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 1. INTRODUCTION

 The problems of resource allocation in economies with public goods has recently been
 studied from two points of view. On the one hand, procedures have been derived to
 compute Pareto optima as limit points of a dynamic process, assuming that correct
 knowledge of the data of the system is available. On the other hand, a possibility of
 misrepresentation of privately held information, a serious obstacle in such systems, has
 been overcome by the design of incentive compatible mechanisms in static contexts. These
 two strains of the literature have been united in the work of Malinvaud, Dreze and
 de la Vallee Pouissin (MDP) on the assumption that consumers will play maximin
 strategies at each instant. Because this behaviour cannot be guaranteed, stronger incentives
 properties are desired. Roberts (1977) showed that if the MDP rules were used but a
 Nash equilibrium was attained at each instant, the favourable convergence properties of
 the MDP process were preserved.

 Individual strategies in the MDP procedure consist in announcing their marginal rates
 of substitution (MRS) at each instant. In Roberts' model the strategy space consists of
 real numbers which play the role of MRS in the dynamic process. Consumers choose these
 numbers as a function of their true MRS's and of the other agents' announcements, to
 maximize the time derivative of their utility.

 There were two disturbing features of the Roberts model that required further study.
 First, the strategies in Robert's mechanism were not restricted to be non-negative. The
 game is well-defined and has Nash equilibria at each instant, but these cannot be viewed
 as truthful MRS's of agents with monotone preferences. Henry (1977) re-examined the
 Roberts' process with this non-negativity restriction imposed. He proved that Nash
 equilibria exist at each date and that their favourable convergence and optimality properties
 are maintained, provided that one further assumption holds: when indifferent among
 several possible responses including the truth, the agents will always employ the latter
 strategy.

 The second troublesome aspect of using a Nash concept in Roberts' model is of a more
 conceptual nature. Indeed it applies to any dynamic decentralized model in continuous
 time that requires an equilibrium to be achieved at each instant. To attain an equilibrium
 one usually either proves that it is the limit of an adjustment process or simply asserts that
 it will be found eventually. In any case, there is in principle an infinite amount of time
 required to reach the equilibrium exactly, and truncating the process at any point would
 involve a genuine disequilibrium analysis in which the nature of agents' myopic optim-
 izations would be radically altered. Therefore, assuming that Nash equilibria are reached
 continually amounts to compressing a double-infinity of time into the adjustment process.
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 558 REVIEW OF ECONOMIC STUDIES

 The favourable efficiency properties being achieved only asymptotically, the relevance of
 such results is called into question.

 To overcome this, Schoumaker (1976) considers a discrete time system analogous to
 the MDP process. The advantage of discrete time processes is that they serve as a more
 realistic representation of dynamic games played sequentially. The strategy space is
 assumed to be pairs of real numbers. The first is the willingness to pay of each consumer
 for a given size of increment in the level of the public good production; the second is the
 compensation the consumer would have if the level of the public good were decreased by
 the same amount. The step size is decreased whenever convergence is attained. Con-
 vergence to Pareto optimality is assured subject to the same assumption of correct revelation
 in matters of indifference as used by Henry.

 To avoid this " truthtelling under indifference " postulate, and to provide a process
 in which the step size is endogenously determined, we have developed a discrete-time
 adjustment process in which the strategy spaces are monotone concave functions instead
 of real numbers or pairs of real numbers. The interpretation of strategies in this model is
 that they represent consumers' willingnesses to pay for changes in the level of production
 of the public good around the current plan. One interesting feature of our model is that
 the Nash equilibria attained at each step do not involve " truthtelling ", in that the true
 demand-price schedules are not the equilibrium strategies. Nevertheless convergence of
 these Nash equilibria to a Pareto optimum is established.

 Because continuous-time procedures are subject to the criticism mentioned above that
 there is not enough time to find a Nash equilibrium at each of the continuum of dates, one
 might think that introducing a more complex strategy space would replace this difficulty
 with another one. The computation of a maximum in a discrete-time model with a flexible
 step-size would suffer from the same drawback. If, for example, the planner were to use
 a gradient method at each date, again a " double-infinity " would be created. It turns out,
 however, that the optimal strategy is always to announce a linear function, so that the
 Central Planning Board can perform the optimization trivially, given a knowledge of the
 marginal cost of producing the public good.

