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Abstract 
 

Managers often believe that collecting more data will continually improve the accuracy of their machine learning 

models. However, we argue in this paper that when data lose relevance over time, it may be optimal to collect a limited 

amount of recent data instead of keeping around an infinite supply of older (less relevant) data. In addition, we argue 

that increasing the stock of data by including older datasets may, in fact, damage the model's accuracy. Expectedly, 

the model's accuracy improves by increasing the flow of data (defined as data collection rate); however, it requires 

other tradeoffs in terms of refreshing or retraining machine learning models more frequently. 

Using these results, we investigate how the business value created by machine learning models scales with data and 

when the stock of data establishes a sustainable competitive advantage. We argue that data's time-dependency weakens 

the barrier to entry that the stock of data creates. As a result, a competing firm equipped with a limited (yet sufficient) 

amount of recent data can develop more accurate models. This result, coupled with the fact that older datasets may 

deteriorate models' accuracy, suggests that created business value doesn't scale with the stock of available data unless 

the firm offloads less relevant data from its data repository. Consequently, a firm's growth policy should incorporate 

a balance between the stock of historical data and the flow of new data. 

We complement our theoretical results with an experiment. In the experiment, we use the simple yet widely used 

machine learning task known as next work prediction. We empirically measure the loss in accuracy of a next word 

prediction model trained on datasets from various time periods. Our empirical measurements confirm the economic 

significance of the value decline over time. For example, 100MB of text data, after seven years, becomes as valuable 

as 50MB of current data for the next word prediction task.  

Keywords: Economics of Artificial Intelligence, machine learning, non-stationarity, perishability, value depreciation  

  
 
1. Introduction 
 
We witness a dramatic acceleration of digitization in infrastructure, products, and services. Artificial 

Intelligence (AI) enabled solutions are on the rise, and more than ever, data appears to be a critical strategic 

asset [1,4,11,17]. As a result, in almost all industries and economic sectors, firms amass substantial volumes 

of user data to improve their current and future services, anticipating that it also gives them an advantage 

over their competitors. In regulatory debates, this accumulation of data by firms is considered to be a critical 

source of competitive advantage that could lead to a concentration in the digital market [11,18,22,42]. In 
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addition, there are many privacy concerns [9] on when and how firms use the accumulated data and if in 

any way it can adversely harm users. Because of the aggressive data accumulation by firms on one side as 

well as the regulatory and privacy concerns on the other side, it is crucial to understand how and when the 

value created by AI-enabled services scales with the size of available data. Particularly, since the data 

accumulation process often happens over time, it is of great interest to research how the created business 

value changes over time, especially when the dataset is sampled from a dynamically changing environment.  

 

Current literature on how the increase in the stock of available data scales the business value has mixed 

results. A common belief in firms is that collecting more data will always improve the accuracy of their 

machine learning models. This belief is engrained by the statistical theories on how the accuracy of machine 

learning models scales with the dataset size [12, 25] as well as the managerial theories on how the value 

scales with the availability of resources [1,4,11]. Both theories attest that more data is always better, and 

securing a vast amount of such resource leads to a firm's success in the long run. In addition, recent research 

hypothesizes a feedback loop [24,28] between the size of available data and the quality of AI-based 

solutions. Gregory et al. [24] theorize and compare this data externality to network effects, where the value 

of a service or product increases in user-base size. In this "data network effect" [24,27,36], more data leads 

to a higher accuracy of algorithms, which means better services [25]. Better service then leads to a higher 

user engagement or a larger user-base, which creates even more data. Despite these theories, empirical 

research [5,13] finds limited or no economic significance in accumulating large datasets. For example, 

Chiou and Tucker in [13] investigate the effect of historical search data on search results' quality. They 

found little empirical evidence on the effectiveness of old data in the quality of search engine results. Arnold 

et al. [5] also raise a similar question on the data's economies of scale for specific problems. They suggest 

a diminishing return to scale value model for data and argue that increasing data volume in advertisement 

applications does not improve the service quality. We believe that diminishing return to scale theory doesn't 

explain the aggressive data accumulation by firms already equipped with massive datasets. 

 

This paper investigates how the business value changes over time when the dataset is sampled from a 

dynamically changing environment and how this change explains the mixed results seen in the literature. A 

dataset sampled from a dynamically changing environment loses relevance over time, making the created 

business value time-dependent. This time-dependency is referred to as concept drift in the machine learning 

literature. Concept drift is known to cause a deterioration in the algorithm's performance. It manifests itself 

as a decrease in the algorithm's accuracy score or an increase in its loss value or error. However, the extent 

to which it affects accuracy or loss values and how it affects a firm's data strategy is still unknown.  
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Our approach to the problem has similarities and differences with machine learning and AI literature. 

Similar to machine learning literature, we model the change in environment with a shift in data-generating 

probability distributions. In contrast with the literature, we fix a model/task and vary the data generating 

distribution to study the effect of time-dependency on business value. In machine learning research, given 

a dataset, researchers alter the models to improve the accuracy score or the loss value. In addition to this 

difference, we also define new metrics such as "equivalent size" and "effectiveness" to compare the value 

of datasets sampled from different times. Unlike machine learning literature which reports the effect of 

time-dependency in accuracy scores or loss values, our measures report the effect in dataset sizes. In doing 

so, for any machine learning task, we first define an oracle dataset. Subsequently, we train our model on 

the given dataset (referring to as baseline dataset) and then measure the model's accuracy score by testing 

the model on the oracle data. We then ask what size of the oracle dataset leads to a similar accuracy score 

if used for training the model. We call it the equivalent oracle size. Thus, we can quickly compare various 

datasets by comparing their equivalent sizes. Another benefit of measuring the value this way is that we 

can borrow terminology from economics and management research, making our findings more relatable to 

a broader audience. For example, if a dataset's equivalent oracle size declines over time, we call the dataset 

perishable. 

 

In our theoretical setting for this paper, we investigate the effect of time-dependency for the task of learning 

the probability distribution and use the maximum likelihood estimation method to accomplish this task. 

Learning the data-generating probability distribution is a fundamental problem in statistical learning theory. 

It is because we can evaluate any statistics (like expectation or variance of any quantity of interest) from 

the distribution. Hence, we believe that theorems and propositions we prove for this task can be, with slight 

modification, used for a wide variety of other tasks. We use the Maximum Likelihood Estimation (MLE) 

for our analysis since consistency and efficiency are essential for our mission in this paper. Consistency is 

critical since we model dynamically changing environments using probability distributions. Hence, for any 

given time, it is crucial to learn the distribution consistently. Efficiency is essential to achieving the lowest 

estimation variance with the smallest dataset size. Intuitively, efficiency makes MLE the most scalable 

method (in gaining a better accuracy score) for a fixed dataset size and hence, a wise choice by firms. 

 

We derive several managerial and economic intuitions by comparing the value of datasets sampled from 

different times. We argue that due to shifts in the data generating distribution, it may be optimal for a firm 

to collect a more limited amount of recent data instead of keeping around an infinite supply of older data. 

This is a direct result of our first proposition in this paper. This proposition shows that even a perfect model 

trained on an infinite supply of time-dependent data may have lower accuracy than the same model trained 
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on a recent (perfectly relevant) dataset of limited size. In other words, a less relevant dataset of infinite size 

has a finite (bounded) equivalent oracle size (defined as the perfectly relevant dataset in this case). Hence, 

a competing firm with an oracle dataset of sufficient size can easily attain a better accuracy score or loss 

value. This proposition has several other economic and managerial implications that we discuss later in this 

paper. In pursuit of comparing the value of datasets from different times, we define a substitution function 

that measures how much oracle size a firm gains/loses if it substitutes its baseline dataset with another 

dataset of the same size from a different time. We prove that substitution gain is a function of the baseline 

dataset size as well as time. It becomes sharper with the increase in the size of the baseline dataset, meaning 

that the gain/loss percentage increases as the baseline dataset size increases. As we discuss later in this 

paper, it has immediate implications for firms regarding training frequency, i.e., how often firms should 

retrain their models. 

 

We use the machinery we developed for comparing values of datasets sampled from different times to 

compare values of datasets curated over a period of time. We do so by defining the "equivalent time" in 

Proposition 3. This proposition states that, for any baseline dataset curated over a period of time, there 

exists an "equivalent time" such that, fixing the size, a model trained on a dataset from the equivalent time 

produces a similar accuracy score as the model trained on the baseline dataset. As a result, we can compare 

datasets curated over various time periods by first calculating their equivalent times and then by comparing 

the oracle sizes each equivalent time produces. A direct result of this method is the introduction of 

offloading algorithm. Offloading algorithm removes less relevant data hoping that gain in relevance 

counterbalances the loss in size. We then use the offloading algorithm to argue that increasing the stock of 

data by including older datasets may, in fact, damage the model's accuracy, putting a firm in a 

disadvantageous position. Together with the increase in sharpness of substitution gain as a function of the 

flow of data (Number of data points in a given time or the rate of new acquiring data points), these results 

build the case for defining the optimal scaling and growth path for a firm. When the firm is small, the 

optimal growth path focuses on the stock of available data curated over time. As the flow of data increases 

(A firm acquires more users or user-engagement increases, for example), the firm offloads older data and 

focuses on the flow of data as the primary value driver. 

 

To confirm the economic significance of our findings, we empirically measure the decline in the value of 

data for the next word prediction task. It is a widely used machine learning task with applications in auto-

completion software in cellphones and the search recommendations in search engines. In our experiment, 

we use a user-generated text dataset from Reddit.com [19]. We divide this dataset into smaller datasets 

based on data points' sampling time (Month-year format). We then train a variation of GPT-2 from OpenAI 
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[23] on each of these smaller datasets and measure their equivalent sizes over time. Our measurements 

confirm the economic significance of time-dependency as we show that in roughly seven years, 100MB of 

text data becomes as valuable as 50MB of current data for the next word prediction task.  

 

Our findings can explain the mixed the result in the literature. We acknowledge that increasing the dataset 

size improves the accuracy of machine learning models. Accordingly, we find the feedback loop logic 

compelling. However, we show that the stock of available data produced by the feedback loop has a limited 

oracle size because of time dependency. Hence, despite the accelerated growth in the size of the data 

repository, we shouldn't expect a significant increase in created business value.  In other words, the feedback 

loop stalls in dynamically changing environments unless the firm offloads its less relevant data and focuses 

on the flow of data as the primary value driver. This finding supports the reported results in Chiou and 

Tucker [13] and Arnold et al. [5] since both search engine [13] and advertisement [5] businesses use time-

sensitive data and hence, face significant time dependency.  

 

Our work also adds to machine learning and economics literature in several ways. This paper adds to 

machine learning (particularly Natural Language Processing) literature by providing a different view of the 

domain/concept shift problem. Our method and analysis make machine learning researchers and 

practitioners better explain the tradeoffs and challenges that variation in training data has for their models. 

For example, our method allows them to realize how often they should retrain their models. As a result, 

they can formulate a better scaling/growth plan by adequately crafting their data management and resource 

prioritization strategy.  It is worth noting that in this paper, we only measure the predictive value of data. 

Hence, we don't talk about the value of data for inference. There is a subtle distinction between the two in 

the statistics literature. 

