
 

Does Apple Anchor a Shopping Mall? 
The Effect of the Technology Stores 
on the Formation of Market Structure 
  
Doug J. Chung 
Kyoungwon Seo  
Reo Song 

 

 

Working Paper 20-066 



 

 
Working Paper 20-066 

 

 
Copyright © 2019 by Doug J. Chung, Kyoungwon Seo, and Reo Song. 

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may 
not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.  

Funding for this research was provided in part by Harvard Business School, and the Institute of Finance and Banking 
and the Institute of Management Research at Seoul National University. 

 

 
 

Does Apple Anchor a Shopping 
Mall? The Effect of the 
Technology Stores on the 
Formation of Market Structure 

  
Doug J. Chung 
Harvard Business School 

Kyoungwon Seo  
Seoul National University 

Reo Song 
California State University, Long Beach 

  

 



   

 
 

Does Apple Anchor a Shopping Mall? 

The Effect of the Technology Stores on the Formation of Market Structure* 

 

Doug J. Chung, Harvard University 

Kyoungwon Seo, Seoul National University 

Reo Song, California State University, Long Beach 

 

Abstract 

This study examines the effect of technology stores—company-owned Apple and Microsoft retail 
stores—on mall configuration. We formulate a structural model that considers the endogenous 
location decisions of retail stores, taking into account both market characteristics and the spillover 
effects of co-location. As a byproduct, the study provides guidance on location choice to mall 
developers and retailers by examining the equilibrium outcome of mall configuration that affects 
retail sales. The results show that competitive effects dominate within and across store categories 
for traditional department stores, but agglomeration effects exist between technology stores and 
upscale department stores. The presence of an Apple store, for example, attracts high-income 
consumers, promoting the entry of upscale stores and the exit of midscale and discount stores. This 
study also introduces three key methodological innovations to the marketing literature. First, we 
address multiple equilibria by estimating equilibrium selection from the observed data. Second, we 
develop an efficient simulator that requires fewer random draws to evaluate the likelihood function 
for complete information games with multiple equilibria. Third, we overcome the remaining 
computational burden by utilizing the GPGPU technology, using multiple processing cores in a 
graphics-processing unit to increase computational speed. 
 

Key words: Apple store, new anchor store, discrete game, complete information, multiple equilibria, 
GPGPU technology, simulator, Bayesian estimation, shopping mall, spillover. 
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1. Introduction 

The retail sector constitutes one of the largest segments of the U.S. economy, generating sizeable 

annual sales that considerably bolster total GDP. In 2017, retail sales surpassed $5 trillion in the 

U.S. alone (approximately 26 percent of GDP; Select USA, 2017) and nearly $23 trillion globally 

(eMarketer 2019), and the market continues to grow. Retail is the largest private employer in the 

United States, directly and indirectly contributing 42 million jobs, or one in four (National Retail 

Federation, 2014). Despite the recent e-tail surge, traditional brick-and-mortar stores still remain 

the core of the retail industry. In 2015, U.S. retail e-commerce sales accounted for only 7.3 percent 

of total U.S. retail sales. Furthermore, according to a recent survey of over 1,000 consumers, more 

than 70 percent would prefer to shop at a brick-and-mortar Amazon store versus on Amazon.com, 

and 92 percent of millennials planned to shop in-store in 2015 as often or more than they did in 

2014 (Timetrade.com, 2015). A considerable proportion of brick-and-mortar retail involves a market 

structure typically referred to as a shopping mall or a shopping center.  

Traditionally, big department stores such as Nordstrom and Macy’s, with their recognized brand 

(from their large advertising budgets) and wide product portfolios, attracted people to the malls—

and, thus, were referred to as anchor stores. Recently, though, technology stores such as the Apple 

and Microsoft stores have begun to draw foot traffic to the malls (Baig, 2018); therefore, we refer 

to these stores as the new anchor stores. Despite this shift, limited research has examined the role 

of these new retail establishments. Hence, this study seeks to gain insights into the way that these 

new anchors affect the shopping mall industry. Specifically, we examine how new and traditional 

anchor stores compete or agglomerate within and across store types to form the market structure. 

As a result, we provide guidance to both retailers and mall developers by predicting market structure, 

which can forecast retail profits, given market characteristics.  

A typical shopping mall consists of a large cluster of retail stores located in physical proximity, 

sharing amenities such as restrooms, food courts, and customer parking. Naturally, the physical 

proximity of co-location has both benefits and costs. The benefits include an economy of scale 

achieved by sharing amenities, as well as increased overall demand from consumers’ reduced 
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transportation costs from one-stop shopping. The obvious cost comes from competition from other 

retail stores located in the vicinity.  

The U.S. retail industry has been in a state of consolidation over the past several years as online 

shopping has accounted for a larger portion of consumer spending. For example, traditional anchor 

stores such as Nordstrom and J.C. Penney have witnessed a decline in per-square-foot revenue 

(Gray & Yuk, 2019). Although traditional department stores are struggling, shopping mall sales 

productivity rose from $383 per square foot in 2009 to $513 in 2018 (International Council of 

Shopping Centers). The media have speculated that technology tenants, mainly Apple stores, are a 

reason for the increase in mall performance. Because many Apple product owners need to go to a 

physical store to get their products serviced, Apple stores naturally increase foot traffic. As new 

anchors for the mall, they increase customer traffic, thus benefiting other mall tenants (Whelan, 

2015; Lodge, 2017).   

Apple opened its first physical store in 2001. As of 2018, Apple had 506 retail stores across 25 

countries, including 272 in the U.S. (Apple.com). Figure 1 shows the number of Apple stores in 

the U.S. by year. One can see a steep increase, which has stabilized in recent years. The presence of 

an Apple store increases mall traffic and, thus, increases mall value, which allows malls to increase 

other tenants’ rent (Lodge, 2017). As a result, Apple can negotiate favorable terms with the mall 

while creating upward pressure on other tenants’ leases. Hence, it is important to understand the 

factors that determine Apple’s choice of location and its effect on the profits of other stores co-

located in the mall.  

To examine the formation of market structure and the possible spillover effects among firms, we 

utilize a simultaneous-move discrete game of complete information in which a firm’s profit (and, 

thus, its entry decision) is a result not only of market characteristics, but also of the spillover effects 

generated by other firms’ entry decisions. We refer to these spillovers as strategic effects because 

they result from the endogenous entry decisions of other co-locating firms.  

This framework has several advantages. First, this approach does not require revenue or price 

data because the observed actions of entry—the equilibrium outcome—can be mapped onto firms’ 

profits. Second, by allowing flexible strategic effects, we are able to capture both negative 
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(competitive) and positive (agglomeration) effects of co-location. Finally, because our data are cross-

sectional, it is fair to assume that the observed equilibrium outcome is a result of a steady-state, 

long-term equilibrium in which firms have made adjustments with regard to their choices (of entry). 

The complete information structure of the game fits this setting. Because of technical complications, 

researchers typically have refrained from using the complete-information setting, although the 

empirical context (such as the one in this study) suits this setting. We do not shy away from the 

complete-information framework, despite the challenges of both multiple equilibria and heavy 

computational burden. Sections 3 and 4 discuss the methods that we use to address these challenges. 

The focus of this research is on anchor stores (both traditional and new) because they are, by 

definition, the key tenants in a mall, occupying most of the mall’s gross leasable area (GLA) and 

generating much of the foot traffic (see Figure 2 for an example of a mall layout in terms of GLA). 

We collect data from the Directory of Major Malls, a data provider that supplies information about 

U.S. shopping centers and their tenants, and utilize information from 1,196 malls with 6,753 anchor 

stores.  

