relevant;

and, 2) the instrument must meet the exclusion restriction (Angrist and Krueger, 2001).

Regarding the former, for our instrument to be relevant it must affect game outcome

20Taking advantage of settings where specific types of promotional events are observable, a literature
in marketing studies the association between game-day promotions and attendance at sports events
(McDonald and Rascher, 2000; Bovd and Krehbiel, 2003).

21A small literature in economics exploits injury shocks in professional sports to examine predictions
from tournament theory. For instance, Brown (2011) uses injury-induced changes to Tiger Woods’
playing schedule on the PGA Tour to identify the adverse effects of superstars in tournaments.
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uncertainty (in our case, by impacting the likelihood of a non-favorite team win). Re-

garding the latter, for our instrument to meet the exclusion restriction it must not affect

attendance through any channel except for its direct effect on uncertainty of game out-

come.

With respect to the relevance condition, injuries force a team to field a weakened

playing line-up; one containing players that absent injuries would not be named to start.

As such, injury-induced line-up changes decrease the likelihood that the affected team

will win the game. If the team that is the non-favorite suffers injuries, this then serves to

decrease the uncertainty of the outcome of the upcoming game in that the non-favorite

is now perceived by the public to be even less of a chance of winning.

The effect of injuries to the favorite team on game outcome uncertainty is more com-

plicated. Whilst injury-induced line-up changes to the favorite decrease the likelihood

of the favorite winning, this does not strictly increase game outcome uncertainty. For

instance, if a team is only marginally favorite (or if a moderate favorite suffers a large

number of injuries), the announcement of injury-induced line-up changes to the favorite

could in fact work to decrease game outcome uncertainty (i.e. the injury shock makes

the favorite more of a non-favorite than the non-favorite was prior to the disclosure of

the team line-ups). As such, injury-induced changes to the line-up of the favorite fail to

meet the monotonicty condition, an additional technical assumption that is required to

hold for IV methods to identify the local average treatment effect (Angrist et al., 1996).

For this reason, although we observe injury-induced line-up changes for both the favorite

and the non-favorite teams, we only exploit the latter in our identification strategy.22

The exclusion restriction requires that injuries cannot be related to attendance out-

side of their effect on game uncertainty of outcome. This assumption cannot be empiri-

cally tested, and must instead be evaluated on the basis of theory and an understanding

of the setting and any relevant institutional details. We argue that conditional on the

specific teams involved in a game, injury-induced line-up changes are exogenous.

Given the nature of Australian-rules football as a sport, this seems a reasonable

assumption. For instance, two of the most common forms of injury to occur to AFL

players are blunt force injuries (e.g. head or body knocks from tackles and collisions)

and joint injuries (e.g. torn knee ligaments) (Hrysomallis, 2013). These injuries typically

do not occur in any sort of systematic fashion, but usually arise due to random on-field

events (e.g. a player slips in a contest and receives a blow to the head, a player tears

an anterior-cruciate ligament in a tackle). Even if we allow for injuries to be more

likely to occur in closer games or in especially important contests when players might

22A failure of monotonicity means the instrument pushes some games into treatment while pushing
others out. These ‘defiers’ complicate the link between the local average treatment effect and the reduced
form. Specifically, we might have a scenario where the reduced form is zero when the effect on compliers
is cancelled out by the effect on defiers.
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exert themselves excessively, the exclusion restriction is not violated as we are exploiting

injuries as negative shocks on the line-up fielded by a team for the following game - i.e.,

we are not analyzing outcome uncertainty and attendance for the game in which the

injuries occurred. Furthermore, we do not expect there to be correlation between the

characteristics of games from week to week (e.g., the AFL does not design the fixture so

that a team will face a good team in one week and poor team the following week). This

lends further credence to the argument that injury-induced line-up changes are plausibly

exogenous.

That being said, our identification strategy acknowledges that specific teams are

likely to be better (or worse) at managing injuries. This could arise because more

successful teams have better-resourced sports science and medical departments, which

in turn allows these teams to better manage and prevent injuries (McCall et al., 2014).

Given that successful teams will also be more likely to have greater numbers of supporters

(and thus higher levels of attendance), there is the danger that line-up changes due to

injury are confounded by the level of resources a team has at its disposal. For this

reason, in our empirical design, we use fixed effects for both the home and away teams.

4.2 Estimation

To implement our IV approach and thus mitigate bias introduced by the endogeneity of

uncertainty of outcome, we estimate a two-stage least squares model of attendance on

uncertainty of outcome. The model starts with the following first stage:

outcome uncertaintyijs = π0 + π1injuriesijs + π2Xijs + γi + ρj + θs + uijs

where outcome uncertainty ijs is the Theil Index of the game between home team

i and away team j in season s, injuriesijs is our measure of injury-induced changes to

the line up of the non-favorite in the game between home team i and away team j in

season s, Xijs is a vector of game-level covariates, γi is a home-team fixed effect, ρj is

an away-team fixed effect, θs is a season fixed effect, and uijs is an idiosyncratic error

term. For our instrument to meet the relevancy condition, our injury measure must be

strongly correlated with game uncertainty of outcome.

The second-stage equation estimates the relationship between uncertainty of outcome

and attendance:
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log(attendance)ijs = β0 + β1 ̂outcome uncertaintyijs + β2Xijs + ψi + ηj + υs + eijs

where attendanceijs is the total number of people that attended the game between

home team i and away team j in season s, outcome ̂ uncertaintyijs is the fitted value from

the first-stage, Xijs is a vector of game-level covariates, ψr is a home-team fixed effect,

ηj is an away-team fixed effect, υs is a season fixed effect, and eijs is an idiosyncratic

error term. For our instrument to meet the exclusion restriction, our injury measure

must be uncorrelated with eijs. If this assumption holds, β1 identifies the effect of game

outcome uncertainty on attendance.

5 Results

5.1 Descriptive Statistics

We present summary statistics for the games in our sample in table 1. In terms of our out-

come measure, the average game in our sample was attended by 32,602 spectators. The

least-well-attended game was attended by 4,370 spectators and the most-well-attended

game attended by 93,370 spectators.23 Based on average closing odds, for the average

game in our sample, the favorite team was a 73% chance of winning. Based also on

average closing odds, for the average game in our sample, the home team was a 55%

chance of winning. This suggests that for the typical game the home team was usually

favorite. Looking at measures of dispersion, we see considerable variation in the win

probability of the favorite team, with our sample containing games where the favorite

was considered a near certainty to win (Max = 0.98) and games where the competing

teams were evenly split (Min = 0.50). Naturally, this variation is reflected in our un-

certainty of outcome measure. The average game in our sample had a Theil index of

0.54. The minimum Theil index is 0.02 and the maximum is 0.69 (by construction, the

Theil index has a lower bound of 0 and an upper bound of 0.70). Therefore, our sample

contains games that have very high and very low levels of outcome uncertainty, and a

mass of games that are expected to have fairly close outcomes.

23Consistent with the AFL’s use of large capacity, multi-use stadiums, sell outs are uncommon in our
sample. For instance, median attendance is 59% of stadium capacity. Furthermore, attendance was
above 90% (95%) capacity for only 6% (2%) of games in our sample. As we are not concerned that our
dependent variable is in practice censored from above, we employ OLS and 2SLS estimation procedures
in our analysis, rather than the types of censored regression models employed by studies elsewhere in the
literature that deal with settings where sell-outs are common (Benz et al., 2009; Coates and Humphreys,
2012; Cox, 2018). As fewer than 1% of the games in our sample have attendance below 20% capacity
(and no game in our sample has attendance at under 5% capacity), we are even less concerned that our
dependent variable is bound from below.
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Turning to the properties of our instruments, the average game in our sample featured

1.23 injury-induced changes to the line-up of the team that was non-favorite. We observe

in our sample games where teams had as few as zero injury-induced line-up changes, and

as many as 11 injury-induced line-up changes.24 In terms of measuring the quality of

the players lost to injury, for the average game in our sample, the line-up of the team

that was non-favorite was typically absent due to injury player(s) worth 86.50 player

rating points. Again, we see considerable variation in this measure. For context, the

average AFL player has an average performance rating of 62.60. For further comparison,

figure 1 plots the distribution of average performance ratings for all active players in the

AFL between 2013-2018 against the distribution of average performance ratings for all

injured players over the same period. Figure 1 highlights two features of the data. First,

playing talent within the AFL appears to be approximately normally distributed. Thus,

there is considerable variation in player quality within teams and across the league.

Second, the distribution of average performance ratings of injured players stochastically

dominates the distribution of average performance ratings for all players. This suggests

that injured-induced line-up changes act as negative shocks to the quality of the affected

team (i.e., injured players are replaced, on average, by lower quality players).

Overall, table 1 shows that attendance in the AFL varies considerably from game

to game in the AFL. Similarly, there is a high degree of variability in terms of game

uncertainty of outcome. The extent to which the former is a function of the latter - and

the role that injuries play in helping us explore this - is the focus of the remainder of

our empirical analysis.

