
Multivariate Unsupervised Machine Learning for Anomaly Detection in
Enterprise Applications

Daniel Elsner
Technical University

of Munich
daniel.elsner@tum.de

Pouya Aleatrati Khosroshahi
BMW Group

pouya.aleatrati-
khosroshahi@bmw.de

Alan D. MacCormack
Harvard Business School
amaccormack@hbs.edu

Robert Lagerström
KTH Royal Institute

of Technology
robertl@kth.se

Abstract

Existing application performance management
(APM) solutions lack robust anomaly detection
capabilities and root cause analysis techniques, that do
not require manual efforts and domain knowledge. In
this paper, we develop a density-based unsupervised
machine learning model to detect anomalies within
an enterprise application, based upon data from
multiple APM systems. The research was conducted in
collaboration with a European automotive company,
using two months of live application data. We show
that our model detects abnormal system behavior
more reliably than a commonly used outlier detection
technique and provides information for detecting root
causes.

1. Introduction

Today, many organizations offer their services and
products through the use of online platforms. The
performance of these platforms is therefore critical to
a user’s experience. Poor user experiences caused by
technical failures, such as a slow response time for a
website, can have a high impact on the business success
of these organizations: For example, Google, lost 20%
of its user traffic in 2006 due to an increased website
response time of only 500 ms [1].

The controlled monitoring of an enterprise’s
application portfolio with respect to its performance
is called Application Performance Management
(APM) [2]. By continuously recording operational
metrics from ongoing information technology
(IT) operations, APM systems seek to identify
performance-related issues and inform the user in case
of anomalies [2]. Current APM methods are naturally
reactive, e.g., before an APM system reports a long
response time for an application, this abnormality must
first occur and be identified by the APM system. Only
afterwards, can a user begin to identify and resolve the

root cause of this abnormality. In response, Panwar [3]
proposes a shift from reactive towards proactive and
more analytical APM techniques, by harnessing current
developments in machine learning (ML), statistical
learning, and artificial intelligence (AI) [4].

There are a wide range of software-based solutions,
such as AppDynamics1, Dynatrace2 and Nagios3

that support APM in organizations [5]. Most of
these solutions follow the same logic: they 1) collect
different APM related data from different monitoring
sources, 2) store and process the data to make
them usable for further analysis, 3) make the data
understandable through intuitive visualizations, and
4) enable interpretation and decision-making using
notifications/alerts and features for exploring root
cause analysis [2, 6]. While these solutions help
experts to identify application performance bottlenecks
in their enterprise applications, they are mostly
limited to alert and visualization functions, rather than
providing advanced anomaly detection capabilities.
Furthermore, root cause analysis can often only be
performed manually, by experts with significant domain
knowledge about the applications being assessed [7].

In this paper, we examine the extent to which ML
methods can be used to enable the identification of
abnormal system behaviors in an enterprise application,
using monitoring data from a variety of different APM
systems as input. In particular, we address the following
research questions (RQs):

• RQ1: What are the requirements for a statistical
model that can detect abnormal enterprise
application behaviors using APM metrics?

• RQ2: How reliable is the developed statistical
model in terms of its ability to detect “real”
enterprise application anomalies?

1https://www.appdynamics.com/
2https://www.dynatrace.com/
3https://www.nagios.org/

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60018
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 5827

This paper presents a novel approach for identifying
anomalies, based on a density-based clustering
algorithm. The key output is a statistical model
which enables the detection of enterprise application
anomalies, using APM metrics as inputs. The research
was conducted in cooperation with a large European
automobile company. The development and evaluation
of the statistical model was based upon real application
performance data from this company, gathered over
a two month time period. In our results, we show
that our model recognizes “real” anomalies more
effectively than a commonly used outlier detection
technique. Importantly, real anomalies were identified
by the owners of the system, and reflect times during
the operation of the system where either there was an
outage (e.g., the application was unavailable) or there
were corrupt business transactions (e.g., the business
logic was erroneous hence errors were returned).

This paper is structured as follows: Chapter 2 gives
an overview of related work, and is followed by a
brief explanation of our research approach in Chapter 3.
The development of our model and the results of our
evaluation are presented in Chapter 4. We discuss our
results in Chapter 5 and end with a brief conclusion and
outlook for further research in Chapter 6.

