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 Econometrica, Vol. 43, No. 4 (July, 1975)

 THE NATURE OF STOCHASTIC EQUILIBRIA'

 BY JERRY R. GREEN AND MUKUL MAJUMDAR

 This paper formulates the notion of stochastic equilibria as invariant probability distribu-
 tions consistent with the behavior patterns of individuals and the disequilibrium adjustment
 mechanism of the economy. Conditions for existence, uniqueness, and stability of such
 equilibria are examined.

 1. INTRODUCTION

 WE CONSIDER A CLASS of problems in this paper in which the economic environ-

 ment is stochastic. We will be concerned primarily with developing an equilibrium

 concept for general equilibrium models of this type. However the essential ideas
 can be carried over directly to partial equilibrium applications. The choice of the
 specific general equilibrium model used results primarily from a desire to facilitate
 comparisons with earlier work on alternative equilibrium concepts for this model

 (see Hildenbrand [9] and Majumdar and Bhattacharya [2 and 3]).
 Randomness can arise from several sources. We will be considering, for concrete-

 ness, a simple exchange economy in which the basic data are the preferences and
 endowments of the economic agents. Either of these can be random. Typically,
 randomness of endowments can be allowed for by creating contingent markets in

 which case the Arrow-Debreu deterministic equilibrium suffices. It is conceptually
 much more difficult to create markets contingent on tastes due to the difficulties
 of discovering the true taste pattern of an individual, difficulties which do not

 arise in the case of endowment vectors which can be observed directly. We will
 be considering an economy without markets for every future contingency and

 thus there will remain some randomness. This "residual" uncertainty in the
 economy necessitates equilibrium concepts other than the Arrow-Debreu system
 of market clearing prices.

 2. NOTATION

 We shall find it convenient, before proceeding further, to develop some nota-

 tion. Let L be the set of positive reals and P the set of all strictly positive I-vectors,

 i.e., x = (xi) is in P if and only if xi is in L for all i. Let S = {p = (pi) E P: li= I Pi =
 1}. The topological closures of S and P are denoted by S and P respectively.
 M3(R') is the Borel c-field of R'.2 For any subset Y of R' which belongs to M(R'),

 the Borel a-field of Y is denoted by X(Y). One has X(Y) = {E n Y: E E M(R')J.

 1 This work was supported under National Science Foundation Grant GS-31688 and Office of
 Naval Research contract N00014-67-A-0298-0019 to Harvard University and National Science
 Foundation Grants GS-3269 and GS-30377 to the Institute for Mathematical Studies in the Social

 Sciences at Stanford University. The authors are indebted to K. Arrow, R. Bhattacharya, W. Hilden-
 brand, M. Kurz, R. Radner, M. Rothschild, and D. Starrett for helpful comments and criticisms.

 2 This is the a-field generated by open sets of R'. See Billingsley [4, p. 11, problem 6].
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 648 J. R. GREEN AND M. MAJUMDAR

 Clearly X(Y) c 3(R') for any Y in 4(R'). The set of all probability measures on
 X4(Y) is denoted, for simplicity, by M(Y). We usually endow M(Y) with the

 topology of weak convergence. A sequence 4iin of elements of M(Y) converges in
 this topology (briefly, converges weakly) to some ,u in M(Y) if for every bounded,

 real-valued continuous function f on Y, f y f d1i converges to f y f dli. The results on
 weak convergence to be used in Section 4 can be found in Billingsley [3]. For a
 random vector X, its mathematical expectation is denoted by EX.

 3. THE CONCEPT OF EQUILIBRIUM

 Typically, an equilibrium of a model is a state having the property that once
 attained, there would be no tendency to depart from that state in the absence of

 any change in the parameters of the model. The absence of any endogenous

 tendency to change seems to be the basic characteristic of "equilibrium" (see
 Frisch [8]; actually the use of the word goes much further back, at least to Alfred

 Marshall).

