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A THEORY OF BARGAINING WITH'MONETARY TRANSFERS

Jerry R. Green

I. Introduction

The -outcome of a bargaining situation often involves monetary tréns—
fers among the participants. These transfers serve to modify the payoffs
associated with an underlying agreement that has been reached. They may
represent the resolution of a conflict between achieving equity among the
players and implementing an efficient decision. Some of the.playérs may
justifiably claim that they should be compenéated for acceding to a col~-
lective choicé in which they are worse off than they would be in another
less -‘efficient, feasible outcome.

In this paper I present a normative theofy for a class of bargaining
problems in which monetary transfers are possible. The data of each problem
- are the payoff vectors attainable by various underlying agreements. A
resolution of a bargaining problem consists of two parts: the underlying
agreement to be‘implemented, and the monetary transfers that will be made so
as to modify the payoffs inherent in this agreement.

A solution is a rule that specifies how each of these two components
of the outcome depends upon the set qf possible underlying agreements. I
derive solutions from a set of aﬁioms that express an ethical basis for
collective choice in this type of situation.

There is an important difference between this model and bargaining
theories in the Nash tradition. Nashjtypé bargaining models, having their
basis in decision theory, determine the solution as a fdnction only of the

feasible set of utility allocations.. They do not allow any dependence of




the outcome upon how the final allocation is realized. In this papérv on
the other hand, a distinction is drawn between that part of the. payoff
that is inherent in the unde;lying agréement and that part represented by
the monetary transfer. Two bargaining situations with quite different
sets of underlying possibilities can still have the same feasible set of
final utility allocations because of the ability.to implement tfansfers.
I will not require the outcomes to be identicalAih such instances.

This feature is‘responsible for fhe special structure of this model
and its solution. It hampers é direct comparison with Nash—typé theories'
of bargaiﬁing. However, the axioms I impose have the same ethical basis
as thqse.often'utilized in Nash-type models. It is in;éresting to
obsefve that although in Nash-type models the axioms I use would be in
conflict, the analogous principles in the model of this'paper can be
satisfied simultaneously.

The remainder of the paper is organized as follows: ' The model of
bargaining is set out in Section II. Section III describes the axioms and
gives a brief discussion. Section IV characterizes a family of solutions
in bargaining problems involving no equity-efficiency tradeoff. In
Section V an attempt is made to select among theée solutions based on an
additional postulate. In Section VI these sblutions are extended to
general bargaining problems in which equity-efficiency tradeoffs exist.
Section VII gives various éxamples of the solution. Some of these are used
as counter-ekamples to.support statements made earlier in the text.
Section VIII discusses varipus aspects of the-model and the axioms in a
more extended fashion than could be accomplished earlier. An Appendix

contains the proofs of the main Theorems.




ITI. The Bargaining Model

We consider bargaining problems involving n players, identified
with the elements of {1, ..., n}. The basic structure of the bargaining
situations studied in this paper is given by a set of points in Rn; each
member of this set describes the outcome of a bargaining or negotiétion
process. 'Generally, the symbol S will denote this set and lower case
Roman letters, x, y, z, ..., will denote points‘iﬁ rR®.  1If X €8, we
understand that there is sqme outcome which gives player i the payoff xi,
for i = 1, ..., n. The set S will be called the set of "undérlying
possibilities," or "real oufcomes." By this we mean that there are
feasible bargaining arrangements that lead to the payoffs in S without
resorting to monetary transfers.

The payoffs in S can be combined with monetary transfers among the
agents. The actual result of’tﬁé'bargaining process specifies an
underlying outcome, yielding xi to each player, and a vector pf transfers
t = (ti) such that Zti = 0. Player i's evaluation of this result is
assumed to be x, + ti. |

Thus, the set of payoffs that are achievable from an underlying

possibility set S is’
- n . ) . N
L(S)={z€R|z=x+t,x€S,t€R,Zti=0}.

The principal difference between the theory described in this paper
ana the Nash-type bargaining models is that the'solutions we study can,
énd do, select different points in E(S) as a function of S, even though
the set L(S) itself may be invariant.

The linearity of utility in the monetary transfer is, of course, a




very particular speéification. Were all players risk neutral, it would
be satisfied. 1In general, however, it is not. For bargains among large
players, such as firms or labor unions, it may be a good Approximation.
Moreover, one must recognize that the risk attitudes of agents are their

own private information. In Nash-type bargaining models, agents would

always feign risk-neutrality in order to manipulate the solution to their

advantage. There may be additional merit, therefore, in focusing on the
specification of utility described above.

The following properties’of S are assumed:
S.l. S is nonempty, closed and convex.
S.2. S is comprehensive: x € S and y < x implies y € S.

'S.3. S is majorized: there exists X o such that

x € S implies x € x .
max

Assumptions S.1 and S.2 are standard. S.1 entails the idea of
randomizing among a set of basic agreements to create any convex combi-
“nation of their payoffs. 'S.3 is of a technical nature and is imposed

so as to rule out cases where an infinite number of agreements exist

.that successively benefit one player at another's unbounded expense.

Allowable and ndnalléwable sets of underlying possibilities are shown
in Figure 2.1.

There are three distinct roles played by assumption S.3 in our
theory. First, it insures the existence of a point, x* € S, at which
x- + x_ is maximized. Of course, there could be many maximizers.

1 2

Second, it insures that the set of such maximizers is compact. Finally,
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S-élléwable S not allowable, violates S.3

Figure 2.1

by virtue of S.2, we are assured the existence of a least majorizing point

x given by the properties:
X €8 implies x S_;
and if X is such that for all x € S, x< X s then X 2 §._
An outcome of the bargaining problem consists of a point x € S and
a vector of monetary transfers t € rR® such that Xt = 0. The outcome
(x, t) generates the payoffs x + t € Rn.
Let &% be the collection of all sets S satisfying S.1, 8.2 and S.3.

For any S € & we define the efficient payoff plane,

L(s) = {z € r? lz = x + t, Zti =0, x € S and in 2 in for all x' € S}.




A solution is a function

f: P > R"

satisfying f(s) € L(s) for all S € &. Thus, solutions always result in‘
effiéient outcomes, by definition. v : .

The interpretation of a solution is clear. One of the maximizers
of in over S isvchosen. Then, transfers are made from this point so as
to achievé the payoffs f(S).

Throughout this papér we will deal with members of &, that is to
say, with comprehensive, closed, conﬁex, sets of underlying possibilities.
Two sets of underlying possible bargaining outcomes generating the same
comprehensive_convex hull lead, by assumption, to the same payoffs. It
will ease our notatién somewhat if we identify every set in R with its
comprehensive convex hull. In effect, we are defining f on the equiva-
lence classes of subsets of R° obtained by the property of héving the
same comprehensive hull, whenever that comprehensive hull is in the

domain .




III. Axioms

In this section I will de#cribe the axioms to be used. The main
theorem, which follows in Section IV, does not require all these axioms
‘in the case of two players. However, all are used in the general case.

Most readers will find axioms A.l and A.2 innoéuous, and A.3 and
A.4 somewhat restrictive but standard in nature. These four axioms are
analogous to the Maschler-Perles axioms, adapted to the present trans-
ferable utility context.