There are several challenges involved in the modeling and estimation of market structure in a 

complete-information discrete-game framework. First, as is the case with most discrete games, we 

face the problem of multiple equilibria, which makes it difficult to either define a likelihood for 

estimation or conduct accurate counterfactual policy simulations. As a result, past research has 

scaled back the problem (Bresnahan & Reiss, 1990; Berry, 1992); specified the sequence of moves 

(Berry, 1992; Mazzeo, 2002b); made arbitrary assumptions related to equilibrium selection 

(Hartmann, 2010); or adopted a partial identification approach—i.e., estimated a range of 

parameters instead of point estimates (Ciliberto & Tamer, 2009). In this research, we address 

multiple equilibria by implementing the selection function method of Bajari, Hong, and Ryan (2010) 

to empirically estimate the equilibrium selection rule from the observed data.  

Second, estimating discrete games of complete information with multiple players, especially in 

a setting that involves equilibrium selection, requires immense computational processing power. The 

empirical setting for this study has 11 players in 1,196 markets, and the model, which includes 

marginal effects on market-firm characteristics and spillovers, has more than 100 parameters. Hence, 
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to search over the parameter space, the estimation needs to evaluate equilibria numerous times. For 

example, to perform 3,000,000 posterior draws for parameter inference using 1,000 random draws 

for probability integration, we would need to evaluate 211´1,000´1,196´3,000,000 

=2,449,408,000,000,000 cases for equilibria, which would not be feasible using conventional 

computational methods.  

To overcome the computational burden, we propose two new approaches. First, we develop an 

efficient simulator that requires fewer random draws for numerical integration. The integration 

involves evaluating the number of random draws that generate an observed outcome as an 

equilibrium. Our new simulator relies on the fact that it is relatively easy, in a complete-information 

discrete-game setting, to avoid random draws that will not be included in the evaluation of the 

likelihood. In a discrete game of complete information with 11 players, there are 211=2,048 types of 

choice outcomes, and, thus, it is unlikely that a random draw generates the observed outcome out 

of the 2,048 possible equilibria. All the random draws from our simulator include the observed 

outcome as possible equilibria and, thus, convey information to the evaluation of the likelihood. We 

show that only 64 random draws from our new simulator achieve higher accuracy than 1,000 draws 

from a traditional simple simulator. 

Second, we use a state-of-the-art technology, the general-purpose computing on graphics 

processing units (GPGPU) that uses multiple processing cores in a GPU of a graphics card to 

increase computation speed—the estimation process runs more than 10,000 times faster than 

traditional methods. Scholars have used GPUs for parallel computing in the estimation of random 

coefficient demand models (Kim, Song & Xu, 2017) and dynamic programming (Aldrich et al., 2011) 

but have not yet applied them in the estimation of a simultaneous-move discrete game of complete 

information. However, using GPUs is much more effective in complete-information discrete games 

than in other applications. Evaluating the likelihood of these discrete games involves many random 

draws; and for each draw, one needs to evaluate equilibria. For example, in 1,196 markets with 64 

random draws, one needs to solve 63,388 (=1,196´64) games for equilibria to evaluate the 

likelihood at a given parameter value. These games are completely independent and can be solved 



6 
 

in parallel by implementing single instruction multiple data (SIMD) processing, using many cores 

in a GPU. The SIMD processing feature fits well with solving complete-information discrete games 

in which the same computational operations are performed on multiple games. Because all possible 

mall configurations are checked for equilibrium, the computational operations (e.g., checking 2,048 

configurations for an 11-player setting) are exactly the same across games.1 In addition, using GPUs 

for solving complete-information discrete games does not require high precision. The procedure 

requires evaluating only whether each mall configuration is an equilibrium and whether the entry 

payoff is positive. Hence, one does not need to compute the payoffs in double precision (15 decimal 

digits) but can compute them only in single precision (7-8 decimal digits) or even half precision (3-

4 decimal digits). As such, our estimation procedure can benefit particularly from the use of modern 

GPUs, which operate faster with low precision.2, 3 

The results of this study indicate that population and income are the key factors that drive 

retail stores’ profits: both new anchors (Apple and Microsoft) and traditional upscale anchors locate 

in affluent and populated areas, whereas other traditional anchors (discount and midscale stores) 

locate in lower-income and less-populated areas. Although the results of the new anchors resemble 

those of traditional upscale anchors, there are some differences. Traditional upscale anchors locate 

in high-income areas where the average age is also high, likely in traditionally affluent areas, whereas 

new anchors locate in high-income regions with a younger demographic. In addition, the new anchors 

locate in areas in which the household size is small, likely in urban areas. 

The strategic spillover effects indicate that, for traditional anchors, competition is the primary 

effect within and across store categories, except for within midscale and within upscale stores, where 

                                                            
1 In contrast, if the application requires solving a non-linear equation for each market (as in a random coefficient 
demand model), the number of iterations needed to solve the equation may differ across markets, which does not fit well 
with SIMD processing. If a computation core solves the equation in one market, it needs to wait until other cores solve 
their equations in other markets, causing an inefficient allocation of computing power. In our application with 11 
players, each core checks for equilibrium in 2,048 mall configurations, the same number of iterations for all markets. 
2 In contrast, if the application requires solving a non-linear equation, computing in double precision is necessary to 
obtain a precise solution. Furthermore, such an application needs to numerically optimize an objective function 
computed from the solutions of the equations (e.g., GMM), which makes double precision even more necessary. 
3 For example, a professional graphics card, NVIDIA Tesla V100, computes twice as fast in single precision as in double 
precision. 
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positive agglomeration effects of co-locating exist. Among the new anchors, Apple seems to have a 

profound effect on various players. Apple has a negative spillover to discount stores but a positive 

spillover to upscale and Microsoft stores. However, no player, including both traditional and new 

anchors, affects Apple, but Apple has a significant effect on many players, proclaiming its status as 

today’s ultimate anchor store.  

Regarding equilibrium selection, we find no evidence that the highest joint-payoff equilibrium is 

more frequently selected, an assumption commonly used in the literature in both estimation and 

counterfactual policy simulations.  

Counterfactual policy simulations show that some stores would not enter a market because of 

the competitive entry of other stores, even under favorable market conditions. In addition, 

counterfactuals reveal changes in market structure due to the entry of new anchor stores. Specifically, 

the entry of Apple substantially increases the profit (and, thus, the entry probability) of upscale 

department stores, but decreases the profit of discount stores. Malls want to lure new anchor stores 

to increase foot traffic. As a way, malls are offering favorable terms (in rent and location) to attract 

these stores (Kapner, 2015). However, malls may increase the rent to other stores due to the increase 

in foot traffic, putting upward pressure on cost, especially to stores that rely on discounted goods. 

Furthermore, by luring new anchor stores, malls can adversely affect their main constituents by 

attracting the wrong types of customers to their focal stores. Hence, malls whose main constituents 

are not high-end customers should think carefully before actively luring a new anchor store, as the 

presence of such stores may substantially change mall configuration. 

In terms of empirical context, this paper shares similarities with Vitorino (2012), which also 

examines the entry behavior of anchor stores in a shopping mall. However, there are four key 

differences, which are as follows. Vitorino (2012): 1) incorporates an incomplete-information 

framework; 2) uses the MPEC (mathematical problem with equilibrium constraints) method (Su 

and Judd, 2012) for estimation; 3) does not explicitly address multiple equilibria; and 4) examines 

only traditional anchor stores.  

The data used in this study, like those in Vitorino (2012), are cross-sectional, and, thus, it is 

fair to assume that the observed equilibrium outcome is the result of a steady-state, long-term 
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equilibrium, which the complete-information structure captures more closely to reality than an 

incomplete-information setting does. In addition, while the MPEC method can estimate model 

parameters without directly addressing multiple equilibria, counterfactual analyses cannot be 

performed because there is no information about the selected equilibrium among multiple equilibria. 

Conversely, we estimate the equilibrium selection function and consider all equilibria in both 

parameter estimation and counterfactual simulation analyses. Finally, technology stores are the new 

attractions of a mall and, thus, defined as new anchor stores. In this research, we examine how these 

new anchors, together with traditional anchors, compete and agglomerate to affect mall 

configuration.  