 Let g be a deterministic exchange economy with N agents. Each agent is repre-

 sentable by his demandfunction reflecting his tastes and preferences and his endow-
 ment. To be precise, let 9 be the set of all functions f from S x L to P satisfying
 the following properties:

 (i) f is continuous on S x L;
 (ii) p . f(p, w) = w for all p in S and w in L (where. denotes the scalar product);

 (iii) if (pn , wn) in S x L converges to (p, w) in (3-S) x L, then 1i= I tfi(Pn, wJI
 diverges to + oo with increasing n.

 We shall write, for a typical element Z in Euclidean space,

 11Z0 _ IZil ii

 The last condition (iii) implies that every commodity is desired. An agent is

 completely described by a pair aci = <fi, ei> in 9 x P. Given a price vector p in
 S, his wealth is wi = p. ei and his planned demand is given by (aj, p) fi(p, p ei).
 The excess demand Ce(p) in the economy g corresponding to a price vector p in S
 is defined as

 N

 (3.1) 4(P) = [fi(p,p ei) - ei].

 An equilibrium price vector p* is an element of S such that 0.p*) = 0 If the
 prevailing price vector in the market is, in fact, an equilibrium price vector, and

 all the agents make their plans taking it as given, then all the plans can be imple-
 mented. Given the tastes and endowments of the agents, there would be no
 mechanism to bring about any changes-since all the plans are consistent. If the
 announced price vector is not an equilibrium, then total excess demand is non-
 zero, implying that not all the plans can be carried out. The agents whose plans
 are not realized are expected to generate pressures for a price change. A familiar
 hypothesis is that if excess demand is positive (respectively, negative), prices would
 go up (respectively down).

This content downloaded from 
������������128.103.147.149 on Thu, 21 Jan 2021 17:11:14 UTC������������ 

All use subject to https://about.jstor.org/terms



 STOCHASTIC EQUILIBRIA 649

 All this is a familiar story. Extension of the concept of equilibrium to a model

 with random preferences raises interesting possibilities and conceptual problems.

 Suppose that the characteristics, i.e., the demand functions and the endowments

 of the agents are random. Formally, there is a probability space (Q, Y, ,u), Q being

 the set of all states of the environment of the economy. A random agent ac( ) is a
 (p-measurable) function from Q into 9 x P. A particular state co E Q, completely

 specifies the preferences and endowments of the agents. The occurrence of O is

 determined according to the probability law ,. We shall always assume that the

 evolution of the environment is stochastically independent of the price systems

 prevailing in the market. In other words, the probability ,(F) that the state which
 is going to occur belongs to F does not depend on p.

 Given p in S, the total excess demand in the random economy g, consisting of

 agents {oci( )} is the random vector Ce( ; p) defined as

 N

 (3.2) C4w(o; p) = , [,(cxi(w); p) - ei(o)]

 where (oai( ), p) is the random vector of demand of agent ci )-<fi( ); ei( )>
 corresponding to the price vector p in S. For any w in Q, one can define

 (3.3) w(gf) = {p E S: e(wo; p) = O}.

 It is easy to construct examples in which there is no p in S such that p belongs to
 w(of) for a.e. w. Consistent with the treatment of Arrow and Debreu is the state-
 ment that w(tof) is the set of all equilibrium price vectors in the state co. If the initial

 price vector p happens to belong to w(tof) for some co, then all markets will be

 cleared and all plans will be realized if 6&3 occurs. A random price equilibrium p( )
 is a (Y-measurable) map from Q into S such that for a.e. (), p(w) belongs to w(tof).
 The properties of the sets w(tof) in relation to changes in the size of the economy

 were studied in Bhattacharya and Majumdar [3]. A sequence o', of economies was
 considered, consisting of Nn stochastically independent random agents, and Nn
 was assumed to increase with n in a specific manner. Conditions were given under

 which lim w(69,l) exists3 for a.e. w, and is independent of w(. Furthermore under
 appropriate assumptions the sequence N/ (Pn( ) - Epn( )) of suitably normalized
 random price equilibria was shown to converge weakly to a normal distribution.