It is interesting to observe that without transferable utility they
are inconsistent. for any n> 2, and ‘for n=2 they define a unique solution.
- In the model of this.paper, they are consistént for all n. For n= 2
theyldefine a unique solution, and for n > 2 there are many solutions.

In or@er to narrow down the set of solutions, hopefﬁlly obtaining a
unique member of this family, I postulaté a new axiom, A.5, in Section V.
A.5 is unusual in several respects, and it is also somewhat problemétical
as we shall see below. Nevertheless, I will try to.maké a compelling case
for it later in this section. Axiom A.5 is not independent of A.1-A.4;
rather it characterizes "the" solution in terms of an invariance property
'with respect to the set of all solutions satisfyiné these hypotheses.

Axioms A.1-A.4 are éll used to obtain solutions on the family of
sets in & that are the comprehensive hulls of compact convex subsets of
hyperplanes La = {x € RnIin = o, o € R}). Axiom A.6, introduced in
Section VII, is used to extend the solution to all of & by aséociating, to
each S € &, anéther member of & ﬁhat is the comprehensive hull of some ‘ i
set in L(S). Axiom A.6 is not compelling, in my view. There may well be

equally defensible methods of extending the solution.




A technical discussion of some aspects of axioms A.l -A.4 is post-—
poned to Section.VIII, In the present sectibn I will confine my
attention to their basic properties. |

iéteﬁf be the family of sets in & that are the comprehensive hulls

of their own intersections with L(K). That is, K € & if and only if
k={z€RrR"|z<x, for x €KX N LK]} .

Bargaining problems in % can be thought of as those involving no
equity-effiéiency tradeoff. The entire Pareto boundary of K € K is
efficient even in the presence of monetary transfers. This motivates

‘ Axiom 1, which is stated as follows:
"A.l. Sélection
For all K € A, £(K) € K.
This axiom sﬁates that in those batgaining problems which do not
involve equity-efficiency tradeoffs, there is no reasoﬁ to use.monetary
transfers to reach an outcome that could not be achieved byvrandomizing
- directly over the set of efficient choices. The role of transfers in this
model is to compensate players who would have been favored in an underlying
outcome that was rejected in favor of a more efficient alternative. Tréns—
fers are the vehicle through which an equity-efficiency tradeoff is effected.
Axiom 1 alsé entails the fact that f£({x}) = x for all x € R".
This is a type of unbiasedness principle: If there is only one possible
outcome, transfers are not relevant and should no£ be used.A This propert§i
together with linearity (to be assumed as A.3), imply that solutions afe
translation-invariant — a natural property since risk-neutral utilities

are defined only up to such transformations as well.




Let T be a permutation of the sef of players {1, ..., n}. Let T(x)
be the vector in which the coordinates of x are permuted according to T.

If S € & let T(S) be the set in & consisting of m(x) for all x € s.

A.2. Anonymity
The solution f commutes with all permutations .

This axiom is standard.

A.3. Additivity

For sl, s2 €% and X € [0, 1]

Af(Sl) + (l'-l)f(Sz)-= f(ASl-+(1-A)Sz).

The additivity axiom has been extensively discﬁssed by Maschler and
Perles (1981) under the idea'of superadditivity: Af(sl) + (1-A)f(sz) <
f(ASi*-(l-A)Sz). Their justification for it is as follows: Imagine a
" bargaining situation in which one of two feasible sets Sl or S2 will ari;e
with probabilities A and 1 -2, respectively. if the players cannot
bargain before thé resolution of_tﬁe uncertainty, and f is the solution;
they get Af(sl) + (l-l)f(sz). If they can Bargain before, and can make
their agreements contingent on the resolution, thén the feasible set is
ASl + (l-l)sz. The axiom can be intérpreted as saying that the abiliﬁy
to make such contracts should not be detrimental to any player. If it
were, he should refuse'to agree, preferring the expected bargaining out-
come to be reached at a later point in time. |

In the case with transfers, the lihearity of the efficient plane
L(S) with respect to S € & precludes the case qf strong inequality in

these relations. Therefore A.3 and superadditivity are the same.
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A.4 Continuity

The solution f is continuous in the Hausdorff topology on & .

The Hausdorff topology defines-a concept of conﬁergence for sets.

A sequence‘(si> converges té S if every point of S can be approximated
by a sequence selected from'<si>>and every point not in S can be bounded
away from-<si:h This is the standard concept of convergénce'fof closed
sets. However, there are other possibilities, defining both stronger énd
weaker continuity axioms.

A more detailed discussion must be postponed untiIISectiop VII
where examples will be given. For the present, it must suffice to say
"that weaker convergence concepts, implying therefore a stronger éontinuity
‘axiom, are incoﬁpatible with the other axioms. And stronger convergence
concepfs are too vulnerable to arbitrary errors of measurement and
description.

Restricted to A, these alternative topologiés all coincide with the
Hausdorff topology. We will now show how the four axioms’pfesented thus

far delineate a family of solutions on J¥. Later sections will extend

these solutions to & and will attempt to select among them on the basis of

~ other criteria.
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IV. Solutions on ¢

In.this section we define~a family of solutions on 4. To understand
the nature of their cohstruction, it is useful éo know about the Steiner
point of a convex body. A brief digression on this topic fﬁllows:

Let ¥ be the class of compact, convex subsets of R and let Sn_'1
‘be the surface of the sphere in Rn of unit radius and centered at zero.
Let U be the measure on Sn_l proportional to Lebesgue measure and with
mass 1. Finally, let ¢(C,u) = max Yy *u be defined for each C € € and

' n-1 véc o
each u € § - It is called the support function of C at u.

The Steiner point of C, written s(C), is defined by

s(C) = n In-l u¢ (C,u) du .
s .

If 0 is a similarity transformation carrying Cl into C2, then
U(s(cl)) = 8(02). That is, s commutes with all similarities. Moreover, s
satisfies linearity, because d(*, u) is linear, and s is continuous.

The following theorem is due to Schneider (1971).

Steiner Point Characterization'Theorem

The Steiner point s: € > R" is the unique function satisfying
i) commutation with all similarity transformations

ii) linearity :

iii) continuity.

Now let us return to the space . Let st € 4 be the set of

n
bargaining situations X € 2% for which L(K) = {xl Z X, = 0}. Because
~ i=1

the Selection axiom (A.l) entails f£({x}) = x, the hypothesis of Additivity
gives us translation invariance. It suffices therefore to find a solution

on.;ﬁ;. This solution can then immediately be extended to all of .
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Obviously (A.2) - (A.4) are very close to the three properties used
" in Schneider's theorem. The difference ié that (A.2) requires commuta-
tivity only with respect to permutations of coordinates; which are very
special cases of similarities. We characterize the larger family of
functions, of which the Steiner point is a member; that are only required
to commute with pefmutations.- ' | |
We will see that (A.1l) also plays a crucial role in this character-
ization. ,It is a conéequence of Schneider's theorem, as it is satisfied
by the Steiner point. But under the weakening of the commutativity require-
ment, it is needed as an independent hypothesis. (Examples to this effect
are given in Section VIII.) Therefore the thedrem giﬁen below cannot be

regarded, strictly speaking, as a generalization of Schneider's theorem.

l.os"q L(;. That is, &°

An- . .
Let S is an n-1 sphere in Rn, centered
at zero, and oriented in such a way that the algebraic sum of the coordi-
nates of each of its points is zero. Let M be the set of atomless unit

an-1 . . . . . ' :
measures on S which are invariant with respect to permutation of coordi-

nates.

