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Abstract 

Do senior managers help or hurt business experiments? Despite the widespread adoption 
of business experiments to guide strategic decision-making, we lack a scholarly understanding of 
what role senior managers play in firm experimentation. Using proprietary data of live business 
experiments from the widely-used A/B testing platform, Optimizely, this paper estimates the 
association of management hierarchy with learning from experiments and their performance 
outcomes across industries and contexts. Our findings suggest that senior management’s 
association is mixed. On the one hand, senior managers’ involvement associates with bolder 
experiments that create more statistically significant learning signals aiding in the exploration of 
new strategic directions. On the other hand, their involvement associates with less cause-and-
effect learning that is instrumental to optimization and performance improvements. Our results 
contribute to a burgeoning literature on experimentation in strategy, while helping articulate 
limits that organizational design might place on data-driven decision-making. Furthermore, we 
describe different experimental learning modes in the formation of strategy, offering important 
implications for how managers can modulate search and performance outcomes. 

Keywords: Experimentation; Innovation; Organization Design; Search; New Product 
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Introduction 

 Scholars of strategy, operations, organization, and entrepreneurship have noted the 

increasing importance of experimentation in strategy formation and innovation performance 

(Andries, Debackere, and Van Looy, 2013; Camuffo et al., 2019; Gans, Stern, and Wu, 2019; 

Levinthal, 2017; McDonald and Eisenhardt, 2019; Thomke 2003). For example, the recent 

proliferation of A/B testing has made experimentation an attractive method by which startups 

can test various elements of their value creation and capture processes (Koning, Hasan, and 

Chatterji, 2019). The benefits of an experimental approach include faster learning, improved 

performance, and reduced errors in strategic decision-making (Camuffo et al., 2019; Thomke, 

1998). Thus organizations are scaling experiments to test strategic decisions, ranging from high 

tech and retail to non-profit organizations and even political campaigns (Thomke, 2020). 

 The proliferation of experimentation raises a tricky question about hierarchy: If major 

strategic decisions are made with the help of experiments, then what’s the job of senior 

managers? On the one hand, they may help firms capture the learning and performance benefits 

of conducting business experiments. Senior managers are well-positioned within their 

organizations to drive the adoption of an experimental approach to searching for and validating 

business strategy (Levinthal, 2017; Thomke, 2020). They can authorize exploratory experiments 

that intentionally vary and select among strategic choices directing resources away from low-

performing alternatives to high-performing ones (Burgelman, 1994). With the power to support 

experimentally-driven pivots (Camuffo et al., 2019), executive attention may help create and 

capture learning and their performance benefits. 

 On the other hand, literature on judgement and decision-making suggests that senior 

management bias may hamper those learning and performance benefits. Senior managers may 
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become overconfident in their beliefs as a result of their organizational power (Anderson and 

Galinsky, 2006; Fast et al., 2009), preventing the exploration of new ideas. Furthermore, 

executives are less likely to revise their judgement in response to advice (Harvey and Fischer, 

1997; See et al., 2011), including those supported by test data. Indeed, practitioners have warned 

each other of executives whose opinions crowd out the role of experimental evidence in strategic 

decisions, deeming them the “Highest Paid Person’s Opinions” (HiPPOs) (Kohavi, Henne, and 

Sommerfield, 2007). Given the contradictory influences of hierarchy, we ask: how does 

management seniority associate with learning and performance outcomes from experiments?  

To address this question, we use a proprietary dataset of 6,375 business experiments run 

on the widely-used A/B testing platform, Optimizely. Our global dataset of live business 

experiments include start-ups, Fortune 500 companies, and global enterprises, and represents a 

wide range of industries and contexts, giving us reliable cross-sectional estimates of business 

experimentation practice. Furthermore, this paper is the first to use Optimizely’s detailed 

microdata on experiments to generate measures of complexity and parallel testing in 

experimentation. 

Our findings suggest that senior management’s involvement in experiments is not as 

simple as the HiPPO warning or “more executive attention” advice. While all experimentation is 

about learning, we find that hierarchy is associated with different learning modes and 

performance outcomes. More senior management involvement is associated with bolder 

experiments, creating more statistically significant learning signals (“wins”) that aid in the 

exploration of new strategic directions. But senior managers may also inadvertently undermine 

cause-and-effect learning that is instrumental to optimization and performance improvements. 
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This study offers a number of contributions to the strategy and organizations literatures. 

First, we contribute to a burgeoning literature on experimentation in strategy (Camuffo et al., 

2019; Levinthal, 2017) by linking hierarchy to performance outcomes in the study of 

experimentation. Second, our findings contribute to understanding the mixed effects that 

organizational design may place on data-driven decision-making in the digital age (Brynjolfsson 

and McElheran, 2016; Puranam, Alexy, and Reitzig, 2014). Despite the promise of large-scale 

experimentation, we find that hierarchy may insert bias in organizational search, favoring 

potentially lower-performing returns. Third, our empirical results describe different experimental 

learning modes in the formation of strategy, offering important implications for how managers 

can modulate firm search and performance outcomes. 

Experimentation in Strategy Formulation 

Firms have a long and storied history of using experiments to drive innovation, from 

Edison’s famous Menlo Park laboratory (Millard, 1990) to 3M’s culture of experimentation 

leading to the development of consumer products such as the Post-it Note (Nayak and 

Ketteringham, 1997). Since then, scholars have studied the role of experiments in industrial 

R&D, which has involved technologies such as prototyping, simulation, and combinatorial 

chemistry (Thomke and Kuemmerle, 2002). With the emergence of software-based testing and 

online customer interactions, business experimentation has entered a watershed moment. 

Inexpensive experimentation is no longer limited to R&D departments but now available to the 

entire firm and can be run in real-time, on live customers, to adjudicate firm-level commitments. 

This has profound implications for strategic management practice, as firms increasingly use 

experiments to test and form elements of strategy (Contigiani and Levinthal, 2019). Popularized 

by practitioner frameworks such as the “Lean Startup” (Ries, 2011), an experimental approach to 
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entrepreneurial strategy has been adopted by organizations across contexts and vintage, ranging 

from financial services companies to hardware manufacturers. Mark Okerstrom, the former CEO 

of Expedia Group, underscored the strategic importance of running many experiments: “In an 

increasingly digital world, if you don’t do large-scale experimentation, in the long term—and in 

many industries the short term—you’re dead. At any one time we’re running hundreds if not 

thousands of concurrent experiments, involving millions of visitors. Because of this, we don’t 

have to guess what customers want; we have the ability to run the most massive ‘customer 

surveys’ that exist, again and again, to have them tell us what they want” (Thomke, 2020). 

 In contrast to other modes of strategy formation, experimentation is unique in that it 

balances the relative advantages and disadvantages of deliberate, cognition-driven strategy with 

emergent, action-driven strategy (Mintzberg, 1978; Ott, Eisenhardt, and Bingham, 2017). 