5.2 Univariate Analysis

Next, we compare the characteristics of high uncertainty of outcome games and low

uncertainty of outcome games (i.e., games that have above- and below-median scores on

the Theil Index).

In table 2, we begin by comparing attendance across high and low uncertainty of

outcome games. Consistent with the uncertainty of outcome hypothesis, we see that

average attendance is greater for high uncertainty of outcome games than for low un-

certainty of outcome games: 35,874 spectators and 29,362 spectators, respectively. This

difference - 6,512 spectators - is significant at the 1% level.

Turning to the matter of covariate balance, table 2 provides evidence that low out-

come uncertainty games (compared to high outcome uncertainty games) typically involve

24In untabulated results, we observe that the median game in our sample features 1 injury-induced
change to the line-up of the non-favorite. Furthermore, we observe that over two-thirds (68%) of games in
our sample feature at least 1 injury-induced line-up change; whilst 15% of games in our sample feature
at least 3 injury-induced line-up changes. This suggests our injury instrument displays considerable
variation.
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a team that is perceived as a much stronger favorite and typically occur earlier in the

season. Table 2 also suggests that high uncertainty of outcome games are much more

likely to be played during ‘marquee’ time slots (Thursday and Fridays, and during the

evening). Finally, table 2 also shows that high uncertainty of outcome games vis-a-vis

low uncertainty outcome games typically involve less dominant teams as favorites and

relatively stronger teams as non-favorites. Taken together, the differences reported in

table 2 indicate that game uncertainty of outcome is not random; it is in fact corre-

lated with a range of observable characteristics of games that are also determinants of

match-day attendance.

However, the larger concern is that high outcome uncertainty and low outcome un-

certainty games likely also differ across a variety of unobservable attributes. As a result,

it is not obvious that high uncertainty of outcome and low uncertainty of outcome games

are a fair counterfactual for each other, even when such analysis is conditioned on a rich

set of covariates. This casts considerable doubt on the ability of selection on observables

(and other matching style identification strategies) to identify the effect of uncertainty

of outcome on attendance.

5.3 Instrumental Variables Analysis - Plausible Exogeneity

To address the endogeneity of contest outcome uncertainty, we provide instrumental

variables estimates. Specifically, we instrument for game outcome uncertainty using the

disclosure of injury shocks to the line-up of the team that enters the week of the game

as non-favorite. We provide evidence that suggests injuries in the AFL are plausibly

exogenous. To do so, we compare ‘pre-treatment’ characteristics of games that have

high numbers of injury-induced line-up changes and games that have low numbers of

injury-induced line-up changes.

In table 3, we show across a range of pre-treatment characteristics that games where

the non-favorite team faced a higher number of injury-induced line-up changes cannot

be distinguished using difference-in-means tests from games where the non-favorite team

faced a low number of injury-induced line-up changes. Specifically, games that have

above-median injury-induced changes to the non-favorite team line-up do not appear to

be played any earlier or later in the season, do not appear to be played earlier or later

in the week, do not appear to be played at different times of the day, and do not appear

to involve teams of higher or lower quality. The former of these results is particularly

interesting, as it appears to suggest that teams do not consistently ‘use’ injuries to

strategically rest players for upcoming games against especially good or especially poor

teams. This is further supported by the fact that the average likelihood of a favorite

team win as of the beginning of the week of the game (i.e., before the line-ups for the

game have been announced) does not differ across high versus low injury games. Overall,
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by showing that games impacted by high versus low numbers of injury-induced changes

to the line-up of the non-favorite are balanced on pre-treatment outcomes, table 3 lends

support to the idea that injuries are plausibly exogenous.

5.4 Instrumental Variables Analysis - First Stage

Next, we formally test the relevance of injury shocks as instruments for game outcome

uncertainty. In table 4, we report the results from a model where we regress the prob-

ability of a favorite team win (as implied by the average bookmakers’ closing odds) on

our injury shock measures. Specifically, table 4 allows us to trace out the mechanism by

which injury-induced line-up changes impact game outcome uncertainty by increasing

the likelihood that the favorite team will win.

In table 4 columns 1-2, we see that an increase in the number of injury-induced

line-up changes to the non-favorite substantially increases the win probability of the

favorite. Specifically, an additional injury-induced change to the non-favorite team line-

up increases the probability of a favorite team win by approximately 2.0 percentage

points - a result that is significant at the 1% level. In table 4 columns 3-4, we show that

when the non-favorite’s line-up loses an ‘average’ player due to injury (an individual that

has a player rating of 70 points), the probability of the favorite team winning increases

by 2.1 percentage points - a result that is significant at the 1% level.

As documented in table 4, these results are robust to the inclusion of home-team,

away-team, and season fixed effects. Encouragingly, our results change very little when

we include these fixed effects, which further supports the exogeneity of injury-induced

line up-changes. Taken together, the results in table 4 suggest that injury-induced line-

up changes affect the relative strength of the teams involved in a game.

Building off of these results, we next look directly at the relationship between injury-

induced line-up changes and game outcome uncertainty. In table 5, we estimate our first-

stage model by regressing game outcome uncertainty on our measures of non-favorite

team injury-induced line-up changes.

In table 5, we observe F-statistics > 10. This suggests that injury-induced line-

up changes are unlikely to be a weak instrument. As a result, our IV estimates are

unlikely to be biased towards those produced by OLS (Staiger and Stock, 1994; Stock

et al., 2002). In terms of interpreting the specific coefficients, in table 5 columns 1-2, we

observe that an additional injury-induced change to the non-favorite team’s line-up is

associated with a 0.024 unit decrease in our game outcome uncertainty measure. This

association is significant at the 1% level, and reflects a 0.16 standard deviation decrease

in game outcome uncertainty. In columns 3-4, we present similar findings using our

alternative injury shock measure. The loss of an average player due to injury from the

line up of the non-favorite team is associated with a 0.023 unit decrease in our game
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outcome uncertainty measure. This association is statistically significant at the 1% level.

In sum, the first-stage results indicate that injury-induced changes to the line-up

of the non-favorite team have a strong, negative impact on game outcome uncertainty.

Moreover, the robustness of the estimated coefficients to the inclusion of a range of fixed

effects - as well as the use of alternative injury measures - suggests that the effect of

injury shocks on game outcome uncertainty does not appear to be affected by game

characteristics and other unobservable factors.

5.5 Instrumental Variables Analysis - Reduced form

Having documented the strong impact of our instruments on game outcome uncertainty,

we turn to analyzing the direct relationship between injury-induced line-up changes and

attendance. We do so by exploring the reduced-form correlation between our injury

measures and stadium attendance at AFL games, our dependent variable of interest.

This analysis identifies the intention-to-treat effect (Angrist et al., 1996).

The results are presented in table 6, where we find a strong negative correlation

between attendance and injury-induced changes to the line-up of the non-favorite team.

The estimated coefficients show that a one standard-deviation increase in the number

of injury-induced changes to the line-up of the non-favorite team is associated with

a decrease in attendance in the range of 2.1-4.9% (columns 1-2). For reference, we

observe similar results using our alternative injury shock measure that takes the sum

of the average performance ratings of the injured players (columns 3-4). The estimates

reported in columns 1-4 are significant at the 1% level.

The reduced-form results documented in table 6 provide strong evidence that de-

creased game outcome uncertainty causes lower attendance. However, the magnitude

of these estimates needs to be scaled to reflect the fact that the reduced-form result is

driven by the subset of games that have lower levels of game outcome uncertainty due

to the instrument.

5.6 Instrumental Variables Analysis - Two-stage Least Squares

In table 7 we examine the impact of game outcome uncertainty on attendance using

a number of alternative specifications. To facilitate comparison between OLS and IV

estimates, in columns 1-2 we provide OLS estimates of the effect of game outcome

uncertainty on attendance. As suggested by our univariate analysis, game outcome

uncertainty is positively associated with attendance. In column 2, we follow the standard

selection-on-observables design employed in the literature and include home team and

away team fixed effects and season fixed effects. Consistent with the endogeneity of game

outcome uncertainty, we observe a significant reduction in the size of the association

between game outcome uncertainty and attendance. OLS estimates suggest that a one
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standard-deviation increase in game outcome uncertainty is associated with an increase

in game attendance of approximately 1,700 spectators (equivalent to 5.4% increase in

attendance at the average game in our sample).25

Columns 3-6 of table 7 present the estimated coefficients from our IV method. Con-

sistent with theory and the results of our univariate analysis, the impact of game outcome

uncertainty on attendance is positive and statistically significant. This holds regardless

of the specific injury shock measure we employ. This result also holds when we control

for team rivalries and employ home team, away team, and season fixed effects.26 Focus-

ing on our preferred specifications, reported in columns 5-6, we see that a one-standard

deviation increase in game outcome uncertainty leads to an increase in attendance of

approximately 3,800 spectators. This is equivalent to an average increase in game-day

attendance of at least 11.2%.27 These coefficients, statistically significant at the 5% level,

suggest that spectators have strong preferences for contests that have more uncertain

outcomes.