Theorem 1
Let n 2 3.

Let £:.¢ - R" satisfy (A.1) - (A.4), then

CEK) = argmax x *u dfi(u)
é\n—l X€EK

for some |l € M.
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For n=2, if f:;ﬂ%'ﬁ Rn satisfies (A.2) and (A.3), then f(K) is

the midpoint of K.

To demonstrate this theorem, we will first drop the Anonymity

requirement and show

Proposition 1

Let n 2 3.

Let £rof - R" satisfy (A.1), (A.3) and (A.4), then

£(X) = f argmax x * u du(u)

§n—l XEK

An-1
for some H; an atomless measure on S .

Proof in appendix.

 One should note that the formula in Theorem 1 is well-defined for all
K G;Z% because the set of all u € §n—l for which argmax x*u is not a
' x€EK
singleton is closed and of measure zero with respect to any atomless
measure. It is immediate that Proposition 1 implies Theorem 1, via the

Anonymity axiom (A.2). (The case of n=2 is trivial, and is included

only for completeness.)
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V. Limiting the Solutions on X : The Recursive Solution

In the.laSt.sectibn we characterized the solutions on A that are
compatible with (A.1) - (A.4). In this section we explore the possibility
of limiting these solutions on tﬁe basis of another axiom. The goal
would be, ideally, to find a unique soluiion, but we are only partially
successful in this quest. )

Let G‘be the set of all solutions satisfying A.1-A.4.  Given a
bargaining situation S, the effective range of disagreement is iimited to
those poinfs that could be obtained as the result of some solution f € G.
Any such p@int could be defended, in that an_"ethical" procedure selected
it. oOther points cannot be aefended in this way.

4 Let I' be the union of the graphs of solutions in G. That is

T'c#x R" defined by

(s, x) €T if and only if

x = £(8) for some f € G.
Let T = {x| (s,x) €T} = {x|x = £(S) for some £ € G}.

- Viewing bargaining és ‘a process of .compromise reached by making
ethical appeals tobthe arbitrator, the bargéin over points in S ig reduced
to the bargain over solutions in G. It is natural, therefore, to assume
that if the point x € FS would be the outcome éf the bargain over TS,
then the éolution f € G such that X = f(S) would be the oufcome of the

bargaining about which solution to use.

This idea leads to a recursive method to define the solutibn, which
is embodied in the next axiom. Before it can be stated, however, a tech-~

nical problem has to be faced. We would like to write simply,
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f(Ts) = £(S). Unfortunately, as we shall see, the comprehensiVe hull of
FS may not be in & . It is typically not closed. Taking its closure,
fs, and imposing the condition f(fs) = f£(S) seems to'be a nétural way
around this difficui£y. | However, this procedure would

be ill behaved, as we shall see in example 4, The problem is that the

correspondence defined by s —— TS is not upper hemicontinuous.

* n
We therefore adopt the following construction: Let T c xR

. . . o v
be the closure of I'. Let PS ={x|(s,x) € T'}. The comprehensive hull of -

*
FS will always be in $.

Our next axiom. can now be stated.

A.5. Principal- of Recursivity -

[

' *
The solution £ satisfies f£f(S) = f(Ps) for all s € #.

The justification for taking the closure 6f I' in the axiom is based
on the idea of erroré of measurement in the assessment of the bafgaining
outcomes. If X is justifiable as an oufcome of Sk' for k=1, 2, ...,
that is if there exists a éequence'<fk>>in G such that %k = £,.(5,), and
if X, X and Sk‘» S, then xishould be a justifiable outcome of s.’»
Otherwise, small disagreements among the playefs about the nature of the
6utcomes themselves could precipitate large changes in the set of ethically
defensible alternatives. . Using F* we obtain a set of ethically defensible

alternatives that is robust with respect to measurement error.

We will apply A.5 repeatedly to obtain a point-valued solution as
. *
the limit of iterates of the T correspondence: Beginning with any
: * *
S € &, we consider PS' PP* ¢+ --+ , etc., and we will show that this -

: S
sequence converges to a point.
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It remains to be_demehstrated,-however, that this limit, which we
will call the Recursive Solution,_setisfies the original four axioms.
It is here that there are some delicate technical problems with respect:

to continuity and linearity. These are discussed in more detail below.

Define the correspondence
F: #» R

I'*
by F(s) = s *

Theorem 2
The correspondence F is upper hemicontinuous, compact-valued, and,

for each nonsingleton K 6,1{0, F(K) contains no extreme point of X.

Proof in appendix.

From Theorem 2 it is easy to see that the iterates of F converge to

a point. This point is the Recursive Solution at K.

Our goalvwould be fulfilled if the Recursive Solution were to satisff
(A.1) - (A.4). It clearly does satisff (A.1) and (A.2). Unfortunately,
there are problems with respect to both (A.3) and (A.4).

The continuity axiom (A.4) is the less troublesome. There are eome
critical sets where the correspondence F fails to be continuous because of
the extension of T to F*. These induced discontinuities are hard to char-
acte?ize, iﬁ general. Apparently they ariee only when a face of K of
dimension n-2 is parallel to a coordinate n-2 hyperplane, or when there -
are two faces of K whlch form exactly the same angle as that between two

such hyperplanes. See example 5. * It would seem that such situations are
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non-generic and that one could hope to characterize the discontinuity set
more precisely, but I have not pursued this point.

It is far more disturbing, from the éoiht of view of the theory,
to note that this Recursive Solution hay not obey Additivity. The prob-
lem is that the correspondence F is noﬁ additive, but rather subadditive.
By virtue of Thebrem 1 we know that if x € F(K) then there exists ﬁ € M

such that

x=f argmax z-°udfi..
' z € K

Therefore, if K = Kl + K2, then every x € F(K) can be written in this

way, and hence

f arg max z *u dﬁ +’f arg max z°u dﬁ .
z€K1 z€K2

]
I

The terms on the right-hand side being in F(Kl) and F(K2), respectively,

we have

F(R) S F(K) + F(K,) .

’

The opposite inclusidn does not hold,'as we show in éxample 6.
Thus, the linearity of the Recursive Solutioﬁ is in doubt. On the other
hand, however, I have no counterexampie. The Reéursive Solution is not
the same as tﬁe Steiner point. If remains possible ﬁhat this is due to
the violation of continuity alone — as there are many set-point functions

satisfying all the other postulates. (See Sallee (1971).)
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VI. Extending Solutions on <4 to Solutions on % -

The axioms given thus far, A.1-A.5, are designed to delineate
ethical outcomes for bargaining problems in & . To extend solutions
to all of &, we need another postulate that will associate to each

S € & some member K € 4 at which the solution is to be. the same.

Underlying this axiom is thé concept of a justified transfer, which

will be made/precise below. For the moment, assume that to each S € &
we can associéte a set J(S) € L(S) with the interpretation that a trans-
fer of money among the players that realizes x € J(S) can be justified
according to some criterion. The allocation x is feasible, as it lies in
L(s). Suppose that a new bargaining outcomeweze:added to S that attained
x without the need to resort to monetary transfers. As x is already
feasible, and is "justifiéble“ (in a sense yet unspedified), its addition

to the underlying set of alternatives should leave the solution unaffected.