 Many of the results can also be extended to allow for particular forms of stochastic

 dependence (such as exchangeability or strong mixing).
 Consider now a central planning board which has to set the price without know-

 ing what state is going to occur. From the point of view of this board, certain

 questions are rather natural. For example, if a particular price vector p is set,
 what can be said about the distribution of total excess demand? It can be shown
 that if the agents are stochastically independent, the error involved in approxima-

 ting4 the distribution of Cg( , p) by a normal distribution (with suitable parameters)

 3Convergence was established in Hausdorff metric.
 4 This approximation is uniform over all Borel-measurable convex subsets of R'.
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 650 J. R. GREEN AND M. MAJUMDAR

 is inversely proportional to Nf. Furthermore, Hildenbrand [9] has given condi-
 tions under which there exists a price vector p* in S such that the corresponding

 expected excess demand ECe( , p*)- 0 and per capita excess demand corre-
 sponding to p* is small with high it-probability if N is large. Note that if the initial
 price vector is p*, then it is conceivable that whatever state occurs, there is a set

 of agents who are unable to carry out their plans (in fact, all the agents may be

 unable to do so)-after all, C,((o; p*) need not be zero for any w, and still Ece( ; p*)
 may be zero. Nothing in the model suggests why pressures will not be generated

 for bringing about a change in p*, pointing out that plans of many agents are not

 being realized. Moreover, for a large economy, a small per-capita excess demand

 may be consistent with a major imbalance in absolute terms in some markets.

 In this paper we develop an alternative definition of equilibrium which exists

 in economies in which stochastic independence of tastes and endowments fails

 and hence in which some of the previou-s results are not applicable. The definition
 we use is also related to the process of price adjustment in disequilibrium. Adjust-
 ments play no role in the results above.

 The conceptual difficulty in extending the notion of an equilibrium to random

 economies may be briefly recapitulated: if one defines an equilibrium as a deter-

 ministic price vector with some "desirable" properties, then the plans (i.e., planned
 demand vectors) of the agents formulated by taking that price system as given may

 not in general be realized and consistent in any state of the environment. The
 market-clearing prices depend on the state of the environment, and there is no

 way of guaranteeing that markets will be cleared in the actual state that occurs.
 Hence, it becomes especially important to try to say something about possible

 adjustments when excess demand or supply shows up and this is the question that
 we turn to in the next section.

 4. STOCHASTIC EQUILIBRIUM RELATIVE TO ADJUSTMENTS

 Time is treated as a discrete variable t = 0, 1, 2, .... As before, the same proba-
 bility space (Q, Y, ju) represents the set of all possible states of the environment at

 any date. The sequence <Kw),> of the states of the environment in different time
 periods t = 0, 1, . . . is taken to be independent and identically distributed according
 to 4ufor all t, i.e., independently of the past states of the environment the probability
 that the state obtaining at date t belongs to some F in Y is given by 11(F). This
 probability does not depend on the price vectors (or their distributions) at date t.

 The price adjustment process can be described as follows: the initial price is
 chosen according to some distribution ire. Independent of the price vector, the

 state of the environment wo is chosen by "Nature" according to the probability
 distribution /u. The excess demand corresponding to any price p is then C(wo; p).
 There is an adjustment function h from R' x S into S. It determines the price in
 period 1 uniquely, given the quantity of excess demands and the price at date 0;

 thus, h[C(wo; p); p] is the price at date 1, if the price at date 0 is p. We are not

 5 To be sure, 0 represents the zero vector.
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 STOCHASTIC EQUILIBRIA 651

 concerned in this paper with an explanatory theory for h itself. Presumably it is

 the result of a learning process performed by agents in the economy who are
 responsible for changing prices. In a more general system, which allows for

 inventory accumulation, the price may depend on the level of inventories held.