Across each of the specifications reported in table 7, the magnitude of the coefficient

estimated using IV is larger than the coefficient estimated using OLS. In fact, comparing

the most conservative estimates generated using each technique, our IV estimates suggest

that OLS underestimates the effect of game uncertainty of outcome on attendance by at

least 5.8 percentage points (this difference is significant at the 1% level). This implies

that the actual impact of game outcome uncertainty on attendance is likely to be at

least twice as large as the estimates generated using OLS.28

The large gap between IV and OLS estimates suggests that game outcome uncer-

tainty is more pronounced in situations where unobserved game characteristics dampen

attendance. As a result, OLS heavily underestimates the effect of game outcome uncer-

tainty on attendance. As discussed earlier in this paper, a number of factors could be

25For log-linear models: %∆y = 100 ∗ (eα1∗∆x − 1). Therefore, for a one standard deviation increase
in game outcome uncertainty, we get 100 ∗ (e0.353∗0.15 − 1) = 0.054

26In untabulated results (available upon request), we also control for lagged attendance from the
previous game between the home and away teams and include round-of-season and time-slot fixed effects.
We employ the latter to address potential confounding driven by the timing of when games occur during
the season. For example, players may be more likely to get hurt later in the season, when attendance
may also be lower. Similarly, players usually have fewer rest days (and thus may be more likely to pull
out injured) leading into Thursday and Friday night games, the AFL’s ‘marquee’ (i.e., best attended)
time slot. However, when we include these additional controls and fixed effects, our estimates change
very little and remain similar to those reported in columns 5-6 of table 7.

27To provide a sense of the economic significance of these effect sizes, a one standard deviation increase
in game outcome uncertainty is equivalent to the win probability of the favorite team falling from 77%
to 55% - or from 90% to 81% - for a given game.

28In untabulated results (available upon request), we also evaluate the sensitivity of our results to the
use of different measures for game outcome uncertainty. Specifically, following the literature, we proxy
for game outcome uncertainty using the absolute difference in win probabilities of the teams, the ratio of
the win probabilities of the teams, and the closing line/spread for the game. When doing so, our results
change very little from those reported in table 7 - i.e., when we proxy for game outcome uncertainty
using the Theil index. Using these alternative measures, we continue to see that OLS underestimates
the effect of game outcome uncertainty on attendance by a factor of at least 2.
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driving this downward bias. For instance, the AFL (or the teams themselves) may more

heavily promote games that are expected to be uneven. Alternatively, wet weather may

make the outcome of games more uncertain whilst also keeping fans away. OLS estimates

of the effect of game outcome uncertainty on attendance will also be downward biased

if ticket prices are lowered prior to the start of the season for games that are expected

to be one-sided.

5.7 Estimating the optimal level of game outcome uncertainty

In addition to estimating the effect of outcome uncertainty on spectator demand for

contests, we also estimate the optimal level of outcome uncertainty. To do so, rather than

directly instrumenting for game outcome uncertainty, we instrument for the probability

of a home team win using the announcement of injury-induced changes to the line-ups

of both the home and away teams. The former works to strictly lower the probability of

a home team win, the latter works to strictly increase the probability of a home team

win. Using this modified empirical design, we estimate the following first stage:

win probijs = π0 + π1home injuriesijs + π2away injuriesijs + π3Xijs

+ γi + ρj + θs + uijs

where win probijs is the closing-odds-implied probability of home team i defeating

away team j in season s, home injuries ijs is our measure of injury-induced changes to

the line-up of home team i for the game against away team j in season s, away injuries ijs

is our measure of injury-induced changes to the line-up of the away team j for the game

against home team i in season s, Xijs is a vector of game-level covariates, γi is a home-

team fixed effect, ρj is an away-team fixed effect, θs is a season fixed effect, and uijs is

an idiosyncratic error term.

In our second stage, we then specify a quadratic relationship between the probability

of a home team win and attendance:

log(attendance)ijs = β0 + β1 ̂win probijs + β1
̂win prob2

ijs + β2Xijs

+ ψi + ηj + υs + eijs

where attendanceijs is the total number of people that attended the game between

home team i and away team j in season s, ̂winprobijs are predicted values from the
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first-stage, Xijs is a vector of game-level covariates, ψr is a home-team fixed effect, ηj

is an away-team fixed effect, υs is a season fixed effect, and eijs is an idiosyncratic error

term.

In line with the uncertainty of outcome hypothesis, we expect attendance to be great-

est at games where both the home and away teams have a reasonable chance of victory

(i.e., when game outcome uncertainty is heightened). However, it may not necessarily

be the case that this optimization point arises precisely when the home team has a 50%

chance of winning. For instance, attendance may be greatest when the home team is

favorite, but not so heavily that there is only a trivial chance of an upset. This maps on

to the idea that supporters prefer a likely but uncertain home team victory (Szymanski,

2003). Alternatively, perhaps supporters have very strong preferences for a home team

victory. In this case, attendance will be maximized when the probability of a home team

win is very high.

In table 8, we report the results from this analysis. Again, to facilitate comparison,

in columns 1-2 we provide OLS estimates of the relationship between home team win

probability and attendance. Consistent with the idea that spectators prefer more uncer-

tain games, we observe a statistically-significant quadratic relationship between home

team win probability and attendance. In column 2, we add home-team, away-team, and

season fixed effects. Here we observe a ‘turning point’ when the home team has a 61.1%

chance of winning. We interpret this estimate as follows: when the home team has a

win probability below 61.1%, an increase in the likelihood of a home team win leads to

an increase in attendance, whilst a decrease in the likelihood of a home team win leads

to a decrease in attendance. Alternatively, when the home team has a win probability

above 61.1%, an increase in the likelihood of a home team win leads to a decrease in

attendance, whilst a decrease in the likelihood of a home team win leads to an increase in

attendance. This inflection point implies that attendance is maximized when the home

team is almost twice as likely to win as the away team. This suggests that spectators

strongly prefer home team wins. Nonetheless, this result is consistent with prior find-

ings in the literature that use OLS or, more generally, selection-on-observables designs

(Szymanski, 2003; Schreyer et al., 2018).

In table 8 columns 3-6, we seek to address the endogeneity of home win probability by

employing IV estimates. In columns 5-6, in addition to instrumenting for home team win

probability with injury-induced line-up changes, we also include home-team, away-team,

and season fixed effects. Employing these specifications, we continue to see a concave

relationship between home team win probability and attendance. The estimates remain

significant at the 1% level. Furthermore, our IV estimates provide a far less conservative

estimate of the outcome uncertainty-attendance turning point. Across columns 3-6, we

consistently observe an inflection point that corresponds to a home team win probability
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of between 51-54%. Considerably lower than the turning point implied by the OLS

estimates, this threshold suggests supporters prefer to attend games where the home

team is expected to win, but where there is a still a sizeable chance that the away team

will cause an upset. This difference in estimates of the turning point are again consistent

with OLS underestimating the effect of game outcome uncertainty on attendance. As

such, this finding is further evidence that spectators strongly prefer close and uncertain

contests.29

For the approach in table 8 to identify the optimal level of outcome uncertainty we

must assume demand for live sports is purely a function of the behavior of home team

supporters (i.e., supporters of the away team do not attend games, or if they do attend,

this decision is made independent of the likelihood of the away team winning). This

assumption allows us to say that if the outcome of a game where the home team starts

as favorites becomes more uncertain, any associated increase in attendance is driven by

home team fans wanting to see a closer game (albeit one where their team is now less

likely to win), and not just a result of away team fans wanting to see a game where their

side is now more likely to win.

Whilst likely to hold for competitions made up of single-city teams, this assumption

is potentially problematic in the AFL, where all but one team share a ‘hometown’ with

at least one other side (the most extreme example is Melbourne, ‘home’ to nine teams).

As such, there is a sizeable subset of games in the AFL where the ‘away’ team is actually

playing in its home city (and in many cases, the same stadium in which it plays its own

home games). This raises the concern that with our empirical design we may observe that

a 50-50 game maximizes attendance not because home team supporters have a preference

for games that have more uncertain outcomes, but because these games attract a large

number of away supporters hoping to see their own team win.

To address this concern, we re-estimate our model on a restricted sample that only

includes games where the away team is visiting from interstate (i.e., we assume support-

ers reside in their team’s home city and do not travel interstate to attend games). For

this subsample of games, if we observe that attendance increases as a game becomes

more uncertain (e.g., if the home team becomes less of a favorite), then it is highly likely

that this occurs because supporters of the home team - or neutral fans - prefer to attend

games that have more uncertain outcomes (and not because supporters of the away team

simply wish to potentially see their own team win).