Thus the solutions are extended to all of & by identifying th;
solution on S with that on J(s). Different condepts of justifiability
- will result in different exténsions. Before putting forward one parti-
cular concept, let us discusé some of the properties that a definitiqn '
of justifiability must have to be useful within our framework.

Compatibility with the other axioms requirés that the correspond-

ence J satisfy

(3.1) L(S) N s cJ(s)
(7.2) J(S) commutes with the permutation of coordinates
(J.3) J(S) is linear

(7.4) J(S) is continuous in the Hausdorff topology.
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The idea of a juStified transfer is that it leads to an efficient
allocation by virtue of appeals based on the presence of inefficient
underlying agreements that are favorable to one or more of the Players.
When the bargaining situation involves no equity efficiency tradeoff,
no such appeals are possible. Therefore it is natural to impose the

requirement
(3.5) ° J(S) is the identity on .

Finally, appeals to the arbitrator should never piovide to-a player

more than he would get in any underlying agreement. Thus we have

(3.6) J(S) S L(S) N ({E} - Rﬁ) i

. Properties (J.l)-—(J.G) seem to be minimal requirements for our
theory. At present I do not know if they charac;erize a particular corre-
spondence or class of correspondences. In this section I present one
example of a correspondence thét satisfies thgsé properties. In Section
VIII.5 I discuss some other possible concepts of justifiability, and I
will show why they fail on one or more of these criteria.

The Eoncept of justifiability'islbased on the idea that .the arbi-
trator has chosen‘the point x € L(S) by making a Pareto-improving move
from S with equal probability being attached to each of the players being

benefited, and subject to the further provision that no player can obtain

more at x than he could at the most favorable point in S. Formally, let




- 20 -

Ti(g) = {x € L(s) |x = y-#zi, v E‘g, z:5 = 0, zij =0, j #_i, X, < x}

where S is the Pareto frontier of S and x is the least majorizer of S.

The justified set, J(S), is given by

1 ¢ -
= T, (5) .

i=1

J(s) =

The axiom is

A.6. Invariance to Additions‘of Justifiable Points

£(s) = f£f(s U {x}) for all x € J(s)

where we recall our convention of identifying sets with their .comprehensive

convex hulls.

- Repeated application of A.6 yields
£(s) = £(s U J(8)) ,
but, as S is contained in the comprehensive hull of J(S), A.6 reduces to
£(s) = £(3(s)) .

Thus, this axiom has accomplished the identification of sets in & with

sets in K.

The application of (A.6), Invariance to fhe Addition of Justified
Alternat;ves,'provides us with a direct correspohdenée between a solution
on & and a solution on J«S defined in Section IV. The continuity and
linearity of the justified set, J(S), with iespect to S, together with
its obvious commutativity with respect to permutations of coordinates,
ensures that these solutions are well-defined and satisfy axioms (A.1)-

(A.4) on &.
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VII. Examples

'In the following examples we demonstrate how F(S) varies with S in
a few cases. All these problems wiil involve three players, as the solu-
tion for two players is very simple and the solution for four or more is

beyond (my) geometric intuition.

It is useful to have a picture of Lo‘ and to be able to describe the

A

. . . ' 2 .. . .
permutation-invariant measures on S°. This is shown in Figure 7.1.

a2 s . .
Figure 7.1. L , S, and some permutation-invariant measures.
o ,
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Figure 7.1 depicts the coordinate axes in the plane Lo' as. indicated

by the lines x =0, x,=0 and X, =0. It also shows some other points of

1 2

interest and usefulness in the construction of permutation-invariant -
measures.

Consider any point, u, in §2. Unless two of the coordinates of u
are equal, the six permutation§ of u ﬁill be distinct. A permutation-
invariant measure Qill be obtained by giving all six of these points

6

them each‘%.

‘mass lu When there are only three distinct permutations of u, one weights

It is easy to see that all permutation-invariant measures are convex
combinations of measures generated in this way. = Several such measures are
2 (1 1 . |

shown in this figure. If u, = 3 E—,E-,—l » the permutations are as

shown by the points marked X. If u, = \/ % (1, 0, -1), the permutations

are located at the points marked O . Between u, and uz} say at Uy, the

permutations take values at the six points marked @ .

In this way, we can graphically depict all the permutation-~invariant

measures by parametrically moving u from ul = %-(%-,%-,—l) to
2
u, = 3-(1, - %3 - %)- and by obtaining the induced permutations of u

in each instance. This is the procedure that will be followed to obtain

F(K) in the examples below.

Example 1

Consider any bargaining situation with exactly two equally efficient
underlying outcomes, a and b. TILet S bg the segment from a to b. The set
of solutions satisfying‘(A.l) - (A.4) is the middle third of the line
segment S. Consequently, thg solution réached upon applying (A.5)

repeatedly is the midpoint of S, which, obviously, happens to coincide with
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its Steiner point.’

To demonstrate this conclusion, take any line in the pPlane L~O pass-
ing through the origin. This divides §2 into two parts. By direct
inspection one can see that for any u between uy and u'2, the number of

Permutations of u contained in one of these two barts must be 2, 3, or 4.

Thus the weight associated to a given endpoint of S in the characterization

formula of Theorem 1 is between %’- and -g-

Example 2

In this example we will find the set F(S) for a somewhat more inter-
esting set S, as shown in Figure 7.3. The triangle S is formed by the
origin and two points labeled @ and @. It has a right angle at the origin.
At @ the ahgle is somewhat less than 30° and at @, correspondingly, it is
somewhat over 60°.

Now- consider‘u varying between ul and u 4 28 in Figqure 7.3, so that
. the parametric variation in the extreme points of the set of permutation-
invariant measures can be generated. - For u in the arc A, two of the
permutations are sﬁch that the value of arg ma;tx X *T(u) is at each qf the
extreme points of S. For u € B, point (O is supported by three permuta-
tions, 6r L of the induced permutation-invariant measure, wher’eas points

2

@ and the origin receive weights %and %, respectively.




Figure 7.2.
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u on this side
supports S at b

B

u on this side
supports ' S at a

For Uy, a gets weight 1/3 and b gets weight 2/3.




Figure 7.3.

- 25 -

.
-
u, -
4 /
4
/
/
;
R
\
, .
"
; N
"\, . N
: g
4 ra
4 4
4
s -
. -
v e
k2 =
; .
Ed /f/
/ - -
/ .

Applying the Theorem 1 to find F(S) for §

co{Or @, @} .
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Continuing with this procedure, the following table describes the

weights assigned'by the measure generated by u in each arc.

Weight placed on extreme point

of S for u in indicated arc

Arc ' Origin ‘ @ @
s S
: : o3
: ; S
: ; S

The points of F(S) are simply the convex combiﬁations of the
weiggted averages of the extreme points of S, for weights as given in
this table. This is shown in Figure 7.4, where each point.is‘labeled
according to the arc within which it was generated. It should be
noted that the Steinei point of F(S) is not the Steiner point of S.