The remainder of the paper is organized as follows. Section 2 discusses the data and industry 

details. Sections 3 and 4 present the model and estimation, respectively. Section 5 discusses the 

empirical results and counterfactual analyses. Section 6 concludes. 

2. Data and Industry Details 

The mall configuration data come from the Directory of Major Malls, a data provider that 

supplies information about shopping centers and their tenants operating in the U.S. Information is 

available on 7,411 malls operating as of December 2015. A typical shopping mall consists of a large 

cluster of retail stores sharing amenities such as restrooms, food courts, and customer parking 

facilities. Sometimes, retail stores also share logistical facilities, such as loading docks and 

warehouses. General-purpose shopping centers are organized by size and trade area into the following 

categories: strip mall/convenience center; neighborhood center; community center; regional mall; 

and super-regional mall (see Table 1 for the definition of different types of shopping hubs by The 

International Council of Shopping Centers—ICSC, 2016). 

According to the definition in Table 1, shopping hubs, generally referred to as shopping malls, 

are either regional or super-regional shopping malls. Because these malls are independent shopping 

hubs with the space and capacity to provide a wide range of goods and services, operating in a large 

and separate geographical trade area, we define these malls as separate markets in which anchor 

stores locate. 
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In addition to mall configuration, we obtain demographic data from the Scan/US demographic 

database, which includes population, size of household, and average household income within five 

miles of each shopping mall. Furthermore, we collect the location of each anchor store’s headquarters 

and compute the distance to every shopping mall in which it has a store. After data cleanup by 

excluding unusable observations that are missing information, we end up with 1,196 regional and 

super-regional shopping malls including 6,753 anchor stores for our empirical analysis. Table 2 

shows the summary statistics of the key variables. 

Traditional anchor stores are large chain department stores that drive customer traffic to a 

shopping mall. These retailers are typically classified into three broad categories—discount, midscale, 

and upscale—based on target customer segments (Levy & Weitz, 2012). Focusing on price rather 

than service, discount department stores, such as Sears and Target, sell a variety of merchandise at 

lower prices than typical retail stores offer. Midscale department stores, including Macy’s and 

Dillard’s, offer a wide selection of both brand- name and non-brand-name merchandise, seeking to 

offer good value to their customers. Upscale department stores sell goods at above-average prices; 

their customers typically prefer exclusive designer brands and value customer service over low price. 

Examples include Nordstrom and Bloomingdale’s (see Table 3 for a detailed categorization of each 

department store). 

Aside from traditional anchor stores, technology stores—or what we refer to as new anchor 

stores— have recently gained attention for increasing malls’ foot traffic. The focal store of interest 

among the new anchors is the Apple store. First opened in 2001, the Apple store is the retail 

establishment owned and operated by Apple Inc., selling and servicing Apple products. Although 

the media initially speculated that the Apple store would fail (Useem, 2007), it has, instead, been 

highly successful, with more than $16 billion in total revenue in 2011 (Segal, 2012). By attracting 

consumers, the Apple store not only makes revenue for Apple Inc., but also potentially increases 

sales of others stores in the mall. Similar to the concept of the Apple store, the Microsoft store is a 

retail store owned and operated by Microsoft; it opened in 2009 to sell and service Microsoft products. 

Table 4 presents the number of malls in the data that house Apple and Microsoft stores along 

with stores in various traditional categories. Out of 1,196 malls, Apple and Microsoft stores are 
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present in 168 and 84 malls, respectively. Classifying the malls that have Apple and Microsoft stores 

into different categories reveals some interesting patterns. Both Apple and Microsoft tend to co-

locate with upscale stores: 59.5 percent of Apple and 36.3 percent of Microsoft stores are co-located 

with upscale stores, while only 9.5 percent of Apple and 4.1 percent of Microsoft stores are co-

located with discount stores.  

A key reason that research on shopping centers tends to be scarce is the paucity of data; statistics 

on mall/store profitability, such as rent and prices, are particularly difficult to obtain. The only 

available data are on market structure—that is, data on retail store configuration in a specific 

market. To properly examine market formation, one would need to supplement the limited data 

with economic theory. Thus, a structural model of firm entry is suitable to address the research 

question of this study.  

3. Model 

In order to examine the formation of market structure, we model the location (entry) decisions 

of firms in a specific market as a simultaneous-move discrete game of complete information. The 

model takes into account a firm’s decision to enter a particular market in which a firm’s payoff 

depends not only on firm and market characteristics, but also on the entry decisions of other firms.  

3.1. Discrete Game of Firm Entry 

There is a sequence of markets, indexed by m=1 ,…,M , where a market in the empirical context 

is defined as a retail shopping mall. In each market, there are J potential entrants (i.e., anchor 

stores), and the profit of firm j when entering market m is defined as 

   ( ) ( )( ) ''
'

1,
J

j
mj m mj mj m j j mj mj mjj

j j
a a a x ap p b d e-

¹

= = = + +å ,   (1) 

where 1( ,... ) {0,1}J
m m mJa a a= Î  is the vector of action profiles of all firms in market m, with amj = 1  

if firm j enters and amj = 0 otherwise. Similarly, ( )m ja -  is the vector of action profiles for all firms in 

market m other than firm j. The vector xmj represents the characteristics of firm j in market m, 

which include market-level characteristics such as population, average income, and household size. 
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The vector of parameters 1( ,..., )j j jKb b b=  represents the marginal effect of firm and market-level 

characteristics on firm j’s profit, and ' ' 1, '( )jj J
j j j jd d = ¹=  represents the vector of strategic effects of 

other firms’ entries on firm j’s profit. Notice that we do not restrict the strategic effects to be 

negative but also allow them to be positive—that is, we allow negative competitive effects and 

positive agglomeration effects (Ciliberto & Tamer, 2009; Vitorino, 2012). 

The last term ejm in Equation (1) is the firm-market specific idiosyncratic shock that is 

unobserved by the econometrician but observed by the firms. The standard distributional 

assumption applies—independently and identically distributed (from a standard normal distribution) 

across firms and markets. A firm’s profit from not entering the market is normalized to zero. 

3.2. Multiple Equilibria 

In each market, we assume that market structure is a result of a pure strategy Nash equilibrium. 

Firm j enters market m if and only if ( )( )1, 0mj mj m ja ap -= > . It is generally the case that a pure 

strategy Nash equilibrium is not unique in discrete games. Figures 3a and 3b offer an illustrative 

example similar to that shown in Bresnahan and Reiss (1990). Suppose that two firms, Apple and 

Microsoft, are playing a simultaneous-move entry game of complete information. For simplicity, 

assume that each player's payoff is dependent only on the strategic effect (entry choice) of the other 

player and an idiosyncratic shock. Thus, the profit function in Equation (1) has only the second 

and the last component. In such a case, the profits for Apple in market m would be 

A
mA mM mAMap d e=- +  , and the profits for Microsoft would be M

mM mA mMA ap d e=- + . If the other 

firm’s entry is competitive ( 0d > ), there would be a region in the (emA, emM) plane where one would 

observe more than one equilibrium outcome (shaded region in Figure 3a). Similarly, if the other 

firm’s entry is complementary—that is, the profit function for Apple is A
mA mm mAMap d e= +  and that 

of Bloomingdale’s is M
mM mA mMA ap d e= +  ( 0d > )—there would be a region in which an equilibrium 

outcome could be either all firms entering or none entering (shaded area in Figure 3b).  