 

We also contribute to the economics literature by providing a better understanding of data's time 

dependency and its implication on modeling data economy and the growth of digital firms. In the economics 

literature, the impact of data on economy and AI’s widespread applications have been examined by several 

authors [e.g., 2,3,7,10,15,16,29,30,33,38,42,44]. In this literature, AI is a general-purpose technology that 

brings down the cost of prediction. Accuracy of the prediction increases with the size of training datasets, 

making a case for arguments on the importance of data in the growth of digital firms. Such arguments 

motivate research on how data influences firm dynamics [20,21] and how it disproportionally benefits large 

firms [8], which then stimulates debates on the implication of AI and, more precisely, data on competition 

[17,18,32,34,35,39]. Of course, the degree to which data impacts business value and hence the competition 

varies with the design parameters like the degree of personalization [26,40] or the externalities between 
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recommendation clusters [6]. Nevertheless, studying the effect of data’s time dependency on competition 

remains crucial. Several lines of research [11,29,32,39,43] recruit the resource base view as a framework 

to explore how a firm can exploit data to create a sustainable competitive advantage. These researches 

mostly focus on the non-rivalry, exclusivity, or imitability of data. In our research, we argue that time-

dependency plays a major role as well. We show that the business value doesn't solely scale with the size 

of available data, and even a dataset of infinite size may have a finite equivalent oracle size. As we discuss 

more in section 3, an immediate impact of this result is that we can't use regular discounting functions to 

model decay in the value of data. An adequate discounting model is a function of time and the size of the 

dataset. Our paper also distinguishes between the flow of data and stock of historical data in creating 

business value. Such distinction was also noted by Classen et al. [14] in their experiment in the context of 

online news. Our paper argues that small firms should focus on the stock of available data and gradually 

shift their focus to the flow of data as they grow over time. 

 

In this paper, in the framework section, we explain our approach to the problem and clarify why we made 

particular choices. Then, in section 3, we introduce the effectiveness curve and explain value depreciation 

over time. We show the bounded size equivalence in this section. Section 4 investigates the effectiveness 

of datasets curated over time. These datasets are a combination of datasets samples from various times. We 

explain sequential offloading and suggest that old data may even put a firm in a disadvantaged position in 

businesses with high time dependency. Section 5 empirically measures the value depreciation for the next 

word prediction task. Finally, in the conclusion section, we wrap this paper with a discussion. 

 

2. Background and Framework 
In this section, we introduce our approach to the problem and explain the particular modelling choices we 

made. We start by describing the relevance loss of a dataset as a shift in the underlying data-generating 

distribution over time and dig into its possible cause. We argue that the relevance loss mostly stems from 

exceptional reasons that often cause a monotonic decrease in the value of data over time. We then provide 

a brief introduction to machine learning models and explain our focus on the data-generating probability 

distribution's maximum likelihood estimation. We introduce a decomposition of the MLE's objective 

function to lay the groundwork for the next section's propositions. Finally, we formalize the notion of 

effectiveness and define the substitution gain value as a proportion of two effectiveness quantities; one from 

the past and the other from the substitute time. 
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2.1. Change in Distribution  

Time-dependency of data occurs for many reasons. For example, it can happen if consumers taste or 

behavior changes over time. If we look at best seller music albums from the 80s and compare them with 

the best sellers in 2020, we can see the difference in taste. Another example is the continuous innovation in 

products and services space. Telegram is a perfect example of widely used innovation that is ancient 

nowadays due to the invention of other communication devices like hardline telephones. Soon, hardline 

telephones will be ancient too because of the introduction of voice over IP phones (VOIP) or cellphones. 

Given the rapid development of new technologies in this sector, if we tried to use consumer behavior data 

from the 1960s to predict how consumers will use the newest iPhone, such a task would be impossible and 

absurd. This fundamental shift in consumers behavior caused by innovation makes time-dependency a more 

severe problem that it was originally thought. 

 

In the machine learning context, time-dependency is usually referred to as concept drift or non-stationarity. 

As an example, suppose we use letters written a hundred years ago to train a text auto-completion model 

for smartphones today. In that case, the users will be disappointed since the way we write and communicate 

has fundamentally changed over time which means that the model will suggest words or phrases that we no 

longer use. When this occurs, ML researchers try to use tools known as transfer learning to deal with this 

non-stationarity and combat time-dependency. These techniques usually describe the change in the data 

over time as a change in the data-generating probability distribution. Consequently, they either use the 

dataset’s histogram to learn this change over time, or they assume a time-model for the change and 

accordingly adjust the ML models. In either case, dealing with the data generating distributions has its own 

problems. To name one, these solutions mostly approximate the change over time and hence, they still incur 

penalties for not being perfect. But most importantly, they assume that the set of elements Ω in the 

probability space (Ω, 𝜎, 𝑃) is known in advance, which is a fairly large assumption and one that doesn’t 

account for continuous innovation over time. Going back to our text auto-completion example, the data 

generating distribution changes over time in two ways. First, as time passes there is a lower probability for 

historical words and phrases to be used. Second, the environment (language in our example) allows for the 

birth of new elements (new phrases and words), which is equivalent to an increase in their frequency of 

use. An example of such words is “covfefe” which President Trump used in a tweet and became viral. 

However, this word was never recorded in any dataset before the president coined it. This birth and death 

process of probability space elements, if not accounted for, is among the very reasons we see the 

depreciation in data value over time. Unfortunately, it is hard to predict and adjust for such changes in data-

generating processes and despite the best effort of ML researchers, these transfer learning models are not 

perfect. In our paper, we assume that the prediction model is fixed, and it may account for transfer learning. 



pg. 8 
Harvard Business School Working Paper, No. 21-016 

Nevertheless, due to imperfection, achieved model accuracy changes depending on the time the training 

data was collected. 

 

Similar to machine learning literature on transfer learning and non-stationary, we also observe time-

dependency as an outcome of change in data-generating probability distributions. To compare distributions 

at different points in time, we create a universal set of elements. It is the union of all element sets across all 

time periods. For example, the word iPhone is created in the 2000s. In the language dataset from 1900, this 

element does not exist, and hence, it is not measurable. We create the universal element set by including 

this word. Then, for the dataset from the 1900, we should designate zero probability for its appearance. 

Still, instead of assigning this word a zero probability, we give it an infinitesimal value. This infinitesimal 

probability helps us use different functional forms like the log function without being worried about issues 

with functional domains. 

 

Formalizing the assumptions we made so far, we assume that the prediction is for time 0 with a model 

trained on data from the past. The training data from the past is from 𝑡 periods prior to time 0 where 

𝑡 ∈ {0} ∪ ℝ!. For the sake of simplicity, we will say this historical data was sampled at time 𝑡. The element 

set at time 𝑡 is Ω" for the probability space .Ω" , 𝜎" , 𝑃/"	1, where 𝜎" is the sigma-field over Ω" and 𝑃/" is the 

probability over the sigma-field. The universal probability space is then (Ω, 𝜎, 𝑃"), where Ω = ⋃Ω" and 

𝛿 = ∑ 𝛿##∈%&%!  and 𝛿# > 0. As explained earlier, we prefer δ to be zero, but due to some regulatory 

conditions in the MLE’s loss function, we assume δ is infinitesimal. 

𝑃"(𝜔) = 8(1 − 𝛿)𝑃
/" 𝜔 ∈ Ω"

𝛿# 𝜔 ∈ Ω − Ω"
 

With this change in measure, it is possible to compare datasets and define the shift in distribution. A change 

in distribution between the time 𝑖 and 𝑗 means ∃	𝜔	 ∈ Ω	𝑠. 𝑡.		𝑃'(𝜔) ≠ 𝑃((𝜔).  

 

2.2. Learning Data Distributions 

Machine learning aims to find the relation between inputs and outputs of an unknown system.  The unknown 

system is usually seen as a black box with little or no information about its function. The goal is then to 

observe examples of this unknown system’s function and adjust a model’s parameters accordingly so that 

the model can replicate the system’s function as similarly as possible. These observed examples of systems’ 

function are referred to as data.  

 

Putting this into mathematical semantics, given a dataset 𝐷)," = {(𝑥' , 𝑦')"}'+,) ∈ 𝜎, which is composed of 

𝑛 input-output samples 𝑑' = (𝑥' , 𝑦')" ∈ Ω	collected at time 𝑡, we want to find a model 𝑚(𝑑, 𝜃) ∈ 	ℳ that 
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describes the relationship between the input 𝑥 and the output 𝑦. Here, 𝜃	represents the model’s parameters 

and ℳ is the set of all candidate models distinguished by the parameters 𝜃. Linear, logistic, and deep neural 

network compositional functions are examples of 𝑚(𝑑, 𝜃). Table 1 provides the functional forms for these 

three examples. In most machine learning cases, the goal is to make 𝑚(𝑑, 𝜃) as close as possible to the 

system’s function by learning the parameters 𝜃. The notion of closeness depends on the problem 

formulation and the objective of the learning task. 

 

Case Functional form 𝑚(𝑑, 𝜃) where 𝑑 = (𝑥, 𝑦) 

Linear functional 𝑦 = 𝜃𝑥 

Logistic functional 
𝑦 =

𝑒-.

1 + 𝑒-.
 

Simple Deep Learner with 𝐿 layers and non-linear 

functions 𝛾 

𝑦 = 𝜃/𝛾(𝜃/&,𝛾/&,(…	(	𝜃0𝛾0(𝜃,𝑥)	)… ))	 

Table 1) Examples of functional forms for famous ML models. 

 
In this paper, we restrict our theoretical analysis to the problem of learning the data-generating probability 

distribution. We do this because identifying this probability distribution is the fundamental problem in 

statistical learning theory. Once we know the probability distribution that characterizes the data-generation 

process, we are able to calculate any statistics of interest about the data, such as its expected value or 

variance. In general, all statistical models are a function of data distributions. Consequently, under specific 

regulatory conditions like continuity of models in the probability space, a sequence of distributions 

converging to the data-generating probability distribution also defines a converging sequence of the model 

to its converging value. This argument attests that learning the underlying distribution is the fundamental 

problem in machine learning.  

 

Finally, we choose the maximum likelihood estimator for learning the data-generating probability 

distribution since it is an unbiased and efficient estimator. Due to its efficiency, it is rational to prefer it 

over other unbiased estimators. Note that in this research, we are not concerned about time-complexity or 

other computational issues. Our goal is to get the most from a limited number of data points, and hence, we 

care about efficiency. 
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2.3. Maximum Likelihood Estimation and Learning the Probability Distribution 

In the problem of learning a probability distribution, the unknown system is the distribution’s functional 

form. The unknown distribution is defined over the set Ω. The goal is to introduce an estimator 𝑚(𝑑, 𝜃) 

that converges to 𝑃(𝜔)	for all 𝜔 ∈ Ω as dataset size approaches infinity (𝑛 → ∞). 

The MLE's objective function for estimating the probability distribution, using the model 𝑚(𝑑, 𝜃) and the 

dataset 𝐷) = {𝑑'}'+,) ∈ 𝜎, has following form 

𝜃) = argmax	
-

Ulog.𝑚(𝑑' , 𝜃)1
)

'+,

 

By dividing the sum by the number of samples and multiplying it by	−1, we reach the following equivalent 

minimization problem. The objective function denotes a loss function called empirical cross-entropy. 

𝜃) = argmin	
-

−
1
𝑛
Ulog.𝑚(𝑑' , 𝜃)1
)

'+,

 

Convergence to a local minimum happens as the size of the dataset, that is sampled independently and from 

an identical distribution, grows. For the sake of simplicity and for not dealing with issues of local optimums, 

we assume our optimization reaches the global optimum and lim
)→2

𝜃) = 𝜃∗ where 𝑚(𝜔, 𝜃∗) = 𝑃(𝜔)	∀	𝜔 ∈

Ω. Of course, this is true with the assumption that 𝑃 ∈ ℳ  (The solution exists in the search domain). As 

explained earlier, in this paper we assume that algorithms are wisely chosen, and our goal is to see how 

they perform when the training and testing data are from different distributions. From the Central Limit 

Theorem, we can see the following approximation for the loss function's value. 