Employing this restricted sample of games, our results change very little. In fact, as

documented in table 8 columns 7-8, we find that the optimal home win percentage for

29Here it is also worth noting that this threshold is in fact very close to the mean/median home team
win probability in the AFL (see table 1). This lends support to the AFL’s competitive balance policies
and the grounding of these policies in the argument that supporters prefer games that have uncertain
outcomes.
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games that feature inter-state away teams is approximately 51% - again very close to

the theoretical inflection point suggested in the game outcome uncertainty literature. As

such, our main results do indeed appear to be picking up the preference of home team

supporters for more uncertain games, rather than away team supporters’ preferences for

games where their own team is a higher chance of winning.

6 Robustness

In this section, we conduct a series of empirical tests to evaluate the robustness of our

main results.

6.1 Controlling for the ‘form’ of contestants, and team rivalries

One concern with our empirical design is that we may simply be picking up specta-

tors’ preferences for the quality (or form) of the teams involved in a game. Spectators

likely prefer to watch games involving higher quality teams or sides that are ‘in form’.

Furthermore, higher quality teams or sides that are in form may be more or less likely

to suffer injuries (or report suffering injuries). For instance, teams that experience a

poor run of form and cannot qualify for the play-offs may rest their best players (under

the guise of injuries) or field a team of young players to ‘blood’ young playing talent.

Likewise, the same may occur with a team that is playing very well and, having secured

a play-off position, wishes to minimize the risk of their best players getting injured. In

both scenarios, the quality of both teams will determine the number of injury-induced

line-up changes affecting a game and the level of attendance at a game. As such, our

injury measures will not be valid instruments.

To address this concern, we undertake a series of robustness checks where we ex-

plicitly control for the quality (or form) of the teams involved in a game. We do so by

conditioning both stages of our 2SLS model on the home and away teams’ Elo rating (in

addition to home-team, away-team, and season fixed effects). We report the results from

this analysis in table 9. In columns 1-2, we control for team quality using an Elo rating

trained on historical performance data going back until 1997.30 Overall, we find that

a one standard deviation increase in game outcome uncertainty leads, on average, to a

11.6% and 11.8% increase in attendance, respectively. These estimates are significant

at 5% level. In columns 3-4, we control for team quality using an Elo rating trained on

historical performance data going back until 2009.31 Here, we find that a one standard

deviation increase in game outcome uncertainty leads, on average, to a 11.4% and 11.6%

increase in attendance, respectively. These estimates are significant at the 5% level.

30This version of the measure is less sensitive to week-to-week fluctuations in form.
31This version of the measure is more sensitive to week-to-week fluctuations in form.
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For added robustness, we also address the concern that teams - when faced with

‘marginal’ injuries - might be less likely to make line-up changes leading into games

against competitors with whom they have strong rivalries - games which are also typically

better attended. To achieve this, we add to our baseline model a binary variable that

indicates whether or not the teams competing in a game are based in the same city.32

We report the results from this specification in columns 5-6 of table 9. Here, we find

that a one standard deviation increase in game outcome uncertainty causes, on average,

a 11.7% and 10.6% increase in attendance, respectively. These estimates are significant

at the 1% and 5% level, respectively.

As documented in table 9, when we explicitly control for the quality or form of the

teams involved in a game, outcome uncertainty continues to be positively related to

attendance. This result also holds when we control for team rivalries. We present these

findings as further evidence that injury-induced line-up changes are plausibly exogenous.

6.2 Dealing with ‘endogenous’ injuries

To further scrutinize the assumption that injury-induced line-up changes are exogenous,

we exploit the fact that we are able to observe the specific types of injuries filed by the

teams when line-ups are announced. This allows us to focus only on those injuries that

are more likely to be ‘genuine’, and thus, truly random (i.e. not some strategic line-

up change made under the guise of an injury). Specifically, as an additional robustness

check, we drop all line-up changes that cite a vague or non-specific injury (e.g., teams will

sometimes list injuries as ‘soreness’, ‘illness’, or ‘tightness’). We then re-run our analysis

using only those line-up changes linked to ‘acute’ injuries (e.g., hamstring strains, head

wounds, cartilage tears, etc). These types of injuries are typically fairly severe, occur

unpredictably during passages of play, and are less likely to be ‘faked’ by teams.33

We report the results from this analysis in table 10. In columns 1-2, we instrument for

game outcome uncertainty using only those line-up changes made due to acute injuries.

In columns 3-4, we employ this same IV approach whilst conditioning on our fixed

effects. Here, our estimates suggest that a one standard deviation increase in game

32In untabulated results, we re-run this specification using an alternative, more tightly-defined indica-
tor for team rivalries, where all same-city non-Victorian teams are classified as rivals, and only the ‘Big
Four’ Victorian teams are classified as rivals. Our results are also robust to the use of this alternative
measure.

33The validity of this robustness check hinges on teams truthfully disclosing the types of injuries
suffered by their players (conditional on those players being reported as injured). If teams are misre-
porting minor injuries or resting players under the guise of more severe injuries, the assumption that
injury-induced line up changes are exogenous will still be violated. However, there is little evidence to
suggest that AFL club statements overstate the severity of injuries. The AFL publishes a public an-
nual injury report coauthored by the AFL Doctors Association and AFL Physiotherapists Association.
Closely scrutinized by sports science and medical professionals, this document records season-to-season
changes in the different types of injuries suffered by AFL players (Saw et al., 2018). As such, systematic
misreporting of injury type is unlikely to go undetected.
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outcome uncertainty increases attendance by 14.8% and 15.5%, respectively. Significant

at the 1% level, these effect sizes are very similar to - if slightly larger than - our main

results reported in table 7. We take this as further evidence that our IV estimates are

unlikely to be biased due to teams strategically resting players under the guise of injury.

6.3 Preferences for star players and high scores

Our identification strategy assumes that injury-induced line-up changes impact atten-

dance only through their affect on game outcome uncertainty. However, if spectators

have preferences for watching star players compete, injuries to these players may affect

attendance directly, independent of the impact of the injuries on game outcome uncer-

tainty. Specifically, as injuries to superstars will likely lower attendance, there is the

potential that our IV estimates of the effect of game outcome uncertainty on attendance

will be exaggerated by this bias.

To allay concerns about this specific violation of the exclusion restriction, we explic-

itly control for the absence of star players. We do so by conditioning both stages of our

2SLS model on a set of measures that count the number of star players removed due to

injury from the non-favorite team’s starting line-up.34 In doing so, we exploit for iden-

tification only those injury-induced line-up changes that are associated with ‘non-star’

players. We report the results from this analysis in table 11. In columns 1-3, we observe

that a one standard deviation increase in game outcome uncertainty leads to an increase

in attendance of between 9.6% to 10.6%. These estimates - significant at either the 5%

or the 10% level - are very similar to our main IV estimates.

Injury-induced line-up changes may also impact attendance through spectators’ pref-

erences for high-scoring games. Specifically, injury changes may make a team play more

conservatively in an upcoming game. This may result in lower scoring, an issue if spec-

tators prefer games that have higher total scorelines. To address this concern, in table

11 columns 4-5, we control for spectators’ expectations of the total level of scoring in

a game by including the closing total over/under from the sports betting market.35 In

doing so, our results again change very little and remain significant at either the 5%

or 10% level. Taken together, the results in table 11 provide further support for the

instrumental validity of our injury measures.

34For robustness, we employ three different measures to proxy for star quality. The first classifies a
player as a star if their average performance rating sees them fall in the 90th percentile of the league at
the the time of their injury. The second version of this measure uses a stricter classification, and defines
a player as a star if their average performance rating sees them fall in 95th percentile of the league at
the time of their injury. The final measure classifies a player in the 99th percentile as a star.

35Compared to our main results, we have fewer observations for this analysis as data on the closing
total over/under is not available for a handful of the earliest games in our sample
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6.4 Falsification tests

We also perform a number of falsification tests to evaluate the validity of our instru-

mental variables approach. Broadly speaking, we look at the relationship between the

attributes of game t and future injury-induced line-up made changes by the non-favorite

team. If we observe an association between game attributes and future injury-induced

line-up changes then it is unlikely that current injuries meet the exclusion restriction.

Furthermore, such an association would suggest that unobservable attributes of the non-

favorite team - characteristics that are also potentially correlated with our outcomes of

interest - are likely driving our results.

In figure 2, we plot the estimated coefficients from regressions of the probability of

favorite win at t on either current or future injury-induced line-up changes by the non-

favorite team. In figure 3, we plot the estimated coefficients from regressions of game

outcome uncertainty at t on either current or future injury-induced changes to the line-

up of the non-favorite team. And, finally, in figure 4, we plot the estimated coefficients

from regressions of attendance on either current or future injury-induced changes to the

line-up of the non-favorite team. Across each of these figures, we can clearly see that only

current injuries - and not future injuries - display a statistically-significant relationship

with our outcomes of interest for game t. Taken together, these figures provide further

evidence that injury-induced line-up changes are plausibly exogenous.36

6.5 Exploiting league-enforced line-up changes

As a final piece of analysis to evaluate the validity of our instrumental variables approach,

we exploit another source of plausibly exogenous variation in game outcome uncertainty.