There are two potential problems associated with the multiplicity of equilibria. First, because 

there are specific regions (shaded regions in Figures 3a and 3b) where no unique outcome exists, 
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the model is termed incomplete (Tamer, 2003)—that is, a researcher cannot define the likelihood of 

certain types of outcomes. Second, counterfactual policy simulations cannot accurately predict an 

outcome because one cannot determine the equilibrium that is selected. To overcome this problem, 

researchers typically have simplified the scale of the problem (e.g., used the number of firms rather 

than their identities (Bresnahan and Reiss, 1990)); postulated a structure on the sequence of moves 

(Berry, 1992; Mazzeo, 2002b); set arbitrary assumptions with regard to equilibrium selection 

(Hartmann, 2010); or relied on a partial identification framework that estimated a range of 

parameters instead of point estimates (Ciliberto and Tamer, 2009). We mitigate the problem of 

multiple equilibria by empirically estimating—from the observed data—the selection rule proposed 

by Bjorn and Vuong (1984) and formalized by Bajari, Hong, and Ryan (2010). 

The detailed process is as follows. Let G be the set of pure strategy Nash equilibria given the 

discrete game payoffs. Thus, the probability that profile am is played is  

( )

( )
( )

exp ( )
if 

exp ( );

0 otherwise,

m

m
m

mam

z a
a

z aa

k

k
r ¢ ÎG

ìïïï Î Gïï ¢ïG = íïïïïïïî

å
      (2) 

where 

( )
( ) ( )1 if max

0 otherwise.

m
m m m m

a

m

a a
z a

¢ ÎG

ìï ¢Y = Yïïïï= íïïïïïî

 

The joint payoff of firms taking action profile am is represented as ( ) ( )m m mj mj
a apY = å , and the 

parameter k captures how often the highest joint-payoff equilibrium is selected. For example, if 

k> 0 ,  the highest joint-payoff equilibrium is more likely to be selected instead of other equilibria. 

A discussion about the identification of k will follow in the next section. 

It is worth noting that the existing literature typically does not explicitly address equilibrium 

selection and makes arbitrary assumptions—e.g., that the highest total payoff equilibrium is always 

selected. As specified earlier, this research seeks to provide projections about market structure—
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firm entry in the presence of other potential entrants—in markets with specific characteristics. 

Performing such a task requires counterfactual analyses—that is, simulations of future discrete-game 

outcomes where an equilibrium selection rule should be specified to choose an equilibrium and 

predict the market structure. 

4. Estimation 

For estimation of the model parameters, we adopt a Bayesian approach because it provides a 

unified methodology for inference and decision. Through the Bayesian approach, we can properly 

reflect the parameter uncertainty, including the equilibrium selection when evaluating the 

desirability of a firm’s location choice. In addition, because the model proposed in Section 3 

accompanies more than 100 parameters in our empirical context, the Bayesian approach turns out 

to be more feasible. 

In this section, we discuss the computation of the posterior distribution for parameter inference. 

We use the Metropolis algorithm, one of the Markov Chain Monte Carlo (MCMC) methods that 

are common in Bayesian analyses when direct sampling from the posterior distribution is not feasible. 

4.1. Likelihood Evaluation for Parameter Inference 

For parameter inference, the computation of the likelihood (the probability of observing the 

data given parameter values) is necessary. Because the likelihood in Equation (1) does not have a 

closed-form solution, one may use a simple frequency simulator to compute the likelihood (Ciliberto 

& Tamer, 2009). To augment the simple simulator, we develop an efficient simulator that computes 

the likelihood with a smaller number of random draws. The simple frequency simulator evaluates 

the number of draws that generate the observed mall configuration as an equilibrium. A game with 

11 players leads to 211=2,048 possible configurations; however, most draws from a simple frequency 

simulator will be incompatible with the observed configuration. Our new simulator is designed to 

avoid random draws that are not compatible with the observed configuration. 

For notational simplicity, subscripts are omitted whenever the meanings are clear. The 

probability of observing firms’ entry decisions {0,1}Ja Î  in a specific market is  
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    ( ) ( )| , ; ( ) ( )p a x a dq r e f e e= G ⋅ò ,    (3) 

where G(e) is the set of equilibria with explicit dependence on e. Because there is no closed-form 

solution for the set of equilibria G(e), one has to rely on simulations to conduct the integration. 

Equation (4) shows a simple frequency simulator to conduct such a task.  

       ( ) ( )
1

1 ; (| , )
R

r

r
p a

R
a x r eq

=

» Gå ,    (4) 

where e 1 ,…,eR are J-dimensional independent standard normal draws. While the simulator in 

Equation (4) can approximate the integral in Equation (3), it is not computationally efficient 

because a majority of the draws may not provide any information to help determine the likelihood. 

For example, if one of the following conditions holds for at least one ,...,j 1 J=  — 

i) ( )j
j j j jjj j

x ae b d ¢¢¹
< - +å  and 1ja = ; or   

ii) ( )j
j j j jjj j

x ae b d ¢¢¹
> - +å  and 0ja = —   

then it is the case that ( ); ( ) 0ar eG =  because neither i) nor ii) is true in equilibrium and, thus, is 

not compatible with observation a. In other words, ( ); ( ) 0ar eG =  represents the event that a firm 

enters when profits are negative or does not enter when profits are positive. Hence, to improve 

computational efficiency, we define a more efficient simulator than the one in Equation (4) such 

that  
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where E is the event in which either condition i) or ii) holds for some j=1 ,…,J ; Ec is the complement 

of E; and e1 ,…,eR are drawn from the density f(e |Ec). The second equality holds because 

( ); ( ) 0ar eG =  when e  lies in E . Note that f(e |Ec) is the density of a truncated standard 
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independent multivariate normal distribution. Hence, to simulate e r for 1,...,r R=  from f(e |Ec), 

one can draw each e j independently from a truncated standard univariate normal distribution, where 

the truncation level is set at ( )j
j j jjj j
x ab d ¢¢¹

- +å , and the truncation direction (left or right) is 

determined by aj. The term  is computed by the following product:  

( )
1

1
Pr 1

jj
aa

J JJ
j jc

j j j j j jj j
j j j j j

E x a x ab d b d
-

¢ ¢¢ ¢
¢ ¢= ¹ ¹

é ù é ùæ ö æ ö÷ ÷ç çê ú ê ú÷ ÷= F - - -F - -ç ç÷ ÷ê ú ê úç ç÷ ÷÷ ÷ç çè ø è øê ú ê úë û ë û
å å , 

where F(.) is the cumulative distribution function of the standard normal distribution. We refer to 

the simulator in Equation (4) as the simple simulator and that in Equation (5) as the augmented 

simulator. 

By avoiding simulation draws that give an obvious ( ); ( ) 0ar eG = , the augmented simulator 

performs more efficiently than the simple simulator. For example, assume that 

0j
j j jjj j
x ab d ¢¢¹

+ =å  for all j=1 ,…,J with J = 1 1 —that is, the entry decisions of 11 firms depend 

only on the draws of each e . In addition, assume that a=(1,…,1) is observed—that is, all firms 

enter. Thus, the event Ec is mapped onto the positive orthant of the J-dimensional Euclidean space 

of e.  Via the simple simulator, a draw falls in E with probability 
11

11 0.9995
2

- » . Hence, fewer 

than one out of 1,000 draws, on average, will lie in Ec, and so the possibility of multiple equilibria 

is explored in fewer than one case out of 1,000 to determine the value of the likelihood. With the 

augmented simulator, however, all 1,000 draws lie in Ec, and, thus, all cases are used to find multiple 

equilibria. 

Figure 4 illustrates the advantage of the augmented simulator over the simple simulator. For 

comparison, we use the two simulators to compute the probability that all players enter a given 

market. The details of the computation exercise are as follows. The total number of firms is set to 

11 (the same number of firms as in the empirical application), with each firm’s profit function set 

to Equation (1) with 0j jxb = , ' 1 /j
j Jd =  for each 'j j¹ . The number of simulated errors is set 

as R=4, 8, 16, …, 1024 for comparison; and the probability that all players enter is computed 100 

( )Pr cE
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times, with each point (the circle and triangle points for the simple and augmented simulators, 

respectively) in Figure 4 representing a computed probability. With a small number of errors (e.g., 

R=4, 8, 16), the computed probabilities may coincide due to the discrete nature of the simulator; 

thus, not all computed probabilities are distinctly indicated in the figure. Note that because there 

is no closed-form solution for Equation (1), we do not precisely know the true probability of all 

firms entering a market. However, from the simulation results of both the simple and augmented 

simulators, the true probability is about ten percent. 