 

Theorem 1) Assuming 𝐸(log𝑚(𝑑, 𝜃∗))0 < ∞, for a sufficiently large number of data points (𝑛 >> 1), 

the loss function can be approximated with 

−
1
𝑛
Ulog.𝑚(𝑑' , 𝜃)1
)

'+,

= 𝐻(𝑃) + 𝐾𝐿(	𝑃||𝑚(𝑑, 𝜃)	) + 𝑂 a
𝐶,
√𝑛
d𝒩(0,1) 

Where 𝐶, is a constant, and, is a function of 𝑣𝑎𝑟(log𝑚(𝑑, 𝜃∗)). 𝐻(𝑃) is the Shannon entropy defined as 

𝐻(𝑃) = −∑ 𝑃(𝜔)log	(𝑃(𝜔))#∈%  [41], and the summation is over the element set Ω. 𝐾𝐿(	𝑃||𝑚(𝑑, 𝜃))	) =

∑ 𝑃(𝜔) log i 4(#)
7(8,9)

j.∈:  is the Kullback–Leibler (KL) divergence [31] between the actual distribution 𝑃 

and the estimator/model 𝑚(𝑑, 𝜃).  

 

As the size of the dataset approaches infinity, the error term is getting smaller. Immediately from theorem 

1, we can see that KL-divergence is the only component of the loss function that is a function of 𝜃 (Model). 

Hence, minimizing the loss function is equivalent to minimizing 𝐾𝐿(	𝑃|k𝑚(𝑑, 𝜃)1. The property of KL-
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divergence is that it is always non-negative. Besides, it is equal to zero if and only if	𝑃(𝑑) = 𝑚(𝑑, 𝜃) almost 

anywhere. With KL-divergence equal to zero, the only term remaining in the loss function is 𝐻(𝑃), which 

describes the system's entropy. The convergence speed of loss function to 𝐻(𝑃) as the function of dataset 

size is called the learning curve. 

 

2.4. Learning Curve 

Learning curves represent the expected value of the objective function (loss function in our case) versus the 

size of the dataset. The expected value is taken with respect to randomness in sampling or algorithm’s 

initialization. In other words, fixing the size, if we sample the dataset and train the model infinite times and 

then take the average loss value, we reach the expected value of the loss function. Putting this in 

mathematical semantics, the learning curve is a function 𝐺"(𝑛):ℝ! → ℝ	that takes the size of a dataset as 

input and outputs the value we should expect for the loss function. For the problem of learning the data-

generating probability distribution, this function shows how KL-divergence 𝐾𝐿(	𝑃|k𝑚(𝑑, 𝜃)1 changes with 

the dataset’s size.  

 

From theorem 1, with infinite sample size, we can see the loss function's convergences to the entropy of 

the data-generating distribution. Since the data-generating distribution changes over time, its entropy 

changes as well and hence, we added the subscript 𝑡 to 𝐺"(𝑛) to capture this time-dependency. This function 

is monotonically decreasing and hence, invertible. Due to its asymptotic convergence to a bounded value 

(𝐻(𝑃")), it has a convex form for large dataset sizes. We further assume that it is continuous and 

differentiable, meaning that ;<!())
;)

< 0. 

 

In practice, the learning curve is shown to be predictable for deep learning algorithms [25] and is composed 

of small data, power-law, and irreducible loss regions. In the small data region, the model is not scaling 

significantly with dataset size. The power-law region is where model performance scales with dataset size. 

In this region, for deep learners, the function 𝐺"(𝑛) is believed [25] to have a power-law functional form. 

Lastly, in the irreducible loss region, the model's generalization loss value does not improve significantly. 

Between the regions, the power-law region is the one that we can see significant improvement in 

performance as we increase the dataset size.  
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Figure 1) Power-law learning curve. 

3. Effectiveness Curve and Value Depreciation  
To achieve our goal of measuring the depreciation of datasets’ value over time, we need a mechanism to 

value a given dataset for any given time. Unfortunately, value is subjective and hard to measure since it 

depends on the context, problem definition, and implementation. Therefore, we define a novel measure of 

datasets value that reports it as a function of the size. To explain this measure, we first define an oracle 

dataset that is sampled at time 0 from 𝑃=. We use this oracle dataset as a base of comparison and say that 

the loss value that a model trained on this dataset achieves is our reference loss value and the best loss value 

we can achieve. We then compare the model’s performance trained on the baseline dataset to the model’s 

performance trained on oracle. We finally ask what amount of data from the oracle dataset allows our model 

to achieve the equivalent loss value that the model achieves after being trained on the baseline. The 

“equivalent size” of the baseline dataset is the amount of data from the oracle dataset needed to train a 

model achieving the same loss values.   

 

Before formally defining the notion of equivalent size, a good starting point would be to compare a baseline 

dataset of infinite size and see how well-performing a model trained on this dataset is in predicting 𝑃= (the 

oracle). This is particularly important since we expect the infinite sized baseline dataset to be as valuable 

as possible in reaching the ultimate algorithm’s performance. In a way, this gives us clues on whether the 

infinite baseline dataset can scale created value. Proposition 1 investigates this ultimate scaling behavior. 

 

Proposition 1) Assuming 𝑃"(𝜔) ≠ 𝑃=(𝜔), a model trained on a dataset of infinite size from the wrong 

distribution 𝑃"(𝜔) has limited predicting power at time 0, and in probability, a model trained on a dataset 

of bounded size from the right distribution 𝑃=(𝜔) can reach the same loss value. 
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The argument in proposition 1 is that in the training phase, due to the change in the probability distribution, 

𝑚(𝑑, 𝜃) convergences to the wrong distribution 𝑃"(𝜔). Therefore, MLE’s loss value has an additional term 

𝐾𝐿(𝑃=||𝑃") besides the Shannon entropy 𝐻(𝑃=). It is as if we used a dataset of bounded size from 𝑃=(𝜔), 

and due to its limited size, we did not reach the minimum loss value possible. The minimum loss value 

possible is reached when MLE's loss function is equal to 𝐻(𝑃=).  

 

Intuitively, this proposition tells us that created value in a machine learning-based product or service scales 

differently with the size of datasets compared with the way tangible assets scale the value. For example, 

suppose we have a company that produces apple juice boxes. Apples that are stored for a little while longer 

in inventory will dry out and produce less juice compared to fresh apples. Nevertheless, if we scale the 

number of older apples in the juice production business, the number of potential juice boxes scales with it. 

In contrast, when it comes to time-dependent data, increasing the number of older data points doesn’t 

necessarily drive an increase in the model’s accuracy and, thereby, the created business value. This is 

because an oracle dataset of bounded size can produce a loss value equal to that of an infinite amount of 

older (less relevant) baseline data. 

 

This proposition has implications in economic modeling, academic antitrust debates, and data management 

strategy for practitioners. Proposition 1 states that curating massive datasets over time does not create a 

significant barrier to entry of a competitor if the data-generating distribution changes. In our interviews 

with practitioners, we always found them hopeful that increasing dataset size can compensate for the 

shortcomings in scaling. On the regulatory side, also there are debates on the role of super large datasets 

and if they create a barrier to entry advantage for big tech companies. This proposition states that scaling 

of value is different from what we previously know and hence, the role of time-dependency should be 

accounted for. This proposition has also implications for economic modeling. The immediate implication 

is the way we should model the decline in the value of data. Specially, when modelers want to treat data as 

an asset, they should be aware of the way they account for the value decline. The usual approach to account 

for the value decline is to use a time-dependent discounting function like an exponential decay 𝑒&>"	to be 

multiplied by the accumulated capital at time 𝑡. This proposition states that such discounting functions 

should be a function of accumulated capital as well as the sampling time since there is not a multiplicative 

discounting function that is multiplied in infinity and results in a finite value. Hence, the discounting 

function should be a function of both size and the time. 

 

As explained earlier, something lacking from proposition 1 is that it talks about loss value, which is not 

very informative in making comparisons. It is not informative because we do not know how to interpret the 
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excess loss value term 𝐾𝐿(𝑃=||𝑃"). We just know that it is positive, and therefore, the loss value should be 

bigger than the one for the oracle dataset. To solve this issue, we use the learning curve inverse function to 

translate the loss function back into an “equivalent” dataset size. Dataset sizes are easy to understand and 

compare.  

 

Recall that learning curve at time zero 𝐺=(𝑛) is a monotone function and therefore has an inverse. Using 

the inverse of the learning curve 𝐺=&,(. ), we can find the expected size of a dataset from time zero (the 

oracle dataset) with an equivalent MLE loss value. Briefly, what we do to form the equivalent size is to first 

train a model on data sampled from 𝑃"(𝜔). Then, we use the trained model to find the loss value on the 

data that has been sampled from 𝑃=(𝜔). Finally, we use the function 𝐺=&,(. ) to see what size of the data 

from 𝑃=(𝜔) can generate a similar loss values. This is the basis for our definition of equivalent size. 

 

 

Definition 1) Dataset 𝐷)," has the equivalent size 𝑛n?",!at time 0: 

𝑛n?",! = 𝐸9",! i𝐺=
&,.−𝐸4$.log 	𝑚.𝑑, 𝜃),"11	1j	 

Where 𝜃)," is the solution to:  

𝜃)," = argmin
9

−
1

|𝐷),"|
U log.𝑚(𝑑, 𝜃)1
8∈?",!

 

In this definition, there exist two expectations. The expectation inside of 𝐺=&,(. ) measures the expected 

model’s loss over the test set. The second one is the outer expectation and calculates the expectation with 

respect to randomness in the algorithm’s initializations and steps. In practice, we can approximate the outer 

expectation by solving for 𝜃)," multiple times. Using averaging limit, we can calculate the equivalence 

empirically in the following way 

lim
@→2

1
𝑘
Up𝐺=&, qlimA→2	−

1
𝑙
Ulog a𝑚i𝑑' , 𝜃),"

(()jd
C

'+,

st
@

(+,

 

Where 𝑑' ∼ 𝑃=(𝜔) and the outer sum is over multiple runs of the algorithm. For a fairly large number of 

testing data points, the inner expectation converges. Using theorem 1 to simplify the definition further, we 

have 

𝑛n?",! = 𝐸 a𝐺=&, i𝐻(𝑃=) + 𝐾𝐿 i𝑃=||𝑚.𝑑, 𝜃),"1j	jd 

Letting 𝑛 → ∞ eliminates algorithms’ initialization issues as well as other types of randomness and hence, 

𝑚.𝑑, 𝜃),"1 → 𝑃"(𝜔).  Therefore, in the limit 



pg. 15 
Harvard Business School Working Paper, No. 21-016 

𝑛n?%,! = 𝐺=&,(𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃")	) 

It is in agreement with proposition 1 where it argues that 𝑛n?%,! < ∞ if 𝑃=(𝜔) ≠ 𝑃"(𝜔). Because 

𝐺=&,(𝐻(𝑃=) + 𝐾𝐿.𝑃=k|𝑃")1 < 𝐺=&,.𝐻(𝑃=)1 = ∞. 

 

 Notice that the equivalent size is a function of the algorithm as well as the dataset itself. Dependence on 

the algorithm is recognized through the inverse function 𝐺=&,(. ). It means that the algorithm’s power in 

scaling with dataset size shapes the effectiveness of a dataset. The following example makes it clear. 

Suppose we have a very large dataset, but we do not use it to train a model. In that case, the sampling time 

is not essential and, regardless of time, the dataset is as effective as not having it in the first place (𝑛 = 0). 

On the other hand, if the algorithm scales in a faster pace (in the number of data points), a small dataset 

from 𝑃=(𝜔) can reach 𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃") with a smaller number of  data points which means 𝑛n?%,! is 

indeed small. 

 

Definition 2) Effectiveness of dataset 𝐷)," is defined as 𝐸?",! =	
)D&",!
)

.  