 In the next section the basic model and notation are set out. Section 3 gives an
 analysis of the best-replay strategies at each step. Section 4 provides a proof of the
 existence of Nash equilibria for the game played at each step. Section 5 analyses the
 properties of these equilibria. The main results of the paper, dealing with convergence
 towards Pareto optimality of the sequence of these equilibria, are proven there. A brief
 conclusion follows.

 2. NOTATION

 Consider a planning process at which a Nash equilibrium is found at each of a countably
 infinite sequence of dates. We denote a typical point in this sequence by an integer t.

 There are I consumers indexed i = 1, ..., I, each of which consumes an amount xi of
 the private good. The planned output of the public good is denoted y. Consumers'
 preferences are represented by strictly monotonic quasi-concave differentiable utility
 functions: U'(xi, y), defined for all non-negative values of the arguments. The initial
 endowment of each consumer consists only in w, of the private good.

 The public good is produced according to a technology with non-increasing returns,
 described by a production function: y = f(z) where z E R is the input of private good.
 We assume thatf"(z)<0 and 1im =Af' # 0. Let z = g(y) denote the cost function for
 public good production.

 An allocation (x1, ..., xI, y) is feasible if

 Ei xi+ g(y) =Ei wi for all i, xi >! ?.
 At time t- 1 the process results in a feasible allocation of public and private goods,

 denoted (x1(t), ..., xQ(t), y(t)) which forms the data for the process at time t.
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 GREEN & SCHOUMAKER MDP PROCESSES 559

 The cost function g is known by all agents. We denote by q(y, y(t)) the change in the
 cost if the planned level of public good were to vary from y(t) to y. The function q is
 monotonic increasing, strictly convex, and sign preserving in [y-y(t)].

 Consumers are required to announce functions mi(y, t) at time t. The spirit of the
 process is that mi(y, t) is consumer i's willingness-to-pay function for changes in the level
 of public good given xi(t) and y(t). However, the utility function is not known to the
 planner and private incentives determine the functions announced. Nevertheless the
 planning process is designed so that the allowable announcements mi(y, t) must be
 compatible with some monotone quasi-concave differentiable utility function. This means
 that mi(y, t) is monotonic, non-decreasing, sign preserving in [y-y(t)], concave and
 differentiable in y. The set of all such functions forms the strategy space of each consumer
 at time t given the state of the whole system.

 The allocation chosen at t, (x1(t+ 1), ..., x1(t+ 1), y(t+ 1)) is given by

 y(t+ 1) maximizes Ei mi(y, t) -q(y, y(t))
 and

 x(t + 1) xi(t)-mi(y(t + 1), t) + 6j [Zj mj(y(t + 1), t)-q(y(t + 1), y(t))]
 where

 ?< 6j< I and Ei bi = 1.
 First observe that the process is well defined for each collection of strategies m1, ..., MI

 by virtue of our assumptions on the production function which ensures that

 max, E i m i(y, t) -q(y, y(t))
 exists and is unique.

 Note that

 Ei m (y(t+ 1), t)-q(y(t+ 1), y(t)) _ Es m (y(t), t)-q(y(t), y(t)) = 0

 because mi(y, t) and q(y, y(t)) are sign preserving in [y-y(t)].
 Notice also that since each agent i can choose the function mi(y, t) defined implicitly by

 UW(x(t)-mK(y, t), y) = Ui(xi(t), y(t))

 (which corresponds to a true revelation of i's willingness to pay for changes in the level
 of public good from y(t)), and since Ui is defined for non-negative values of its first
 argument, he can insure that:

 xj(t+1) _ 0

 and moreover that U'(xi(t + 1), y(t + 1)) > U'(xi(t), y(t)).
 It follows from these observations that starting from any feasible state, the procedure

 will maintain feasibility as long as consumers play strategies associated with non-negative
 amounts of private good.

 In the tradition of the literature on dynamic planning we are assuming that the agents
 behave myopically at each t, choosing their strategies to maximize U'(xi(t +1), y(t +1))
 given the information available to them. Specifically we assume that each agent knows
 the strategies followed by the others and that a Nash equilibrium in their strategies is
 achieved at each stage. By virtue of these conditions the individual's best replay strategy
 will always be such as to guarantee non-negative consumption of the private good.