 Note that the form of the function used is general enough to allow dependence
 between price changes on one market and inventory levels of closely substitutable

 goods.
 But it must be pointed out that there are two very severe restrictions on the

 structure of the model that are implicit in the use of such an adjustment hypothesis.
 First, h itself does not change. That is, the learning process or other optimization

 that gave rise to h is complete and no experience of the economy will alter its
 conclusions. Second, h depends only on the current excess demand and not on

 any historical data-the strength of this condition is self-evident. At date 1
 (irrespective of the price vector), the state wo1 occurs (according to the distribution

 ,) generating an excess demand vector corresponding to that price, and so on. In
 general, the process is described by the following:

 (4.1) p, + J ) = h[(( ; p,( )); pt( )].

 The initial distribution n0 is simply an element of M(S). The distribution 7t will

 be called a stochastic equilibrium (relative to h) if pt has distribution t implies

 pt+ 1 has distribution t.
 For p in S let 0( ; p) be the probability distribution of excess demand (given the

 price vector p). Formally, for any E in M(R1) one has

 (4.2) O(E; p) = j({) c- Q: 2 (w; p) E}).

 O(E; p) is the probability (note that it does not depend on t) that the excess demand
 vector corresponding to p will be in the set E.

 The first assumption is the following continuity property of h:

 AssUMPTION 1: The adjustment function h: R' x S -3 S is continuous.

 For any set A in X(S) define

 (4.3) h'- (A)p = {z E R'; h(z, p) EA} .

 Note that h - '(A)p is in M(R'). Hence, define for any A in X(S) and p in S, the kernel

 (4.4) )(A; p) = 0(h- '(A)p; p).

 A(A; p) is the probability that the price vector will be in the set A in the next
 period, given that it is p in this period. Alternatively, for a given p in S, A( ; p) is

 the distribution of the random vector h[C( ; p); p] (defined on Q), and is an element
 of M(S).

 For each co, C(w), p) is a continuous function on S (recall the properties of demand
 functions listed in Section 3). Hence if a sequence Pn of price vectors in S converges
 to p in S, then ((w); P) converges to C(w; p) for every co. In particular (see [4,
 p. 33]), (( ; pn) converges in distribution to (( ; p); in other words, the sequence
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 652 J. R. GREEN AND M. MAJUMDAR

 O( ; p,n) of probability measures in M(S) converges to 0( ; p) in M(S) in the weak
 topology as Pn in S converges to p in S. Using the continuity of h, it is immediate
 that convergence of Pn (in S) to p (in S) also implies that the sequence h[c( ; Pn); Pn]
 of random vectors converges to h[C( ; p); p]; this in turn guarantees that A( ; Pn)
 (the distribution of h[(( ; Pn); Pn]) converges to A( ; p) (the distribution of
 h[(( ; p); p]) in the weak topology as Pn in S converges to p in S.

 It is now necessary to verify that for any E in X(S), A(E; ) is ?3(S) measurable.
 The proof of the following lemma uses a result of Varadarajan [13].

 LEMMA 4.1: For any p in S, A( ; p) is a probability measure on 43(S); for any E in
 ,4(S), A(E; ) is AS(S) measurable.

 PROOF: The first statement being obvious, note that for any fixed E in X4(S),
 A(E; ) is a function from S into [0, 1]. It is representable as a composition of two
 functions. Define a function 4: S -- M(S) as

 (4.5) o(P) = ( ; P)

 Next, define P: M(S) -> [0, 1] by

 (4.6) IP(m) = m(E).

 Clearly, A(E, p) = 'P((p)). It has already been pointed out that if M(S) is endowed
 with the topology of weak convergence, then 4 is a continuous function, hence it
 is surely X(S) measurable. Measurability of F is precisely the result of Varadarajan
 [13]. Hence, being the composition of two measurable maps, A(E; ) is measurable.

 Q.E.D.