Intuitively the effectiveness should be always between zero and one, i.e., 𝐸?",! ∈ [0,1]. 𝐸?",! = 1 means 

that the given dataset’s value is equal to the value of the oracle dataset. Note that 𝐸?",!, by definition, can’t 

be more than 1. 𝐸?",! = 0 means that data is worthless compared to the oracle dataset and the prediction 

power of a model trained on this dataset is equivalent to a uniformly random guessing of output values. The 

value of 𝐸?",! ∈ [0,1) signals that the equivalent size is less that the actual size of a dataset. It is as if dataset 

perishes over time. The more perishable the data, the less its effectiveness over time. For example, if the 

effectiveness is equal to 0.8, we say that the dataset lost 20% of its effective size.  

Proposition 1 argues that effectiveness 𝐸?%,! = 0 if 𝑃=(𝜔) ≠ 𝑃"(𝜔). It is because 𝑛n?",! remains bounded 

and therefore, lim
)→2

)D&",!
)

= 0. 

 

Definition 3) Substitution curve is a function 𝑓)(𝑡,, 𝑡0): ℝ0 → ℝ and is defined as  

𝑓)(𝑡,, 𝑡0) =
𝑛n?",!'
𝑛n?",!(

 

It shows how well we will be off in terms of effectiveness if we substitute a dataset of size 𝑛 from time 𝑡0 

with a dataset of the same size that has been sampled at time 𝑡,. Note that choosing 𝑡0 = 0 brings us back 

to the definition of effectiveness. Using theorem 1, the substitution curve has following formulation 
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𝑓)(𝑡,, 𝑡0) =
𝑛n?",!'
𝑛n?",!(

=
𝐸 a𝐺=&, i𝐻(𝑃=) + 𝐾𝐿 i𝑃=||𝑚.𝑑, 𝜃),"'1j	jd

𝐸 a𝐺=&, i𝐻(𝑃=) + 𝐾𝐿 i𝑃=||𝑚.𝑑, 𝜃),"(1j	jd
 

 

Theorem 2) Substitution curve has the following properties.  

a) It is non-negative and bounded.  

b) It is a monotonic function of 𝑛. 

c) It is converging to a substitution frontier 

lim
)→2

𝑓)(𝑡,, 𝑡0) =
𝑛n?%,!'

𝑛n?%,!(

=
𝐺=&,.𝐻(𝑃=) + 𝐾𝐿.𝑃=||𝑃"'1	1
𝐺=&,.𝐻(𝑃=) + 𝐾𝐿.𝑃=||𝑃"(1	1

 

Nonnegativity and boundedness are immediate. It is nonnegative because function 𝐺=&, is non-negative by 

definition. Boundedness is also immediate from proposition 1, because for 𝑖 ∈ {1,2} and 𝑡' ≠ 0, 0 <

𝑛n?",!) < ∞ for all 𝑛. 

 

The substation curve is an important definition in this paper. It is a building block for the argument we 

make in the next section on the effectiveness of datasets gathered over a long period of time. The concept 

will be used in the sequential offloading algorithm defined in the next session.   

 

Figure 2 depicts examples of substitution curves 𝑓)(𝑡, 1) assuming a monotonic decline in the value of data 

over time. Each curve represents the substitution gain over time 𝑡 when the substitution time is fixed at 

(𝑡,, 𝑡0) = (𝑡, 1). Blue curve is the frontier trajectory 𝑓2(𝑡, 1) described in Theorem 2c. This figure 

pictorially shows the substitution function's monotonicity on 𝑛 and its convergence to the frontier. As 

apparent in this Figure, we do not gain much in substituting data from different times for very small dataset 

sizes. It is because small datasets do not provide significant scaling in performance, and hence, it does not 

matter when they were sampled. This behavior is mostly seen in the small data region of the learning curve. 

For medium dataset sizes, when we are in the learning curve's power-law region, we gradually see 

significant gains in substituting datasets from different times. Increasing dataset size in the power-law 

region brings us to the medium-high dataset size regime. This region will be used in our experiments (In 

later sections) to measure perishability. Finally, the infinite dataset size speaks of the irreducible loss region 

and the highest sensitivity to substitution. 

 

In Appendix B, building further on our observation, we empirically measure the substitution curve for our 

experiment in this paper and show that gain/loss increases in 𝑛 for 𝑡, > 𝑡0 and decreases for 𝑡, < 𝑡0.  In 

other words, the substitution curves become sharper and the gains/loss in substituting data from various 
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time increase. Proposition 2 formalizes this idea. To prove this proposition, we have two additional 

assumption. First, we assume that the monotonicity result proved in theorem 2 (b) is valid for all dataset 

sizes meaning that 𝑓)(𝑡,, 𝑡0) is monotonic for all n. Second, we assume that 𝑓,(𝑡,, 𝑡0) = 1 for all 𝑡,, 𝑡0 ∈

ℝ! ∪ {0}. It is intuitive since, in our model, all elements have non-zero probability and hence, one data 

point carries in expectation same amount of information regardless of when it was sampled. 

 

Proposition 2) The substitution gain function becomes sharper with the increase in the size of the baseline 

dataset (𝑛), meaning that the gain/loss increases as the baseline dataset size increases. Mathematically, for 

all time 𝑡,, 𝑡0 ∈ ℝ! ∪ {0} and sizes 𝑛,, 𝑛0 ∈ ℕ with  𝑛, < 𝑛0: 

{
𝑓)'(𝑡,, 𝑡0) ≤ 	𝑓)((𝑡,, 𝑡0) when		𝑓)'(𝑡,, 𝑡0) ≥ 1
𝑓)'(𝑡,, 𝑡0) > 	𝑓)((𝑡,, 𝑡0) when		𝑓)'(𝑡,, 𝑡0) < 1 

 

 
Figure 2) Substitution curves for different sizes of datasets. The frontier is marked as blue. It shows the maximum depreciation in substituting 

datasets of time 1 with a dataset of any other time. 

 

This proposition is particularly crucial for our discussion in section 4. We use it to prove that flow of data 

becomes the main value driver when a firm grows, for example, in the user base. Hence, firms should retrain 

their models more frequently when the amount of data they collect in a given time (𝑛 in this case) grows.  

 

4. Datasets Collected Over Time 
So far, we have studied the effectiveness of datasets that have been sampled at a given time 𝑡. Nevertheless, 

most datasets are collected over time, and there is a need to study their effectiveness and compare their 
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values. This is particularly important since we want to study the historical value of data. In that pursuit, we 

compare two datasets that have been sampled over time; A baseline dataset that spans over a longer period 

and a subset of that dataset which has a smaller size and contains only recent data (most relevant data in 

case of semi-monotonic decline in value of data over time). When the value of smaller dataset is more than 

the value of larger dataset, we conclude that using historical data in the training set increases the loss value 

and may put a company in a disadvantageous position. In section 4.1, we use this idea and introduce the 

sequential offloading algorithm. This algorithm exploits the tradeoff between the size and the relevance of 

datasets gathered over time. It removes less relevant data from the training dataset, meaning we lose size, 

and hopes that increasing the relevance counterbalances the loss in size. 

 

We use the machinery we developed so far, with slight modification, to compare the values of datasets 

sampled over time. In doing so, we first show that the accuracy score (loss value) of models trained on such 

datasets are equivalent to the accuracy score (loss value) of models trained on a dataset of similar size that 

has been sampled at a time 𝑡∗, i.e., there exist a time 𝑡∗ such that a model trained on a dataset from this time 

has an equivalent loss value to the same model that is trained on the dataset which is gathered over time. 𝑡∗ 

is called the equivalent time. Subsequently, we calculate the equivalent time for these datasets (that have 

been sampled over time) and use the substitution curve to compare their values. 

 

Notation wise, we show datasets with size 𝑛 that are collected over a period [𝑡,, 𝑡0] with 𝐷),["',"(],G!. 𝜆" is 

called the sampling density function and shows the proportion of samples that have been collected at time 

𝑡. For the sake of simplicity, we assume 𝑡, 	= 0 and focus on datasets of the form 𝐷),[=,"],G! . Mainly because 

it is easier to turn a bigger period of time into smaller periods with the sampling function 𝜆".  For example, 

the dataset 𝐷),["',"(],GH! is equivalent to dataset 𝐷),[=,"(],G! with 𝜆" equal to 

𝜆" = 8
0									 𝑡 < 𝑡,
𝜆�"	 𝑡, ≤ 𝑡 ≤ 𝑡0

 

Although the dataset 𝐷),["',"(],G! is sampled from various time with different generating probability 

distribution functions, it still has a “Net Distribution” that can be used to measure its effectiveness. Lemma 

1 presents the net distribution for 𝐷),[=,"],G!. It states that the net distribution is a convex combination of all 

distribution from time 0 to 𝑡 with weights 𝜆" ∈ [0,1]	&	 ∫ 𝜆I𝑑𝑠 = 1"
= 	. 

 

Lemma 1) Net distribution of dataset 𝐷),[=,"],G! is equal to  

𝑃[=,"],G!(𝜔) = � 𝑃I(𝜔)𝜆I𝑑𝑠
"

=
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As this lemma states, the net distribution is not necessarily equal to 𝑃=. Therefore, using proposition 1, we 

can still argue that datasets curated over a period of time have limited relevance.  

 

Corollary 1) Datasets that are collected over time from dynamically changing environments have finite 

effectiveness and value. Hence, the growth between the accuracy of machine learning models and the stock 

of available data (Known as the data network effect) stalls. 

 

Data network effect (The growth cycle between the stock of data and the accuracy of models) stalls when 

we have time-dependency. Corollary 1 suggests that the accuracy of machine learning models and the value 

they create doesn’t simply scale with the stock of available data. As a result, a firm should either incorporate 

the time dimension into their models or alternate the datasets to improve their relevance. Incorporating time 

in the models is not easy and often impossible, mainly when dealing with innovation over time. For 

example, we can’t tell what kind of medical innovations we should expect in the next couple of years or 

what news we should read in the papers next week. Besides, we already assumed that firms already choose 

best models, and hence, we expected them to incorporate time if possible. Therefore, as the next step in this 

paper, we focus on methods to alternate the dataset’s composition and improve their relevance. Alternating 

datasets should be in the direction of improving their relevance, and hence we first need a method to 

compare the value of dataset pre and post alteration.  Proposition 3, using the net distribution of datasets, 

maps the accuracy score of the dataset gathered over time to the accuracy score of a dataset that has been 

sampled in a given time. Hence, we can compare two datasets using the substitution curve method we 

developed in section 3. 

 

Proposition 3) There exists an equivalent time 𝑡∗ ∈ [0, 𝑡] such that the dataset 𝐷),[=,"],G! provides an 

equivalent loss value to the dataset 𝐷),"∗ i.e. 𝑛n?",[$,!] = 𝑛n?",!∗ . The solution is unique when decline in value 

of data is monotonic. 

 

Proposition 3 is the key to understanding the next subsection on sequential offloading. As much as it is 

important to understand what it says, it is also important to realize what it does not. It does not say that the 

"Net distribution" is equal to 𝑃"∗. Net distribution is a combination of many distributions, including 𝑃"∗, 

and therefore, it is not necessarily equal to 𝑃"∗. Instead, Proposition 3 suggests that 𝑃[=,"],G! and 𝑃"∗ are in 

a way that they make equal KL divergences with 𝑃=, i.e. 𝐾𝐿.𝑃=||𝑃[=,"],G!1 = 𝐾𝐿(𝑃=||𝑃"∗) . Consequently, 

they produce equivalent MLE loss value, which means 𝑛n?",[$,!],-! = 𝑛n?",!∗ .  
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Note that having 𝑡∗ between zero and 𝑡 is important in this proposition. The emphasis is on the fact that the 

period [0, 𝑡] starts from time 0. Even if the dataset has been sampled from [𝑡,, 𝑡], still, 𝑡∗ ∈ [0, 𝑡]. It is 

because, for the dataset (𝐷),["',"],G!) where 0 < 𝑡, < 𝑡, there might exist a sampling density 𝜆" such that it 

makes the Net distribution 𝑃[=,"],G!(𝜔) = 𝑃=(𝜔) for all 𝜔 ∈ Ω, i.e. 𝑡∗ = 0 ∉ [𝑡,, 𝑡]. 