In addition to line-up changes brought about by injury, teams are forced to replace

players in their starting line ups when individuals are suspended by the league for on-

field misconduct.37

In effect, suspensions serve as league-enforced line-up changes. This addresses many

of the endogeneity concerns related to injury-induced line-up changes (e.g., a team may

36In an additional, untabulated robustness check, we also conduct placebo analyses whereby for each
game we randomly assign injury-induced line-up changes to the non-favorite team. To do so, we sample
without replacement from the empirical distribution of the number of injury-induced line-up changes
observed in our sample. We then repeat the analysis performed in tables 4-6 using these ‘placebo
treatments’. For each regression, we perform 1,000 replications of this procedure to produce an empirical
distribution of the placebo treatment effects. Using density plots, we show that these placebo treatment
effects are normally distributed with a mean non-distinguishable from zero at the 5% level.

37A player may be suspended by the league for a variety of different indiscretions. These include illegal
physical contact (head-high tackles, punching, tripping, etc), physical or verbal assault of an official, and
unsportsmanlike conduct. Typically, the offending player will be cited by an umpire during the game
for misconduct. The player is then required to appear in front of the AFL disciplinary tribunal, which
decides if the player has in fact violated the rules of the game, and, if so, the severity of the punishment
received by the player. The AFL tribunal meets at the start of the week. As such, when teams announce
their line-ups later in the week, they are aware if a player is eligible or not to play.
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rest a player and list them as injured in the lead up to a game that is less impor-

tant, expected to be easily won or lost, etc). As such, we can use the announcement

of suspension-induced line-up changes as an alternative source of plausibly exogenous

variation in game outcome uncertainty.

In table 12, we report the results from a 2SLS model where we instrument for game

outcome uncertainty using the announcement of suspension-induced changes to the line-

up of the non-favorite team. Significant at either the 5% or 1% level, these estimates are

slightly lightly larger than the estimates generated when instrumenting for game outcome

uncertainty with injury-induced line-up changes. Nonetheless, these results suggest that

the IV coefficients we report in this paper are robust estimates of the causal effect of

outcome uncertainty on spectator demand for contests.

7 Extensions

To conclude this paper, we explore how the effect of outcome uncertainty on spectator

demand varies in the cross-section.

7.1 The interaction between outcome uncertainty and contest ‘signif-

icance’

A key feature of the AFL - and most major sports competitions - is that individual games

take place within a broader contest - i.e., the season title or championship. As such,

fans may be interested in a game not only for its own outcome but the implications

that the result may have for the likelihood a given team will appear in the finals or

win the title (Borland and MacDonald, 2003). This suggests that demand for games

that have uncertain outcomes may be moderated by the ‘significance’ of the outcome

of the game in determining the final standings of the league, championship, or season.

For instance, fans may be especially drawn to contests that have uncertain and highly-

significant outcomes, but be less interested in games that are also expected to be close

but have little bearing on who ultimately wins the championship.

As such, we expect to observe an interaction between game outcome uncertainty and

the significance of the game (as captured by the standings of the teams competing in the

game, and when the game occurs during the season). Games that occur earlier in the

season are more likely to involve teams that are still actively vying for positions in the

standings that ensure qualification for the finals (i.e., in the early rounds of a season,

poor teams have yet to lose a sufficient number of games to be theoretically ruled out

of contention for a finals position, whilst good teams have yet to secure enough wins

to guarantee a finals position). As such, the outcomes of games that occur early in the

season are more likely to have greater significance in terms of a league-standing effect.
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This suggests that fans should be interested, on average, in games that have uncertain

outcomes that occur early in the season.

In contrast, games that occur late in the season can range from the highly significant

to the largely meaningless. For instance, late-season games may involve teams still

actively vying for a position in the standings that ensures qualification for the finals.

However, late-season games may also involve teams at the top of the standings that have

either already secured a spot in the finals or teams at the bottom of the standings that can

no longer make the finals. This suggests that there will be considerable heterogeneity in

spectator demand for games that have uncertain outcomes that occur late in the season.

Specifically, fans should be especially interested in games that have uncertain outcomes

that involve at least one team still trying to secure a place in the finals. Alternatively,

outcome uncertainty will likely matter much less to fans when the game in question

involves teams that have either already secured their place in the finals or are unable to

secure a place in the finals regardless of the outcome of the game.

To explore the above and examine the interaction between outcome uncertainty and

the significance of a game, we estimate our IV model on several different subsamples of

our data set. First, we separately run our IV model on only games from the first half

of each season in our sample and on only games from the second half of each season in

our sample. Second, we separately run our model on games from the second half of each

season that feature at least one team around the ‘margin’ of qualifying for finals, which

we define as a team sitting between 6th and 10th on the ladder when the game takes

place, and on games from the second half of each season that feature only teams away

from the ‘margin’ of qualifying for finals, which define as a team sitting between 1st-5th

or 11th-18th when the game takes place.38

In table 13, we report the results from this cross-sectional analysis. In column 1, for

reference, we report our main result - i.e., the coefficient produced by estimating our IV

model on the full set of games in our sample. In column 2, we report the result produced

when we estimate our model on games from the first half of the season. This estimate

- significant at the 5% level - suggests that, for games in the first half of the season, a

one standard deviation increase in game outcome uncertainty causes, on average, a 20%

increase in attendance. In column 3, we report the result produced when we estimate

our model on games from the second half of the season. Comparing the coefficients

reported in columns 2-3, we see that uncertainty of outcome only appears to have an

effect on attendance for games that occur in the first half of the season - i.e., when all

games involve teams that are still theoretically vying for a place in the finals.39

38In the AFL, at the end of the regular season, the teams occupying the top 8 positions of the standings
go through to the finals.

39In untabulated analysis, we also further decompose games from the first half of the season into
fixtures based on the finishing position of the competing teams in the prior season. Specifically, we
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We unpack this result further in the remainder of table 13. In column 4, we report

the coefficient produced when we estimate our IV model on games from the second half of

the season that feature at least one team positioned in the standings around the ‘margin’

of qualifying for finals. This result - significant at the 1% level - suggests attendance

is increasing in game outcome uncertainty. In column 5, we report the result produced

when we estimate our IV model on games from the second half of the season that feature

only teams from outside the ‘margin’ of qualifying for finals. For this subsample of games,

we see that outcome uncertainty does not appear to be related to attendance. Overall,

the results reported in table 13 suggest that the effect of game outcome uncertainty on

spectator demand is moderated by the contest’s broader significance.

7.2 Local effects: The marginal attendee, season-ticket holders, and

fair-weather fans

A common caveat in interpreting the estimated results using IVs is that the approach

only identifies the average treatment effect for compliers. As such, the results of this

paper so far do not necessarily tell us about the behavior of the ‘average’ fan but rather

the behavior of the ‘marginal attendee’. This begs the question: In our setting, who is

the marginal attendee, and how generalizable is their behavior?

Our IV estimates capture the behavior of fans that decide whether or not to attend

a game in response to mid-week changes in outcome uncertainty. As such, it is not clear

how much our estimand tells us about the preferences of fans who commit a week or

more in advance to attend games. For instance, many AFL fans hold reserved-seat season

tickets for their team. Purchased at the start of each season, these tickets guarantee the

holder a seat at all home games. Given the large sunk costs incurred by reserved-seat

season-ticket holders, injury-induced changes in game outcome uncertainty seem unlikely

to affect the attendance behavior of these fans (these supporters can be thought of as

‘never takers’ in the potential outcomes compliance framework). As such, the main

results reported in this paper may not reflect the effect of game outcome uncertainty on

attendance for this important segment of AFL fans.

However, certain teams may possess fan bases made up of greater or fewer numbers of

marginal attendees. The avidity of a team’s supporter base is useful for understanding

this heterogeneity in demand. For instance, some of the more established teams in

the competition have dispersed supporter bases made up of a large numbers of casual

compare the effect of game outcome uncertainty on attendance for games involving at least one team
that finished the previous season in the ‘middle’ of the standings vs. games involving teams that finished
the prior season either near the top of the standings or near the bottom of the standings. We show that
the effect of game outcome uncertainty on attendance is larger for games from the first-half of the season
involving teams that finished the prior season in the middle of the standings (i.e., teams for whom fans
may be keen to see play early in the season so as to establish whether or not the club has improved over
the off-season and are now more likely to be ‘contenders’ in the current season.)
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supporters and general admission members.40 Viewing sport as an exciting communal

event or social outing, these types of fans may be especially responsive to changes in

game outcome uncertainty. As such, our IV estimates are likely to do a reasonable job

of reflecting the preferences of supporters of these teams. In contrast, less-established

teams - particular those operating in non-traditional Australian-rules football markets

- may be followed by only small groups of ‘die hard’ supporters. These types of teams

may face very inelastic demand with respect to game outcome uncertainty. As such,

for the fans of these teams, our IV estimates are likely to overestimate the strength of

preferences for close and uncertain contests.