Emergent methods of strategy formation, such as bricolage and trial-and-error learning, 

prioritizes signals from the external environment, which is the ultimate arbiter of the fitness of a 

strategy. While these approaches may be effective at screening sets of choices activities for their 

performance, the firm is often left with an incomplete understanding of why a certain set of 

activities yields superior performance, as the firm itself is often not the ultimate source of 

variation among activities. In contrast, deliberate strategy prioritizes intentionality, where the 

firm fully controls its set of activities. Nonetheless, a fully deliberate approach absent some form 

of interim feedback from the external environment is often doomed to failure. Thus, an 

experimental approach to strategy formation offers a middle-ground between cognition and 

action (Levinthal, 2017), where the firm can balance cognition and its benefits of a holistic, 

causal understanding of strategy with the feedback and performance-screening benefits of action 

(Ott et al., 2017).  
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 Experimentation in strategy formulation helps the firm learn useful information about its 

available choices or activities (Gans et al., 2019). For instance, entrepreneurs often find their 

strategy by learning through experiments rather than via traditional strategic planning (Carter, 

Gartner, and Reynolds, 1996; Murray and Tripsas, 2004; Ries, 2011). In particular, an 

experiment offers interim feedback on the fitness of a set of choices or activities (Levinthal, 

2017). Under a classical planning approach, choices are validated via the long-term process of 

environmental selection; as a form of feedback, this information may arrive too late for a firm to 

act upon it. An experimental approach, which effectively screens for opportunities on the basis of 

interim feedback, helps ventures pivot faster and avoids choices that yield false-positive returns, 

or erroneous learning (Camuffo et al., 2019). Experiments can also facilitate the identification of 

higher-performing choices (Gruber, MacMillan, and Thompson, 2008). In a study of A/B testing, 

a form of online experimentation, Koning et al. (2019) find that its adoption associates with 

increased product introductions and higher website performance over time. 

The Effects of Hierarchy  

 To illustrate how management can influence the testing of strategic elements, consider 

the following example from the world’s most visited travel accommodation platform 

Booking.com (Thomke and Beyersdorfer, 2018). In December 2017, just before the busy holiday 

travel season, the company’s director of design proposed a radical experiment: testing an entirely 

new layout for the company’s home page. Instead of offering lots of options for hotels, vacation 

rentals, and travel deals, as the existing home page did, the new one would feature just a small 

window asking where the customer was going, the dates, and how many people would be in the 

party, and present three simple options: “accommodations,” “flights,” and “rental cars.” All the 

content and design elements—pictures, text, buttons, and messages—that Booking.com had 
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spent years optimizing would be eliminated. Booking.com runs more than 1,000 rigorous tests 

simultaneously and, by one estimate, more than 25,000 tests per year (Thomke, 2020). At any 

given time, quadrillions (millions of billions) of landing-page permutations are live, meaning two 

customers in the same location are unlikely to see the same version. What could Booking.com 

possibly learn from the experiment proposed by this senior manager? Too many variables would 

have to change at the same time, making cause-and-effect learning about individual design 

elements virtually impossible. Instead, the design director positioned the experiment as 

“exploratory”—testing the significance of a new landing page design and elements of a new 

business strategy that resembled an emerging competitor: Google. And, as we will see in this 

paper’s results, it is less likely that such an experiment would have been proposed by a team that 

consists of only junior employees. The example of Booking.com’s landing page experiment 

illustrates the influence that senior managers can exert on a firm’s learning strategy. But the 

impact of their influence is ambiguous: scholars have found that hierarchy can benefit and 

impede decision-making.   

Benefits of Hierarchy 

Executive attention has been shown to be a powerful influence in motivating exploratory 

change in many contexts (Gavetti et al., 2012; Ocasio, 1997), such as when introducing 

technological innovations (Kaplan, 2008), increasing technological responsiveness to 

competitors (Eggers and Kaplan, 2009), and the adoption of expansive global strategies (Levy, 

2005). In the context of experimentation in organizations, lower-status individuals in the 

organization reduce their fear of failure and are found to experiment more often when senior 

managers clearly articulate values and incentives favoring experimentation (Lee et al., 2004). At 

its core, experimentation allows managers to address the resource allocation problem in strategy 
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(Gavetti et al., 2012). The problem can be framed as a tension between exploration and 

exploitation, where firms generally trade-off the search for new strategies against profiting from 

more certain returns with existing strategy (March, 1991). Rather than limiting themselves to a 

regime of pure exploration or exploitation, experimentation enables managers to attain a more 

efficient allocation of resources by splitting the difference in practice—enabling firms to explore 

new, potentially profitable strategies while remaining committed to an ongoing course of action, 

such as the optimization of such commitments. This idea of remaining “engaged in one course of 

action but cognizant of other possibilities” is embodied by the “Mendelian” executive, whose 

role is to foster an experimental approach to strategy (Levinthal, 2017). 

 The idea of the “Mendelian” executive is to draw organizational attention (Ocasio, 1997) 

to experimentation and the controlled exploration of novel, potentially high-performing 

strategies. Thomke (2020) finds that an organizational culture of experimentation begins with 

senior management awareness of the superiority of an experimental approach. When senior 

managers direct their attention towards and support an experimental approach to strategy, the 

firm may benefit from different learning modes and performance outcomes. For instance, an 

experimental approach to strategy is shown to reduce false positive learning mistakes while 

stimulating strategic pivots towards higher performance (Camuffo et al., 2019). In particular, 

hierarchy may potentially induce improved selection of ideas (Knudsen and Levinthal, 2007), by 

offering additional checks on ideas and proposals that may prove to be maladaptive or lower 

performing (Keum and See, 2017). Furthermore, to avoid organizational myopia, a Mendelian 

executive may look to support decision-making structures that tolerate a variety of beliefs to 

promote the generation and selection of the highest performing alternatives available to the firm 

(Levinthal, 2017). From their position of influence, senior managers have the power within 
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organizations to gradually direct the resource allocation mix towards higher-performing 

strategies (Burgelman, 1994), via support for a process of the reasoned generation and selection 

of alternatives from experimentation (Levinthal, 2017).  

Impediments of Hierarchy 

In spite of these potential benefits of involving executives in experimentation, commonly 

cited risks of senior involvement include introducing decision-making biases into the 

experimental process, such as overconfidence in prior beliefs. For instance, executives may 

suffer from biases due to their power within organizations, which has been shown to increase 

confidence, optimism, and a sense of control over future events (Anderson and Galinsky, 2006; 

Fast et al., 2009). In turn, these power-driven biases may lead executives to rely too heavily on 

their own beliefs rather than considering experimentation to update their beliefs. Furthermore, 

research on advice taking suggests that decision makers, especially those in positions of power or 

authority, are less likely to revise their initial judgment in response to advice from others, leading 

to poor decisions (Harvey and Fischer, 1997; See et al., 2011). A senior manager sitting atop an 

organizational hierarchy may be more likely to apply selection criteria which reflects the past but 

is maladaptive in the current moment (Aldrich, 1979). Together, these influences suggest that 

senior managers may not readily support experiments with the potential to challenge their current 

beliefs. 

 In communities of experimentation practice, the phenomenon of senior management 

biases impeding decision-making is given the moniker: the Highest Paid Person’s Opinion 

(HiPPO) effect (Kohavi et al., 2007). HiPPOs are associated with executives who, through their 

position of influence, advance potentially poor decision outcomes. Jim Barksdale, former CEO 
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of Netscape, reportedly quipped his decision-making heuristic as “If we have data, let’s look at 

data. If all we have are opinions, let’s go with mine.”  