2. Related Work

Our literature review followed the guidelines
established by Webster and Watson [8] and consisted
of three structured steps: 1) identify relevant literature,
2) structure the review, and 3) define the research gap.
To identify relevant literature, we defined two search
queries and examined the online search catalog Scopus,
the largest abstract and citation database for scientific
contributions. This search revealed 19 contributions.
After filtering out unrelated contributions, we were left
with 8 articles that directly related to the topics of data
mining/ML and anomaly detection.

Considering APM and anomaly detection from a
data mining/ML point of view, research has examined
the topic using numerous techniques. For instance
Baraglia and Palmerini [9], Hussain et al. [10], and
Fend and Vij [11], investigate APM with web usage
mining algorithms to optimize web server performance.
In their contribution, they classify web visitors, generate
suggested links for user user navigation, or perform web
cache pre-fetching to improve web server performance
optimization. Hyndman et al. [12] approaches the
topic with another focus and technique: they collected
monitoring data from Yahoo, perform a principal

component analysis (PCA) to reduce the dimensionality
of multivariate time series data and then apply a
density-based and α-hull based multi-dimensional
outlier detection algorithm. Wang [13] focuses on
forecasting the utilizations of the central processing
unit (CPU) by proposing an auto-regressive integrated
moving average with back-propagation neural network.
Further contributions are provided by Hyndman et
al. [14], Jiang et al. [15] and Cunha and Silva
[16, 17]. Since these contributions are beyond the
scope of this research, they are not discussed here.
However, considering contributions from ML and data
mining, our literature review reveals that only a few
contributions have used unsupervised ML to detect
enterprise application anomalies.

The second relevant research field is the anomaly
detection community, which focuses on discovering
enterprise application anomalies, based on APM
metrics. As outlined earlier, numerous vendors provide
software-aided solutions for APM. In this context,
Ahmed et al. [18] recently compared multiple solutions
in terms of detecting performance regressions and
anomalies. They conduct a case study with three
commercial and one open source APM tool to analyze
the performance of three open source applications.
Although the contribution shows that existing tools
can support practitioners in detecting performance
regressions, it also shows that they lack state-of-the-art
mining approaches. Ara et al. [19] suggest a bivariate
time series model for statistical monitoring of web
servers to detect abnormal error rates (connection
synchronization and rejection errors). Takashi et al.
[20] focuses on network related performance anomalies
by analyzing packet loss ratios. The results reveal
implementation errors in web server technologies.
A further approach is presented by Guo et al. [21]:
they used modified support vector machines to detect
abnormal patterns in server performance monitoring
data and derived thresholds for an alarm system.
Finally, although the APM anomaly detection research
community offers numerous research fields, only
Hyndmann et al. [12] use bivariate outlier detection
techniques to detect anomalies.

Based on the literature review, we were able to
identify a research gap, which was also relevant to
application owners inside our automotive company
partner: to investigate multivariate density-based
anomaly detection techniques to identify application
anomalies and root causes for this behaviour. We used
this gap to derive requirements for developing anomaly
detection models (see Section 4).

Page 5828

3. Research Approach

We aimed to create and evaluate a research artifact
(i.e., a model to detect application anomalies), hence
our research approach aligns to the design science
approach described by Hevner et al. [22] and Peffers
et al. [23]. As noted in Section 1, this work was
conducted in collaboration with a large European
automotive company. The company employs around
100,000 people and operates a portfolio of around 5,000
applications. The IT department consists of around
4,500 employees, with a dedicated department that
deals with APM topics within the organization, as well
as a “big data” department that deals with data analytics
topics across the entire organization. Experts from both
departments assisted during this research. Hence, our
work is based upon the integration of prior academic
knowledge (see Section 2) with managerial practice.

The anomaly detection model (i.e., the research
artifact) was designed, developed, and evaluated
iteratively over an eight-month period. Figure 1
illustrates the research steps conducted.

Identify
Problem &
Motivate

Define
Objectives

Design &
Development

Evaluate
Models

Discuss &
Conclude

• Literature review
• Definition of RQs

• Derive requirements for
anomaly detection models

• Data gathering and preparation
• Feature engineering and selection
• Model implementation

• Aggregation of results
• Communicate and discuss

results to experts

• Data labeling
• Compare detected to labeled

anomalies

Sep 2017

Oct 2017

Nov 2017

Apr 2018

Dec 2017

Mar 2018

Figure 1. Research approach motivated by

Hevner et al. [22] and Peffers et al. [23]

Identify Problem & Motivate: Based on our
literature review and discussions with domain experts
within the automotive company, we derived two RQs.
The review followed best practices by Webster and
Watson [8] and reveals contributions in APM-related
fields, data mining/ML, and anomaly detection. The

results of the review are given in Section 2.
Define Objectives: The results of the literature

review were aggregated and discussed with experts
inside the company. Based on the practical relevance
of the literature and data availability inside the firm,
requirements were derived for the model development.
These requirements are discussed in Subsection 4.1.