 3. BEST REPLAY STRATEGY

 Given the strategies chosen by the other consumers we can define:

 q i(y) = Ej 0 i mj(y, t) -q(y, y(t)).

 Note that Xi is strictly concave and differentiable. Let y-i maximize i.
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 560 REVIEW OF ECONOMIC STUDIES

 If consumer i announces mi(y, t) then y(t+ 1) will maximize

 m i(y, t) + 0i(Y)

 Because mi(y, t) is required to be non-decreasing,

 y(t+1) >-

 We compute the best replay strategy of consumer i in two steps: first for each y _ yi we
 find the strategy which maximizes U'(xi(t +1), y(t + 1)) subject to y(t +1) = y; this
 obviously amounts to maximizing xi(t+ 1) given j and Xi. Then the optimal level of -
 consistent with Y > Yi is selected by consumer i and the corresponding strategy is played
 by i.

 Let us denote

 ami(y, t) = ml(y, t).
 ayI

 If the maximum of mi(y, t) + i(y) occurs at -, then

 mi(jU t) =- X() ... (1)
 We will show that among all monotone concave differentiable and sign preserving

 functions of [y -y(t)] satisfying (1), the one which maximizes xi(t+ 1) is the linear function

 mi(y, t) = -0(Y)[y-y(t)]
 By definition of xi(t+ 1)

 xi(t + 1) = xi(t)-m (M, t) + bi (Zj mj(, t)-q(o, y(t)))

 =x(t) -(1 - bmi(y, t) + bioi(Y)

 Since 0< bi< 1, xi(t+ 1) will be maximized when mi(j, t) is minimized.
 Note that

 mO(5, t) = m(d , t)d4 ,
 y(t)

 since mi(y(t), t) = 0.
 There are two cases according to the sign of [g-y(t)].

 (i) if - _ y(t), concavity of mi requires

 m~(, t) > m'(-, t) for all < 5 9 .(4)
 therefore (3) is minimized when (4) is satisfied with equality.

 (ii) if y(t) > j, concavity of mi requires

 m~(, t) _ m'(-, t) for all 4 > 5 .(5)
 the minimization of (3) implies in this case also that (5) holds with equality throughout the
 range of integration.

 Therefore in both cases the optimal strategy requires that (2) holds for all y between
 y(t) and X. Outside this interval the function mi(y, t) can be defined in any way compatible
 with the restrictions on the strategy space. We focus attention on the particular element
 of this optimal set in which (2) holds for all y.

 When the strategy defined by (2) is played, consumer i's utility is

 U'(xi(t) -mi(-, t) + bi(yj mj(-, t) -q(y, y(t)), g

 - Ui(xi(t) + (1 - 3i)fi(?)[5; - y(t)] + 3i4i(y), g). . . .(6)

 The second stage of the optimization is to maximize (6) with respect to - subject to
 the constraint -i >-Y5. As mentioned above this constraint embodies the restriction of
 mi to monotone non-decreasing functions.
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 GREEN & SCHOUMAKER MDP PROCESSES 561

 Let y* satisfy the first order condition for this maximum.

 Ux[( -s)(0i'(Y*))[Y*-y(t)] +(l (1-3)+(y*)+ 4(yi)] + Uy = 0
 or

 ux-[(l- 6)KW)V - y(t)] + C(yU)] + Uiy = 0. ...(7)
 It is important to remember that the partial derivatives Ux and U are themselves

 functions of y and x and are evaluated here at y* and xi(t+ 1).
 The value of - that maximizes (6) subject to y _ j5 is clearly:

 = max (yr, Yi)

 and the optimal strategy of consumer i is

 mi(y, t) --(EY)[Y- y(t)] ... (8)
 because

 _ Y ~ if y" >Yj
 QI?G) - l~ = {O-(Y), if Y* -<

 4. NASH EQUILIBRIA

 A collection of response functions m*(y, t), ..., m*(y, t) such that m*(y, t) is an optimal
 strategy for every consumer i given that agents j + i are playing m*, is a Nash equilibrium.

 We will show that a Nash equilibrium exists for a system in (xl(t), ..., xj(t), y(t)). In
 particular we will demonstrate that there is a Nash equilibrium in which the response
 functions are all linear:

 mi(y, t) = si[y-y(t)], si E R+ ... (9)

 We therefore consider the strategy space for each agent as RJ and his strategy is
 denoted si. A fixed-point argument will be used in which the optimal strategy s* is a
 function of the strategies of the other consumers sj, j : i. We first show that s* can be
 bounded independently of {sj}j i under the following assumption.