The probabilities computed by the simple simulator vary dramatically across 100 trials, 

especially when the number of simulated draws is small. Even in the case with more than 1,000 

simulated draws, the standard deviation of the computed probabilities is close to one percentage 

point (10% of the true value). A ten-percent deviation would lead to a sizable bias in computing 

the likelihood for the MCMC posterior-parameter draws and, thus, model inference. In contrast to 

the simple simulator, our augmented simulator is relatively stable and shows little deviation. Even 

with only 64 simulated draws, it shows a standard deviation of less than 0.2 percentage point. 

Next, we discuss the computation of Γ(er), the set of all pure strategy Nash equilibria. To find 

all equilibria, we check whether each strategy profile is in equilibrium. For each market and each 

draw of er, there are 2J strategy profiles to check for equilibrium. For example, the empirical setting 

in this study has 11 players in 1,196 markets. If we use R=64 random draws of er for probability 

computation to perform three million MCMC iterations,  we would need to check 

211´64´1,196´3,000,000=470,286,336,000,000 cases for equilibria, which would not be feasible 

using conventional computational methods. Because it is possible to evaluate equilibria by many 

markets and simulation draws within each MCMC iteration in parallel, we capitalize on the parallel-

processing power of the GPGPU, a state-of-the-art technology that uses a graphics-processing unit 

and its many cores to compute the probability of the observed data.4  

                                                            
4  The estimation (using Matlab) with GPGPU technology runs more than 10,000 times faster than that without it. 
While the MCMC iterations for our estimation took approximately three hours, a simple Matlab code without parallel 
processing would produce the same result in well over three years—that is, 1,250 days. 
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The use of GPUs significantly increases the computational efficiency in a discrete game of 

complete information compared to other applications. As discussed in Section 1, evaluating outcomes 

for equilibria fits the SIMD design of GPUs, where the same computational operations of checking 

2,048 (=211) configurations for 11 players are performed simultaneously over multiple games. In 

addition, using GPUs to solve complete-information discrete games works well with low precision, 

as it requires evaluating only whether each configuration is in equilibrium and whether the entry 

payoff is positive. Hence, the use of a GPU for SIMD processing can substantially increase the 

computational efficiency of our empirical application. See the Appendix for the details of the 

estimation procedure. 

4.2. Identification  

This section presents an informal discussion of identification—the intuition on the variation in 

the data that helps one make inferences on the model parameters. For detailed and formal arguments, 

see Bajari, Hong, and Ryan (2010). The idea is based on identification at infinity. For brevity, we 

omit the market index m in this section. For each a-j, we can find large values of x such that store 

j playing a-j is a dominant strategy with probability close to one. For these x values, a small variation 

in xj identifies bj. Then, find x and x¢ such that bjx = bjx¢ and a-j differ only on the decision of store 

j'. The observed distribution of aj on such x and x¢ identifies '
j
jd , the strategic spillover effect of 

store j' on store j. Given values of the parameters (b, d), observations of markets with multiple 

equilibria will identify the selection probability —in particular, k in Equation (2).  

Aside from the above arguments, we have numerically verified parameter identification with a 

dataset randomly generated according to the model in Equation (1). An adequate number of 

observations led to mean posterior-parameters close to the true parameter values. 

5. Results 

First, we discuss the results of each firm’s profit function in Equation (1). Then, we conduct 

several counterfactual policy simulations to address the main research question of interest: how the 

( );mar G
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new anchor stores affect the co-location decisions of other anchor stores (both traditional and new) 

to form the market structure. 

5.1. Firm Profits 

Table 5 shows the parameter estimates with regard to market- and firm-specific effects, and 

Table 6 shows estimates of the strategic spillover effects of the discrete game of firm entry; thus, 

combined, they represent a retail store’s profit function in Equation (1). There is clearly a 

substantial degree of heterogeneity via stores. First, we discuss in detail some noticeable patterns of 

the traditional anchor stores by store category (discount, midscale, and upscale). Then, we discuss 

the results for the new anchor stores.    

For traditional anchor stores, the effect of population is positive for upscale stores, indicating 

that these store types prefer to locate in populated areas. In contrast, discount and midscale stores 

locate in less-populated areas. Their offerings typically consist of products at affordable prices with 

limited service. Hence, discount and midscale stores would find it too costly (due to high labor and 

rental costs) to effectively operate in densely populated areas. 

For upscale stores, such as Nordstrom and Bloomingdale’s, the inclination to enter populated 

areas is not surprising. Upscale stores, by definition, serve upper-income segments of the population, 

which exist in critical mass only within highly populated areas. Correspondingly, the parameters 

associated with average income (a proxy for purchasing power) indicate that Nordstrom and 

Bloomingdale’s prefer to locate in wealthy neighborhoods. On the other hand, the negative effect on 

average income implies that most discount and midscale stores prefer to locate in less-affluent areas 

because they cater to low- to middle-income customers. Macy’s is the exception, as many consider 

it a higher-end store in the midscale category (Wahba, 2015). 

The effect of household size is positive for most of the discount and midscale stores, suggesting 

that large households with many family members appreciate the good value-per-price of these stores. 

The effect of site size is positive for most store types. Customers who shop in shopping malls value 

not only merchandise shopping, but also other amenities such as restaurants, cafes, movie theaters, 

valet parking, etc. Larger shopping malls have the space to provide more of such amenities.  
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The results of new anchor stores closely resemble those of upscale department stores. They prefer 

to operate in large malls located in populated and high-income areas. However, there are two 

distinguishing factors. First, the traditional upscale department stores locate in high-income areas 

where the average age is also high—likely traditionally affluent areas. In contrast, new anchors 

stores locate in high-income regions with a younger demographic. Second, the new anchors locate in 

areas in which the household size is small, likely urban areas. 

The coefficient regarding equilibrium selection is negative and statistically insignificant, 

providing no evidence that the highest joint payoff equilibrium is more frequently selected. This 

finding contradicts the previous literature that commonly assumes that the highest joint-payoff 

equilibrium is chosen in both estimation and counterfactual policy simulations. In fact, our results 

show suggestive evidence (negative but insignificant parameter estimate with regard to equilibrium 

selection) that the highest joint-payoff equilibrium is less commonly selected compared to other 

equilibria, implying that firms do not coordinate to achieve the highest joint payoff. 

The parameter estimates for the strategic effects of firm entry, shown in Table 6, are consistent 

with the earlier inference regarding market- and firm-specific effects—for example, discount stores’ 

reluctance to enter populated areas due to high operating costs. One can see that competition is the 

dominant effect within these stores. Furthermore, both discount and midscale stores suffer from the 

entry of upscale stores, indicating competitive effects not only within, but also across, store 

categories. In contrast, there is limited competitive effect and rather a positive agglomeration effects 

within both midscale and upscale stores.  

In terms of the strategic effect regarding new anchor stores, Apple seems to have a profound 

effect on various players. First, Apple has a negative spillover and positive spillover effect on 

discount and upscale department stores, respectively. Apple’s clientele overlaps with that of upscale 

stores, likely increasing the foot traffic of these customers. Second, Apple positively affects 

Microsoft’s profits. Again, Microsoft’s clientele resembles that of Apple, so positive agglomeration 

is not surprising. Microsoft, however, negatively affects the profits of discount stores but does not 

directly affect Apple. In fact, no player, including either traditional or new anchor stores, seems to 

have any effect on Apple’s profits, but Apple seems to have a profound effect on the profits of many 
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players, proclaiming its status as the ultimate anchor store in the current era. We will discuss these 

strategic effects in more detail in the next section.    