Design & Development: APM monitoring data was
gathered from a variety of sources, and then prepared
for processing. Based on the defined objectives and
data availability, feature engineering and selection was
conducted by incorporating expert domain knowledge.
The implemented statistical models addressed the
requirements from prior research steps by incorporating
density-based unsupervised ML techniques. Model
design and development are described in detail in
Subsection 4.2.

Evaluate Models: The evaluation of the models
relied on obtaining labels for “abnormal” time periods
in the operation of the enterprise application that we
studied. These labels were provided by the owners of
the system. The results were presented and discussed
with the big data department and APM experts of the
automotive company. Based on their insights, the
models and selected features were adjusted iteratively.
Subsection 4.3 gives detailed information about the
evaluation.

Discuss & Conclude: Based on the results of
the evaluation, the defined RQs were answered and
presented to the company. The model, which
incorporates a novel approach for detecting anomalies,
as well as an indication for the root cause of these
anomalies, performs more precisely than a baseline
model that is based upon a commonly used approach
for outlier detection. We also identified limitations of
our work, and suggest future work that builds upon this
research. These are presented in Section 6.

4. Anomaly Detection

4.1. Define Objectives

Based upon our literature review, we derived the
following research requirements (Reqs) for our anomaly
detection model to address the defined research gap:

• Req1: The model should harness density-based
unsupervised ML techniques to detect anomalies
in enterprise applications.

• Req2: The model should accept a multivariate
feature vector as input in order to incorporate
multiple APM metrics of different types.

Page 5829

• Req3: The model should output a continuous
measure of the degree of abnormality in the
system over time, called the Anomaly Index.

• Req4: The model should provide an indication of
the root cause of detected anomalies, by showing
which APM metrics most impact system state.

• Req5: The model should be evaluated with
respect to labelled time periods where anomalies
were known to exist by the organization.

4.2. Design & Development

The monitoring data used for building the models
comes from three different APM systems of a focal
enterprise application. The application was chosen
based upon its high business relevance, as well as
the quality and availability of monitoring data. In
cooperation with experts from the APM department, the
scope of our analyses was defined as follows:

• Time Period of Collected Data: Two months,
from October 1, 2017 to November 30, 2017.

• Input: Fifteen APM metrics as time series data
of varying collection and aggregation intervals,
from 1 data point per minute to 1 data point
per 60 minutes (step size defined as 1 minute).
The source systems for the data were Dynatrace,
Nagios, and JMX monitoring on web server,
application server, and infrastructure levels.

• Output: A continuous numerical measure, which
reflects the degree of anomaly, i.e., the Anomaly
Index, in the enterprise application over time.

4.2.1. Data Source Identification In figure 2, the
APM measures collected by the monitoring systems
across the four-layer enterprise architecture are outlined
with their respective collection intervals. Since client
data was not available, we only consider server
monitoring data from the point where a client request
arrives at the web server layer, where a load balancer
sends the request to an application sever instance. The
15 available APM measures are as follows:

• Requests per Minute: The amount of requests
from clients arriving at the web server layer.

• Traffic per Minute: The amount of data in bytes
transferred through the web server layer.

• CPU Load: The average CPU utilization in
percentage.

• MQS Queuelength: The average length of the
message queue.

• JVM Threads: The average amount of JVM
threads in the JVM running the application.

• JVM Heap Used: The average heap memory
used in the JVM running the application in
megabytes.

• Response Time: The response time of
application servers in milliseconds.

• Path Duration: The complete duration a
path was executed by the application server
in milliseconds. Additionally to the response
time, this measure can contain asynchronous
subsequent tasks.

• Failed Transactions: Amount of failed
transactions includes every transaction resulting
in an HTTP error.

• Path Amount: Amount of processed execution
paths (i.e., traces).

• Exception Count: Amount of exceptions thrown
by the application server.

• Node Count: Total amount of nodes (i.e.,
Dynatrace agents) visited in all processed paths.

• DB Sessions: Amount of current database
sessions.

• DB Physical Reads: Amount of reading
operations in database.