 

The most exciting thing about this theorem is that  𝑡∗ < 𝑡. If we deliberately delete the portion [𝑡,, 𝑡] from 

the dataset where 𝑡, < 𝑡∗, despite losing size, the remaining dataset (𝐷)',[=,"'],G!) will have a new equivalent 

time 𝑡∗∗ which is 𝑡∗∗ < 𝑡∗. In other words, the dataset gained relevance. Altering a dataset composition by 

deleting the portion [𝑡,, 𝑡] is what we investigate next as sequential offloading algorithm. 

 

4.1. Sequential Offloading 

The idea of sequential offloading is founded in increasing the value of a dataset by reducing its size. It looks 

to be counter-intuitive, but in a time-dependent context, data perish quickly, and it may be beneficial to 

discard useless information. Clearly, deleting old data means loss of dataset size, which is a bad thing. 

Nevertheless, gaining relevance may offset the loss of dataset size, and deletion likely improves the overall 

effectiveness. 

 

The idea is centered around Proposition 3 and theorem 2. Proposition 3 states that for a dataset 𝐷),[=,"],G! 

there exist a time 𝑡∗ ∈ [0, 𝑡] such that 𝑛n?",[$,!],-! = 𝑛n?",!∗ . By deleting data [𝑡∗, 𝑡] from the dataset, we end 

up with a smaller size 𝑛=, but the equivalent time shifts from 𝑡∗ to 𝑡∗∗ ∈ [0, 𝑡∗], which is more relevant. If 

the substitution gain is higher than the lost size due to deletion, it means we gained from deletion i.e. 

𝑓)&)$(𝑡
∗∗, 𝑡∗) >

𝑛
𝑛 − 𝑛=

⇒	𝑛n?",[$,!],-! < 𝑛n?"."$,[$,!∗],-!  

Where 𝑛= is the size that has been deleted from the dataset.  

Algorithm 1 Formalizes the sequential offloading. This algorithm stops when there is no gain in deleting 

old data. It also opens a philosophical question on what a successful iteration means for the data. A 

successful iteration means 𝑛n?",[$,!] < 𝑛n?"."$,[$,!∗]  and hence, there is positive improvement upon losing a 

portion of data. Therefore, as the following corollary states, including less relevant data (older data in our 

case) actually did put us in a disadvantageous position. 

 

Corollary 2) Including older (less relevant) data in the training set may put a firm in a disadvantageous 

competitive position. 
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Algorithm 1) Sequential offloading algorithm 

Given dataset 𝐷!,[$,%],'!, substitution gain function	𝑓!(𝑡(, 𝑡)) 

𝑖 = 1  

𝑡($) = 𝑡  

𝑛($) = 𝑛  

While (Gain is possible) 

    Find 𝑡∗ as explained it theorem 2 and call 𝑡(-) 

    𝑛(-) = 𝑛(-.() 	∫ 𝜆%
%(#$%)

%(#) 𝑑𝑡 

    Delete sampled data [𝑡(-), 𝑡(-.()] from 𝐷!(#$%),/$,%(#$%)0,'! and call it 𝐷!(#),/$,%(#)0,'! 

    if 1𝑓!(#).!(#$%)2𝑡(-), 𝑡(-.()3 >
!(#$%)

!(#).!(#$%)
5 

               Gain is possible 

               𝑖 = 𝑖 + 1 

    𝑒𝑙𝑠𝑒 

               Gain is not possible 

     end 

end 
 

4.2 Data as a Driver to Growth  

A successful offloading iteration means that older (less relevant) data is lowering the modeling accuracy 

scores. Hence, it is optimal for a firm to retrain its model more frequently with relevant datasets. The 

retraining frequency is determined by the sharpness of the substitution function. From Proposition 2, we 

know that increasing the flow of data which is the rate of accumulating new information increases the 

gain/loss value of the substitution function and hence, changes the retraining frequency. Since the increase 

in flow is inevitable due to growth in the user-base or engagement, it is of paramount importance to 

understand the optimal growth strategy for a firm that derives value from data. In Proposition 4, we show 

that a sharper substitution gain function (which is the result of increase in flow) brings the equivalent time 

closer to the prediction time. 

 

Proposition 4) Increases the gain/loss value of the substitution function brings the equivalent time closer 

to the prediction time.  

 

We now cite Proposition 2 and argue that an increase in flow makes the offloading more likely, and hence, 

as stated in Proposition 4, it brings the equivalent time closer to the prediction time. Bringing the equivalent 



pg. 22 
Harvard Business School Working Paper, No. 21-016 

time closer to prediction time means that we rely on the flow of data to create value. Consequently, we 

conclude that when a firm grows, which leads to inevitable growth in the flow of data, it should shift its 

focus from the stock of available data to the flow of data as the primary value driver. 

 

5. Experimental Design 
Our goal in this section is to measure effectiveness and thereby perishability of datasets empirically. In 

other words, after training an algorithm with data that has been sampled on one stationary period, we 

measure its equivalent oracle size at other periods. As it is shown later in this section, we observe a semi-

monotonic decline in the value of a dataset. We expected the decline to be monotonic since datasets from 

the past lose relevance monotonically due to continuous innovation over time. However, the equivalent size 

has slight periodicity in the measurements due to seasonality in certain topics like fashion or other periodic 

data generating sources. Note that the overall decline still looks monotonic. 

 

We make the measurements in the language modeling contexts.  Mainly because language modeling 

datasets tend to be the largest and most easily collected. Datasets are easily collected since language 

modeling tasks are most often unsupervised; For example, in the next word prediction task, the model 

predicts the next word in a given sentence, and hence, any book, magazine or text source could be a potential 

data source. Furthermore, the language modeling is currently used as a common pre-training objective for 

many other language tasks [45] making our measurements relevant to a wide variety of applications. In this 

section, we first explain data and how we process it for the task. Then, we explain the algorithm and model 

architecture, and lastly, we present the measurements. 

 

5.1. Data Collection and Processing 

Our challenge is to find a large enough dataset that has been collected over a long period of time. It is 

because text processing algorithms require large training set sizes to have significant improvement in 

quality. In addition, we need this dataset to be sampled over a long period of time to let us make an 

observable perishability measurement. From a technical standpoint, the dataset must be large enough to 

reliably measure the power-law portion of the learning curves associated with each time period. Thus, the 

dataset must span roughly two orders of magnitude in size larger than the smallest dataset in the power-law 

region. Prior results [25] show that, for language modeling, the smallest such dataset is at most 1 million 

words. Consequently, the dataset should contain roughly 10-100 million words per time period.  

 

We choose the Reddit post dataset as it fits to our needs. This data was collected and used in [19]. It is a 

collection of posts and comments from the years 2006 to 2018 and was scraped from Reddit between 
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September 2016 and July 2018. We preprocessed the dataset to create flat text files with the following 

format: 

Title (6): What was the biggest scandal in your school? 
Text: 
Comment (4): Vampires. This was almost 6 years ago now at my 
high school, but vampires. Do a quick... 
Comment (3): Not sure if I'd call it a "scandal," but when I 
was in college... 
Comment (2): Freshman year a friend of mine found a paper bag 
at the bus stop full of money - and it... 

 
‘Title’ is the title that the author specified when posting the submission, and ‘Text’ is an optional field of 

body text associated with the post. After the post, each line is a comment from other users designated by 

‘Comment’. Comments only contain text. The values in parenthesis are submission or comment scores 

based on upvotes or downvotes given to each by users. We filtered out comments and posts with scores less 

than 2.  

 

 
Figure 3) Size of datasets processed for each month. For example, for July 2013, 1 Gigabyte of text data is processed. This is not 
a cumulative dataset size. The growth in the size shows the growth in the number of topics discussed, the number of users as well 

as their engagement.  

 
To evaluate how data distributions and value shifts over time, we split the dataset into chunks based on the 

timestamp of the submissions and comments. We aim for 100 million words per time period, so we group 

data until each split is at least that large. Specially, we group posts and comments into the following periods: 

the years 2006-2009, January-June 2010, July-December 2010, January-March 2011, April-June 2011, 

July-September 2011, October-December 2011, and then monthly for the years 2012-2018. Earlier years 
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of Reddit dataset have less data because the platform was becoming established and growing, so we had to 

group more extended periods together. Figure 3 shows the amount of data we processed each month. 

 

Finally, we subdivide the data from each time period to form a standard machine learning training and 

testing setup for collecting learning curves. First, we randomly sample and split the posts (and their 

comments) into training, development/validation, and test/evaluation subsets. The development and test 

sets are at least 2 million words each. The development set is used to validate that the model is learning to 

generalize during training and to early-stop training when the model performs the best on the development 

set. The test set is used after training to evaluate how well the training is done. We use these test sets to 

cross-evaluate models trained on data from other periods. The model never trains on these subsets. 

 

After splitting out the development and test sets, we randomly shuffled the remaining data as the full 

training set for the time period. We subdivide this training set into chunks of exponentially increasing size 

by factors of 2. Empirically, we find that datasets of size 1.25 million words are large enough to be in the 

power-law portion of learning curves, so we break the training set into successively overlapping subsets of 

size 40 million, 20 million, 10 million, 5 million, 2.5 million, 1.25 million words by taking the first half of 

the prior subset. We train separate models on each training subset to collect how models generalize as they 

are allowed to train with increasing dataset size. The resulting data size-generalizability curves are learning 

curves for the time period.  

 

5.2. Model Architecture and Training Process 

We chose to train current state-of-the-art language models on the data to collect their generalization error 

and learning curves. Specifically, we train GPT-2, the Generative Pre-Training transformer-based model 

from OpenAI [23, 37]. Collecting learning curves can be costly due to the training time required to train 

large models on each of the training subsets. We chose to train a small variant of GPT-2 that was expected 

to be large enough (i.e., sufficient parameters) to overfit all of the training set splits and yet small enough 

to train in a reasonable amount of time---at most about 32 hours per training subset on a single GPU. We 

configure our GPT-2 model variant as follows: Vocabulary size 50257 sub-word tokens, maximum 

sequence length 512 tokens, depth 6 transformer blocks each with 8 self-attention heads and hidden 

dimension 512. The model has 44.9 million parameters total—a rule of thumb in language modeling is to 

use a model with as many parameters as words in the largest dataset. 

 

We train the models using the Adam optimizer with a static learning rate of 2e-4 and with batch sizes 12 

and 24. The training objective is the cross-entropy loss of the model's prediction of the probability of the 
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target next token in the input sentence. We empirically find that changing the batch size marginally changes 

the final loss (<0.3% change in cross-entropy), so we do not further explore optimization hyperparameters 

to mitigate total training time. Finally, we validate the models using the development dataset every 50-200 

training steps, depending on the size of the dataset—smaller datasets require fewer training steps for the 

model to converge. We early-stop training when the development set loss stops improving for more than 

15 validation runs. 

 

5.3. Evaluation Process and Effective Dataset Size 

Our objective is to measure how much the data distribution has changed over time. In that cause, we 

evaluable how well a dataset that has been sampled from one time period, can predict values for each other 

time period’s data. To do so, we train a model and evaluate its test error for each time period over multiple 

time periods. Furthermore, we characterize the learning curves so that we can translate measured test errors 

back to equivalent dataset sizes. Finally, we present the effectiveness curve. 