 When senior managers have overconfidence in their beliefs, the firm may suffer from 

impaired learning and performance. In studying how information is passed up to management by 

subordinates within firms, Reitzig and Maciejovsky (2013) cite subordinates’ fear of a lack of 

control over final outcomes and their apprehension of being negatively evaluated by superiors as 

reasons for reduced information sharing from subordinates to senior managers. Thus, 

information that could help the firm may not be sent up the hierarchy if it challenges a manager’s 

personal viewpoint. Similarly, Knudsen and Levinthal (2007) note that firms with an accurate 

screening ability of alternatives, such as those that adopt precise data-driven experimentation, 

should complement this capability with a managerial structure of polyarchy rather than that of 

hierarchy, which has a tendency to prematurely stop search. This may trap the firm in local 

performance peaks, harming firm performance (Levinthal, 1997). Csaszar (2012) finds empirical 

evidence supporting this view, where hierarchy in financial firms leads to errors of omission 

(foregoing investment in profitable projects) and fewer approved projects overall.  

Methods 

 Our study addresses the effects of hierarchy on A/B testing, a form of experimentation. In 

an A/B test the experimenter sets up two experiences: “A,” the control, is usually the current 

system and “B,” the treatment variant, is some modification that attempts to improve something.  

Users are randomly assigned to the experiences, and key metrics are computed and compared.  

(A/B/n tests and multivariate tests, in contrast, assess more than one treatment variant or 

modifications of different variables at the same time.) Online, the modification could be a new 

feature, a change to the user interface (such as a new layout), a back-end change (such as an 
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improvement to an algorithm that, say, recommends books at Amazon), or a different business 

model (such as free services, pricing models, or entirely new products and services) (Kohavi and 

Thomke, 2017).  Even incremental variants can be effective at screening for high-performance 

innovations (Levinthal, 2017), especially in light of fat-tailed distributions which may yield large 

payoffs (Azevedo et al., 2019).1 

 A/B/n testing is a particularly useful setting to study the role of hierarchy in strategic 

experimentation for several reasons. First, as seen in the Booking.com example, senior managers 

get involved in A/B/n testing, from minor improvements to entire website redesigns, because of 

their importance to online commerce (Thomke 2020). Second, an “experiment” is clearly 

defined—at least one treatment variant is tested against a control—separating it from other 

methods used by strategy and entrepreneurship practitioners such as effectuation and trial-and-

error learning (Camuffo et al., 2019; Ott et al., 2017). The use of controls, combined with 

randomization, is particularly effective for cause-and-effect learning (Rosenbaum, 2017). Third, 

an experiment’s design and search space choices are fully transparent in A/B/n testing, helping 

us assess the impact of a set of design choices that senior managers may potentially act through 

in order to influence learning and performance outcomes.  

Data 

 We obtained access to a proprietary dataset from the third-party A/B/n testing platform, 

Optimizely, which supports more than one thousand clients across industries (e.g., retail, media, 

                                                
1 The opportunity of fat-tailed distribution was noted by Jeff Bezos, CEO of Amazon, in his 2015 letter to 
shareholders: “Outsized returns often come from betting against conventional wisdom, and conventional wisdom is 
usually right. Given a ten percent chance of a 100 times payoff, you should take that bet every time. But you’re still 
going to be wrong nine times out of ten. We all know that if you swing for the fences, you’re going to strike out a 
lot, but you’re also going to hit some home runs. The difference between baseball and business, however, is that 
baseball has a truncated outcome distribution. When you swing, no matter how well you connect with the ball, the 
most runs you can get is four. In business, every once in a while, when you step up to the plate, you can score 1,000 
runs.” (SEC Archives, 2016: Letter to Amazon Shareholders from CEO Bezos.) 
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technology, travel, finance, etc.). While companies such as Google, Amazon, and Booking.com 

built in-house platforms years ago, Optimizely helped pioneer easy-to-use A/B/n testing tools for 

technical and non-technical business professionals. As a result, data from Optimizely provides 

access to experimentation practice across industries, contexts, organizational scale, and levels of 

technological sophistication. 

Optimizely archives data from A/B/n experiments run on its cloud platform, including p-

values, effect sizes, number of website visitors within an experiment, and experiment duration. 

Furthermore, the company collects detailed job role and rank data on users, enabling us to 

construct measures of organizational hierarchy within experimentation accounts registered with 

Optimizely. In addition, the company offers seven types of web element changes (e.g., HTML 

code changes, inserting an image, etc.) and records these changes as they are made.  

Our unit of analysis is the experiment: an A/B/n test. Each test is an opportunity for the 

firm to learn and improve business performance, such as higher rates of customers who purchase 

products on a website. Not all tests on Optimizely’s platform qualify as true experiments. For 

instance, the Optimizely interface enables “hotfix” behavior, which includes software patches for 

bugs in production software or rapid deployments of feature, content, or design changes that 

bypass formal release channels.2 A basic requirement for an experiment is that it generates 

information that helps the firm learn (Thomke, 2003: pg. 98) and that is relevant to a firm’s 

strategy or configuration of choices.3 

                                                
2 https://community.optimizely.com/t5/Testing-Ideas-Strategy/Ways-to-use-Optimizely-outside-of-just-A-B-
testing/td-p/9406 
3 Rivkin (2000) notes that “a strategy is realized in the marketplace as a set of choices that influence organizational 
performance.” For online platforms, it is the set of choices that affect how they interact and do business with their 
customers through a company’s landing page. 
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To qualify as a true experiment for our analysis, an A/B/n test must meet the following 

criteria: 1) at least one change per treatment variant (i.e., no A/A tests) 4, 2) at least one treatment 

variant per test (i.e., not hotfixes), and 3) at least 1,000 website visitors per week that are 

allocated across control and at least one treatment variant (i.e., a meaningful sample size to 

power experiments). Therefore, an experiment ends during the last observed week in which 

traffic surpasses 1,000 visitors. Furthermore, we define outcomes at the experiment level (e.g., 

statistical significance, lift, etc.) for the primary metric, which an organization selected as its 

most important performance indicator on Optimizely’s platform. Applying these criteria to the 

entire dataset yields a sample of 6,375 experiments run April 2018 to November 2018 from 

Optimizely for our analysis.5 

Measures 

Dependent Variables: Max Lift and Positive Statsig  

The first dependent variable measures “lift,” which is the net improvement that results 

from an experimental treatment. In particular, lift measures the percent improvement in the 

conversion rate for a key performance indicator of interest and is widely used in business 

experimentation practice (Gordon et al., 2019). An example for an e-commerce website may be 

the percentage of users who complete a purchase of all the users landing on the shopping cart 

page, thus converting website visitors into paying customers. Thus, lift often has a direct impact 

on firm performance. We measure Max Lift, which represents the maximum lift on the primary 

metric across n variants of an experiment, as this represents the option or variant that is 

                                                
4 In an A/A test the current practice is compared with itself. A/A tests are used to check the quality of an 
experimentation infrastructure. If the p-value (false positive) is set to 0.1, one out of ten A/A tests should result in 
statistical significance.   
5 The sample window of experiments was chosen by Optimizely’s data warehouse team. They considered the 
completeness, availability and quality of its raw data but did not analyze any of it.  