• DB Physical Writes: Amount of writing
operations in database.

To evaluate the models developed, we needed
to acquire labels of abnormal behavior within the
enterprise application, representing a so-called
”ground truth” [4]. This was achieved through a
simple web-based software interface, which allowed
application owners to manually label abnormal time
periods. In the considered time period of two months,
eight abnormal time periods were identified by these
domain experts, ranging in duration from 21 to 316
minutes. The labels reflect time periods for the
application in which either an outage occurred (i.e.,
service was unavailable) or corrupt business transactions
were prevalent (i.e., business logic was erroneous).

Page 5830

Client

Web
Server

Application
Server

Database
Server

Exemplary
Unidirectional Path

Logical instance of server or client

Nagios JMX Dynatrace

Requests per Minute (1/1.5min)
Traffic per Minute (1/1.5min)
CPU Load (1/1.5min)

CPU Load (1/1.5min)
MQS Queuelength (1/2min)

DB Sessions (1/60min)
DB Physical Reads (1/60min)
DB Physical Writes (1/60min)

JVM Threads (1/1.5min)
JVM Heap Used (1/1.5min)

Average Response Time (1/min)
Maximal Response Time (1/min)
Average Path Duration (1/min)
Maximal Path Duration (1/min)
Failed Transactions (1/min)
Path Amount (1/min)
Exception Count (1/min)
Node Count (1/min)

Layer

Figure 2. Collected APM measures on four-layer architecture from three monitoring systems: Nagios, JMX,

Dynatrace

4.2.2. Design Guidelines Our contribution consists
of developing statistical models which harness
density-based unsupervised ML techniques for
detecting anomalies in application performance.
The design of our models is inspired by a number
of prior efforts. First, Overseer Labs4 use K-Means
clustering for root cause analysis of bad system
health [24, 25]. The work is motivated by the fact
that individual measures are noisy and can trigger
false positives when it comes to detecting anomalous
system behaviors. Hence the authors propose the
use of multivariate measures to develop an overall
indicator of system health. Second, Netflix5 apply
a clustering algorithm called Density-Based Spatial
Clustering of Applications with Noise (DBSCAN)
to detect unhealthy servers in a server-farm, using
univariate time series data [26]. We extend this work
by showing how it can be used with multivariate data
from multiple APM systems. Finally, Goldstein and
Uchida compare a number of unsupervised ML outlier
detection algorithms on multivariate data sets, and show
that a technique called Local Outlier Factor (LOF),
which detects outliers based upon the density of the
local neighborhood for each observation, performs well.
We use the LOF method as a baseline with which to
compare the performance of our new model [27].

Below, we define our design guidelines (DGs),
which capture useful aspects of this former work and

4http://overseerlabs.io/
5https://www.netflix.com/

frame them in terms of concrete implementation steps:

• DG1: To address Req1, we apply and
compare DBSCAN and LOF, density-based
unsupervised ML and outlier detection
techniques, respectively. [27].

• DG2: In alignment with Req2 and Req3, we
emphasize multivariate modeling to output a
measure that reflects overall system health (i.e.,
the Anomaly Index) [24].

• DG3: As constituted in Req4, we use the
information about individual contributions of
metrics to the overall anomaly index to provide
an indication about the root cause of the
anomaly [24].

Figure 3 depicts the conceptual process for the
model development, consisting of data gathering
and preparation, feature engineering and selection,
model implementation, and data labelling and model
evaluation with respect to these designated DGs.

4.2.3. Feature Engineering & Selection After
obtaining the data from the source systems described
above, several steps needed to be taken. First, we
needed to fill in missing data observations for some
time periods – we tested the use of both mean and
median filling and chose the median method, given
it produced more robust results. Second, the APM
time series measures had different scales, hence we
standardized the scales to enable clustering. Third, to

Page 5831

Data
Preparation

Data
Gathering

Feature
Engineering &

Selection

Model
Implementation

Data Labelling
& Evaluation

• Obtain APM metrics from source
systems

• Impute missing data and
standardize feature vector

• Incorporate application-specific
knowledge to design features

• Obtain anomalous labels from
practitioners and evaluate model
with LOF baseline model

• Implement anomaly detection
model based upon DBSCAN

Use obtained labels to evaluate and
improve models

Figure 3. Conceptual process for the model

development

supplement the set of 15 APM metrics, we developed
four self-engineered features, which combine different
APM metrics. These included:

• Average Failure Rate

• Average Exceptions per Path

• Average Failures per Path

• Average Nodes per Path

Domain experts at the company selected the most
relevant APM metrics for the application, which are
used as features in the anomaly detection models.
The two models based on DBSCAN and LOF were
then trained using the resulting feature vector. After
obtaining anomalous labels from system owners,
the labels were used to improve and evaluate the
implemented models and tune their hyperparameters.
Furthermore, the set of selected features was enhanced
by conducting correlation analyses on the obtained
labels and the available APM metrics. Table 1 shows
the best feature set after these analyses.