 

In the training phase, we first find the finest model for each time period and each dataset size. The finest 

model is the one that achieves a smaller development set loss. Its selection process mimics the way models 

are chosen for deployment in AI-enabled products. To find the finest model, at each training run, we validate 

the models on the given time period’s development set and choose the model weights that achieve smaller 

development set loss. When we test with multiple different batch sizes, the finest model is the one that 

achieves superior performance in separate training runs for the given time period and training set size.  

 

We collect the finest model for each training set size ranging from 1.25 to 40 million words. Doing so 

allows us to construct learning curves across different time periods. We cross-evaluate all finest models—

one for each time period and training set size—by evaluating them on the test sets for all other time periods. 

We use these results to curve fit learning curves and indirectly calculate its inverse: Given finest models 

for the time period 𝑡,, and their evaluation scores for the time period, 𝑡= (𝑡= can be equal to 𝑡,), these scores 

will be used to show how increasing the training set size from period 𝑡, might improve prediction accuracy 

for the time period 𝑡=. We curve fit learning curves with power-laws.  

 

Figure 4 shows examples of learning curves for models trained at different times. Each curve shows a model 

that has been trained on a specific time-period. The learning curves are different from each other and form 

parallel curves. The offset is due to change in the entropy 𝐻(𝑃), which is different at different times. Earlier 

models like those that have been trained in 2010 have lower values than the model of 2018. To answer why 

this is happening, we should look at Figure 3. As apparent from Figure 3, the dataset size per month is 
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growing, which is a clear sign of the increase in the contribution and growth of the user base. This growth 

adds to the diversity in topics as well as language styles. The more diverse the dataset, the higher its entropy. 

It is also apparent from this graph that the learning curve is a decreasing function, and hence, more data 

causes lower cross-entropy value. 
 

 
Figure 4) Measured learning curves for models that have been trained at different times. The x-axis is in the log-scale and shows 
the dataset size. Y-axis is the cross-entropy value. The legend describes the time we used to train these models. For example, the 

yellow curve shows a model that has been trained on data from October 2012. 

 

 
Figure 5) Cross entropy loss value when we use a model that has been trained on year z (each curve) and is tested on data from 
year x (x-axis). Y-axis is the cross-entropy loss. The legend describes the time we used to train these models. For example, the 

green curve shows a model that has been trained on data from January 2014. The best cross-entropy loss in each time period is 
mentioned in this graph as well. 
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Figure 5 shows test evolution results for models trained on different time periods. Training size is fixed, 

and the algorithm is trained on data from a few time-periods. Periods are shown in the legend section of 

this Figure. Each point in this graph is the evaluation result of a training and test pair and curves are made 

by joining pairs with similar training time. For example, the blue curve shows the finest model's test results 

that have been trained 2006-2009 and tested on every other time.  

 

The first observation is that the best model for prediction in 𝑡= is the one trained on data from 𝑡=. As an 

example, before January 2010, the model that has been trained on data from 2006-2009 (𝑚0==J&0==K) has 

the lowest cross-entropy and hence, has the best predicting power compared to other curves. In contrast, 

from January 2010 to June 2011, the April 2010’s model (𝑚0=,=&=L&=J) is the best performer replacing the 

blue curve. It immediately shows perishability. It is because the best performing model at one period loses 

its power as we move away from its sampling time. Despite apparent perishability, as time goes by, we see 

an increase in the cross-entropy values across all models. It is again due to the increase in the diversity of 

topics in Reddit data over time. In other words, the entropy function 𝐻(𝑃) is increasing. 

 

Finally, we invert these learning curves to estimate the equivalent dataset size from time period 𝑡, when 

predicting for the time period 𝑡=. Start with the best model, 𝑚"',M=N, for time period 𝑡, trained on 50 million 

words, for example. Evaluate 𝑚"',M=N to collect cross-entropy loss for time period 𝑡=. Now use the learning 

curve for models trained and tested on time period 𝑡= to estimate how much training data from time period 

𝑡= is required to achieve that cross-entropy loss. Suppose the inverted learning curve yields 40 million 

words required in time period 𝑡=, then the equivalent dataset size from time period 𝑡, is 40 million words 

at time 𝑡=, or it is effectively 80% of its time 𝑡, size.  

 

Figure 6 shows the equivalent dataset sizes for models trained on the 100MB of data sampled from different 

times. We chose 100MB for this graph to make it easier for readers to convert values to percentages. As 

seen in this Figure, for periods after sampling time, the equivalent sizes are monotonically decreasing. 

Despite overall monotonicity, we need to answer two questions about this graph: 

 

1. Why do we observe higher equivalence variability on curves with higher equivalence (Closer to 

100MB) sizes? 

2. Why do we, on some occasions, observe a sudden increase in all equivalence curves? 
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Figure 6) Equivalent sizes over time (x-axis) when we used 100MB of data in the training phase. Each curve is the trained model. 
The legend describes the time we used to train these models. For example, the yellow curve shows a model that has been trained 

on data from October 2012. 

 

For the first question, we believe it happens due to numerical errors in the inversion of learning curves. As 

we see in Figure 4, learning curves have power-law functional forms. Hence, in different regions of the 

learning curve, small change in measured cross-entropy translates to different magnitudes of change in 

equivalent sizes. For example, in Figure 4, if the training size is 100MB with measured cross-entropy of 5, 

the equivalent size is roughly 25MB. A small change of 0.1 in the measured cross-entropy translates to an 

equivalent size of roughly 20MB, which is 5MB different from the previous measurement. However, a 

similar small change, when the cross-entropy is 4, makes the difference of roughly 50MB. Therefore, the 

closer the equivalent size is to the training size, a smaller error causes a higher variability. This also explains 

the overshoots of later models (2017 and 2018) in equivalent sizes in August 2017. 

 

For the second question, aside from the test set's sampling issues, model errors, and numerical error in 

fitting the learning curve's functional, we believe it is natural for events on those occasions to be slightly 

more predictable by all models. For example, for August 2017, if we look at the predictive power of 

𝑚0==J&0==K, we cannot find a considerable change, and sudden increase looks normal. However, due to the 

magnification of error and variability in later models (Models with sampling time closer to 2017), we see 

considerable changes in their equivalence values that sometimes lead to overshoots above 100MB.  

 

At last, Figure 7 shows the effectiveness curves. To deal with issues of the sudden increase in equivalent 

sizes, we made a slight alteration on the way we calculate the effectiveness curve. In this way, since 
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theoretically 𝑛n?",$ = 𝑛, we calculate 𝐸)," =
)D&",!
)

=
)D&",!
)D&",$

. In other words, instead of dividing the equivalent 

size of time 𝑡 to 100MB, we divide it by the measured equivalent size of test time. It is as if we divide the 

measured value by the value of the best model predicting the test time. Doing this process over models from 

a few time periods creates Figure 7. 

 

In this Figure, we can confirm a monotonic decrease of the effectiveness curve. It is interesting to see that 

the effectiveness curves of models from different times are all lined up. As this graph shows, roughly around 

7 to 8 years, the value of data for the algorithm and the next word prediction task drops 50%. Furthermore, 

we can see small periodic behavior in the measurements.  For example, looking at the values of days 365, 

730, and 1095 and comparing them with the values of days 181, 550, and 915, we can see small ripples in 

the overall form of effectiveness functional. It suggests small periodicity in the data. 

 

 
Figure 7) Effectiveness curve. The X-axis shows the number of days after the training dataset was collected. The Y-axis shows the 

effectiveness of the trained model. 1 means that 100% of the dataset's value has persevered. The legend describes the time we 
used to train these models. For example, the yellow curve shows a model that has been trained on data from October 2012.  

 

6. Conclusions 
An increase in the size of a dataset improves the generalizability and the accuracy of machine learning 

models. This argument and managerial theories on how the business output scales with the availability of 

resources convinced economists and data scientists that having more data always improves the quality of 

AI-based products and services.  For long, such statements triggered debates on whether stock of available 
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data owned by big tech firms creates a barrier to the entry of competitors and if, much like the network 

effect, the data network effect creates a winner take all situation. Several empirical studies contested this 

view and argued that such economies of scale are hard to achieve in AI-based businesses for a variety of 

reasons. These empirical studies often cited data's diminishing return to scale and argued that the marginal 

value of new data points decreases as datasets size grows.  

 

 In our paper, we argued that time-dependency, despite having a significant effect on scaling the business 

value, is neglected in these debates. Time-dependency refers to the change in business value over time 

because of training models on datasets sampled from a dynamically changing environment. We cite the 

innovation in products and services space as well as the change in consumers' tastes and behavior as 

contributing factors to the change in environments over time. We further argue that due to innovation, with 

certainty, older datasets lose relevance over time. Mainly because the data-generating probability 

distributions in the future are different in that there is no combination of distributions from the past that can 

add up the future probability distributions.  

 

We theoretically show that even a perfect model trained on an infinite supply of time-dependent data may 

have lower accuracy than the same model trained on a recent (perfectly relevant) dataset of finite size. For 

dynamically changing business environments, this theorem immediately dismisses the role of stock of 

historical data in creating a barrier to entry of a competitor mainly because a competing firm equipped with 

a finite (yet sufficient) amount of recent data can attain a similar accuracy score and enter the market. In 

addition, this theorem has economic modeling implications. It states that a simple discounting function 

often used in the form of exponential decay over time is not suitable for modeling the growth in the data 

economy. Instead, an adequate discounting model should be a function of the size in addition to being a 

function of time. 

 

We further introduced metrics like the "equivalent size" that report the impact of time-dependency in dataset 

sizes. To evaluate the equivalent size, we first defined an oracle dataset. We then measured the size of the 

oracle dataset that, if used for training the machine learning model, leads to a similar accuracy score as the 

model trained on our dataset. In other words, the oracle dataset size creates a base of comparison in 

comparing various datasets. We then introduced the substitution function that measures the gain/loss in 

equivalent size when substituting datasets from various times. The equivalent size and the substitution 

function are the building blocks of our machinery to measure the value of data over time. Lastly, we proved 

the existence of "equivalent time" to extend our machinery's capability to compare values of dataset curated 

over time. In our extended machinery, a dataset curated over time is represented by another dataset of 



pg. 31 
Harvard Business School Working Paper, No. 21-016 

similar size sampled from the equivalent time. Using the extended machinery, we formulated offloading 

algorithm. The outcome of this algorithm suggests that a business may remove old (less relevant) data from 

its repository and, despite losing size, end up in a better competitive position. In other words, the gain in 

relevance counterbalances the loss in size. On the other hand, a successful iteration of this algorithm 

suggests that increasing the dataset size by including an older dataset may put a firm in a disadvantageous 

position.  

 

The offloading algorithm builds the case for our argument that, in a rapidly changing environment, a firm 

should focus on the flow of data (defined as data collection rate) as the primary value driver instead of the 

stock of data. To formalize this idea, we first showed that when the flow of data increases, a firm gains/loses 

more if it substitutes data from various times. Then, we proved that the increase in the gain/loss (in the 

substitution function) makes the firm offload more often to bring the equivalent time closer to the prediction 

time. Such action makes the firm focus on the most relevant (recently collected) data. Therefore, when a 

firm grows (which often leads to an increase in the flow of data), it focuses on the most relevant (recent) 

data as the primary value driver. Consequently, we argue that the flow of data is the main value driver for 

big tech companies. Therefore, the marginal value of new data for such firms is always positive and 

economically significant, forcing them to collect new data aggressively. 

 

Our findings can explain the mixed the result in the literature. First, we acknowledge the feedback loop 

logic in [24]. However, Proposition 1 shows that the stock of available data produced by the feedback loop 

has a finite oracle size because of time dependency. Hence, despite the accelerated growth in the size of 

data repository, we shouldn't expect a significant increase in created business value.  In other words, the 

feedback loop stalls in dynamically changing environments unless the firm offloads its less relevant data 

and focuses on the flow of data as the primary value driver. This finding supports the reported results in 

Chiou and Tucker [13] and Arnold et al. [5] since both search engine [13] and advertisement [5] businesses 

use time-sensitive data and hence, face significant time dependency.  