5.3. Counterfactual Analyses 

Using the structural parameters estimated in the previous section, we perform several 

counterfactual analyses to predict market structure. First, we examine the marginal effect of market 

characteristics on market structure to guide the developer. Second, we investigate the change in 

market structure regarding the entry of technology stores. When entering the market, a firm chooses 

its location based not only on market characteristics, but also on the expected strategic location 

choices of other firms.   

A developer needs to select a site to construct a new shopping mall. The choice of a site is 

summarized as x, where x contains site characteristics such as population and average income. An 

important piece of information for a site selection is the joint distribution of the market structure 

( )1,..., Ja a a= . Formally, the probability of firm j entering a given mall is 

| | , , ( ) ( | )j jE a x E a x d dp dataq e e qé ù é ù= Fê ú ê úë û ë ûòò , 

where F(.) is the cumulative distribution function of an independent multivariate standard normal 

random vector, and p(q |data) is the posterior distribution of the model parameters. Here data 

represents all the data used in the model estimation. To compute the inner integral, given q, we 

simulate er  for r = 1,…,R.  For each er, we compute the set of all pure strategy Nash equilibria G(er). 

If there exist multiple equilibria, entry decisions of potential entrants, ar, are drawn according to 

the equilibrium selection rule ( ); ( ; , )ra xr e qG . This step gives the inner intergral: 

   ( )
1 ( ; )

1| , , ( ) ; ( ; , )
r

R
r

j j
r a

E a x d a a x
R e q

q e e r e q
= ÎG

é ù F » Gê úë û å åò .   (6) 

Finally, recall that we have samples of q, {q1,…, qS}, drawn from the posterior distribution, 

p(q |data), through the MCMC draws in the model estimation. Because each sample of q gives one 

value of Equation (6), we can compute the entry probability, given market characteristics x, as 
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Figure 5 shows the probability of selected firms entering, conditional on different levels of site 

size. Consistent with the results of firms’ profit function in Table 5, the entry probability of most 

stores increases with site size. However, Target’s entry probability starts decreasing at a certain 

value of site size. What explains this phenomenon? A firm’s entry probability is a function of three 

components: the main effect from firm- and market-specific characteristics (Table 5); the within-

category spillover effects (diagonal elements in Table 6); and the cross-category spillover effects 

(off-diagonal elements in Table 6). In Target’s case, the within- and cross-category spillover effects 

are all negative. As a result, even though the main effect of site size on Target’s entry is positive, 

the effect of site size on other stores is also positive and, thus, encourages Target’s competitors to 

enter the market. Higher competition decreases Target’s likelihood of entry.  

Similarly, the entry decisions of Apple and Microsoft depend not only on the main effect of site 

size, but also on within- and cross-category spillover effects. The presence of Apple stores encourages 

the entry of Microsoft. Moreover, cross-category spillover effects are mostly positive for both Apple 

and Microsoft. Hence, as shown in Figure 5, one can see an amplifying effect reflected in the convex 

relation between site size and the entry probabilities of Apple and Microsoft.  

To examine the spillover effect in more detail, Figure 6 separates the effect of site size on 

Target’s profits into the direct (main) effect and the indirect (spillover) effect from other firms. The 

thick upward-sloping dotted line represents the main effect of site size on Target’s profits, and the 

thin lines represent the ten spillover effects from other firms—that is, the change in Target’s profits 

due to the entry of other firms. The thick downward-sloping dashed line shows the aggregate of all 

spillover effects. Finally, the thick solid line represents the sum of the main and overall spillover 

effects. Even though the main effect is positive, the overall effect of site size on Target’s profits (and, 

therefore, its probability of entry) is negative at larger malls because the negative spillover effects 

are greater than the positive main effect. 

Having explained all the working parts of the model, Table 7 shows a realistic scenario that a 

developer faces in choosing a mall location. Site M possesses the average values of population and 
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income, as well as the average values of other variables in the data. The population of site A is ten-

percent higher than that of site M (with the same average income as site M). Similarly, the average 

income of site B is ten-percent higher than that of site M (with the same population as site M). 

Other market characteristics in sites A and B are set to the mean values in the data. We compare 

the effects of these differences in population and income to determine the market structure in sites 

A and B. The results show that more upscale and technology stores enter site B, the site with lower 

population but higher average income.  

To increase customer traffic, malls are trying to lure new anchor stores by providing favorable 

terms on rent and location. Thus, the next counterfactual analysis depicts the hypothetical scenario 

in which a mall attracts new anchor stores to its retail location. Table 8 shows the results of this 

counterfactual. The second column shows the entry probability of each store at the average values 

of all independent variables in the data (i.e., a market with average characteristics). The third, 

fourth, and fifth columns show firms’ entry probabilities with Apple entering, Microsoft entering, 

and both entering. The entry of new anchor stores increases the profit (and, thus, the entry 

probability) of upscale department stores, but decreases the profit of discount stores. Because of the 

increase in traffic that an Apple store brings, malls tend to increase the rent for other stores, putting 

upward pressure on cost (Kapner, 2015), which considerably affects stores that sell discounted goods. 

In addition, by luring new anchor stores, malls attract high-income customers who are in search of 

high-end goods. Thus, in a mall that has low-income customers as its main constituents, luring a 

new anchor store can negatively affect its business operations by 1) attracting the wrong types of 

customers for its existing stores and 2) driving away its major retailers (discount stores). Hence, 

malls should carefully consider the dynamics of the location choice of retail stores and its effect on 

market structure. 

6.  Conclusion 

Despite the recent surge in e-commerce, brick-and-mortar retail, specifically in the form of large-

scale shopping malls, is still the dominant venue for consumer purchases in the developed world. In 

the past, brand-name department stores (traditional anchor stores), with their large advertising 
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budgets and wide product portfolios, attracted consumers to the mall. Presently, however, many 

believe that technology stores such as Apple and Microsoft (referred to as new anchor stores in this 

study) attract consumers to the mall. Yet there is little research on the dynamics that the technology 

stores create in the formation of the retail cluster—mall configuration.   

This paper develops a structural model of retail configuration with multiple equilibria to examine 

the complex dynamics between new and traditional anchor stores. The analyses help to assess the 

types of stores that will join a shopping hub with the presence of a technology store.   

The results show that population and income are the key drivers of retail stores’ profit. The 

upscale and new anchor stores locate in highly populated, affluent areas, whereas midscale and 

discount stores locate in less-populated, lower-income areas. Furthermore, new anchor stores locate 

in high-income regions with younger demographics and smaller household size—likely urban areas. 

The analyses of strategic effects suggest that the negative effect of competition is the dominant force 

within and across store categories, especially for discount stores, but positive agglomeration effects 

exist within store categories (midscale and upscale). No store directly affects Apple, but Apple 

affects many players, signifying its status as the anchor store of present-day retail. Apple negatively 

affects discount stores but positively affects upscale and Microsoft stores.  

The counterfactual simulations suggest that some stores would decide not to join a mall, despite 

favorable market conditions, due to the expected competitive entry of other stores. Regarding 

equilibrium selection, we find no evidence that the highest joint-payoff equilibrium is more 

frequently selected. In fact, we find suggestive evidence that the highest joint-payoff equilibrium is 

less commonly selected than other equilibria, challenging the common assumption used in the prior 

economics and marketing literature.   

Through our empirical application, we introduce three important methodological innovations. 

First, we provide one of the first empirical implementations of Bajari, Hong, and Ryan (2010) and 

consider all equilibria to estimate the equilibrium selection rule from the data. Second, we develop 

and use an augmented simulator that incorporates all information from each simulation draw for 

numerical integration. Finally, we utilize a state-of-the-art technology, GPGPU, using multiple 

processing cores of a graphics-processing unit to significantly increase computational speed to 
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consider and solve all equilibria, an effort that would not have been feasible with conventional 

computational methods.     