4.2.4. Model Implementation Our research
approach was to compare our newly developed model –
a novel approach incorporating DBSCAN – to a second
model using LOF, a well-performing outlier detection
technique [27].

For our novel approach using DBSCAN we took the
following four steps:

Table 1. Best performing feature set for anomaly

detection models

Average Path Duration
Average Response Time
Failure Rate
Maximal Response Time
Maximal Path Duration
MQS Queuelength
Failed Transactions
JVM Threads

1. Train the DBSCAN model on multivariate
(n-dimensional), standardized feature vector X
with model hyperparameters Eps (the radius
of the density neighborhood) and MinPts
(the minimal amount of neighbors in the
neighborhood). The initial set of hyperparameters
is found by applying a heuristic from Ester et
al. [28].

2. Select the largest cluster (i.e., containing most
observations) and define it as the normal system
state. Set its centroid Cnormal as the reference
point for the calculation of the anomaly index.

3. Calculate the euclidean distance d
from each observation o to Cnormal
(d =

√∑n
i=1(oi − Cnormali)

2) in the
n-dimensional space, which reflects the anomaly
index for the observation.

4. For each observation o, calculate the relative
contribution of each of the n dimensions (i.e.,
features) to the total euclidean distance d.

The procedure is illustrated in figure 4 for the
two-dimensional case. Note that each observation in
the n-dimensional space reflects one point in time.
Therefore, by calculating the euclidean distance for each
observation, the anomaly index can be constructed over
time. The model achieves the best performance with
Eps = 1, the radius of the density neighborhood, and
MinPts = 10, the minimal amount of neighbors in
the neighborhood with respect to the evaluation metrics
defined in the subsequent subsection.

In comparison to DBSCAN, the LOF model assigns
an outlier factor to each observation based on the density
of its local neighborhood. The mathematical derivation
of the LOF (i.e., outlier factor) can be found in Breunig
et al. [29]. The procedure for developing this model is
straightforward:

1. Train the LOF model on the multivariate
(n-dimensional), standardized feature vector X
with hyperparameter MinPts.

Page 5832

1. Train DBSCAN model on
multivariate feature vector X

3. Calculate anomaly
index for each

observation

4. Register relative
contributions to
anomaly index

2. Select largest cluster
and define Cnormal

x2

x1

c1

c2

c3

Reveals dense clusters in
n-dimensional space

Sets reference point for
anomaly index

Calculate euclidean
distance d! to Cnormal

Calculate d!"
in each

dimension

Result: Anomaly index
with relative
contributions

Euclidean Distance

#$ = &
"'(

)
(!" − ,)-./012)4

Anomaly index
describes euclidean
distance over time

Relative Contributions
1. Dimension 1 (5$6)
2. Dimension 2 (5$7)

O

A
no

m
al

y
In

de
x

Time

d!

Rel. Contribution of #$2 to #$
5-2 =

#$2
#$

x2

x1

Cnormal

O
d!

x2

x1

Cnormal

x2

x1

Cnormal

O

d!4

d!(

Figure 4. Procedure of DBSCAN model: Derive anomaly index for each time step from euclidean distance to

centroid of cluster of normal system state

2. Calculate the LOF for each observation o, which
can be interpreted as the anomaly index for the
respective observation.

Note that the LOF model cannot implement DG4 nor
satisfy Req4, as the individual contribution of each
dimension to the anomaly index cannot be derived from
the LOF. The model achieves the best performance
MinPts = 200 with respect to the evaluation metrics
defined in the subsequent subsection.