 Assumption 1. UI/Ui is uniformly bounded over the commodity space.

 Let B1 be the bound whose existence is asserted in this assumption. Let B2 q'(y(t)).

 Lemma 1. B = max (B1, B2) > si, Vsj, j I i, sj > 0.

 Proof. If si>B2 then y* > y(t) since y* will satisfy

 q'(y) =Ej sj = si+j 0 i sj > si > q'(y(t))
 and si _ 0 and q">0.
 y* is defined by (7) which in the case of linear strategies can be written:

 U'[(l - bi)(- q"(y*)[y* - y(t)]) - si] + Uy = 0
 or

 = UX - (1- bi)q"(y")[y* - y(t)] <B,

 by the argument above. 11

 Since only non-negative strategies are allowed we know that the optimal strategy of
 consumer i will lie in [0, B] independently of the strategy choices of others. In order to
 use a fixed-point argument on the product of these strategy spaces, to assert the existence
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 562 REVIEW OF ECONOMIC STUDIES

 of Nash equilibria, we must show that y* defined by (7) is continuous in the variable
 s = Ej 0 i sj. (7) can be written as

 u| dxi(t + ) +U I = ? ...(Io)
 =x (tl,Y=Y) x = xi(t + 1), y dy ys

 In order for there to be a unique and continuously-varying (with respect to s) solution y*,
 it suffices that dxi(t + 1)/dy* be monotone decreasing, or in other words that xi(t +1) be
 concave. Recalling the definition of xi(t+ 1) and using the linear form of mi:

 xi(t + 1) = xi(t) -(1 - bi)[q'(y;") - j - y(t))
 + i [,j * i sj[y* -y(t)] -q(y*)], .(1

 twice differentiating (11) we find:

 -(1 - bi)[q'(y* - y(t)) + q"] - q". ..(12)
 The negativity of (12) cannot be assured without an assumption on the technology.

 Assumption 2.

 I q"'(y) I < q"(y) for all y.
 y

 This assumption means that in some sense, locally, the degree of diminishing returns to
 scale is not too large. For example cost functions of the form:

 z = q(y) = -y(t)

 satisfy Assumption 2 and strict convexity whenever 1 <a,< 3.
 Under Assumptions (1) and (2) the argument above implies that y* will be a

 continuous function of sj, j 0 i. Since y* maximizes

 si[y-y(t)] + Yj * i sj[y-y(t)] -q(y)

 si will be continuous in sj, j : i. The existence of Nash equilibria is guaranteed by
 Brouwer's fixed-point theorem.

 5. NASH EQUILIBRIA AND PARETO OPTIMALITY

 In this section we demonstrate the two main results of this paper: Pareto optima are
 stationary points of the dynamic adjustment process (Theorem 1) and non-optimal
 allocations lead to Pareto-superior adjustments at every Nash equilibrium (Theorem 2).
 By virtue of these results we conclude that the sequence of utilities attained is monotone
 increasing and hence has a limit point. To insure that this limit is a Pareto optimum, it
 is necessary to know that the correspondence

 s = F(x(t), y(t))

 defining the set of Nash equilibrium strategies given the initial point (x(t), y(t)) is upper
 hemi-continuous in (x(t), y(t)). Given upper hemi-continuity of F, if (x(t), y(t))-+(x*, y*)
 and st e F(x(t), y(t)) for each t, with s,-+s*, then s* is a Nash equilibrium and therefore (by
 virtue of Theorem 1) (x*, y*) is Pareto optimal. To prove the continuity of F in (x(t), y(t))
 one must show that ji and y* are continuous in the current state. But note that Yi depends
 on the current state only through y(t) which is an argument of q, and the latter is continuous
 by continuity of the production function. And y* defines a regular maximum of (6);
 under Assumption (2) the solution to (7) is unique and continuous in the initial state.

 Theorem 1. Let (x1(t), ..., x1(t), y(t)) be Pareto optimal then
 ui

 Si = Ui i=1,...,I
 Ux
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 GREEN & SCHOUMAKER MDP PROCESSES 563

 is a Nash equilibrium and the corresponding allocation is

 xj(t +l) = x(t) i =l,....,~I
 y(t + 1) = y(t).