To better understand the generalizability of our IV estimates, we would ideally

decompose game-level attendance data into reserved-seat and non-reserved-seat ticket

holder components (or alternatively, die-hard and fair-weather fan components) and

compare the attendance behavior of these different groups of supporters. However, as

we only have access to game-level aggregate attendance data, we must instead examine

how the effect of game outcome uncertainty on attendance varies across teams that have

supporter bases composed of broadly different ‘types’ of fans.

First, we estimate the effect of game outcome uncertainty on attendance for home

games featuring the largest, most-well established teams in the AFL. Referred to as the

‘Big Four’ (Collingwood, Carlton, Essendon, Richmond), these teams - based in inner-

suburban Melbourne and founded in the earliest years of the competition - have national

profiles and are widely-followed across the country (the Big Four are akin to ‘national’

franchises in US sports like the New York Yankees, Dallas Cowboys, and Los Angeles

Lakers). Whilst these teams have many ‘hard core’ fans that regularly attend games,

the Big Four Melbourne clubs also have very large numbers of dispersed ‘fair weather’

supporters and casual followers who hold general admission memberships - individuals

who typically only purchase one-off tickets to high-profile games or use their memberships

to attend games primarily for social purposes.41 Second, we estimate the effect of game

outcome uncertainty on attendance for the smaller, less-established teams (Brisbane,

Gold Coast, Greater Western Sydney, Sydney). These clubs were introduced into the

AFL as expansion teams designed to help grow the sport of Australian-rules football in

markets that have historically followed other sports like rugby union or rugby league. In

general, these teams are less-well supported than the AFL clubs based in the south and

40Commonly priced below $AUD100 a season, general admission memberships allow individuals to
access a subset of their team’s games (the most popular types of general admission memberships are
valid for 3-5 home games). These tickets do not guarantee an individual a specific seat, but rather access
to a general admission seating area.

41Based on average annual aggregate membership figures (a reasonable proxy for the size of a team’s
supporter base), Collingwood and Richmond had the greatest numbers of members in the AFL between
2013-2018. Whilst less successful in recent years, Essendon had the fifth-most members in the competition
(and the fourth-most for a Melbourne team), and Carlton had the ninth-most members in the competition
(and the fifth-most for a Melbourne team).
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west of Australia. That being said, the expansion teams are typically followed by small

groups of ‘die hard’ fans - highly-loyal supporters, most often season-ticket holders, who

show up week to week.

We report the results of this cross-sectional analysis in table 14. For reference,

in columns 1-2 we report the estimates produced when we run our IV models on the

full set of games in our sample. In columns 3-4 we estimate our IV model on the

subsample of games where the home side was one of the Big Four teams. We see that

game outcome uncertainty is very strongly related to attendance for these teams: a

one standard deviation increase causes attendance at Big Four home games to increase,

on average, by approximately 25%. Considerably larger than the effect size reported

in columns 1-2, these estimates are consistent with the idea that fans of the AFL’s

largest teams - many of whom are casual supporters - are very sensitive to changes in

game outcome uncertainty.42 In table 14 columns 5-6, we estimate our IV model on the

subsample of games where the home side was one of the AFL’s expansion teams. These

coefficients - not statistically significant - suggest that game outcome uncertainty does

not appear to be associated with attendance for the AFL’s expansion teams. As such,

the smaller, less-heavily followed teams in the AFL appear to face relatively inelastic

demand with respect to game outcome uncertainty - likely reflective of the fact that

these teams’ supporter base are composed of a higher proportion of die-hard fans and a

smaller proportion of causal supporters and marginal attendees.

In summary, table 14 sheds some light on the generalizability of our main IV estimates

and suggests that there is considerable heterogeneity in the effect of outcome uncertainty

on spectator demand for contests.

8 Conclusion

In this paper, we use a unique data set from the Australian Football League to estimate

the effect of outcome uncertainty on demand for contests. The main contribution of

this paper is to shed light on the design features and popularity of contest-based enter-

tainment and examine a question largely overlooked in the contest design literature: Do

individuals prefer to consume contests that have more uncertain outcomes?

Using variation in game outcome uncertainty associated with the announcement of

injury-induced line-up changes, we show that contest outcome uncertainty has a large,

positive causal effect on stadium attendance in the AFL. We show that this effect is

greater: 1) when there is more at stake on the outcome of the game in the broader

42Due to prolonged on-field success, Hawthorn has been characterized as an ‘emerging powerhouse’ in
the AFL (over the period 2013-2018, Hawthorn had the third-most members in the AFL). In untabulated
results, if we reclassify our Big Four to include Hawthorn (and drop Carlton, a team who has been starved
of on-field success over the last two decades), our estimates change very little.
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context of the season; and, 2) for teams that have larger, more-dispersed fan bases.

Overall, our estimates of the effect of game outcome uncertainty on attendance are

significantly larger than prior estimates in the literature. This suggests that addressing

endogeneity and omitted variable concerns is extremely important for understanding the

impact of outcome uncertainty on demand for contest-based forms of entertainment.

In conclusion, our results provide direct evidence that individuals do in fact prefer

to consume contests that have more uncertain outcomes. This lends support to the idea

that audience interest in contest-based entertainment is strongly driven by expected sus-

pense and the resolution of uncertainty. Whilst caution should be exercised drawing an

equivalence between injury-induced competitive parity and equalization stemming from

explicit contest-design policies (the latter of which may be viewed by fans as artificial

and obtrusive), the results reported in this paper also potentially lend support to the

competitive balance regulations implemented by many sports leagues around the world.

Our results also suggest that contest designers need to consider how outcome uncertainty

affects not just the behavior of individuals competing in contests, but the behavior of

non-contestants who consume contests for entertainment. Open questions remain over

how contest designers can optimally trade off these incentive and consumption effects.

Future research that combines contest design theory and evidence from the field may

shed light on this issue.
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Figure 1: The distributions of average performance ratings for injured players and for
all players in the AFL.

Note: This figure compares the kernal density plots of the average performance rating of players

in the AFL between 2013-2018 that missed at least one game due to injury (dashed line) and

the average performance rating of all players that made at least one appearance in the AFL

between 2013-2018 (solid line). Performance ratings are averaged across games at the player-

season level (each observation is the average of a player’s game performance rating in a given

season). The mean (median) average performance rating for injured players is 70.11 (69.50). The

mean (median) average performance rating for all players is 62.60 (61.75).
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Figure 2: Future injuries to the non-favorite are unrelated to the probability that the
favorite will win at t.

Note: This figure shows the estimated coefficients from regressions of the probability that the

favorite will win game t on either current or future injury-induced changes to the line-up of the

non-favorite team. 95% confidence intervals are constructed using White-robust standard errors.

Regression disturbance terms are clustered at the round-season level.
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Figure 3: Future injuries to the non-favorite are unrelated to the outcome uncertainty
of game t.

Note: This figure shows the estimated coefficients from regressions of the outcome uncertainty

of game t on either current or future injury-induced changes to the line-up of the non-favorite

team. 95% confidence intervals are constructed using White-robust standard errors. Regression

disturbance terms are clustered at the round-season level.
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Figure 4: Future injuries to the non-favorite are unrelated to attendance at game t.

Note: This figure shows the estimated coefficients from regressions of attendance at game t on

either current or future injury-induced changes to the line-up of the non-favorite team. 95%

confidence intervals are constructed using White-robust standard errors. Regression disturbance

terms are clustered at the round-season level.
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Table 1: Descriptive statistics

N Mean St. Dev. Min Max

Endogenous variables
Attendance (‘000) 1,133 32.62 16.16 4.37 93.37
Prob. of Favorite Win (closing odds) 1,133 0.73 0.13 0.50 0.98
Prob. of Home Win (closing odds) 1,133 0.55 0.26 0.02 0.98
Outcome Uncertainty 1,133 0.54 0.15 0.08 0.69

Injury measures
No. of injuries (non-fav.) 1,133 1.23 1.22 0 11
No. of injuries (home) 1,133 1.07 1.09 0 7
No. of injuries (away) 1,133 1.20 1.19 0 11
Rating of injuries (non-fav.) 1,133 86.50 88.98 0.00 907.19
Ave. rating of injured player (non-fav.) 773 70.11 15.19 9.50 132.33
Rating of injuries (home) 1,133 74.60 77.92 0 493
Rating of injuries (away) 1,133 85.53 88.87 0.00 907.19
No. of ‘acute’ injuries (non-fav.) 1,133 1.15 1.10 0 7
Rating of ‘acute’ injuries (non-fav.) 1,133 80.80 79.77 0.00 513.36
No. of suspensions (non-fav.) 1,133 0.71 0.51 0 3
Rating of suspensions (non-fav.) 1,133 49.94 39.90 0.00 295.72
No. of ‘star’ injuries (99th) 1,133 0.06 0.26 0 2
No. of ‘star’ injuries (95th) 1,133 0.02 0.14 0 2
No. of ‘star’ injuries (90th) 1,133 0.07 0.27 0 2