 

We can extend our arguments and results to study other data characteristics as long as we can model them 

by a change in the data-generating probability distribution. It is because all our definitions, theorems, and 

propositions are a function of variation in the distributions. For example, we may extend this result to 

measure the value loss in the user dimension. In other words, we may model the heterogeneity in 

preferences across users by variation in their preference distributions. Then, we can measure the value of a 

user's data on predicting other user's preferences. In this paper, we chose to center our arguments around 
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the time dimension since it is easier to visualize value decline over time. Mainly because experimenting 

over time dimension has the benefit of having a possibly semi-monotonic decline in the value of data. 
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Appendix A 
Proof of Theorem 1) 

Define 𝑣 = −log	(𝑚(𝑑, 𝜃)). For a given 𝜃 and IID 𝑑' ∼ 𝑃(𝜔), 𝑣' becomes IID samples of random variable 

𝑣. If 𝐸𝑣'0 < ∞, for a large number of data points we can use central limit theorem and hence,  

1
𝑛
U𝑣'

)

'+,

= 𝐸4(𝑣) + 𝑜 a
𝐶,
√𝑛
d𝒩(0,1) 

Where 𝐶, is a function of 𝑣𝑎𝑟(𝑣). Note that 𝐸4(𝑣) = 	−𝐸4.log.𝑚(𝑑, 𝜃)11 = −𝐸4(log(𝑃)) +

𝐸4(log(𝑃)) − 𝐸4.log.𝑚(𝑑, 𝜃)11 = 	−𝐸4.log.𝑃(𝑑)11 + 𝐸4 log i
4(8)

7(8,9)	
j = 𝐻(𝑃) + 𝐾𝐿(𝑃	|k𝑚(𝑑, 𝜃)1. 

Therefore,  

−
1
𝑛
Ulog.𝑚(𝑑' , 𝜃)1
)

'+,

= 𝐻(𝑃) + 𝐾𝐿(	𝑃||𝑚(𝑑, 𝜃)	) + 𝑂 a
𝐶,
√𝑛
d𝒩(0,1)	 

 

Q.E.D. 

 

Proof of Proposition 1) 

From our assumptions in the paper and the asymptotic efficiency of MLE [12], we know that 

lim
)→2

𝑚(𝑑, 𝜃)) = 𝑃(𝑑) where 𝜃) = max
-
∑ log.𝑚(𝑑' , 𝜃)1)
'+,  

Hence, for 𝐸| log.𝑚(𝑑' , 𝜃))1| < ∞	 and using the strong law of large number we have 

lim
)→2

−
1
𝑛
Ulog.𝑚(𝑑' , 𝜃))1 = 𝐻(𝑃) + 𝐾𝐿(𝑃|k𝑚(𝑑, 𝜃2)1 = 𝐻(𝑃) + 𝐾𝐿(𝑃||𝑃) = 𝐻(𝑃)
)

'+,

 

Therefore, a model that has been trained on 𝐷2,= should reach the loss value 𝐻(𝑃=). Assume 𝑑(=) ∼ 𝑃=(𝑑) 

and 𝑑(") ∼ 𝑃"(𝑑). Consider a model that has been trained on a dataset from time 𝑡 (𝐷2,") and been tested 

on a dataset from time 0,  𝐷2,=.  In this case, lim
)→2

𝑚.𝑑("), 𝜃)1 = 𝑃"(𝑑) where 𝜃)," =

max
-
∑ log a𝑚i𝑑'

("), 𝜃jd)
'+,  

The test loss value for this model is 

lim
)→2

− ,
)
∑ log a𝑚i𝑑'

(=), 𝜃2,"jd = 𝐻.𝑃(𝑥)1 + 𝐾𝐿 i𝑃(𝑑)||	𝑚.𝑑, 𝜃2,"1j = 𝐻(𝑃=))
'+, + 𝐾𝐿(𝑃=||𝑃")   

Since both 𝐻(𝑃=) and 𝐾𝐿(𝑃=||𝑃") are non-negative functions of distributions [31,41], we conclude that the 

loss value is higher than 𝐻(𝑃=). Therefore, a bounded size dataset should reach the loss value 𝐻(𝑃=) +

𝐾𝐿(𝑃=||𝑃").  
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Formalizing this argument, we define a neighborhood around 𝐻(𝑃=) with the size 𝛿 > 0 and prove that 

with probability (1 − 𝜖),  any dataset of bounded size reaches a value in the neighborhood. 

 

Mathematically, for large dataset samples 𝑛 ≫ 1 and 𝛿 > 0, using theorem 1 we have 

𝑃��−
1
𝑛
Ulog a𝑚 i𝑑'

(=), 𝜃),=jd
)

'+,

−𝐻(𝑃=)� > 𝛿� = 𝑃 a�𝐾𝐿(𝑃=||𝑃") + 𝑂 a
1
√𝑛
d𝒩(0,1)� > 𝛿d

= 𝑃 ��𝒩�𝐾𝐿(𝑃=||𝑃"), 𝑜 a
1
√𝑛
d�� > 𝛿� = 

= 𝑃�𝒩�𝐾𝐿(𝑃=||𝑃") − 𝛿, 𝑜 a
1
√𝑛
d� > 0� + 𝑃 �𝒩�𝐾𝐿(𝑃=||𝑃") + 𝛿, 𝑜 a

1
√𝑛
d� < 0�

= Φp
𝛿 − 𝐾𝐿(𝑃=||𝑃")

𝑜 a 1
√𝑛
d

t

���������������
(')

+Φp
−𝛿 − 𝐾𝐿(𝑃=||𝑃")

𝑜 a 1
√𝑛
d

t

���������������
('')

 

Where Φ(. ) is the cumulative distribution function of standard Normal. In above equation, since 𝛿 > 0, (i) 

is bigger than (ii) which means 

𝑃 ��−
1
𝑛
Ulog a𝑚 i𝑑'

(=), 𝜃),=jd
)

'+,

−𝐻(𝑃=)� > 𝛿� < 2Φp
𝛿 − 𝐾𝐿(𝑃=||𝑃")

𝑜 a 1
√𝑛
d

t 

Since for 𝛿 < 𝐷(𝑃=||𝑃") the numerator is negative,  

lim
)→2

Φp
𝛿 − 𝐾𝐿(𝑃=||𝑃")

𝑜 a 1
√𝑛
d

t = Φ(−∞) = 0 

Therefore, For any 𝜖, 𝛿 > 0, ∃	𝑛= < ∞		𝑠. 𝑡. ∀	𝑛 > 𝑛=	 

𝑃 ��−
1
𝑛
Ulog a𝑚i𝑑'

(=), 𝜃),=jd
)

'+,

−𝐻(𝑃=)� > 𝛿� < 2Φp
𝛿 − 𝐾𝐿(𝑃=||𝑃")

𝑜 a 1
√𝑛
d

t < 𝜖 

Meaning that a dataset size of 𝑛 > 𝑛= with probability 1 − 𝜖 surpass the performance of infinite dataset 

size from time 𝑡. 

Q.E.D. 
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Proof of Proposition 2) 

As explained in the main text, the substitution function 𝑓)(𝑡,, 𝑡0) measures the gain in substituting a dataset 

of size 𝑛 from time 𝑡0 with a dataset of same size from time 𝑡,. We also proved in theorem 2 (a) that the 

substitution function is non-negative. In proving the claims, we have two additional assumptions. First, we 

assume that the monotonicity result proved in theorem 2 (b) is valid for all dataset sizes meaning that 

𝑓)(𝑡,, 𝑡0) is monotonic for all n. Second, we assume that 𝑓,(𝑡,, 𝑡0) = 1 for all 𝑡,, 𝑡0 ∈ ℝ! ∪ {0}. It is 

intuitive since, in our model, all elements have non-zero probability and hence, one data point carries in 

expectation same amount of information regardless of when it was sampled. 

 
Now, fixing 𝑡0, for all 𝑡 ∈ ℝ! ∪ {0} and all 𝑛 ∈ ℕ we have either 
 

• 𝑓)(𝑡, 𝑡0) < 𝑓2(𝑡, 𝑡0) which due to monotonicity means that it is increasing, and the claim is proved. 

• 𝑓)(𝑡, 𝑡0) > 𝑓2(𝑡, 𝑡0) which means that for 𝑡 = 0 and 𝑛 < ∞, 𝑛 > 𝑓)(0, 𝑡0) > 𝑓2(0, 𝑡0) ⟹ 1 >

𝑓2(0, 𝑡0) = ∞ which is a contradiction. 

• Or 𝑓)(𝑡, 𝑡0) intersects with 𝑓2(𝑡, 𝑡0) in a few points. Suppose 𝑡= is an intersection point. Since 

𝑓)(𝑡=, 𝑡0) is monotone in 𝑛 and 𝑓)(𝑡=, 𝑡0) = 𝑓2(𝑡=, 𝑡0) = 𝑐, for all 𝑛, 𝑓)(𝑡=, 𝑡0) = 𝑐.  If 𝑐 ≠ 1, then 

𝑓,(𝑡=, 𝑡0) ≠ 1 which is a contradiction and hence 𝑐 = 1. Between the intersection points if  

𝑓2(𝑡, 𝑡0) > 1, 𝑓)(𝑡, 𝑡0) is increasing since it is monotonic between 𝑓,(𝑡, 𝑡0) = 1 and 𝑓2(𝑡, 𝑡0) and 

if 𝑓2(𝑡, 𝑡0) < 1, 𝑓)(𝑡, 𝑡0) is decreasing since it is monotonic between 𝑓,(𝑡, 𝑡0) = 1 and 𝑓2(𝑡, 𝑡0). 

 

In conclusion,	𝑓)(𝑡,, 𝑡0) is increasing in 𝑛 if 𝑓)(𝑡,, 𝑡0) > 1 and it is decreasing in 𝑛 if 𝑓)(𝑡,, 𝑡0) < 1.  Hence, 

the substitution gain/loss increases with 𝑛. Because of Proposition 3 which states that a dataset curates over 

time has a loss value equal to a dataset of same size (𝑛)	that is sampled from the equivalent time, we argue 

that 𝑛 is equivalent to the flow of data. Hence, the substitution gain/loss increases with the flow of data. 

 
Q.E.D. 

 

 

Proof of Theorem 2) 

a, c) This is a direct result of theorem 1 and proposition1. 

b) Due to monotonic decline of effectiveness over time, 𝐾𝐿.𝑃=||𝑃"'1 < 𝐾𝐿(𝑃=||𝑃"() for 𝑡0 > 𝑡, and 

𝐾𝐿.𝑃=||𝑃"'1 > 𝐾𝐿(𝑃=||𝑃"() for 𝑡0 < 𝑡,. 
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For sufficiently large number of datapoints, the model 𝑚(𝑑, 𝜃) almost converged to 𝑃(𝑑). Therefore, due 

to continuity and differentiability of the learning curve, we can use Taylor expansion of learning curve’s 

inverse on the neighborhood of 𝑃(𝑑). 

𝑛n?",! = 𝐸𝐺=&, i𝐻(𝑃=) + 𝐾𝐿 i𝑃=||𝑚.𝑑, 𝜃),"1j	j

∼ 𝐺=&,.𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃")1

+ 𝐸 �a𝐾𝐿 i𝑃=||𝑚.𝑑, 𝜃),"1j − 𝐾𝐿(𝑃=||𝑃")d
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!P/(4$||4!)� 	

= 	𝐺=&,.𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃")1 − 𝐸 ��𝐸4$ log
𝑚.𝑑, 𝜃),"1
𝑃"(𝑑)

��
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!P/(4$||4!) 