 Moreover there are no other Nash equilibria.

 Proof. Consider S3 = Uy/UJ for all j : i. We will show that the optimal strategy
 for agent i is to announce

 Uy
 Si =
 IUi*

 x

 By virtue of the observation in Section 2, the strategy sj cannot result in a loss in utility
 for consumerj, independently of the strategies played by the others. Therefore for any
 sz # si we would have

 y(t +1) # y(t)
 and consumer i's utility would be decreased.

 Hence si is the optimal strategy. And by the condition of Pareto optimality:

 ui
 Li-4-q' =0

 the specification of the mechanism implies that the allocation remains unchanged when
 these strategies are played.

 To show that the Nash equilibrium is unique, consider the strategies sJ, I = 1, ..., I,
 such that

 si # si for some i

 and assume that these form a Nash equilibrium. First observe that this Nash equilibrium
 must also result in stationarity because otherwise the utility of at least one agent i would
 decrease from t to t + 1, and he would therefore play the strategy si. Stationarity implies

 li si-q' = 0. ...(13)
 Differentiating the utility attained at t + 1 with respect to si:

 d, Ui(x,(t) - S'y(t + 1)- y(t) + 6i [,j s, [(t + 1) -y(t)]-q(y(t + 1), y(t))], y(t + 1 )) ds.

 Si~~~~~~~~~~~~~~~U = U+ Ux(-s). ...(14)
 Using (13) and dy/ds = 1/q" (14) is zero only if

 ui
 si

 Ux

 and therefore any individual for whom this is not satisfied has an incentive to modify his
 message slightly in the direction of the true marginal rate of substitution at the stationary
 point. Hence the sJ were not equilibrium strategies.

 Theorem 2. Let (xl(t), ..., x1(t), y(t)) be a non-optimal allocation. Then

 xj(t + 1)-=xi(t), i = 1, . . ., I

 y(t +1) = y(t)
 is not an allocation associated with any Nash equilibrium.

 Remark. Because we cannot get " stuck " at a non-optimum, and because the process
 is utility-monotone at each step, Theorem 2 implies that there is a monotone adjustment
 from any initial position to a full Pareto optimum.
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 564 REVIEW OF ECONOMIC STUDIES

 Proof. Assume that the allocation in t +1 given by the statement of the theorem is
 associated with a Nash equilibrium s1, ..., sI. Stationarity implies

 Es si - q'(y(t)...(5
 For each individual define ye by equation (7). By the analysis of Section 3, the optimal
 strategy of consumer i (see equation (8)) is given by:

 Si = max [-](y), 0]
 Let N = {i I Si -z(s)

 For i E N the stationarity of the Nash equilibrium implies y* - y(t). Substituting
 into (7) we have

 UxiKY(t)) + Uiy= 0

 Uy = iVO _ ((t)si. ... (16) ui_
 Ux

 If N = {1, ..., I} equations (15) and (16) imply the optimality of the stationary allocation,
 contradicting our hypothesis.

 Therefore consider i ? N, si = 0 and (15) implies

 further i s N implies j sj = q'(y(t)) ...(17)
 OIKyI*) > 0 ...(18)

 which together with (17) implies

 y* <y(t).

 From equation (7) and 0"(y*) <0 we have:

 0 = Ux((1 - 6i)0"(YP)(Y* - y(t)) 4 4/(y*)) + Ui > Ux ((1 - 6i)0"(y*)(y(t) - y(t))

 + q$(y*)) + Uy
 or

 > Uxio'(yi*) + Uiy ... .(19)
 (19) and (18) imply Ui<0 contradicting the monotonicity of preferences. Therefore
 N = {1, ..., I} and (16) implies the optimality of the stationary Nash equilibrium.

 6. CONCLUSION

 A planning process has been studied in which myopic play at each iteration led to a sequence
 of Nash equilibria. The allocations associated with these equilibria converge to a Pareto
 optimum. The procedure is monotone in utility for each agent. This property, together
 with its discrete-time character, make it an attractive process, when myopic play can be
 assured. Some restrictions on production and preferences were needed to insure the
 existence of Nash equilibria.

 First version received July 1978; final version accepted August 1979 (Eds.).
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