Controls
Rivals 1,133 0.33 0.47 0 1
Fav. Team Elo (1997-) 1,133 1,557.19 158.83 1,173.41 1,847.98
Non-fav. Team Elo (1997-) 1,133 1,442.48 146.54 1,169.98 1,844.99
Home Team Elo (1997-) 1,133 1,500.00 163.35 1,170.56 1,844.99
Away Team Elo (1997-) 1,133 1,499.67 163.10 1,169.98 1,847.98
Total score (closing odds) 944 176.76 12.73 117.50 212.50

Note: This table shows the descriptive statistics for the variables used in this paper. Appendix - Data

contains a full list of variable definitions.
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Table 2: Differences in Means - High vs. Low Outcome Uncertainty Games

High OU Low OU Diff. t-stat p-value

Outcome Uncertainty 0.651 0.426 0.224 35.826 0.000
Attendance 35.874 29.362 6.512 6.918 0.000
Prob. of Fav. Win (closing odds) 0.624 0.832 -0.208 -44.638 0.000
Prob. of Home Win (closing odds) 0.562 0.543 0.019 1.246 0.213
Round 12.170 12.884 -0.714 -1.855 0.064
Afternoon 0.629 0.700 -0.071 -2.543 0.011
Evening 0.371 0.300 0.071 2.543 0.011
Thurs-Fri 0.178 0.109 0.069 3.326 0.001
Saturday 0.495 0.561 -0.066 -2.233 0.026
Sunday 0.307 0.319 -0.012 -0.428 0.669
Other Day 0.019 0.011 0.009 1.225 0.221
Fav. Team Elo (1997-) 1541.359 1572.997 36.658 3.799 0.000
Non-Fav. Team Elo (1997-) 1494.467 1390.579 103.888 12.752 0.000
Home Team Elo (1997-) 1518.346 1481.688 36.658 3.799 0.000
Away Team Elo (1997-) 1517.480 1481.887 35.592 3.693 0.000

Note: This table presents results from difference-in-means tests to compare the characteristics of high

and low outcome uncertainty games. High (Low) outcome uncertainty (OU) games have above-median

(below-median) Theil index values. Appendix - Data contains a full list of variable definitions.
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Table 3: Balance on Covariates - Injury-induced line-up changes to the non-favorite

High Inj. Low Inj. Diff. t-stat p-value

Prob. of Fav. Win (open odds) 0.728 0.716 0.012 1.497 0.135
Round 12.807 12.247 0.560 1.455 0.146
Afternoon 0.671 0.658 0.013 0.482 0.63
Evening 0.329 0.342 0.013 -0.482 0.63
Thurs-Fri 0.140 0.148 0.008 0.411 0.681
Saturday 0.542 0.513 0.029 0.983 0.326
Sunday 0.306 0.321 -0.015 0.556 0.578
Other Day 0.012 0.018 -0.006 -0.7291 0.466
Fav. Team Elo (1997-) 1558.674 1555.713 2.961 -0.316 0.754
Non-Fav. Team Elo (1997-) 1440.428 1444.522 -4.094 -0.470 0.638

Note: This table presents results from difference-in-means tests to compare the characteristics of

games affected by a high number of injury-induced line-up changes and games affected by a low

number of injury-induced line-up changes. High (Low) injury games have above-median (below-

median) numbers of injury-induced changes to the line-up of the non-favorite team. Appendix -

Data contains a full list of variable definitions.
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Table 4: Probability that the favorite will win and injury-induced line-up changes

Dependent variable:

Prob. of Favourite Win (closing odds)

(1) (2) (3) (4)

No. of injuries (non-fav.) 0.021∗∗∗ 0.020∗∗∗

(0.004) (0.005)

Rating of injuries (non-fav.) 0.0003∗∗∗ 0.0003∗∗∗

(0.0001) (0.0001)

Robust SEs Yes Yes Yes Yes
Season FEs No Yes No Yes
Home team FEs No Yes No Yes
Away team FEs No Yes No Yes
Observations 1,133 1,133 1,133 1,133
R2 0.033 0.162 0.032 0.163

Note: Estimated coefficients in columns (1)-(4) are from least squares regressions of

the probability of that the favorite will win game t on injury-induced changes to the

line-up of the non-favorite. White-robust standard errors are in parentheses. Regression

disturbance terms are clustered at the round-season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Outcome uncertainty and injury-induced line-up changes

Dependent variable:

Outcome Uncertainty

(1) (2) (3) (4)

No. of injuries (non-fav.) −0.024∗∗∗ −0.024∗∗∗

(0.006) (0.006)

Rating of injuries (non-fav.) −0.0003∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001)

Robust SEs Yes Yes Yes Yes
Season FEs No Yes No Yes
Home team FEs No Yes No Yes
Away team FEs No Yes No Yes
Observations 1,133 1,133 1,133 1,133
R2 0.037 0.195 0.035 0.194
F-stat 16.13 13.21 15.12 12.75

Note: Estimated coefficients in columns (1)-(4) are from least squares regressions of the

outcome uncertainty of game t on injury-induced changes to the line-up of the non-favorite.

White-robust standard errors are in parentheses. Regression disturbance terms are clustered

at the round-season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Attendance and injury-induced line-up changes

Dependent variable:

Log(Attendance)

(1) (2) (3) (4)

No. of injuries (non-fav.) −0.039∗∗∗ −0.017∗∗∗

(0.014) (0.006)

Rating of injuries (non-fav.) −0.001∗∗∗ −0.0002∗∗∗

(0.0002) (0.0001)

Robust SEs Yes Yes Yes Yes
Season FEs No Yes No Yes
Home team FEs No Yes No Yes
Away team FEs No Yes No Yes
Observations 1,133 1,133 1,133 1,133
R2 0.007 0.692 0.007 0.692

Note: Estimated coefficients in columns (1)-(4) are from least squares regressions of atten-

dance at game t on injury-induced changes to the line-up of the non-favorite. White-robust

standard errors are in parentheses. Regression disturbance terms are clustered at the round-

season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Estimates of the effect of outcome uncertainty on spectator demand for contests

Dependent variable:

Log(Attendance)

(1) (2) (3) (4) (5) (6)

Outcome Uncertainty 0.601∗∗∗ 0.353∗∗∗ 1.602∗∗∗ 1.575∗∗∗ 0.728∗∗ 0.707∗∗

(0.088) (0.091) (0.539) (0.552) (0.330) (0.343)

Robust SEs Yes Yes Yes Yes Yes Yes
Season FEs No Yes No No Yes Yes
Home team FEs No Yes No No Yes Yes
Away team FEs No Yes No No Yes Yes

Instrumental Variables
No. of injuries (non-fav.) Yes No Yes No
Rating of injuries (non-fav.) No Yes No Yes

F-stat 16.13 13.21 15.12 12.75
Observations 1,133 1,133 1,133 1,133 1,133 1,133

Note: Estimated coefficients in columns (1)-(2) are from least squares regressions of attendance at game t

on outcome uncertainty. Estimated coefficients in columns (3)-(6) are from IV-2SLS regressions, where the

first stage is a regression of outcome uncertainty on injury-induced line-up changes to the non-favorite, and

the second stage is a regression of attendance on the fitted value of outcome uncertainty generated by the

first stage. White-robust standard errors are in parentheses. Regression disturbance terms are clustered

at the round-season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Estimates of the level of outcome uncertainty that maximizes spectator demand for contests

Dependent variable:

Log(Attendance)

(1) (2) (3) (4) (5) (6) (7) (8)

Prob. of Home Win 2.305∗∗∗ 1.214∗∗∗ 7.447∗∗∗ 7.304∗∗∗ 3.598∗∗∗ 3.683∗∗∗ 3.442∗∗∗ 3.061∗∗∗

(0.317) (0.203) (2.811) (2.684) (0.637) (0.194) (0.749) (0.680)

Prob. of Home Win2 −1.911∗∗∗ −0.993∗∗∗ −7.180∗∗∗ −7.043∗∗∗ −3.395∗∗∗ −3.436∗∗∗ −3.367∗∗∗ −3.023∗∗∗

(0.250) (0.203) (2.085) (1.881) (0.740) (0.313) (0.741) (0.317)

Optimal Home Win Prob. (%) 60.3 61.1 51.9 51.9 53 53.6 51.1 50.6

Robust SEs Yes Yes Yes Yes Yes Yes Yes Yes
Season FEs No Yes No No Yes Yes Yes Yes
Home team FEs No Yes No No Yes Yes Yes Yes
Away team FEs No Yes No No Yes Yes Yes Yes

Instrumental Variables
No. of injuries (home & away) Yes No Yes No Yes No
Rating of injuries (home & away) No Yes No Yes Yes No