' Moreover, continuing the iterative procedure suggested by A.5, we

would find that the iterates of F(S) eventually'exclude the Steiner

poiht of s.
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/ *1=P
/
@ /
//
/'/A
_Steiner point
of F(8)

Steiner point
of S

Figure 7.4.

F(S) as constructed by procedure of Figure47.3.
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Example 3

In this example we show how axiom A.6 is used to extend the solution
to &. To illustrate this point, we describe a bargaining situation
involving the dissolution of a contra;t which is not legally enforceable,
and hence does not serve as a status gquo. The case of a bindiné contract
is also considered. -

Considef a case in which two parties, pPlayers 1 and 2, have made a
contract ﬁhat will give them a surplus of 1 each. Then player 3 offers
player 1 a contract that increases player 1l's surplus to 2, and gives
player 3 a surplus of 1. Thus S is the éomprehensive hull of
{1, 1, 0y, (2, 0, n}.

Applying the principle of invariance with respect to justified
transfers, we find that the solution should be the same as that for a
choice among the efficien? points in J(S), given by the shaded region
in Figure 7.5.

Then, applying axioms A.1-A.4 to J(S), we obtain that F(J(S)) is
the interval from (1-7/9, 4/9, 7/9) to (1-13/18, 5/9, 13/18). Applying
A.5 and the result of example 1 yields the solution (1-3/4, 1/2, 3/4).
Because of the symmetry of J(S), this solution is the Steiner point of J(S).

It is intéresting to examine the idea of compensation of players for
their accession to the efficient underlying agreement; in the context of
this example. Player 2 is the one who would be better off at the
inférior alternative (1, 1, 0) than at (2, 0, 1). Becéuse both players 1
and 3 gain 1 unit of payoff from making the‘change to the efficient
aéreement, the solution requires that they contribute equally to player 2.

Note also that player 2 is not fully compensated for his participation.
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Thié could be accomplished in the allocation (1-1/2, 1, 1/2). The
solution of this paper strikes a balance between full compensation and
4 the equal division of sﬁrplus.

If, however, (1, 1, 0) were a status gquo payoff, and were accorded
a'Special role in the computation of J(S) as suggested in Section VIII,

below, then (1-1/2, 1, 1/2) would be the solution.

Example 4

This example is devoted to disproving the upper hémicontinuity of
the correspondence TS' It is for this reéson that we have to take the
closure of the graph of the correspoﬁdence, and not simply the closure of
the iﬁage F(S) for each‘s, when applyiné-A.S. Were we to apply A.5 to a
lower hemicontinuous correspondénce, the limit might nbt be point-valued.
For some S, the induced sequence of.iterateé of T could converge to a
nonsingleton subset of S. Yet this limit would not necessarily be its
own image under T.

This eXample‘is a slight modification of example 2._ Contract
point @ slightly towards the origin so as tp establish a 30-60-90° right
triangle. Following the procedure of example 2, we can compute that the
closure of the set FS is as shown in Figﬁre 7.6. Geometrically, arcs C
and D of Figure’7.3 have become.coincident, with the result that point C
is not approachable by any solution, although it is a solution for sets

arbitrarily close to S.
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Figure 7.6.

A discontinuity in T g’ as point @ moves towards the origin.

Compare to Figure 7.4, example 2.
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Example 5

In this example we show ‘that by taking the closure of the graph T,
obtaining I'*, we. do not geﬁ a continuous correspondence. The corres-—
pondence ié, of course, upper hemicontinuous. Again, a modification of
examples 2 and 4 is useé, By taking small perturbations of points @)
and @ in example 4, we find that the solutions are app-ro'ximated by the
indicated region in Figure 7.7. Notice that the set I‘; of example 2
converges to a strict subset of this set as Q) converges to its limiting
value in example 4. Other points, such as E, are the limits of solutions
. for sequenées of set$ approaching that of example 4 through perturbat.ions

of point @, in addition to point @ .

'
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*
Discontinuity in FS = F(S).
* .
I ™ co{a, c, D).

= .CO{QI@I @}r
wfo, ® @},  TIi =

Figure 7;7.

For &S'
co{A, c, D, E}.

For s
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' Examgle 6

This example shows that F may be strictly subadditive, as mentioned
in section 5.

Let XK, i:)e the triangle formed by the 6rigin and points @ and @ in
Figure 7.8, and let K2 be the line segment connecting the origin to

point 3. Kl is, as in example 2, in general position. Point 3, likewise,

is such that the angle of K, at the origin is not bisected by K2.

1

Figure 7.9 shows the results of computations_on,Kl, K2 and K1 + K2,

following the method of the other examples in this section. We show
Kl-!-K2 as the large pentagon. As in example 2, E(Kl) is a triangle con~

tained in Kl. F(Kz), as in example 1, is the middle-third of Kz. When

“these are added, we have that F(Kl) + F(K,) is the pentagon ABCDE as

shown.

However, when:ﬁe compute F(K1+K2), we find that its extreme points
are precisely A, C and D. Thus F(K1+K2) is strictly contained within
F(Kl) + F(Kz). The point B, for example, is generated as the sﬁm of a
solution based on‘ﬁ1 applied to K, and a different solution based on ﬁz

1

applied to K2.




+X

2

triangle 0Q@@

segment 003

is the pehtagon .



Figure 7.9.

@+

The strict subadditivity of F.
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VIII. Further Remarks

In this section I discuss several issues that have arisen in the

sections above.

- VIII.1 Incorporating Threats Based on a Status Quo

Bargaining theory in the Nash tradition takes as given the presence
of an outcome which can be unilaterally enforced by any agent who does
not agree té the allocation specified by the solution. The threat point
plays a special role in the analysis. In the theory above, all feasible

allocations are on an equal footing.

To modify this theory and include a threat point, I suggest a simple
construction in the normative spirit of the bargaining model as presented.
‘No agent should be forced to accept an outcome below the thfeat value.
Moreover, no ethical argument or appeal to the arbitrator should be allowed
Af it depends on the preseﬁce of such an outcome. Thus, if As €& is the
comprehensive hull of allocations other than the threat point X then I
- would suggest applying the solutién of this paper to the sef S ﬂ({xo}-+R2).
For example, if S = co{ (-1, +2), (+2, 0)} and x = (0, 0) then the
solutioh should be (%y %) instead of_(l,-l),'because the effective feasible

set should be truncated to co (( o, g—) , (2, 0)>.




(1,1) = £(S) without threat

(‘4— -2—) =f(S) with

4
3°3 (0,0) threat

s

VIII.2 Relaxing Axiom 1l: (Selection) £f(K) €K

It is not possible to weaken axiom 1 to the requireinent that

- £({x}) = x for all x without ekpanding the set of possible solutions.
I give two exaxnplés of solutions on S that satisfy this postulate and |
A.2, A.3, A.4, and which fail to satisfy A.l. Under these axioms,

. therefore, the recursion c;z-rguxnent used to defiﬁe a unique solution may

not work. This point, however, remains to be examined further.

Example 8.1

Let K € J(o and let x(K) be the least majorizing point for K. Let

£(K) = x(K) - (z :_ci(K)>(1, ... 1). For s € y, employ (A.6) to obtain
i

the justified set in 4 and then define the solution f by using transla-

tion invariance and the value of f on J{O.
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It is straightforward to show that f satisfies (A.2), (A.3) and

(A.4) as well as f({x}) = x.