4.3. Evaluate Models

To quantitatively compare the quality of anomaly
detection models, different evaluation metrics can
be used. Goldstein and Uchida [27] state that
the Area Under The Curve (AUC) based evaluation
has evolved to be the standard for unsupervised
anomaly detection, given anomaly detection problems
are typically imbalanced [30, 27]. The AUC is the
integral of the Receiver Operating Characteristic (ROC)
curve, which plots the True Positive Rate (TPR) on
y-axis against the False Positive Rate (FPR) on the
x-axis at various threshold levels. A perfect AUC score
is 1, whereas the worst score is 0:

AUC =

∫ −∞
∞

TPR(T)(−FPR′(T)), dT (1)

An anomaly that is labelled by a system owner
may be completely detected, partly detected, or not
detected at all, with respect to the anomaly index
generated by the algorithm and a defined critical
threshold (see figure 5). In our work, we set the critical

1 Completely detected

2 Partly detected

3 Not detected

Types of Detection

TimeA
no

m
al

y
In

de
x

Critical
Threshold

1 2 3

La
be

lle
d

A
no

m
al

y

Figure 5. Types of detection for labelled anomalies

in enterprise application

threshold to Tµ+3∗σ = µ+ 3 ∗ σ, which is derived from
statistical process control theory and the six sigma
principle [31]. We define two different decision rules for
interpreting whether partly detected anomalies qualify
as being completely detected for evaluation purposes.
Specifically, we define the anomaly as being detected
(i) if the maximal anomaly index inside the labelled
anomalous time period exceeds the critical threshold,
or (ii) if the mean anomaly index inside the labelled
anomalous time period exceeds the critical threshold.
We evaluate the different results for these different
decision rules, in terms of the comparison between
DBSCAN and LOF methodologies, below.

To consider collective anomalies rather than point
anomalies and address the problem of imbalanced True
Positives (TPs) to False Positives (FPs), we use time
windows of different sizes to evaluate the quality of
detection, as proposed by Ahmad et al. [32]. These
windows are then slid across the entire observation
period of two months.

Figure 6 depicts the AUC over different window
sizes from 1 to 300 minutes with respect to decision
rule (i), whereas figure 7 covers decision rule (ii). By
examining the AUC over different window sizes, we find
that especially for smaller window sizes, the DBSCAN

Page 5833

Figure 6. Comparison of AUC evaluation metric for

developed anomaly detection models, plotted over

varying window size with decision rule (i)

model yields better detection quality than the LOF
model. Moving towards larger window sizes the AUC
scores are approximately on an equal level. For the
largest window sizes (> 250 minutes) the LOF model
performs better than the DBSCAN model for decision
rule (i). Overall, for decision rule (i) the DBSCAN
model has a better AUC score than the LOF model for
39 of the 50 considered window sizes. For decision rule
(ii) the DBSCAN model has a better AUC score than the
LOF model for 48 of the 50 considered window sizes.
We conclude that the DBSCAN model is superior with
respect to our primary evaluation metric AUC.

Figure 7. Comparison of AUC evaluation metric for

developed anomaly detection models, plotted over

varying window size with decision rule (ii)

Significantly, only the DBSCAN model provides
an indication of the root cause of high anomaly
values, and therefore meets the requirements of the
research artifact. The LOF model does not meet the

established requirements and also performs worse than
the DBSCAN model. However, we should note that
we have not evaluated indicators for the root cause of
identified anomalies, which are output by the DBSCAN
model. Section 6 further discusses this limitation and
provides an outlook for future research.

5. Discussion

As outlined in the introduction, we defined two RQs
in this research: RQ1 investigates what requirements
should be considered when defining a statistical model
to detect abnormal application behavior, whereas RQ2

investigates how reliable the developed model detects
anomalies based on APM metrics.

The research requirements are based on a structured
literature review and feedback from practitioners.
We identified five requirements and derived three
DGs (see Section 4), which contribute to answering
RQ1. These required developing anomaly detection
models, which incorporate multiple APM metrics and
harness unsupervised density-based ML techniques.
In particular, multiple APM metrics are considered
simultaneously and their individual values are put into
the context a of system state (Req1, Req2). The system
state and the degree of its abnormality is reflected
in a continuous measure, the so-called Anomaly
Index (Req3). Furthermore, our model provides
an indication for the root cause of an anomaly by
considering respective contributions of selected metrics
to the anomaly index (Req4). The requirements and
DGs ensure that the model can detect anomalies of
applications regardless of any domain, application type,
or other characteristic, based only on APM metrics.