Using Taylor expansion log(1 + 𝑥)~𝑥 − .(

0
+ ./

R
+ 𝑜(𝑥L), in the neighborhood of 𝑥 = 0. We do this 

because we expect 𝑚.𝑑, 𝜃),"1 → 𝑃"(𝑑). Using Taylor expansion, we have  

𝑛?",! = 𝐺=&,.𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃")1

− 𝐸4$ �
𝑚.𝑑, 𝜃),"1 − 𝑃"(𝑑)

𝑃"(𝑑)
−
1
2
�
𝑚.𝑑, 𝜃),"1 − 𝑃"(𝑑)

𝑃"(𝑑)
�
0

+
1
3
�
𝑚.𝑑, 𝜃),"1 − 𝑃"(𝑑)

𝑃"(𝑑)
�
R

+ 𝑜 �
𝑚.𝑑, 𝜃),"1 − 𝑃"(𝑑)

𝑃"(𝑑)
�
L

�
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!P/(4$||4!) 

Assuming 𝑚(𝑥, 𝜃) to be a continuous function of 𝜃, we can use theorem 10.1.12 in [12] (Asymptotic 

efficiency of MLE) and approximate 𝑚.𝑑, 𝜃),"1 with respect to randomization in algorithms and choice of 

dataset in the training phase. Therefore, 

𝑚.𝑑, 𝜃),"1 ∼ 𝑃"(𝑑) +
1
√𝑛

𝒩(0, 𝑣(𝜃)) 

Where 𝑣(𝜃) is the Cramer-Rao lower bound. 

𝑛n?",! = 𝐺=&,.𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃")1

− 𝐸[𝐸4$ p
1
√𝑛

𝒩�0,
𝑣(𝜃)
𝑃"(𝑑)

� −
1
2𝑛
�𝒩�0,

𝑣(𝜃)
𝑃"(𝑑)

��
0

+
1

3𝑛√𝑛
�𝒩�0,

𝑣(𝜃)
𝑃"(𝑑)

��
R

+ 𝑜 a
1
𝑛0dt

]	
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!P/(4$||4!) 

= 𝐺=&,.𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃")1 +
1
2𝑛
�𝐸𝐸4$ �𝒩�0,

𝑣(𝜃)
𝑃"(𝑑)

��
0

+ 𝑜 a
1
𝑛0d

�	
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!P/(4$||4!)	 

Since the first and third moment of centered Gaussian distribution is equal to 0.  
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As a side note, the argument inside the brackets is positive. Since ;<$
.'(S)
;S

< 0 we conclude  

1
2𝑛
�𝐸𝐸4$ �𝒩�0,

𝑣(𝜃)
𝑃"(𝑑)

��
0

�	
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!P/(4$||4!) < 0 

 Hence, 𝑛n?",!  is an increasing function in 𝑛 for sufficiently large n. 

Back to the prove, we now take the derivative of 𝑓)(𝑡,, 𝑡0) with respect to 𝑛. For large 𝑛 we use the 

following approximation 

𝑓�)(𝑡,, 𝑡0) =

𝐺=&, i𝐻(𝑃=) + 𝐾𝐿.𝑃=||𝑃"'1j +
1
2𝑛 �𝐸𝐸4$ �𝒩 �0, 𝑣(𝜃)𝑃"'(𝑑)

��
0

�	𝜕𝐺=
&,(𝑞)
𝜕𝑞 |O(4$)!P/T4$||4!'U

𝐺=&, i𝐻(𝑃=) + 𝐾𝐿.𝑃=||𝑃"(1j +
1
2𝑛 �𝐸𝐸4$ �𝒩 �0, 𝑣(𝜃)𝑃"((𝑑)

��
0

�	𝜕𝐺=
&,(𝑞)
𝜕𝑞 |O(4$)!P/T4$||4!(U

=

𝑛n?%,"' +
1
2𝑛 �𝐸𝐸4$ �𝒩 �0, 𝑣(𝜃)𝑃"'(𝑑)

��
0

�	𝜕𝐺=
&,(𝑞)
𝜕𝑞 |O(4$)!P/T4$||4!'U

𝑛n?%,"( +
1
2𝑛 �𝐸𝐸4$ �𝒩 �0, 𝑣(𝜃)𝑃"((𝑑)

��
0

�	𝜕𝐺=
&,(𝑞)
𝜕𝑞 |O(4$)!P/T4$||4!(U

 

To show the derivative sign, we focus on the for large n (Omitting 𝑜 i ,
)/
j) 

⟹ 𝑛𝑢𝑚�
𝜕𝑓�)(𝑡,, 𝑡0)

𝜕𝑛
�~

1
2𝑛0

�𝑛n?%,"' �𝐸𝐸4$ �𝒩�0,
𝑣(𝜃)
𝑃"((𝑑)

��
0

�	
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!?T4$||4!(U

− 𝑛n?%,"( �𝐸𝐸4$ �𝒩 �0,
𝑣(𝜃)
𝑃"'(𝑑)

��
0

�	
𝜕𝐺=&,(𝑞)
𝜕𝑞

|O(4$)!?T4$||4!'U� 

Since the argument in the brackets are not a function of 𝑛, we can conclude that for large 𝑛, the substitution 

function 𝑓)(𝑡,, 𝑡0) is monotonic in 𝑛.  

Q.E.D. 

 

Proof of Lemma 1) 

Assume dataset 𝐷)," is sampled over time with the density function 𝜆"+"$ =
,
)
∑ 1(𝑡' = 𝑡=))
'+, . Considering 

each sample a random variable, number of times event 𝑎 happens i.e. 1(𝑑 ∈ 𝑎) = 1 in the dataset is equal 

to ∑ 1")(𝑑 ∈ 𝑎)
)
'+, . Therefore, the expected frequency of the event {𝑑 ∈ 𝑎} is equal to 
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𝑃?",!(𝑑 ∈ 𝑎) = 𝐸 �U
1")(𝑑 ∈ 𝑎)

𝑛

)

'+,

� =
1
𝑛
U𝐸(1")(𝑑 ∈ 𝑎))
)

'+,�������������
VWX')'	"YZ[\Z7

=
1
𝑛
U𝑃")(𝑑 ∈ 𝑎)
)

'+,

 

Integrating the density function 𝜆" into formulation 

𝑃),[=,"],G!(𝑑 ∈ 𝑎) =
1
𝑛
U𝑃")(𝑑 ∈ 𝑎)
)

'+,

=
1
𝑛
� U𝑃I(𝑑 ∈ 𝑎)1(𝑡' = 𝑠)

)

'+,

"

=
	𝑑𝑠

= � 𝑃I(𝑑 ∈ 𝑎)
1
𝑛
U1(𝑡' = 𝑠)
)

'+,

"

=
	𝑑𝑠 = � 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠

"

=
 

Q.E.D. 

 

Proof of Proposition 3) 

Using lemma 1, we know that dataset’s net distribution is 

𝑃[=,"],G!(𝑑 ∈ 𝑎) = � 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠
"

=
 

Therefore, training on the dataset of infinite size and test it at time 0, the error will be equal to  

𝐻(𝑃=) + 𝐾𝐿.𝑃=||𝑃[=,"],G!1 = 𝐻(𝑃=) + 𝐾𝐿 �𝑃=|| � 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠
"

=
� 

Since KL-divergence is a convex function [30], we use Jensen inequality to derive an upper bound 

𝐾𝐿 �𝑃=|| � 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠
"

=
� = 𝐾𝐿 �� 𝑃=𝜆I𝑑𝑠

"

=
||� 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠

"

=
�

= � 𝜆I𝐾𝐿(𝑃=||𝑃I)𝑑𝑠 < max
]∈[=,^]

𝐾𝐿(𝑃=, 𝑃I)
"

=
 

Besides, we know that KL-divergence is nonnegative which means 

𝐾𝐿(𝑃=||𝑃=) = 0 ≤ 	𝐾𝐿 �𝑃=||� 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠
"

=
� ≤ max

]∈[=,^]
𝐾𝐿(𝑃=, 𝑃I) 

Since we assumed in this paper that the function ℎ(𝑡) = 𝐷(𝑃=||𝑃") is continuous over time (The change in 

distribution is gradual and hence, ℎ(𝑡) is continuous) There exist a time 𝑡∗ ∈ [0, 𝑡] such that  

𝐾𝐿(𝑃=||𝑃"∗) = 𝐾𝐿 �𝑃=||� 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠
"

=
� 

Therefore 

𝐻(𝑃=) + 𝐾𝐿(𝑃=||𝑃"∗) = 𝐻(𝑃=) + 𝐾𝐿 �𝑃=||� 𝑃I(𝑑 ∈ 𝑎)𝜆I𝑑𝑠
"

=
� 

This means that 𝑃"∗ generate the same loss value as 𝑃[=,"],G!. 

Q.E.D. 
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Proof of Proposition 4) Having a sharper substitution gain or loss means 

𝑛nO",!' − 𝑛nO",!( > 𝑛n/",!' − 𝑛n/",!(  

 

Since 𝑛n/",$ = 𝑛nO",$ = 𝑛, we alternatively have  𝑛n/",! > 𝑛nO",! or  𝐸/",! > 𝐸O",!. In other words, data from 

low perishable datasets remain effective for a longer time. Therefore, we have 
1

𝑛nO",!(
>

1
𝑛n/",!(

 

Multiplying above inequality to inequality (3) we have 
𝑛nO",!' − 𝑛nO",!(

𝑛nO",!(
>
𝑛n/",!' − 𝑛n/",!(

𝑛n/",!(
							 

⇔		
𝑛nO",!'
𝑛nO",!(

− 1 >
𝑛n/",!'
𝑛n/",!(

− 1	 ⇔	𝑓)O(𝑡,, 𝑡0) > 𝑓)/(𝑡,, 𝑡0)			 

 

Which proves the first step. For the second step, consider a highly perishable dataset 𝐻),[=,"],G! with identical 

sampling density function and equal size to a less perishable dataset 𝐿),[=,"]	G!.  

The condition for a successful off-loading iteration from the equivalent time 𝑡∗ to 𝑡∗∗ is14  

𝑓)&)$(𝑡
∗∗, 𝑡∗) >

𝑛
𝑛 − 𝑛=

 

Since we assumed both 𝐻),[=,"],G! and 𝐿),[=,"],G! have identical sizes and sampling density functions, deleting 

identical period’s data from both datasets still makes them have equal sizes. Consequently, for 𝑡, < 𝑡0, any 

off-loading iteration that changes 𝐿),[=,"(],G! 	to 𝐿)&)$,[=,"'],G! is also an iteration for 𝐻),[=,"(],G! to 

𝐻)&)$,[=,"'],G! since: 

𝑓)O(𝑡,, 𝑡0) > 𝑓)/(𝑡,, 𝑡0) ≥
𝑛

𝑛 − 𝑛=
 

And that completes the proof. 

 

Q.E.D. 
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Appendix B 
We ran four experiments with different dataset sizes over Reddit data. The up-left Figure shows the 

effectiveness curve when we trained the model over 25MB of data. Up-right, down-left, and down-right 

show the curves for 50, 100, 200 MBs, respectively. As can be seen in these graphs, the effectiveness curve 

is becoming steeper as expected. Meaning that substitution gain will be monotonically increasing in the 

number of samples. 

For example, looking at the effectiveness value for day 2920, we can see the effectiveness values of roughly 

0.55, 0.5, 0.45, and 0.4 in the 25, 50, 100, and 200 MBs graphs, respectively.  

𝑓0M_`(0,2920)~1.81	
𝑓M=_`(0,2920)~2.00
𝑓,==_`(0,2920)~2.22
𝑓0==_`(0,2920)~2.50
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