 14 

highlighted on Optimizely’s testing platform and most likely to be implemented after an A/B/n 

test.6 

The second dependent variable, Positive Statsig, is any positive, statistically significant 

lift on the primary metric in an experiment: a signal that the observed treatment effect is unlikely 

the result of chance.7 Framed as a “win” by A/B/n testing practitioners, a Positive Statsig result is 

a key performance indicator for the success of an individual experiment. An Optimizely account 

user would recognize a win graphically (green color). For experimenters, Positive Statsig signals 

that the treatment was worth exploring and builds confidence in a positive ROI from further 

rounds of experiments. Crossing the significance threshold also reduces the chance of making a 

false-positive error when evaluating strategic pivots (Camuffo et al., 2019). This promotes 

quality in organizational learning, which is a change in the organization’s knowledge or beliefs 

as a function of experience (Argote and Miron-Spektor, 2011; Puranam et al., 2015). In an A/B/n 

test, the organization’s existing knowledge is coded into the baseline or control variant. When an 

experiment yields a Positive Statsig signal, firms receive positive, statistically significant 

evidence to help update prior beliefs. 

                                                
6An alternate measure of lift is the maximum statistically significant lift. We choose to operationalize lift in terms of 
its raw number rather than lift conditioned on statistical significance for three reasons. First, raw lift is a meaningful, 
interpretable outcome that is often used in practice to drive decision to implement changes, regardless of whether or 
not such a lift was deemed statistically significant. Second, conditioning lift on significance would correlate with our 
second dependent variable: Positive Statsig. We want to analyze learning modes and performance outcomes that are 
independent from another. Third, conditioning lift on significance may underestimate negative potential impacts of 
experiment treatments, such as those that lead to losses in conversion rate. While many negative effects due to 
experimental treatment are not strong enough to be deemed statistically significant, a negative lift represents real 
losses in conversion for firms. To adequately capture this risk, it is important to construct a measure of lift that does 
not censor out these potential losses. 
7 The treatment effect is the difference between the two sample averages (A and B). Given the multiple comparisons 
problem of multivariate A/B/n testing (where multiple treatment variants are compared to a control variant), 
Optimizely does not declare significance by calculating unadjusted p-values and comparing them to standard 
significance thresholds, as this would exacerbate the chance of making Type I errors. Instead, Optimizely employs 
false discovery rate (FDR) control using the Benjamini-Hochberg procedure (see Pekelis et al., (2015) for further 
details). Significance is therefore reported to Optimizely users if 1 – FDR > 90%. Here, the use of 90% reflects 
standard industry practice of using a 10% threshold to deem statistical significance.  
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Independent Variable: Max Seniority  

The involvement of senior managers in an experiment is measured by the variable Max 

Seniority. Hierarchy, brought about by the assignment of formal authority in organizations 

(Bunderson et al., 2016; Keum and See, 2017), has been measured in a variety of ways, 

including span of control (Rajan and Wulf, 2006; Reitzig and Maciejovsky, 2013), tallness 

(Dalton, D.R., Todor, W.D., Spendolin, M.J., Fielding, G.J. and Potor, 1980; Hall and Tolbert, 

2005; Lee, 2020) and centralization (Hage, 1965; Scott, 1998; Tannenbaum et al., 1974). Our 

research captures the effect of increasing steepness of a hierarchy, which comes from the larger 

asymmetries in members’ power, status, and influence (Anderson and Brown, 2010). To capture 

this effect, Max Seniority measures the highest rank of all individuals associated with an 

Optimizely project team. Users on an experimentation project team select their roles according to 

six standardized hierarchical levels, ranging from ``Specialist/Associate’’ (ranked as a minimum 

value of 1) to ``C-Level/President’’ (ranked as a maximum value of 6). Thus, an experiment 

associated with five Specialist/Associates would be coded as having Max Seniority of 1, whereas 

an experiment with three Specialist/Associates, a Vice President, and a CEO would be classified 

as having a Max Seniority of 6.8  

Control Variables  

We control for Traffic and Duration, which represent the number of web visitors included 

in an experiment (in thousands), and the number of weeks an experiment has been run, 

respectively. Both variables relate to the experiment’s power and may influence the ability to 

                                                
8 The full standardized ranking is as follows: 1) Specialist/Associate, 2) Developer, 3) Coordinator, 4) Manager, 5) 
Vice President/Director, 6) C-Level/President. In the two provided examples, the team with Max Seniority of 6 has 
greater steepness than the team with Max Seniority of 1, in which there are no asymmetries in power, status, and 
influence from job roles. Given the prevalence of Specialist/Associates across all Optimizely user accounts, a higher 
Max Seniority score captures greater steepness between the highest-ranking individual and the lowest-ranking 
individuals, the Specialist/Associates on that given Optimizely user account.  
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detect statistical significance. In addition, we add week fixed effects to control for seasonal 

factors that might influence experimental outcomes. 

 At the firm level, we control for Firm Age through years since founding and Firm Size 

through the number of employees, both of which have been associated with firm search and 

innovation capabilities (Damanpour and Aravind, 2012). We also control for Technological 

Integrations, which measures the number of integrated technologies that Optimizely has detected 

when clients use its A/B/n testing platform (e.g., plug-ins to aid data analytics). This helps 

control for the technological sophistication of the firm, which may influence the value they 

derive from A/B/n testing. Finally, we include fixed effects to control for industry-driven 

heterogeneity across experiment outcomes. Descriptive statistics and pairwise correlations are 

shown in Table 1. 

------------------------------- 
Insert Table 1 about here. 
------------------------------- 

 

Model Specification  

Our analysis of hierarchy’s association with experimental outcomes is done using models 

of the following specification: 

!" = $(&'(	*+,-./-01") + 4"5 + 6" + 7" + 8" 

where !" is a performance measure of interest for experiment i (e.g., Max Lift), &'(	*+,-./-01"  

is the most senior rank of individual associated with experiment i, 4" is a vector of controls 

associated with an experiment, and 6" and 7" represent fixed effects for the industry and final 

week associated with experiment i. Our coefficient of interest is $, which estimates the 
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association of maximum hierarchical rank and experimental outcomes. We estimate models 

using ordinary least squares with robust standard errors clustered to the team level.9  

Results: The Effects of Hierarchy 

 Table 2 reports associations between increasing management seniority and outcomes. 

Model 2-1 shows that an increase in the hierarchical rank of the most senior person is associated 

with a 0.9% decrease (p = .016) in the conversion rate of an experiment.10 However, Model 2-2 

also shows that each increase of the hierarchical rank of the most senior person on an 

experimentation team is associated with a 1% increase (p = .047) in the chance of finding a 

positive, statistically significant learning signal (a “win”).  

 

------------------------------- 
Insert Table 2 about here. 
------------------------------- 

 
 

 The results from Table 2 present a paradox: that is, we would generally expect that higher 

lift correlates with higher rates of statistically significant outcomes. This intuition follows from 

an understanding of statistical power—where studying larger effect sizes would yield an 

improved chance of detecting significant effects. Nonetheless, it is possible that hierarchy’s 

countervailing associations with lift and positive statsig may be the result of other mechanisms, 

which we explore in the following section. 

                                                
9 For the binary variable of Positive Statsig, we estimate models according to ordinary least squares rather than logit 
or probit for ease of interpretation and to avoid a potentially inconsistent maximum likelihood estimator in the 
presence of fixed effects (Greene, 2004). Nonetheless, our results for Positive Statsig are robust to the use of logit or 
probit models. 
10 Note that 9-:0 = 	 ;<=>?@=A?BC>D=E"A=C>D=E"A= . When performing a natural logarithm transform, we have ln	(9-:0	+ 1) = 

9, H;<=>?@=A?BC>D=E"A=C>D=E"A= + 1J = 9, H;<=>?@=A?C>D=E"A= J. Thus, the interpretation of our coefficient is a percent change in the 
baseline conversion rate. 
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Hierarchy and Design Choices 

Design choices in experimentation can have a meaningful impact on learning modes and 

performance outcomes (Loch, Terwiesch, and Thomke, 2001; Sommer and Loch, 2004; Thomke, 

von Hippel and Franke, 1998). Is the mixed effect of hierarchy on performance outcomes above 

related to design choices and does senior management exert influence on learning modes through 

these choices? To find out, we examine two important design choices in A/B/n tests: the number 

of simultaneous changes in a treatment variant (which relates to the complexity of an 

experiment) and the number of variants that are tested in parallel.  