 Lemma 4.1 ensures that the process pt( ) with an initial distribution iro and the
 kernel A(A; p) is in fact a Markov Process (see, e.g. [10, p. 365]). The distribution
 of the stochastic process is entirely determined by the initial distribution and the

 kernel. Suppose the distribution of p,( ) is 7;; the distribution of Pt+1 can be
 determined easily. For any A in X(S),

 (4.7) ;t+1(A) = J A(A;p)d7r(p).

 It is necessary to remember that for a given A, A(A;) is measurable and bounded
 so that the integral in (4.7) is well-defined.

 Starting with an initial distribution (which may of course be a measure assign-
 ing the mass 1 to a single point p*), the distribution of prices at successive dates
 can be obtained by applying (4.7) repeatedly.

 A stochastic equilibrium of the process is a measure ir* such that ir* is not
 identically zero on X(S) and

 (4.8) jt*(A) = JA(A; p) d7c*(p) for all A in X(S).

 In other words, a stochastic equilibrium is a time-invariant distribution of prices.
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 STOCHASTIC EQUILIBRIA 653

 If in some period the distribution of Iprices happens to satisfy (4.8), it will remain

 the same for all subsequent periods.

 The first task is to prove the existence of such a stochastic equilibrium. One

 possibility is to impose direct restrictions on the kernel {(A; p). We shall, however,

 keep the discussion closer in spirit to that of the deterministic adjustment processes

 and proceed by imposing conditions on h. Ideally, one would like to derive these
 assumed conditions from some behavior rules of the agents, but it may be too

 premature to introduce so many complications at this stage. Besides for the exist-

 ence question restrictions are in the nature of some mild continuity and bounded-

 ness properties.

 ASSUMPTION 2: For each commodity i, there exists bi > 0 such that if p is in S
 and pi 4 bi, then C(o; p) > O for all w in Q.

 This assumption is implied by global gross substitutability; for example, see

 Arrow and Hahn [1]. However, it is substantially weaker.6

 ASSUMPTION 3: For the bi defined in Assumption 2,

 max I hi(z, p) - pil < min bi.
 i i

 Let E be such that maxi Ihi(z, p) - pil < < mini bi. We will use the quantity E
 later in the paper.

 ASSUMPTION 4: hi(z, p) - pi is a sign preserving function of zi for i = 1,... , 1.

 We can now prove the following lemma:

 LEMMA 4.2: Let (bi) be the numbers defined in Assumption 2. Then A" = {p E S:
 Pi , bifor all i} is nonempty.

 PROOF: For any fixed &, there is a p* such that C(i; p*) = 0 by the usual
 existence theorem (see, e.g., Debreu [6]). Clearly p* E A" since bi < pr'. Q.E.D.

 Define oci = bi - e and at = {peS: Pi > bi- 4. Clearly A" is a subset of a'.
 The next lemma provides one of the principal steps in the existence theorem which
 follows.

 LEMMA 4.3: For any p in a', )(A', p) = 1.

 PROOF: For p in A", the uniform boundedness of the adjustment function

 (Assumption 3) insures that h(C(w; p), p) is also in a' for all co in Q, i.e., A(a", p) = 1
 for all p in A".

 6 It is, however, much more restrictive than the usual desirability properties assumed in general
 equilibrium theory-for example (iii) of Section 3 above. Unfortunately, we have been unable to avoid
 its use. We are indebted to M. Morishima for helpful discussions of points related to this assumption.
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 654 J. R. GREEN AND M. MAJUMDAR

 Take p in a - z". If pi - oci < E (i.e., pi < bi), then Ci(w), p) > 0 for all co in Q
 (Assumption 2). Therefore, Assumption 4 implies hi(C(w); p), p) - pi > 0 for all co
 in Q for such p. By definition of r, {p': pi > pi for all i such that pi - ai < , and
 max Ip - pil < 4} is contained in a. Thus, p in a implies h(C(w), p); p) belongs to
 a for all co in Q. Hence A(J', p) = 1 for all p in z\zl. Q.E.D.

 The existence theorem will be proved by applying a theorem of Yosida [14].