Sample All All All All All All Interstate Interstate

Observations 1,133 1,133 1,133 1,133 1,133 1,133 755 755

Note: Estimated coefficients in columns (1)-(2) are from least squares regressions of attendance at game t on both the probability that the home team will

win the game and the square of this probability. Estimated coefficients in columns (3)-(8) are from IV-2SLS regressions, where the first stage is a regression

of outcome uncertainty on both the probability that the home team will win the game and the square of this probability, and the second stage is a regression

of attendance on the fitted value of outcome uncertainty generated by the first stage. ‘Interstate’ refers to the subsample of games where the home team was

hosting an away team from another state. White-robust standard errors are in parentheses. Regression disturbance terms are clustered at the round-season

level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Robustness of estimates when controlling for contestant quality and team rivalries

Dependent variable:

Log(Attendance)

(1) (2) (3) (4) (5) (6)

Outcome Uncertainty 0.730∗∗ 0.743∗∗ 0.719∗∗ 0.733∗∗ 0.737∗∗∗ 0.673∗∗

(0.323) (0.352) (0.324) (0.351) (0.272) (0.281)

Home Team Elo (1997-) 0.001∗∗∗ 0.001∗∗∗

(0.0001) (0.0001)

Away Team Elo (1997-) 0.0002 0.0002
(0.0002) (0.0003)

Home Team Elo (2009-) 0.001∗∗∗ 0.001∗∗∗

(0.0001) (0.0001)

Away Team Elo (2009-) 0.0002 0.0002
(0.0002) (0.0003)

Rivals 0.348∗∗∗ 0.349∗∗∗

(0.015) (0.014)

Robust SEs Yes Yes Yes Yes Yes Yes
Season FEs Yes Yes Yes Yes Yes Yes
Home team FEs Yes Yes Yes Yes Yes Yes
Away team FEs Yes Yes Yes Yes Yes Yes

Instrumental Variables
No. of injuries (non-fav.) Yes No Yes No Yes No
Rating of injuries (non-fav.) No Yes No Yes No Yes

Observations 1,133 1,133 1,133 1,133 1,133 1,133

Note: Estimated coefficients in columns (1)-(6) are from IV-2SLS regressions, where the first stage is a

regression of the outcome uncertainty of game t on injury-induced line-up changes to the non-favorite, and

the second stage is a regression of attendance at game t on the fitted value of outcome uncertainty generated

by the first stage. In columns (1)-(4), we control in both stages for home and away team quality. In

columns (5)-(6), we control in both stages for rivalries between local teams. White-robust standard errors,

in parentheses, are clustered at the round-season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Robustness of estimates when instrumenting for outcome uncertainty with
‘acute’ injuries

Dependent variable:

Log(Attendance)

(1) (2) (3) (4)

Outcome Uncertainty 2.375∗∗∗ 2.478∗∗∗ 0.923∗∗∗ 0.963∗∗∗

(0.775) (0.767) (0.352) (0.350)

Robust SEs Yes Yes Yes Yes
Season FEs No No Yes Yes
Home team FEs No No Yes Yes
Away team FEs No No Yes Yes

Instrumental Variables
No. of ‘acute’ injuries (non-fav.) Yes No Yes No
Rating of ‘acute’ injuries (non-fav.) No Yes No Yes

Observations 1,133 1,133 1,133 1,133

Note: Estimated coefficients in columns (1)-(4) are from IV-2SLS regressions, where the

first stage is a regression of the outcome uncertainty of game t on ‘acute’ injury-induced

changes to the line-up of the non-favorite, and the second stage is a regression of attendance

at game t on the fitted value of outcome uncertainty from the first stage. Line up changes

due to ‘acute’ injuries exclude instances where a player was withdrawn from a team’s line-

up for a vague or non-specific injury (e.g., soreness, tightness, etc). White-robust standard

errors are in parentheses. Regression disturbance terms are clustered at the round-season

level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Robustness of estimates when controlling for spectator preferences for star
players and for high scores

Dependent variable:

Log(Attendance)

(1) (2) (3) (4) (5)

Outcome Uncertainty 0.652∗ 0.674∗∗ 0.610∗ 0.683∗ 0.701∗∗

(0.375) (0.337) (0.352) (0.356) (0.323)

No. of ‘star’ injuries (90th) −0.023
(0.051)

No. of ‘star’ injuries (95th) −0.041
(0.106)

No. of ‘star’ injuries (99th) −0.045
(0.043)

Total Score (closing odds) 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001)

Robust SEs Yes Yes Yes Yes Yes
Season FEs Yes Yes Yes Yes Yes
Home team FEs Yes Yes Yes Yes Yes
Away team FEs Yes Yes Yes Yes Yes

Instrumental Variables
No. of injuries (non-fav.) Yes Yes Yes Yes No
Rating of injuries (non-fav.) No No No No Yes

Observations 1,133 1,133 1,133 944 944

Note: Estimated coefficients in columns (1)-(5) are from IV-2SLS regressions, where the first

stage is a regression of the outcome uncertainty of game t on injury-induced changes to the

line-up of the non-favorite, and the second stage is a regression of attendance at game t on

the fitted value of outcome uncertainty from the first stage. In columns (1)-(3), we control in

both stages for injuries to star players. In columns (4)-(5), we control in both stages for the

expected total score. White-robust standard errors are in parentheses. Regression disturbance

terms are clustered at the round-season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Robustness of estimates when instrumenting for outcome un-
certainty with suspensions

Dependent variable:

Log(Attendance)

(1) (2) (3) (4)

Outcome Uncertainty 2.116∗ 1.775 1.179∗∗ 1.142∗∗∗

(1.202) (1.121) (0.502) (0.393)

Robust SEs Yes Yes Yes Yes
Season FEs No No Yes Yes
Home team FEs No No Yes Yes
Away team FEs No No Yes Yes

Instrumental Variables
No. of suspensions Yes No Yes No
Rating of suspensions No Yes No Yes

Observations 1,133 1,133 1,133 1,133

Note: Estimated coefficients in columns (1)-(4) are from IV-2SLS regressions,

where the first stage is a regression of the outcome uncertainty of game t on

league-enforced line-up changes (‘suspensions’) to the non-favorite, and the

second stage is a regression of attendance at game t on the fitted value of

outcome uncertainty from the first stage. White-robust standard errors are in

parentheses. Regression disturbance terms are clustered at the round-season

level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 13: Heterogeneous effects - Outcome uncertainty and preferences for ‘significant’ games

Dependent variable: Log(Attendance)

Full sample 1st half of season 2nd half of season Finals ‘margin’ Outside finals ‘margin’

(1) (2) (3) (4) (5)

Outcome Uncertainty 0.728∗∗ 1.221∗∗ 0.425 0.805∗∗∗ 0.504
(0.341) (0.532) (0.282) (0.170) (0.679)

Robust SEs Yes Yes Yes Yes Yes
Season FEs Yes Yes Yes Yes Yes
Home team FEs Yes Yes Yes Yes Yes
Away team FEs Yes Yes Yes Yes Yes

Instrumental Variables
No. of injuries (non-fav.) Yes Yes Yes Yes Yes

Observations 1,133 564 569 277 283

Note: Estimated coefficients in columns (1)-(5) are from IV-2SLS regressions, where the first stage is a regression of the outcome uncertainty

of game t on injury-induced line-up changes to the non-favorite, and the second stage is a regression of attendance at game t on the fitted value

of outcome uncertainty from the first stage. Finals ‘margin’ is the subsample of games where at least either the home or away team is on the

margin of qualifying for finals (i.e, the team is sitting between 6th and 10th on the ladder during the second half of the season when the game

takes place). Outside finals ‘margin’ is the subsample of games where this is not the case (i.e., neither the home or away team is sitting between

6th and 10th on the ladder during the second half of the season when the game takes place). White-robust standard errors are in parentheses.

Regression disturbance terms are clustered at the season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: Heterogeneous effects - Outcome uncertainty and spectator ‘types’

Dependent variable: Log(Attendance)

Full sample Full Sample Big Four Big Four Expansion Expansion

(1) (2) (3) (4) (5) (6)

Outcome Uncertainty 0.728∗∗ 0.707∗∗ 1.630∗∗∗ 1.471∗∗∗ 0.502 0.498
(0.341) (0.360) (0.615) (0.564) (0.622) (0.668)

Robust SEs Yes Yes Yes Yes Yes Yes
Season FEs Yes Yes Yes Yes Yes Yes
Home team FEs Yes Yes Yes Yes Yes Yes
Away team FEs Yes Yes Yes Yes Yes Yes

Instrumental Variables
No. of injuries (non-fav.) Yes No Yes No Yes No
Rating of injuries (non-fav.) No Yes No Yes No Yes

Observations 1,133 1,133 254 254 252 252

Note: Estimated coefficients in columns (1)-(6) are from IV-2SLS regressions, where the first stage is a regression of the

outcome uncertainty of game t on injury-induced line-up changes to the non-favorite, and the second stage is a regression

of attendance at game t on the fitted value of outcome uncertainty from the first stage. Big Four is the subsample of games

where the home team is either Carlton, Collingwood, Essendon, or Richmond. Expansion is the subsample of games where

the home team is either Brisbane, Gold Coast, Greater Western Sydney, or Sydney. White-robust standard errors are in

parentheses. Regression disturbance terms are clustered at the season level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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