Considering RQ2, we evaluated our models with
real monitoring data. Since there were no labelled
anomalies available ex-ante, we obtained labels for eight
time periods of abnormal application behavior from the
system owners ex-post, which served as a “ground truth”
with which to investigate the quality of the statistical
models. We use a sliding time window approach to
evaluate model quality, using different decision criteria
for interpreting how partly detected anomalies should
be treated. We find the novel approach of a model
incorporating DBSCAN is more accurate than a baseline
model LOF, that has been shown in prior research to be
effective: furthermore, the DBSCAN model provides an
indication of the root cause for the detected anomalies.

Page 5834

6. Conclusion

In this paper, we investigated the extent to which
unsupervised density-based ML techniques can be
used to identify application anomalies based on APM
metrics. The research was conducted in collaboration
with a large European automotive company and
involved the use of real data for model construction
and evaluation. Our final suggested anomaly detection
model is based upon the use of DBSCAN and represents
a novel approach that builds upon and extends prior
work: the definition of requirements and DGs ensures
the quality and the generalization of the model and the
evaluation reveals better accuracy than a commonly
used outlier detection technique called LOF.

There are some limitations in our work that should
be noted: First, our research approach was limited
in terms of model tuning and feature engineering,
due to data availability at the automotive company.
Extended data may reveal further interesting features
for the detection of anomalies through APM data. In
particular, the availability of labelled data (i.e., datasets
with labels for anomalies) would allow us to consider
other detection techniques (e.g. supervised ML).
Second, our evaluation does not compare our defined
model with anomaly detection features in existing
APM solutions from software vendors. Hence, we do
not know whether our techniques outperform these
embedded features. This could serve as future work.
Third, the measures that were output on the root causes
for detected anomalies was not evaluated here. This
functionality needs to be evaluated in further research.
Last, the developed unsupervised ML approach is to be
evaluated regarding its generalization on other data sets
and in comparison to other methods mentioned in the
literature review.

Significantly, future research could be used to help
define a prediction model for the defined anomaly
index: forecasting anomalies and potential root causes
for these events would be an extremely beneficial topic
for researchers and practitioners alike. Finally, the
statistical relevance of the model could be increased
with further data: in particular, the evaluation we
conduct here was based upon a data-set from only one
application and company. Examining the techniques
across multiple applications and eventually, multiple
companies, would help to generalize these techniques.

References

[1] G. Linden, “Marissa Mayer at Web 2.0,” 2006.
[2] C. Heger, A. van Hoorn, M. Mann, and D. Okanović,

“Application performance management: State of the
art and challenges for the future,” in Proceedings of
the 8th ACM/SPEC on International Conference on
Performance Engineering - ICPE ’17, pp. 429–432,
2017.

[3] M. Panwar, “Application performance management
emerging trends,” in 2013 International Conference
on Cloud & Ubiquitous Computing & Emerging
Technologies, pp. 178–182, 2013.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
detection,” ACM Computing Surveys, vol. 41, no. 3,
pp. 1–58, 2009.

[5] C. Haight, W. Cappelli, and F. De Silva, “Magic quadrant
for application performance monitoring suites,” Gartner,
2015.

[6] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano,
“A review of auto-scaling techniques for elastic
applications in cloud environments,” Journal of Grid
Computing, vol. 12, no. 4, pp. 559–592, 2014.

[7] C. Heger, A. V. Hoorn, D. Okanovic, S. Siegl,
and A. Wert, “Expert-guided automatic diagnosis
of performance problems in enterprise applications,”
in Proceedings - 2016 12th European Dependable
Computing Conference, EDCC 2016, pp. 185–188,
2016.

[8] J. Webster and R. T. Watson, “Analyzing the past to
prepare for the future: Writing a literature review,” MIS
Quarterly, vol. 26, no. 2, pp. xiii – xxiii, 2002.

[9] R. Baraglia and P. Palmerini, “SUGGEST: A web
usage mining system,” in Proceedings - International
Conference on Information Technology: Coding and
Computing, ITCC 2002, pp. 282–287, 2002.

[10] T. Hussain, S. Asghar, and S. Fong, “A hierarchical
cluster based preprocessing methodology for web usage
mining,” in Proc. - 6th Intl. Conference on Advanced
Information Management and Service, IMS2010,
with ICMIA2010 - 2nd International Conference on
Data Mining and Intelligent Information Technology
Applications, pp. 472–477, 2010.

[11] W. Feng and K. Vij, “Machine learning prediction and
web access modeling,” in Proceedings - International
Computer Software and Applications Conference, vol. 2,
pp. 607–612, 2007.