 Let C(z) be the space of all real-valued continuous functions on a. For any fin
 C(zA') one can define the iterates

 fi (p) f tdA( ;p).

 In general, taking fo f one defines for any positive integer t W 1

 (4.9) f'(p) = f,t_ dA( ; p)

 THEOREM 4.1: Under Assumptions (1) through (4), there exists a stochastic
 equilibrium.

 PROOF: Note that a Markov Process can be defined with the state space
 (a, ~()) and for A in M(J) and p in a, the kernel A(A; p) can be defined in the
 same way as (4.4); for, by Lemma 4.3, A( - , p) is a probability measure on (a
 for any p in a, and as before-A(A; ) is a measurable function for any A in
 4(J'). ' is a compact (hence, separable) metric space whose bounded closed
 subsets are also compact. Furthermore, it is shown that

 (4.10) Iff belongs to C(z'), so doesffor t > 1.

 Consider a sequence Pn in a converging to p in a; to show that for any f in
 C(O'), f1 (pn) converges to f1(p), note that A( ; Pn) converges to A( ; p) in the weak
 topology. Sincef being continuous is also bounded by compactness of a', one has,

 by Billingsley [4, p. 11], f1(p) = fA' d{( , Pn) converges to fA'f d{( ; p) = f1(p).
 Thus f1 belongs to C(z). The same argument is used to prove inductively that f,
 belongs to C(zA') for all positive integers t ; 1, proving (4.10).

 Since all the conditions of Theorem XIII, 4.1 of Yosida7 [14, p. 395] are satisfied,
 a necessary and sufficient condition for the non-existence of a non-trivial invariant

 distribution is that limn-+ 1/n 17 = 0 ft(p) for any f in C(z') and any p in a. To
 complete the proof, therefore, it is enough to take the function g in C(zA') such that
 g(p) 1_ for all p in a. Since )(z', p) = 1 for all p in a, gt 1 on ' for all positive

 integers t W 1. Hence limn,, 1/n In=0 gt(p) = 1 for all p in a. Q.E.D.

 7 A technical point for the cautious reader: We have all along been considering Borel r-fields. But
 Yosida's analysis is in terms of what he defines as the Baire r-field. However, A' is a compact subset
 of R', and its Borel r-field in our sense is the same as Yosida's Baire r-field; see Yosida [14, p. 18]
 and the very useful synthesis of Billingsley [4, p. 11, problem 6].

This content downloaded from 
������������128.103.147.149 on Thu, 21 Jan 2021 17:11:14 UTC������������ 

All use subject to https://about.jstor.org/terms



 STOCHASTIC EQUILIBRIA 655

 5. UNIQUENESS AND GLOBAL STABILITY

 We now take up the questions of uniqueness and global stability of stochastic
 equilibrium of the proposed adjustment process. One can say that the mere

 existence of a probability distribution having the property that if it happens to be

 the initial distribution of prices, then it will also be the distribution of prices at all

 subsequent periods, is by itself, not quite enough. Prices are not chosen randomly,
 and even if the existence of such a probability distribution is known, it is not
 clear how or whether the system will attain stationarity. Indeed, all that one can

 observe is the sequence of specific price vectors that emerge along any sample

 path according to the evolution of the environment-the stationary distribution
 is a statistical phenomenon.

 Recall, however, that in the standard case of the completely deterministic
 Walrasian system, economists' interest in equilibrium is often justified by arguing
 that there may be forces at work to drive the economy back to an equilibrium, if it
 is not in equilibrium already. Characterization of the cases in which there is such

 an inherent tendency towards an equilibrium has been the subject of a large num-
 ber of papers.8 In the same spirit we can say that our equilibrium concept will
 take on added significance if we can delineate some cases in which the sequence
 it of the probability distributions of prices at date t (see (4.7)) converges to a
 stochastic equilibrium n* (satisfying (4.8)) irrespective of the initial conditions.
 Better still, if we can show that for almost every realization of the environment,