Consider, however, the member of&gn% given by
X = co{(0, 0, 0), (1, 0, -1), (4, 2, -6)}.
We have, apélying the above definition,
£(x) = (2, 0, -2)

which is not in the set K.

Example 8.2

Take a permutation-invariant measure H on §n—l' other than the uni-
form distribution. For example, when n = 3, let U be concentrated on the

three points

w, o= E (2, -1, -1y

1 3

u, = (-, 2, -1)
/6

u = 4L-(-l, -1, 2) .

/6

Then f£f(X) = (n-~1) f u¢(K,u) du, which is a formula for the Steiner
point in Lb”when U is uniform; yields a solution satisfying all the hypo-
‘ theses except f(K) € K.

To demonstrate this assertion, let K be the line segment in Lo
joining the points (+1, 0, -1) and (0, +2, =2).

We have

£(K) = — (2, 8, -10) € X .

-
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VIII.3 Strengthening the Continuity Axiom

Although the Hausdorff topology which is used to define the concept
of convergence in a#iom A.3 is very natural, some of its implications may
not be desirgble. A stronger tééology.may better express our ideas about
the relative merits of appeals to the arbitrator for compensatory trans- -

- fers in various situations. For example, consider the sequence

st = coll1, 0y, (-i, 1} .

Under the solution defined in this paper, we have f(Sl) = (%-,%) for

all i. Whereas for S = {(1, 0)}, clearly £(5) = (1, 0).

»

2
(-1,1) .
S -1,1) N (0,1)

) = f(Sl) for all i

~~
N

-
N[

(1,0) = £(s)

L(Si) =L(8)
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Qne might argue thaﬁ the inefficient point in Si, (-i, 1), becomes
a weaker and weaker basis'upon which player 2 can appeal to the arbitrator
for a transfer in his favor, to.modify the efficient payoff (1, 0). To
capturé this idea, one wants a topology on & stronger than the Hausdorff
topology -- strong enough that<<si> converges to §, and hence that f(Si)
would be required to go to (i, 0) = £(S) by the continuity postulate. The
obvious topology to use is the closed-convergence topology on ¥. For
members of & this can be defined as Si - 5 if and only if, in the
Hausdorff topology, Si n La -sN La for every a.

Unfortunately, this continuify axiom is incompatible with A.2-1A.4.
One can see this very simply by returning to the éxample above. For i=0,
As i - o, continuity now requires that
2 £sh = g™t

for all i. Thus, if £(s°) # £(s') then £(s’) must diverge, and if

anonymity requires f(So) = (%-,%).

f(Sl) = (1, 0). Linearity requires that %-f(sl+2) +

f(so) = f(Sl), then f(Sii,is constant, and hence not converging to (1, 0).
It is also important to note that this argument is independent of
the nature of A.6. There is no way of associating the situations Sihto
Ki € K such that the.linear solution on A is continuous. (Here the
midpoint of an interval is the only possibility; that is why A.5 is not

needed when n = 2.)

VIII.4 Comparison of Axioms with Those Used in Nash-Type
Bargaining Models

In Nash-type bargaining models, without explicit monetary transfers,
three axioms are almost universally accepted: efficiency, anonymity and

invariance with respect to changes in the utility scale. To delineate a

e
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unique solution, additional axioms are used. Nash (1950) imposed the
independence of irrelevant alternatives; Maschler and Perles (1981) have
introduced superadditivity; and.Kalaivand Smorodinsky (1975) have used a
form of monotonicity postulaté. In this subsection I want to comment
briefly on the comparison between these axioms and those used above.
First, it should be nbted’that theAthree_solutions defined in the
papers just citea are different. The.axiéms used are pairwise incon-
sistent. Secqnd, the superadditivity axiom is inconsistent with the first
- three axioms except when n = 2. (An analogous solution can still be found
by a monotonic dynamic procedure, but this is based on an entirely differ-
ent axiomatization grounded in the concept of a "negotiation path.")
Our axiom of additivity is, as mehﬁioned, identical to this one in the
model with transfers. Third, the monotonicity postulate of Kalai—v
Smorodinsky is not as‘compeliiné when extenaed to more than two players
as it is for the‘two-persoh caée. For n = 2, our axiom of invariance to
the addition of justified trénsfers (A.6)kis the same as monotonicity. |
In the light 9f theée remarks,Ait.is interesting to note that in the
présence of monetary transfers, the axioms analogous to superadditivity
and monotonicity ﬁhat we have employed ére mutually consistent for all
values of n. |
The independence of irrelevant alternatives postulate has no
counterpart in our theorj. .It is, indeed, rejected by the structure
of the model itself. Our model accepts‘the premise that the role of
monetary transfers is precisely to compensate some participants for the
gain they have not received because an "irrelevant alternative" has been
rejected in favor of an efficient one. Thus, all points in S except those

in L(S) are "irrelevant." A solution invariant to the deletion of these
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points would have to choose x = arg max X X, whenever this is uniquely
C X€s i

defined. But then, continuity and anonymity could not be satisfied, as

one can see by considering the sets S defined in Section VIII.2 and

letting i = 0 continuocusly through positive real values.

VIII.5 Alternative Forms of Axiom A.6 — Invariance to
Additions of Justified Points

Axiom (A.6) provides a way of finding a bargaining problem in ¢
whose solution is the same as a given problem S € 5?. It utilizes a type
of monotonicity argument. Players' appeal to the arbitrator to include a
"justified" transfer in L(S) is based on the idea that they concede to.

the other players all of the benefits of moving from x € S to x' € L(S).

In the case of two players, we have the following:

'S . : L(s)
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Player 2 concedes all of the benefits of moving from x to L(S) to

player 1. He says, in effect, "Imagine that x' were actually feasible,

it dominates x for player 1, therefore player 1 should not do better at

S = co{x, y}, than he does at S' = co{x', y}."

In the case of two players there are many equivalent ways, alge-

braically, to describe the mapping S k= J(S)

The one we have chosen is:

1 - - n
a. ;Z T,(S) N L(S) N ({x}-R+),

Some others are:

b. =

c. IL(S) N ({;}-RE)

4. 0 (T.(s) N L(S))
1 1

= ) T.(S) N L(s) N ({x}-R,)

e. For all ' c {1, ..., n}

! x, < max )

. 1 .
ien' LZES i€EN'

The reader can easily verify this equivalence for n = 2." The inter-

~ pretation of these conditions in terms of justifiability is as follows:

Condition b is similar to a, except that it allows an‘appeal based on the

translation of an inefficient point. Condition c simply admits any alter-

native bélow the coordinate~-wise maximum in S.
every player be able to justify the allocation
favor, instead of the averagingkprocedure of a
e is é "core-like" concept. It states that no

tively be able to obtain more than it could at

Condition 4 requires.that‘
as being-solely in his
or b. Finally, condition
coalition should collec-

any underlying agreement.
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One can see that for n > 2 these concepts are distinct. Each would
lead to a different J(S), in general, and hence to a different solution.

It turns out, however, definitions‘b., c., d. and e. violate the
criteria for a concept of justifiability given in Section VII. Specifi¥
cally, although all of the concepts satisfy (J.1), (J3.2) and (3J.6), b and
¢ violate (J.5), d violates (J.4) and e violates (J.3). Detailed
counterexamples supporting these assertioné are available from the author.