In summary, this research provides a rigorous yet practical framework to understand and 

evaluate why new and traditional anchor stores join a shopping mall and how their decisions affect 

mall configuration. Although our empirical application is in the retail shopping mall domain, our 

model can be extended and applied to other settings in which a decision maker must choose among 

alternative sites—for example, transportation hubs such as airports or train stations. In addition, 

our modeling framework can be applied to assess the impact of regulatory factors on firms’ entry 

decisions to gauge their implications on consumer welfare. We believe that these substantive areas 

will be exciting venues for future research. 
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Appendix: Estimation Procedure 

This appendix provides the details of the Bayesian estimation procedure used in this study. To 

obtain the posterior distribution, we draw samples of q by the Metropolis algorithm. At each 

iteration t , the Metropolis algorithm draws q¢ from a proposal distribution and determines if q¢ is 

accepted as a posterior sample qt with probability ( ) ( ){ }1max 1, ' / tp pq q - , where ( )p q  is the 

posterior distribution of parameters. If q¢ is not accepted, we set . 

Recall that ( ) ( ) ( )prior density at likelihood at p q q qµ ⋅ . The prior distribution for all 

parameters is set as the independent joint normal distribution with mean 0 and standard deviation 

10. Because the likelihood does not admit a closed form, we rely on the simulated likelihood, 

explained in Section 4.  

The proposal distribution is set as a random walk. The proposal distribution at iteration t is 

normal with mean vector qt	and variance matrix s2V, where s is a positive number and V is a positive 

definite matrix. We tune the variance matrix to improve the performance of the Metropolis 

algorithm, a variation of Roberts and Rosenthal (2009) and Haario, Saksman, and Tamminen (2001). 

For s, we set our target acceptance probability between 0.1 and 0.3. If the number of accepted 

proposals in the last 100 iterations is below 10 or above 30, we adjust s accordingly. We set  

 
( )

( )( ) ( )
2

2.4
covariance of 1 samples identity matrix

dimension of 
V t e

q
= - +   

at iteration t. Here, e is a small positive number such that the second term guarantees positive 

definiteness of V. During the initial tuning stage, we run two million Metropolis iterations. To 

evaluate the simulated likelihood, R=64 errors are generated once, and the same errors are used 

throughout the entire Metropolis iterations. 

During the main MCMC stage, s and V are fixed. We set the matrix V equal to the one obtained 

from the initial tuning stage, and set s to 0.6, determined by trial and error. For the main MCMC 

stage, we simulate R=64 errors (that are fixed throughout the Metropolis iterations) and conduct 

one million Metropolis iterations, where every 100th sample is recorded with the first half discarded 

1t tq q -=
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as burn-in. Thus, we obtain 5,000 samples for parameter inference and counterfactual analyses. We 

have experimented with various numbers of iterations and sets of simulated errors. The results were 

not qualitatively different. 

We run the estimation procedure on Google Cloud Platform using Matlab R2017a, Windows 

Server 2019 64 bit, and a graphics card NVIDIA Tesla V100 SXM2. The graphics card has 5120 

CUDA (Compute Unified Device Architecture) cores. The graphics card executes our OpenCL kernel 

code to compute the simulated likelihood in single precision on these cores in parallel. The OpenCL 

kernel code execution is programmed to be controlled by our C++ code, which is called by our 

Matlab code when evaluating the likelihood. 
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Table 1: U.S. Shopping Center Classification and Characteristics 

Source: The International Council of Shopping Centers, January 2017  
* GLA: Gross leasable area 
  

Type of 
Shopping 
Center 

Concept 
Average 

Size 
(Sq. Ft.)

Typical 
GLA* 
Range 

(Sq. Ft.) 

Typical 
Number 

of 
Tenants 

Trade 
Area 
Size 

Super-Regional 
Mall 

Similar in concept to regional malls, but 
offering more variety and assortment. 

1,255,382 800,000+ NA 5-25 miles

Regional Mall 

General merchandise or fashion-oriented 
offerings. Typically, enclosed with inward-
facing stores connected by a common 
walkway. Parking surrounds the outside 
perimeter. 

589,659 
400,000-
800,000 

40-80 
stores 

5-15 miles

Community 
Center (“Large 
Neighborhood 

Center”) 

General merchandise or convenience-
oriented offerings. Wider range of apparel 
and other soft-goods offerings than 
neighborhood centers. The center is 
usually configured in a straight line as a 
strip, or may be laid out in an L or U 
shape, depending on the site and design. 

197,509 
125,000-
400,000 

15-40 
stores 

3-6 miles 

Neighborhood 
Center 

Convenience oriented. 71,827 
30,000-
125,000 

5-20 
stores 

3 miles 

Strip Mall/ 
Convenience 

Attached row of stores or service outlets 
managed as a coherent retail entity, with 
on-site parking usually located in front of 
the stores. Open canopies may connect 
the store fronts, but a strip center does 
not have enclosed walkways linking the 
stores. A strip center may be configured 
in a straight line, or have an “L” or “U” 
shape. A convenience center is among the 
smallest of the centers, whose tenants 
provide a narrow mix of goods and 
personal services to a very limited trade 
area. 

13,218 <30,000 NA <1 mile 
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Table 2: Variable Summary Statistics 

Variables Mean S.D. 
Sears 0.491 0.500 

Target 0.193 0.395 
Other Discount 0.362 0.481 

Dillard’s 0.221 0.415 
Macy’s 0.467 0.499 

Other Midscale 0.635 0.482 
Nordstrom 0.116 0.321 

Bloomingdale’s 0.025 0.156 
Other Upscale 0.074 0.263 

Apple 0.140 0.348 
Microsoft 0.070 0.256 

Population 205,091 208,830 
Age 40.577 3.604 

Household Size 2.568 0.302 
Household Income ($) 76,290 23,156 
Site Size (square feet) 913,580 364,763 

Open (1 if opened in 1991 or later) 0.285 0.452 

Distance to Headquarters 
(km) 

 
 
 
 

Sears 1,343 889 
Target 1,545 700 

Dillard’s 1,386 768 
Macy’s 1,296 1,032 

Nordstrom 2,891 1,016 
Bloomingdale’s 1,701 1,352 

Apple 2,787 1,248 
Microsoft 2,879 1,011 
N = 1,196 

 

Table 3: Department Store Categorization 

Type Definition Stores 

Discount 

With a focus on price rather than on service, discount department 
stores sell a variety of merchandise at a lower price than typical retail 
stores. Many discount stores can be categorized as big-box stores, 
which offer a wide selection of products and groceries. 

Kmart, Sears, Target, and 
Walmart 

Midscale 
Midscale department stores offer a wide selection of both brand-name 
and non-brand-name merchandise, seeking to offer good value to their 
customers. 

Dillard’s, JCPenney, Kohl’s, 
and Macy’s 

Upscale 
Upscale department stores sell goods at above-average prices; their 
customers are more interested in exclusive designer brands and value 
customer service over low price.  