 the sequence of sample distributions of observed prices tends to an invariant
 probability distribution n* (satisfying (4.8)) independent of the starting point, we
 can certainly say that the limiting distribution n* gives interesting insights into
 the asymptotic behavior of prices. It describes how the prices will be distributed
 in the distant future, it gives us an idea of how the prices vary over time, and by

 observing the actual distribution of prices for a long time we should be able to

 approximate the stochastic equilibrium arbitrarily closely.
 Now, the technical difficulties in ensuring the global stability of a deterministic

 discrete-time tatonnement process, in which prices are normalized and required to

 be non-negative, have already been spelled out in the literature. In view of the
 fact that our process (4.1) includes, as a special case, such a deterministic adjust-
 ment process, it would be somewhat naive to expect that global stability (implying
 uniqueness) can be obtained without making appropriately "strong" assumptions.
 Instead of aiming at the most general result, we shall present a typical stability

 theorem, and then indicate alternative formulations that can possibly lead to
 stronger local and global results.

 The adjustment mechanism (4.1) can be described in an alternative way. For
 each a) in Q, there is a function g(wo) from S into S such that for any price vector p
 in S at any date t, the price vector at the next date t + 1 is given by g(w)(p) if co
 occurs at date t. Note that the function g(w)) depends only on w and not on t. Thus,
 (4.1) can also be represented as

 (5.1) Pm+i( ) g( )(Pt( )).
 8 See Arrow-Hahn [1] or Morishima [11].

This content downloaded from 
������������128.103.147.149 on Thu, 21 Jan 2021 17:11:14 UTC������������ 

All use subject to https://about.jstor.org/terms



 656 J. R. GREEN AND M. MAJUMDAR

 Uniqueness and global stability will be shown to follow from the following

 admittedly restrictive assumption:

 ASSUMPTION 5: There is a constant 6 > 0 such that for all co in Q, d(g(,)(p),

 g(,,)(p')) X d(p, p') for all p, p' in S and 6 < 1.

 Because of the Banach fixed point theorem, this means that each deterministic
 economy as defined by the sample co has a unique globally stable equilibrium. The

 strength of the assumption in the general equilibrium setting hardly needs empha-

 sis. It is an assumption on h(.,. ) and C(.,. ) jointly. However, without such an
 assumption, it is easy to see that our main result could not possibly be true. (Con-

 sider the trivial case in which Q is a single point; then this assumption rules out

 expanding or stationary cobweb phenomenon.)

 We now introduce a metric # on M(S), the set of all probability measures on S,
 convergence in which implies convergence in the weak topology on M(S). For a
 detailed discussion of this property and of the metric (and other properties) the
 reader is referred to Dudley [7]. Let $(S) be the space of all bounded continuous
 real valued functions on S satisfying

 If (x) - f (y)l d(x, y)

 for all x, y in S.

 For any two elements Q, Q' in M(S), define

 /3(Q,Q')= sup Jf dQ-J fdQ'.

 Consider the case in which the process starts at t = 0 from a single price vector

 p in S; i.e., 110(p) = 1 and 11o(p) = 0 for p 0 p. Denote by PT( IP) the random price
 vector at date T, conditional on the initial price vector being p. Let HT(, p) be the

 distribution of PT( IP-). Note that PT( IP-) can also be represented as a function from

 QT into S, since every realization <we),> of the environment (i.e., every element
 <e)t> of jT) leads to a uniquely defined value PT(<w0t>IP) of the price vector in period
 T starting from p. We shall note a direct implication of the above Assumption. If

 two distinct price vectors - and pf are considered as starting points of the process,
 then for any arbitrary element <e)t> of 2T (i.e., an arbitrary realization of the
 environment for the first T periods) one has

 (5.3) d(PT(<0-)1>Ip_) PT(<(p)t>l) dp p)

 The point to be emphasized is that the right-hand side of (5.3) is independent of

 <w),>. Since <(?t> was chosen arbitrarily we can thus argue that (5.3) holds for all
 elements of QT. Taking anyf in $(S) one computes the following: for an arbitrary
 <w-),> in QT,