Complexity of Treatment Variants 

In strategy and organizational theory, complexity arises from several choices whose 

contribution to performance depend on one another (Levinthal, 1997; Simon, 1962). Thus a 

strategy can be thought of as a complete configuration of interdependent choices (Rivkin, 2000) 

and testing a new strategy requires multiple, interdependent changes to be made simultaneously 

(Pich, Loch, and Meyer, 2000, Rivkin 2000). More complex experiments can also signal the 

strength of a strategic direction as they explore new value landscapes (discover new “hills” of 

strategic value) and avoid getting stuck in local optimization (climbing existing “hills”).  

The downside of complex tests is that they are harder to interpret since many 

simultaneous changes make cause-and-effect learning problematic (Thomke, 2003). To facilitate 

ease of interpretation and to understand cause-and-effect relationships, approaches to 

entrepreneurial experimentation often prescribe testing one change at a time (Camuffo et al., 

2019), a heuristic that supports learning via incremental changes. Moreover, testing complex, 

tightly-coupled ideas may generate performance failures for the firm (Levinthal, 1997). For 

instance, Gavetti and Levinthal (2000) show that large cognitive realignments, which represent 
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complex, interdependent changes in the space of action, can lead to immediate, short-term 

performance losses. In summary, increasing the complexity of treatment variants can encourage 

an exploratory, discovery-driven learning mode of strategic choices but inhibit cause-and-effect 

learning that is needed for the incremental optimization of commitments.    

Number of Treatment Variants  

Firms must also decide how many treatment variants (or options) are tested in parallel. 

Parallel testing arises when multiple treatments are tested simultaneously against a control. 

Having access to more variants may facilitate teams to consider alternatives that otherwise would 

be dismissed.  The decreasing economic cost of testing (Koning et al., 2019, Thomke 1998) 

favors such parallel testing, which is associated with higher short-run performance (Loch et al., 

2001). For instance, Azevedo et al. (2019) show that under fat-tailed distributions common in 

A/B testing experimentation, a lean approach of more tested interventions is preferred to help 

screen for extreme performance gains. Furthermore, a parallel testing approach enables changes 

to be allocated across multiple variants, which facilitates cause-and-effect learning. With fewer 

changes allocated to each variant, an experimenter can discern the source of an effect with 

greater efficiency.  

Despite these near-term performance benefits, parallel testing may reduce power in 

testing while leading to the costly, excessive exploration of new alternatives. For a fixed sample 

size, an experiment with more variants tested against a control will feature a smaller sample for 

each variant.11 This reduces power in testing, decreasing the chance that the real effect of a 

treatment is detected (true positive). In addition, testing multiple treatments in parallel increases 

                                                
11 Note this assumes that the experimenter is not leveraging variants to create a factorial experimental design, where 
sample size for a factor of interest is distributed across multiple variants (Czitrom, 1999; Montgomery, 2013). In 
interviews with Optimizely, we find that most A/B testers do not take a factorial design approach to their 
experiments. 
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the chance of inference error due to increasing false discovery rates that arise in multiple 

hypothesis testing12 (Pekelis, Walsh, and Johari, 2015). Besides the threats of reduced power, 

parallel testing may also impede strategic commitment by prompting firms to excessively 

explore their alternatives (Gans et al., 2019). For instance, Billinger et al. 2014 demonstrate in a 

laboratory study that human decision-makers exhibit a tendency to excessively explore new 

alternatives when they could focus on improving existing alternatives. Here, it is possible that 

parallel testing could distract organizations from improving existing products that could unlock 

higher performance potential. 

Other Independent Variables: Variant Complexity and Variant Count  

To examine how hierarchy associates with design choices, we used the Optimizely 

dataset to construct measures of the complexity and number of treatment variants. First, we 

measure variant complexity, or the total number of distinct change classes activated within an 

experiment. Each treatment variant tests a change from the baseline control, which is recorded as 

seven interdependent change classes on Optimizely’s experimentation platform.13 The 

complexity of the change tested increases with the number of interdependent change classes 

activated. For instance, a simple change to background color would count as one change, 

whereas a new checkout page could be composed of four distinct change classes. We construct 

two related measures of variant complexity—Max Variant Complexity, which measures the 

number of distinct change classes activated in the most complex variant within an experiment, 

and Mean Variant Complexity, which is the average variant complexity across all variants within 

an experiment.  

                                                
12Here, each treatment arm would be testing a different alterative hypothesis. 
13 These change types are: 1) HTML code change, 2) HTML attribute changes, 3) Custom CSS code change, 4) 
Custom code change, 5) Insert/edit widgets, 6) Insert/edit images, 7) URL redirect changes. 
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To observe parallel testing, we measure Variant Count, or the number of treatment 

variants that are run in parallel within an individual experiment. A variant is a treatment to be 

tested against a control and a simple A/B test would be coded as two variants. Companies can 

run n simultaneous treatments to test of sets of interdependent choices that may define a strategy 

(Rivkin, 2000).  

Results: Hierarchy and Design Choices 

To understand the mixed effect of hierarchy on performance outcomes, we examine 

associations of increasing seniority with design choices in Table 3. Model 3-1 tests the 

association between hierarchy and Max Variant Complexity. In particular, we find that each 

increase of the hierarchical rank of the most senior person on an experimentation team is 

associated with 0.017 (p = .036) more distinct change classes in a treatment variant. In terms of 

parallel testing, we find in Model 3-2 that an increase in max seniority is associated with 0.037 

(p = .038) fewer treatment variants tested per experiment. Given that variant complexity may 

also be achieved with more treatment variants, in Model 3-3, we test the association between 

hierarchy and Mean Variant Complexity, which measures the average number of simultaneously 

tested elements across variants in an experiment. Similar to Model 3-1, we find that an increase 

in senior rank associates with an increase variant complexity, or 0.018 (p = .018) more mean 

changes per experiment.  

------------------------------- 
Insert Table 3 about here. 
------------------------------- 

To understand how the aforementioned design choices may influence learning modes and 

performance outcomes, we turn to Table 4. Model 4-1 shows that an increase in the number of 

treatment variants within an experiment associates with a 3.8% increase in the conversion rate of 

an experiment (p < .001). This result confirms basic intuition that more treatment variants 



 22 

increase the chance of finding higher lifts.14 Model 4-2 demonstrates the association between 

max variant complexity and lift, demonstrating a positive but smaller association with lift (i.e., a 

1.4% in the conversion rate of an experiment, p = 0.079). Taken together, we find that although 

both variants count and variant complexity have positive associations with lift, when comparing 

effect sizes and p-values, our analysis suggests that Variant Count has a stronger, more 

noteworthy positive association with maximum lift.   