[12] R. J. Hyndman, E. Wang, and N. Laptev, “Large-scale
unusual time series detection,” in Proceedings -
15th IEEE International Conference on Data Mining
Workshop, ICDMW 2015, pp. 1616–1619, 2016.

[13] J. Wang, Y. Yan, and J. Guo, “Research on the prediction
model of CPU utilization based on ARIMA-BP neural
network,” in MATEC Web of Conferences, vol. 65, 2016.

[14] R. J. Hyndman, “Computing and graphing highest
density regions,” American Statistician, vol. 50, no. 2,
pp. 120–126, 1996.

[15] N. Jiang, R. Villafane, K. Hua, A. Sawant, and
A. Prabhakara, “ADMiRe: An algebraic data mining
approach to system performance analysis,” IEEE
Transactions on Knowledge and Data Engineering,
vol. 17, no. 7, pp. 888–901, 2005.

[16] C. A. Cunha and L. Moura E Silva, “Separating
performance anomalies from workload-explained
failures in streaming servers,” in Proceedings - 12th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGrid 2012, pp. 292–299, 2012.

Page 5835

[17] C. A. Cunha and L. Moura E Silva, “Prediction of
performance failures in video-streaming servers,”
in Proceedings of IEEE Pacific Rim International
Symposium on Dependable Computing, PRDC,
pp. 283–292, 2013.

[18] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E.
Hassan, and W. Shang, “Studying the effectiveness of
application performance management (APM) tools for
detecting performance regressions for web applications,”
in Proceedings of the 13th International Workshop on
Mining Software Repositories - MSR ’16, pp. 1–12, 2016.

[19] A. Ara, F. Louzada, and C. A. Diniz, “Statistical
monitoring of a web server for error rates: a bivariate
time-series copula-based modeling approach,” Journal of
Applied Statistics, vol. 44, no. 13, pp. 2287–2300, 2017.

[20] S. Takashi, K. Eiji, Y. Suguru, and Y. Heiichi,
“Performance anomalies of advanced web server
architectures in realistic environments,” in 8th
International Conference Advanced Communication
Technology, ICACT 2006 - Proceedings, vol. 1,
pp. 169–174, 2006.

[21] X. Guo, Z. Zhao, and P. Guo, “Studies about convex hull
support vector machine in the server performance alarm,”
in 2011 3rd International Workshop on Intelligent
Systems and Applications, ISA 2011 - Proceedings, 2011.

[22] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
science in information systems research,” MIS Quarterly,
vol. 28, no. 1, pp. 75–105, 2004.

[23] K. Peffers, T. Tuunanen, M. A. Rothenberger, and
S. Chatterjee, “A design science research methodology
for information systems research,” Journal of
Management Information Systems, vol. 24, no. 3,
pp. 45–77, 2007.

[24] U. Hasan, “How to use machine learning to
debug outages 10x faster,” 2016. Available at
https://engr.overseerlabs.io/how-to-use-machine-learning
-to-debug-outages-10x-faster-e19a97946f80.

[25] U. Hasan, “Our challenges in building a useful
anomaly detection system,” 2017. Available at
engr.overseerlabs.io/our-challenges-in-building-a-useful
-anomaly-detection-system-1d589de77e60.

[26] P. Fisher-Odgen, G. Burrell, C. Sanden, and
C. Rioux, “Tracking down the villains: outlier
detection at Netflix,” 2015. Available at
https://medium.com/netflix-techblog/tracking-down-the
-villains-outlier-detection-at-netflix-40360b31732.

[27] M. Goldstein and S. Uchida, “A comparative evaluation
of unsupervised anomaly detection algorithms for
multivariate data,” PLoS ONE, vol. 11, no. 4, 2016.

[28] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A
density-based algorithm for discovering clusters in large
spatial databases with noise,” in Proceedings of the 2nd
International Conference on Knowledge Discovery and
Data Mining, pp. 226–231, 1996.

[29] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander, “LOF: Identifying density-based local
outliers,” Proceedings of the 2000 Acm Sigmod
International Conference on Management of Data,
pp. 93–104, 2000.

[30] D. M. W. Powers, “Evaluation: From precision, recall
and F-measure to roc, informedness, markedness &
correlation,” Journal of Machine Learning Technologies,
vol. 2, no. 1, pp. 37–63, 2011.

[31] D. Montgomery, Introduction to statistical quality
control. 2009.

[32] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha,
“Unsupervised real-time anomaly detection for
streaming data,” Neurocomputing, vol. 262, pp. 134–147,
2017.

Page 5836