They are omitted here in the interest of saving space.

VIII.6 The Valuation Property

The solution on X has an interesting property. A function

£f: H-»R" will be said to have the valuation property if, for all

K. K2 € K such that” Kl U K2 € A,

v f(Kl U K2) + f(1<.1 n K2) = f(Kl) + f(K2)~'

~ This property is of interest in ecénomics° It implies that the feasibility
of a new underlying situation can be “"valued" by the players, independent
of the feasible set already available to them.

It is well known that the Steiner point has this property — see
Sallee (1966) aﬁd McMullen (1977). In this subsection we will show that
it is true of every solution satisfying A.1-A.4.

If.Kl, K2 satisfy the hypotheses of the definition, then we can find

AT - AY)=— AN 1
a partition ofvthe sphere Sn 1 into s; 1 and Sg such that for

u € int §n—1' we have argmax x°*u § K, and argmax x-u € K
1 : 2 : 1
XE%_ XE%
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and arg max x°*u € K

x€l(l

Let f be a“ solution satisfying A.1-A.4 and let U be the corresponding

and for u € int gn-l’ we have arg max x°u ¢ K

2 1 2 °
v x€K2

‘permutation-invariant measure. Then

f(l_(l) = fgn—l arg max x°u 4du = ffs\n—l arc;;(mag-g u du + Ign-—l ;rgnm;x x°u .4y
| 5 1 5 S5 K OE
_ f(KZ) = fgn;l 1a(rgnmla:c x*u du + ffsxn-l arg;(max xeu 4y
1 1 0 "2 2 2

£( UK)=I _ argma;xx-udu+f _ arg max xe-u du
R T AT

arg max xeu dp + f arg max xe+u du
8 gtk
1 5 2 2

f(Kanz) = IAn-l arg max XxXeu dpu + IAn-l arg max xeu dy .

S A S K

From which the result follows directly.
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Appendix
The Appendix consists.of the proofs of Theorems 1 and 2. First
we prove the main part of Proposition 1 which leads to Theorem 1.

Proposition 1 is restated below:

Proposition 1

Let n >_ 3.

Let _f:.%’o - R" satisfy (A.1), (A.3) and (A.4). Then

£(X) = [ = arg max x *u du(u)

gn-l X € K

: ~n-1
for some |4, an atomless measure on S .

Outline of Proof

Because of linearity, it will suffice to establish this charac-
tverilzation on the subset of J&,’o consisting of sets contained in the closed
unit ball of Lo' Denote this family of sets by H 1, and denote thé family
of all functions f :J(l - ®? satisfying (A.1l), (A.3) and (A.4) by F.

The proof proceeds according to the following four steps:

1. We take an increasing sequence <.%’j > of subsets of KT whose
union is dense in A 1. The sequence <J{j > is chosen so that each J[j is

a subset of a normed linear space of finite dimension.

2. Let F be the family of functions f :Ji’l - Lo that are linear
and for which £(K) € K for all K €J{1 (that is satisfying (A.1) and
(A.3) but not necessarily (aA.4), on .J&’l) . Clearly FcF.

For each j, let fj be the family of functions from J{j to Lo'
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each of which is the restriction to J{j of some £ € F.

We characterize the members Ej of Ej by

(*) - E(K) = [ arg max x°u du (u)
J X € K :

ATY}o=

. 1 -
for some measure U on S + not necessarily atomless.

3. Fix f € F. Let Mj be the set of measures satisfying (*) for fj°

We show that'Mj is compact, and, as <. > form an increasing family of

o0
sets, that M, € M, .. Therefore, N M, # ¢. For £ € F, and any
o 3= -1 j=1 1~
HE N M, ’
j=1
(**) f(K) = _f arg max x-°u 4y
x € K
o
for all X € U . .
j=1

4. Taking U as in step 3, if u' were not atomless then the function

. (==}
defined by (**) could not be extended continuously from U . to K l.
o j=1

’

) Conversely, if Y is atomless, we can define the function

f:J(l-»L as
o

£(X) =limf arg max x*u du
3 _x€1<j

for a sequence ﬁj € J{j converging to K. This definition is independent

. - . . 1
of the particular sequence <Kj> , and is continuous on 4.

Therefore, by step 3, the functions f € F can each be characterized

by f arg max x°u du for some atomless U, which is proposition 1.
x € K o '
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Proof
Step 1
We associate to each compact convex set K its support function
an-1 .

¢:S - R given by

gn-l

$(X,u) = max x-°u for each u €
x € K

Suppért functions are convex. Minkowski addition of sets induces point-
wise addition of their support functions.

Following Schneider (1971), we consider the space of all
spherical harmonic polynomials of degree j. A function :13'» R is
Lo

i=1 Bx?
i

harmonic if 0. A spherical harmonic is the restriction of

a harmonic function to the unit sphere. A spherical harmonic polynomial
is a spherical harmonic that is a polynomial. From Miller (1968) we
have that the space of spherical harmonic polynomials of degree j 1is a
finite-dimensional, normed linear space. |

Let 5%5 be the set of all convex, compact subsets of Lo whose

‘support functions are spherical harmonic polynomials of degree 3j or less.

Schneider (1971) shows that the union of 5%j' j=o0, 1, cees is dense
in . ’
Take Jﬁ’j = J-{j n.ﬂl.

This completes step 1. -
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Step 2
This step is divided into two parts; In part B we will use

Choquet's theorem to obtain the desired representation. 1In

Part A, we do the necessary preliminaries to show that Chogquet's

theorem can be applied. For a discuséion of this theorem, see Phelps (1966).

A. We will show first that Ej is a compact convex subset of a
locally convex space. Only the compactness part of this statement

needs proof. We will éppeal to Ascoli's theorem, which requires that

ij be an equicontinuous family, and that it be closed and bounded.

equicontinuity and boundedness
Take a basis for the r-dimensional space in which Jﬂ& is
imbedded. Associate with each Ej the vector-valued coef-

ficients, v,, of its representation in this basis. That

k

is, if Jka b ae ... tae is the representation

of Kj in the basis (el,...,er), then

- = + .. + . =1, coo, Y.
fj(Kj) alvl . arvr, where vk € Lb' k=1, ' X

4+

Consider the dependence of v, on Ej € fj. We claim that

vk must lie in a bounded subset of LO, for if not, then

Ej(K) € K for some Ej € §j' From this bound, the equi-

continuity and the boundedness of Ej follow directly.
closedness
To show that Ej is closed, we consider a séquence in Ej

<f]jc>, k=1, ..., converging to E;?, and we must prove
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that E?.ﬁ Ej' It is obvious that E; is linear on ;ﬂ% and
that f?(K) € K for all K € J(j. It remains to be
proven that E? is the restriction to st of some .fo € F.
We will define £° explicitly as follows. The space of
spherical harmonics of different degrees are mutually
orthngnal, see Miller (1966). Therefore, for K EQZKI,
K€ J(i, weAcan find a upique Kj(K) € Je5 having as its
support‘fuﬁction the orthogonal projection of the support
function of K onto the space of spherical harmonics of
degree j or less. Setting EO(K) = fo(Kj(K)) we have
shown that Eg is the restriction of £° to JYS and that
£ € rF.