Models 4-3 to 4-5 illustrate the association between design choices and positive statsig 

signals. Model 4-3 demonstrates that increasing the number of treatment variants has an 

association with Positive Statsig that is difficult to distinguish from zero (p = .198).  Models 4-4 

and 4-5 test the association between experimental complexity and the chance of a positive 

detection. These models show that a one-unit increase in Max Variant Complexity and Mean 

Variant Complexity associate with a 1.9% (p = 0.041) and 2.1% increase (p = 0.032) in the 

chance of a Positive Statsig learning signal, respectively. 

------------------------------- 
Insert Table 4 about here. 
------------------------------- 

 Taken together, these results demonstrate the senior management involvement has a 

mixed effect on learning modes and performance. Increased hierarchy in experimentation teams 

is associated with increased variant complexity and positive, statistically significant performance 

signals found in discovery-driven learning. However, in favoring statistically significant signals, 

hierarchy may inhibit incremental, parallel cause-and-effect learning. 

                                                
14 To adjust for the multiple comparisons problem and increasing chance of committing Type I errors, Optimizely 
applies false discovery rate (FDR) control via the Benjamini-Hochberg procedure in the calculation of its results. 
Further detail on the calculation can be found here (Pekelis et al., 2015). While our calculation of raw lift is not 
conditioned on statistical significance, it is important to note that given FDR control, there is little incentive to 
A/B/n testing practitioners to test more variants in the hope of artificially finding significant results. 
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Robustness Checks 

 We conducted several analyses to probe the study’s robustness. First, we examine 

whether the results are sensitive to the chosen unit of analysis: the experiment. In 

experimentation programs, learning modes and performance outcomes are defined at the level of 

an individual A/B/n test. For each experiment, firms must decide whether to include senior 

managers, whose time and attention are limited. Thus, in practice management seniority is 

assigned at the level of an individual experiment. But could experiments associated with the 

same organization be dependent observations? 

 To address this question, we aggregate our analyses of hierarchy at the level of the 

experimentation team and show the results in Table A1. Model A1-1 demonstrates that 

increasing seniority is associated a 4.6% decrease (p = 0.039) in conversion rates, while Model 

A1-2 shows a 4.7% increase (p < 0.001) in the chance of Positive Statsig across experiments. 

Regarding design choices, Models A1-3 and A1-4 demonstrate that increasing seniority is 

associated with 0.077 (p < 0.001) more distinct change classes across experiments and 0.066 (p < 

0.001) fewer variants on average across experiments. These findings demonstrate the robustness 

of our prior findings, with stronger and larger effect sizes when aggregated at the team level. 

While aggregating analyses at the organizational level sacrifices granularity of control at the 

level of the individual experiment (such as exact traffic, duration, week, etc.), results are also less 

prone to variability in results across individual tests (such as the quality of the individual idea 

being tested) which may influence outcomes such as lift and statistical significance. Estimates of 

effects at the team level help absorb some of this variability. 

An alternative explanation may be that greater A/B/n testing tenure is driving our 

findings—insofar as more senior managers become involved with testing as the organization 
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gains experience with experimentation. In Table A2, we control for Experimental Experience, 

which is each organization’s total tenure on the Optimizely platform measured in number of days 

prior to a focal experiment. Associations between Experimental Experience and outcomes of 

learning and performance are difficult to distinguish from zero. Furthermore, we do not see any 

declines in the strength of association between max seniority and outcomes of Max Lift and 

Positive Statsig. 

Finally, we examine the extent to which our findings are potentially influenced by 

diminishing marginal returns—and whether this property of diminishing returns may associate 

with hierarchy’s relationships with lift and positive statsig learning signals. A/B/n testing 

practitioners have made the observation that effect sizes of experimental treatments can decrease 

over time.15 This could be due to a variety of reasons, such as the initial novelty of the treatment 

wearing off on customers (Dmitriev et al., 2017), the maturity of testing initiatives, general 

equilibrium effects (Heckman, Lochner, and Taber, 1999), or even the fact that websites become 

increasingly optimized over time and yield fewer opportunities for improvement. In Table A3, 

we re-run our analyses from Table 2 but control for the number of A/B/n tests run prior to a focal 

experiment with the measure Number Prior Experiments. Regarding lift, we find that after 

controlling for prior experiments, the effect size of increasing seniority in hierarchy on lift 

decreases somewhat (from -0.9% in Model 2-1 to -0.7% in Model A3-1), although the 

relationship between seniority and decreased lift retains a similar level of statistical significance 

(p = 0.046). Nonetheless, we find that controlling for the number of prior experiments has little 

discernible influence on the association between seniority and a positive statsig learning signal. 

Together, these results demonstrate the robustness of our main analyses in Table 2, 

                                                
15 https://www.semrush.com/blog/ab-testing-landing-page-elements/ 
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demonstrating hierarchy’s positive association with positive statsig learning outcomes and 

negative association with lift.  

Discussion 

 We have found a mixed effect in hierarchy’s association with experimentation: whereas 

senior managers associate with discovery-driven learning and statistically significant learning 

signals, they negatively associate with cause-and-effect learning and lift. We also found that 

senior managers’ influence may flow through experimental design choices: more complex and 

fewer treatment variants. So what are some possible explanations for the differences between 

experiments with senior and junior participation (i.e., experiments that lack a senior manager)? 

And why might senior managers associate with one set of outcomes versus another? 

 Here, it may be useful to think of each experiment as searching a rugged value landscape 

topography, where “hills” represent choices and their payoffs (Levinthal, 1997; Thomke, von 

Hippel, and Franke, 1998). In this search, seniority in management decides which hill to climb 

versus gradually climbing an existing hill that an organization has settled on. By encouraging 

experiments with complex, high-degree changes, senior managers can guide longer jumps in the 

landscape (Levinthal, 1997). In contrast, experiments with senior management participation are 

more likely testing incremental changes in parallel.  On average, senior-driven experiments may 

“win” more by detecting significant effects, giving confidence to a manager who wishes to avoid 

false-positive returns (Camuffo et al., 2019) and ensure that they are climbing an appropriate 

hill. However, the risk of committing large, simultaneous changes (i.e., a long jump) is 

performance losses when compared to more incremental hill-climbing (Gavetti and Levinthal, 

2000). It may seem counterintuitive that smaller scope changes lead to higher average 

performance, but this idea is not new. In fact, incremental moves may help unlock performance 
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discontinuities and success. As Levinthal (2017) points out, “…many instances of dramatic 

strategic change or success can be understood at a fine level of granularity as being relatively 

incremental in the space of action…seemingly rapid technological change is the consequence of 

fairly incremental moves in technological space, with the seemingly discontinuous change 

stemming from a shift of the technology to a new niche or application domain.” In a recent study 

of United States economic growth, the authors estimated that, between 2003 and 2013, 

improvements to already existing products accounted for about 77 percent of increases in growth 

(Garcia-Macia, Hsieh, and Klenow, 2019). Similarly, studies in manufacturing and computer 

technology have shown that significant performance advances were often the result of minor 

innovations (Hollander, 1965; Knight, 1963).   

 While more complex experiments associated with senior managers may result in lower 

average returns in lift, it is also possible that senior managers may be interested in long-term 

performance outcomes not captured by the data in the present study. This would align with the 

notion of senior managers screening the broader landscape of opportunities for which hill to 

climb, with the promise of greater returns in the long-run. In contrast, junior-driven teams may 

have near-term incentives in experimentation, influencing their search behavior (Lee and Meyer-

Doyle, 2017). Measuring the effect of hierarchy and design choices on long-term performance 

outcomes is an important area for future study. 