Bloomingdale’s, Neiman 
Marcus, Nordstrom, and 
Saks Fifth Avenue 

Source: J.D. Power and Associates (2007); Levy & Weitz (2011)  
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Table 4: Location of New and Traditional Anchor Stores 

 N With Discount With Midscale  With Upscale  
All 1,196 950 936 190 

Apple Only 92 
54 92 49 

(5.7%) (9.8%) (25.8%) 

MS Only 8 
3 7 5 

(0.3%) (0.7%) (2.6%) 

Apple & MS 76 
36 75 64 

(3.8%) (8.0%) (33.7%) 

All Apple 168 
90 167 113 

(9.5%) (17.8%) (59.5%) 

All MS 84 
39 82 69 

(4.1%) (8.8%) (36.3%) 
Discount, Midscale, Upscale: At least one of the three stores in each type is present. 
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Table 5: Parameter Estimates—Profit Function (Market- and Firm-Specific Effects) 

 Sears Target Other Disc Dillard’s Macy’s Other Mid Nordstrom Bloomingdale's Other Up Apple MS 

Constant 
0.612*** -0.709*** -0.228*** -1.004*** 0.170** 0.546*** -1.832*** -3.345*** -2.041*** -1.896*** -3.390*** 
(0.088) (0.091) (0.085) (0.095) (0.082) (0.083) (0.224) (0.379) (0.234) (0.349) (0.425) 

Ln 
Population 

-0.421*** -0.006 0.050 -0.108* 0.031 -0.518*** 0.562*** 0.832*** 0.217** 0.188** 0.288**
(0.054) (0.051) (0.045) (0.061) (0.053) (0.048) (0.083) (0.179) (0.095) (0.088) (0.144) 

Age 
0.021 0.028 0.036 -0.176*** 0.203*** -0.101* 0.044 0.541*** 0.281*** -0.033 -0.185

(0.052) (0.057) (0.049) (0.061) (0.053) (0.052) (0.087) (0.166) (0.093) (0.080) (0.142) 

Size HH 
0.068 0.106* 0.101** -0.226*** 0.122** 0.034 -0.116 0.052 -0.021 -0.207*** -0.368***

(0.052) (0.056) (0.048) (0.069) (0.057) (0.048) (0.071) (0.117) (0.088) (0.076) (0.114) 

Ln Income 
-0.117** 0.098* -0.087* -0.167*** 0.108** -0.245*** 0.352*** 0.344*** 0.297*** 0.445*** 0.095 
(0.050) (0.052) (0.048) (0.060) (0.053) (0.049) (0.076) (0.124) (0.081) (0.077) (0.126) 

Ln Site Size 
0.727*** 0.095* -0.133** 0.429*** 0.813*** 0.477*** 0.424*** 0.241* 0.412*** 0.680*** 0.645***
(0.062) (0.056) (0.052) (0.058) (0.059) (0.052) (0.091) (0.129) (0.094) (0.119) (0.176) 

Open 
-1.210*** 0.551*** 0.608*** -0.056 -1.084*** -0.444*** 0.259* -0.022 0.321** 0.078 -0.028 
(0.104) (0.096) (0.089) (0.108) (0.108) (0.094) (0.151) (0.306) (0.162) (0.154) (0.239) 

Ln Distance 
to HQ 

0.118** 0.031  -0.479*** 0.130***  -0.262*** 0.039  -0.081 -0.018 
(0.047) (0.047)  (0.058) (0.047)  (0.054) (0.078)  (0.055) (0.078) 

Equilibrium 
Selection 

-7.219 
(5.386) 

Note: Standard errors are reported in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.10 
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Table 6: Parameter Estimates—Profit Function (Spillover Effects) 

 To discount To midscale To upscale To Apple To MS 

From discount 
-0.202*** -0.050 -0.171 -0.174 -0.224 
(0.034) (0.047) (0.133) (0.150) (0.197) 

From midscale 
-0.066 0.100*** -0.107 0.218 0.301* 
(0.043) (0.034) (0.094) (0.149) (0.161) 

From upscale 
-0.385*** -0.247** 0.152* 0.201 0.504** 
(0.133) (0.106) (0.085) (0.186) (0.234) 

From Apple 
-0.349** 0.264 0.702***  1.354*** 
(0.169) (0.180) (0.177)  (0.321) 

From MS 
-0.430** -0.115 0.271 0.585  
(0.216) (0.134) (0.198) (0.394)  

Note: Standard errors are reported in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.10 
 

 

Table 7: The Effect of Population and Income on a Firm’s Entry Probability 

 Site M Site A Site B 
Population 151,578 166,736 151,578 

Average Income 73,264 73,264 80,591 

Entry 
Probability of 

Sears 20.7% 19.4% 19.3% 
Target 34.6% 34.5% 35.6% 

Other discount 54.5% 54.8% 52.9% 
Dillard's 15.3% 15.1% 14.1% 
Macy's 18.6% 18.7% 19.6% 

Other midscale 54.5% 52.0% 51.2% 
Nordstrom 4.5% 5.1% 5.8% 

Bloomingdale's 0.1% 0.1% 0.1% 
Other upscale 3.7% 3.9% 4.7% 

Apple 4.7% 4.8% 6.0% 
MS 0.6% 0.7% 0.8% 

Note: Site M has average values of population and income, as well as the average values of other variables in the data. 
The population of site A is ten-percent higher than that of site M (with the same average income as site M). Similarly, 
the average income of site B is ten-percent higher than that of site M (with the same population as site M). Other 
market characteristics in sites A and B are set to the mean values in the data.  
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Table 8: Predicted Entry Probability with the Entry of Technology Stores 

Entry 
Probability 

None Apple MS Both 

Sears 20.1% 11.7% 11.4% 5.5% 
Target 36.1% 23.7% 21.7% 13.1% 

Other discount 57.5% 42.4% 41.0% 27.7% 
Dillard's 14.2% 21.1% 12.9% 17.5% 
Macy's 17.6% 24.9% 15.8% 20.8% 

Other midscale 52.3% 60.5% 48.5% 55.8% 
Nordstrom 3.4% 15.3% 9.6% 23.6% 

Bloomingdale's 0.0% 0.9% 0.4% 1.4% 
Other upscale 2.7% 13.1% 8.5% 20.7% 

Apple 0.0% 100.0% 14.3% 100.0% 
MS 0.0% 6.0% 100.0% 100.0% 

Note: The market characteristics for the simulation are set to the mean values in the data.  
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Figure 1: The Number of Apple Stores in the United States by Year 
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Figure 2: An Example of a Mall Floor Plan 

 

Source: South Coast Plaza, Costa Mesa, CA 92626, http://www.southcoastplaza.com/directory/. 
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Figure 3: Multiple Equilibria—Illustrative Example  

a) Competitive Entry (Negative Spillover) b) Complimentary Entry (Positive Spillover)

Profits of Apple in market m are ,A
mA M mM mAap d e=- +  

and those of Microsoft are ( 0).M
mM mA mMA ap d e d=- + >  

Profits of Apple in market m are ,A
mA M mM mAap d e= +  

and those of Microsoft are  ( 0).M
mM mA mMA ap d e d= + >  
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Figure 4: Simulator Comparison (Simple vs. Augmented) 

 

Standard Deviation 
 

# of Simulations 4 8 16 32 64 128 256 512 1024 

Simple Simulator 0.1547 0.1074 0.0856 0.0540 0.0370 0.0253 0.0201 0.0138 0.0097

Augmented Simulator 0.0084 0.0045 0.0030 0.0022 0.0018 0.0013 0.0009 0.0006 0.0004
 
 

Note: the total number of firms is set to 11, with each firm’s profit function set to '''

J j
mj mj mjjj j

ap d e
¹

= +å . The 

strategic parameter '
j
jd  is set to 1/J.  The probability that all players enter is computed 100 times, with each point (the 

circle and triangle points for the simple and augmented simulators, respectively) in the Figure representing a computed 
probability. 
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Figure 5: Relation between Firm Entry and Site Size 

 
Note: Site Size is standardized value of log (site size). That is, the x-axis represents standard deviations from the mean. 

Figure 6: Main Effect vs. Spillover Effect of Site Size (Target) 

 

Note: The thick, upward-sloping dotted line represents the main effect, and the thick, downward-sloping dashed line 
represents the aggregate spillover effect. The thick solid line is the sum of the main and the aggregate spillover effects. 
The eight thin lines are spillover effects from other firms. Site size is the standardized value of log (site size). That is, 
the x-axis represents standard deviations from the mean. 
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