This completes step 2A.

B. By Choquet's'theorem, each Ej € Ej can be written as
Ej(K) = f §j(K) arf) for all K € ij

where A is a méasure supported by the extreme points of Ej'
We must show that the extreme points of Ej are precisely the

functions

defined by

: fu(K) = arg max x°*u
x € K

for u € gn—l.
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It is easy to see that any fu given above is extreme in Ej'
Observe that each K € afs is strictly convex (if the support function

~had a kink it could not be a polynomial). Therefore, arg max x°*u is
x €K
+ 1

Singletoh, and is an extreme point of K. If fu == f +v5-f- for

(K) # £ (K), it

f=

+ N

+ - _ - + , - ' :
f, f € Fj' where £ # £ , then, on any K where f

would not be possible that both f (K) € K and £ (K) € K.

We now show that all extreme points of Ej are of the form fu,

Let 6%3 be thevsupport functions of sets in'Jﬂg. As J@B is
_f%nitefdimensional,VWe_can parameterize it by o = (a1'°f"ar) € r" in‘
“sﬁch a»way that Ej is linear in q. Moreover, since é%} is compact and
convex, the set A S_Rr of parameters o form alcompact convex sef.
We write K(a) to be the set in j%ﬁ whoseﬂpafameters are 0.
Lét A' ©€ A Dbe the subset of parameter values on which

f(K) € bdy K.

We will show that
If al' a2 € A' are such that uy and u, are the supporting
vectors to K(a,) and K(0,) at f.(K(a.)) and f.(K(a )},
1 2 3 1 3 2

respectively, then u1 = u,.

Let o = (l+€)0L1 - €aé € R". Define the function h to be the
linear combinatiﬁg of the support functions of K(al) and K(az) with
weights (1 +€) and -€. For € sufficiently small, it follows from the
fact that K(al) and K(az) have everywhere finite radii of curvature
that h is the support function of a convex set K(a); that-ié, h is a

. . An=-1 . .
convex function restricted to S . (Note: This convex set is not
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(l+e)K(al) - eK(az), in the usual sense of Minkowski additioﬁ.) However,
K{a) € j%&, because h is a spherical harmonic (though perhaps K(a) € aes
as h(u) may exceed unity for some u). Recall that Ej is the restriction
to JES qf some f € F. Let ?j denote this fuﬁction f restricted to 5%5.

Clearly ?j is linear on jkj' Thus
'?j(x(a)) = ()£ (K(a)) - eE(K(a,)) .
On the other hand, we have from the definitions that
u c ER@y) < 9Ky, up)

u, fj(K(al)) = ¢(K(al), ul) '

therefore
ul . fj(K(a)) = ul((1+€)fj(K(al))-Efj(K(az))
>-(l+€)¢(g(alf,ul)-€¢(K(a2).u1)
= ¢(K(0L).ul) .
Thus

?J. (K(a)) € K(a) ,

éontradicting the fact that fj is the restriction of a function in F.

By the result just demonstated, we know that for all a € A, Ej(K)
- maximizes x * u over x € K for some u independent of & € A'. We now note
that A' = AN P for some affine subspace P of Rr. This follows directly

from the linearity of Ej and the fact that A is convex.

14
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If the theorem were false, P would have to have dimension lower than

r. Let it have dimension r'.

Define the real-valued function e tA-> R by

e(q) = sup{e|B€+Ej (K(a)) < K(a)}.

where B_ is the closed ball of radius € and center O.

By construction e (Q) >= 0 iff o € A'. By the 1inearity of Ej it;
follows that e(a) is affine in q. -

To prove the result of step 2, it suffices to show that we can con=
struct two functions, f+ and f-, on .36,’3 such that |

fj (K(a)) = % f+(K(OL)) + % f (K(a)) ‘and such that f and £ are in Fj.

Reparameterize J(j by a vector B € R° as follows. Let B = 0
. r .
correspond to a point o € A'. Now take a basis for R by selecting the
first r' elements in P, and the remaining r -r' in the orthogonal comple-

ment of P in such a way as to span R°. call the basis w = (w1'4°°"wr)'
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Consider any set K such that its o parameter lies in the orthogonal
complement of P. Expressed‘in the basis w, we have that wk has non-zero
. . + - -
welght for some k > r', say k = r. Define f (K) to be fj(K) + eBr(K)

th .
where Br(K) is the r  component of the parameterization in the basis w,

and € is a vector in L. For ¢ sufficiently small,
+ -
£ (K)-—fj(K)H < e(0)

+
and hence f (K) € k.
+ : ' )
Linearity of £ is obvious, and the same applies to the construction

of £, so fj is not extreme unless r' = r, that is P = 15} in which

case we have verified step 2.

Step 3

[~ o]
For all K€ U K., argmax x°u is continuous in u.
I=1 J x €K

Therefore, for every sequence, <1ﬁj>, in Mj' converging to U,

f arg max  x *u du. converges to f arg max x-+u dy .
x € K J . x €KX

In particular, if the former is identically fj(K) (i.e. uj € Mj) _then
so is the latter (i.e. p € Mj).

Thus, Mj is a closed subspace of the space of all unit measures

AY)~

1 .
on S » and is hence compact.




- 56 -~

Step 4
Note that the correspondence

w:xl x §n-l_>Rn

defined by

Y(K,u) = arg max x°u
x €K

is upper hemicontinuous, and for every K € &~ is point-valued for almost

every u € Sn-l. Therefore,

f Px,u) au

-is discontinuous in K only when an atom of U is a point of discontinuity
of Y(K, * ). o

By choosing K € Jfl to have a nondegenerate part of its
boundary normal to an atom of |, wé can see that the continuity postulate
(A.4) requires that u‘be atomless.

Conversely, if Y is atomless, f P(X,u) du will/be continuous
in X and singleton-valued throughoutg%(l, Atomless measures thgt commute

with permutations exist whenever n > 3.

This completes the proof of Proposition 1, from which Theorem 1
follows immediately.

Now we prove Theorem 2, restated below:
Theorem 2

The correspondence F is upper hemicontinuous, compact-valued, and,

for each nonsingleton K € % o’ F(K) contains no extreme point of K.




- 57 -

Proofuof Theorem 2

Since F is, by cpnstruction, the correspondence obtained through
closing the graph P;'and since T has a bounded range, it follows that F
is upper hemi—éontinuous and compact valued.

. Let K € afb be nqnsingleton and let x be an extreme point 6f K
such that x € F(K). Without loss of generality we can take x = O;.rby
virtue of the translation invariance of all solutions.

The supposition that x € F(X) implies the existence of u € gn—l
such that §° T (u) Sxe*m(u) = 0 for aillpermutations m. Note that
Z T(u) = 0 for any u € §n—l' where the summation runs over all‘permu-
:ations. “Hence z y*T(u) = 0, and thus- ye*T(u) = 0 for all
permutations . "

We will now contradict this conclusion. Note that for y # x,

y €K Siafo, we must have yj > Yk for some pair of components 3j, k.

-1

Also, as u € § , we can find some permutation T for which
1r(u)j > ﬂ(u)k. -Let 7' differ from m solely by the reversal of components.

j and k. Then y*w(u) > y*7'(u), which establishes the desired

contradiction.
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