Conclusion 

The proliferation of business experimentation in strategy formation has emerged as an 

important area of study (Azevedo et al., 2019, Camuffo et al., 2019; Koning et al., 2019; 

Levinthal, 2017; Thomke, 2020) and much more work needs to be done, beginning with the role 

of senior business leaders. To examine their role, we construct and analyze a proprietary dataset 
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of 6,375 experiments on the A/B/n testing platform Optimizely. This unique dataset gives us 

insights into learning modes, design choices and performance outcomes across industries and 

firms, which, in turn, leads to the following contributions.   

First, we contribute to a burgeoning literature on experimentation in strategy by 

introducing the study of organizational structure and design choices in experimentation. We find 

that increasing the hierarchical rank of the most senior person in an organization associates with 

more learning signals but decreased performance. Furthermore, we find that senior managers’ 

influence may flow through experimental design choices. In particular, seniority in management 

supports complex tests that associate with a greater chance of significant learning signals; 

however, such seniority also undermines parallel testing which associates with improved 

performance. Overall, contrary to the views of practitioners who remain wary of executive 

influence in testing, senior managers are neither an unambiguous boon or curse to 

experimentation.  

Second, our findings contribute more generally to understanding the limitations that 

organizational design may place on data-driven decision-making in the digital age (Brynjolfsson 

and McElheran, 2016; Puranam et al., 2014). Despite sustained scholarly interest in 

understanding the influence of hierarchy on firm learning and performance, the literature lacks 

consensus on hierarchy’s influence (Damanpour and Aravind, 2012). Moreover, empirical 

findings are often sensitive to the conceptualization of hierarchy and its context (Bunderson et 

al., 2016). Indeed, the concept of the “Mendelian” executive, enabled by inexpensive 

experimentation, suggests that senior managers are well-positioned to lead their firms into a new 

paradigm for organizational search, overcoming the traditional myopia of hierarchy in the search 

for new strategy (Levinthal, 2017).  
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To test this argument, we conceptualize hierarchy in terms of its steepness (Anderson and 

Brown, 2010), induced by increasing management seniority on an experimentation organization. 

In particular, we find that hierarchical steepness associates with positive detections in 

experimentation, albeit at the potential cost of lower performance. This supports views of 

hierarchy’s conservative influence on organizational search, where hierarchies avoid unprofitable 

projects while simultaneously failing to greenlight potentially profitable ones (Csaszar, 2012; 

Knudsen and Levinthal, 2007).  

Third, we introduce the concept of two distinct learning modes in experimentation—a 

discovery-driven vs. an optimization approach—and discuss their respective trade-offs in 

strategic decision-making. Our results demonstrate that a discovery-driven approach, embodied 

by many simultaneous changes within an experiment, may help generate significant signals 

which give confidence to organizations about the direction of new strategic path. Nonetheless, 

this discovery-driven approach is at odds with cause-and-effect learning, which favors small 

treatments to be allocated across multiple variants. Although this parallel testing strategy may 

introduce more errors, it can help screen high-performing ideas more effectively (Azevedo et al., 

2019). Thus, organizations may choose to toggle between learning modes depending on their 

experimental objectives—whether it is to validate the choice of a new path via a discovery-

driven approach, or to maximize performance along an already chosen path via optimization.  

We conclude by noting limitations to the present study and opportunities for future work. 

First, our study is conducted using a sample of A/B/n tests in the web domain. Despite the 

strength of our sample in representing A/B/n testing practice across contexts, our findings do not 

capture experimentation dynamics in non-web settings. Future work could examine the degree to 

which our findings generalize to other settings, such as offline, physical business experiments 
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(e.g., the testing of non-digital business models), where underlying conditions differ. Second, 

while our data on the internal hierarchy of testing accounts lends itself well to conceptualizations 

of the steepness of hierarchy, it does not directly capture other potential constructs of interest, 

such as cross-relationships (Burton and Obel, 2004) or span of control (Rajan and Wulf, 2006). 

Here, follow-on research could examine the influence of these alternate mechanisms. Finally, our 

findings on hierarchy’s association with discovery at the potential cost of performance raises 

interesting questions about mechanisms which we were unable to capture in the present study. 

For instance, are senior managers taking a longer-term strategic view, wishing to learn about 

elements of a new strategy while accepting short-term losses in performance? Future research 

that pairs experimentation choices with long-term performance outcomes would help address this 

question. 
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Table 1: Descriptive Statistics and Pairwise Correlations (n = 6,375). 

Variable Mean St. Dev. Min Max (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Positive 
Statsig 

0.107 0.310 0 1 1           

Max Lift 0.103 0.673 -0.915 12.905 0.202 1          
Max 
Seniority 

4.538 1.155 1 6 0.039 -0.026 1         

Variant Count 2.430 0.835 2 8 0.034 0.075 -0.064 1        
Max Variant 
Complexity 

1.355 0.589 1 4 0.027 0.016 0.029 0.02 1       

Mean Variant 
Complexity 

1.319 0.550 1.000 4.000 0.026 0.007 0.033 -0.076 0.967 1      

Duration 4.044 3.845 1 31 0.062 0.016 0.03 0.008 0.019 0.022 1     
Traffic 35.373 383.488 1.001 24,054.730 0.034 0.037 0.016 0.01 0.001 0.003 0.03 1    
Firm Age 33.240 37.569 1 282 0.046 0.021 0 0.019 -0.002 -0.001 0.022 0.011 1   
Employee 
Count 

18,341.170 59,144.170 5 377,757 0.011 0.022 0.095 -0.047 -0.014 -0.014 0.055 0.047 0.349 1  

Technological 
Integrations 

21.934 4.296 0 27 0.02 0.006 0.071 -0.035 -0.048 -0.049 0.01 0.017 -0.027 -0.061 1 
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Table 2: Hierarchy on Performance. Ordinary least squares (OLS) estimation of cross-sectional data at 
the experiment level. Robust standard errors clustered at the team level are shown in parentheses and p-
values are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

 ln(Max Lift + 1) Positive Statsig 
 (2-1) (2-2) 
   

Max Seniority −0.009∗∗ 0.010∗∗ 
 (0.004) (0.005) 
 [0.016] [0.047] 
   

Duration 0.002 0.005∗∗∗ 
 (0.001) (0.001) 
 [0.165] [0.0002] 
   

Traffic 0.00000 0.00003∗ 
 (0.00000) (0.00002) 
 [0.364] [0.076] 
   

Firm Age 0.0002∗ 0.0005∗∗ 
 (0.0001) (0.0002) 
 [0.068] [0.019] 
   

Employee Count 0.00000 −0.00000 
 (0.00000) (0.00000) 
 [0.236] [0.506] 
   

Technological Integrations 0.0004 0.001 
 (0.001) (0.001) 
 [0.634] [0.269] 
   

Industry Fixed Effects Yes Yes 
Week Fixed Effects Yes Yes 
#$ 0.0113 0.017 
Observations 6,375 6,375 
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Table 3: Hierarchy on Experiment Design. Ordinary least squares (OLS) estimation of cross-sectional 
data at the experiment level. Robust standard errors clustered at the team level are shown in parentheses 
and p-values are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

 Max Variant 
Complexity 

Variant 
Count 

Mean Variant 
Complexity 

 (3-1) (3-2) (3-3) 
    

Max Seniority 0.017∗∗ −0.037∗∗ 0.018∗∗ 
 (0.008) (0.018) (0.007) 
 [0.036] [0.038] [0.018] 
    

Duration 0.003 0.005 0.003 
 (0.002) (0.003) (0.002) 
 [0.126] [0.145] [0.105] 
    

Traffic 0.00000 0.00004∗∗ 0.00000 
 (0.00001) (0.00002) (0.00001) 
 [0.925] [0.024] [0.771] 
    

Firm Age 0.0002 0.001 0.0002 
 (0.0003) (0.001) (0.0003) 
 [0.487] [0.222] [0.489] 
    

Employee Count −0.00000 −0.00000∗ −0.00000∗ 
 (0.00000) (0.00000) (0.00000) 
 [0.106] [0.076] [0.067] 
    

Technological Integrations −0.008∗∗∗ −0.005 −0.007∗∗ 
 (0.003) (0.005) (0.003) 
 [0.009] [0.245] [0.012] 
    

Industry Fixed Effects Yes Yes Yes 
Week Fixed Effects Yes Yes Yes 
#$ 0.0149 0.0332 0.0157 
Observations 6,375 6,375 6,375 
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Table 4: Experiment Design on Performance. Ordinary least squares (OLS) estimation of cross-
sectional data at the experiment level. Robust standard errors clustered at the team level are shown in 
parentheses and p-values are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

 ln(Max Lift + 1) ln(Max Lift + 1) Positive 
Statsig 

Positive 
Statsig 

Positive 
Statsig 

 (4-1) (4-2) (4-3) (4-4) (4-5) 
      

Variant Count 0.038∗∗∗  0.009   
 (0.007)  (0.007)   
 [0.00000]  [0.198]   
      

Max Variant   0.014∗  0.019∗∗  
Complexity  (0.008)  (0.009)  
  [0.079]  [0.041]  
      

Mean Variant     0.021∗∗ 
Complexity     (0.010) 
     [0.032] 
      

Duration 0.001 0.001 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 
 (0.001) (0.001) (0.002) (0.002) (0.002) 
 [0.409] [0.358] [0.00001] [0.00002] [0.00002] 
      

Traffic 0.00001 0.00001 0.00003∗∗ 0.00003∗∗ 0.00003∗∗ 
 (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) 
 [0.148] [0.122] [0.024] [0.023] [0.023] 
      

Team Fixed 
Effects Yes Yes Yes Yes Yes 

Industry Fixed 
Effects Yes Yes Yes Yes Yes 

Week Fixed 
Effects Yes Yes Yes Yes Yes 

#$ 0.264 0.258 0.253 0.254 0.254 
Observations 6,375 6,375 6,375 6,375 6,375 
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Appendix 

Table A1: Organizational Level Associations with Learning, Performance, and Experiment Design 
Choices. Ordinary least squares (OLS) estimation of cross-sectional data at the team level. Robust 
standard errors clustered at the team level are shown in parentheses and p-values are shown in brackets. 
*p < 0.10, **p < 0.05, ***p < 0.01. 

 

 
Max Lift 

Positive 
Statsig 

Max Variant 
Complexity Variant Count 

 (A1-1) (A1-2) (A1-3) (A1-4) 
     

Max Seniority −0.046∗∗ 0.047∗∗∗ 0.077∗∗∗ −0.066∗∗∗ 
 (0.022) (0.011) (0.019) (0.019) 
 [0.039] [0.00003] [0.00005] [0.0005] 
     

Mean Traffic −0.0001 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗ 
 (0.0001) (0.0003) (0.0004) (0.0003) 
 [0.608] [0.001] [0.005] [0.029] 
     

Mean Duration 0.003 −0.003 −0.019∗∗∗ −0.001 
 (0.008) (0.004) (0.006) (0.005) 
 [0.713] [0.426] [0.003] [0.861] 
     

Firm Age 0.001 0.001 −0.0004 0.0001 
 (0.001) (0.0004) (0.001) (0.001) 
 [0.189] [0.202] [0.553] [0.864] 
     

Employee Count −0.00000 −0.00000 −0.00000 −0.00000∗∗ 
 (0.00000) (0.00000) (0.00000) (0.00000) 
 [0.804] [0.672] [0.222] [0.017] 
     

Technological  0.002 0.003 −0.006 −0.012∗∗∗ 
Integrations (0.004) (0.003) (0.005) (0.005) 
 [0.568] [0.339] [0.273] [0.010] 
     

Industry Fixed Effects Yes Yes Yes Yes 
#$ 0.0168 0.0528 0.0444 0.14 
Observations 1,101 1,101 1,101 1,101 
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Table A2: Pre-Experiment Experience. Ordinary least squares (OLS) estimation of cross-sectional data 
at the experiment level. Robust standard errors clustered at the team level are shown in parentheses and p-
values are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

 ln(Max Lift + 1) Positive Statsig 
 (A2-1) (A2-2) 
   

Max Seniority −0.009∗∗ 0.010∗∗ 
 (0.004) (0.005) 
 [0.018] [0.036] 
   

Experimental Experience −0.00000 −0.00001 
 (0.00001) (0.00001) 
 [0.889] [0.479] 
   

Duration 0.002 0.005∗∗∗ 
 (0.001) (0.001) 
 [0.177] [0.0002] 
   

Traffic 0.00000 0.00003∗ 
 (0.00000) (0.00002) 
 [0.336] [0.079] 
   

Firm Age 0.0002∗∗ 0.0005∗∗ 
 (0.0001) (0.0002) 
 [0.042] [0.016] 
   

Employee Count 0.00000 −0.00000∗ 
 (0.00000) (0.00000) 
 [0.185] [0.072] 
   

Technological Integrations 0.0004 0.001 
 (0.001) (0.001) 
 [0.659] [0.267] 
   

Industry Fixed Effects Yes Yes 
Week Fixed Effects Yes Yes 
#$ 0.0112 0.0175 
Observations 6,375 6,375 
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Table A3: Diminishing Returns in Experimentation. Ordinary least squares (OLS) estimation of cross-
sectional data at the experiment level. Robust standard errors clustered at the team level are shown in 
parentheses and p-values are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01. 

 ln(Max Lift + 1) Positive Statsig 
 (A3-1) (A3-2) 
   

Max Seniority −0.007∗∗ 0.010∗∗ 
 (0.004) (0.005) 
 [0.046] [0.043] 
   

Number Prior Experiments −0.001 0.0001 
 (0.0005) (0.001) 
 [0.120] [0.890] 
   

Experimental Experience −0.00000 −0.00001 
 (0.00001) (0.00001) 
 [0.989] [0.483] 
   

Duration 0.001 0.005∗∗∗ 
 (0.001) (0.001) 
 [0.291] [0.0003] 
   

Traffic 0.00000 0.00003∗ 
 (0.00000) (0.00002) 
 [0.226] [0.077] 
   

Firm Age 0.0002∗∗ 0.0005∗∗ 
 (0.0001) (0.0002) 
 [0.039] [0.016] 
   

Employee Count 0.00000 −0.00000∗ 
 (0.00000) (0.00000) 
 [0.184] [0.072] 
   

Technological Integrations 0.001 0.001 
 (0.001) (0.001) 
 [0.569] [0.265] 
   

Industry Fixed Effects Yes Yes 
Week Fixed Effects Yes Yes 
#$ 0.0117 0.0175 
Observations 6,375 6,375 

 