 (5.4) If (PT(<K)t>IP)) - f(PT(<Kt>IP))I 6 d(PT(<w0T>IPj), PT(<KWT>IP))

 X 6Td(P,P)
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 STOCHASTIC EQUILIBRIA 657

 Since the last bound (5.4) depends neither on <()> nor on thefunctionf chosenfrom
 (S), it follows that

 (5.5) SUp [Ef(pT( 1P)] -Ef(pT( |)) 6 T d(p, p)
 f ey(s)

 But by a well-known formula (see [10, p. 166]) one also has

 Ef (PT( I1P)) = fdIT( X P)-

 Hence, f(IT( , ); 1T( , )) 6 3T d(_P, =). Since 0 < 3 < 1, one immediately has

 (5.6) lim 1(HT( 15); HT( 05)) = 0.
 T-oo

 Suppose now that the initial price vector is chosen according to an arbitrary
 probability distribution HO on (S). As before, HT is the distribution of PT( )
 By a standard result on conditional expectation, for anyfin 9(S) one has

 iffdT ij L{SfdT(, p)j dI0(p).

 But if 1 is a fixed element of S,

 ff dIT( P)

 is a constant which, upon integration with respect to a probability measure 70,
 remains the same, i.e.,

 {L{f X dIHT( , p)2 dHf(p) = fdHT( , p)

 Hence,

 (5.7) {f dIT- fdIT( ) f { d TP)

 -{f dT( , pdI)o(P)j

 From (5.5) and (5.7) it follows immediately that

 (5.8) lim 3(HTHT( , 1)) = 0 for any given p in S.

 Now, if there happens to be an invariant distribution H*, then by choosing the
 initial distribution H0 = H*, one also has HT = H* for all T, so that one neces-
 sarily has, for any given p in S

 (5.9) lim ,B(H*, HT( , P)) = 0
 T- cc

 Thus, starting from any given p in S, the price vector PT( Ip) converges in distribu-
 tion to 11*. But if the initial distribution of the process is an arbitrary [10 on X(S),
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 658 J. R. GREEN AND M. MAJUMDAR

 then taking a given p in S,

 /(J7*, HT) X IAH*, HT( , P)) + /NTIT( , p)0 HT).

 By repeated application of (5.8) one has

 lim /(17*, ST) = 0

 Thus, irrespective of the initial distribution 170, the distribution nT of the random
 vector PT( ) converges (in weak topology) to the invariant distribution H*, under

 Assumption 5. Clearly, one cannot have two distinct invariant distributions, since

 in that case for any given p in S, 7T( p) must converge in the weak topology to

 both these (by (5.9)), and this is impossible (see [4, p. 11]). We summarize the

 previous discussion by stating formally the following theorem:

 THEOREM 5.1: Under Assumptions 1-5 there exists a unique stochastic equilibrium

 of the process, n*, andfor any initial distribution n0 of the process, XT, the distribu-
 tion of PT( ), satisfies

 liin /3(HT, H*) 0.
 T -Xo

 In particular, HT converges to H* in the weak topology irrespective of the initial

 distribution Ho.

 Define )n( IHO) to be the sample distribution of prices after n periods if the initial
 price is chosen according to HO.

 THEOREM 5.2: For any HO, if the conditions of Theorem 5.1 hold, then An( IHO)a
 I*, the unique, stable, stochastic equilibrium of the process.

 PROOF: This follows directly from Parthasarathy [12, Theorem 9.1], and our
 results above.

 We have already remarked that it is possible to break away from the tradition
 completely and to define our adjustment process solely in terms of the kernel and
 the initial distribution. We have not pursued this direction, although it is likely
 that interesting results on convergence of the process to a stochastic equilibrium
 may be obtained by restricting the initial distribution to a suitable class of proba-
 bility measures and imposing suitable conditions on the kernel. To consider a
 typical example briefly, note that for T W 2, one can define for any A in X(S) and
 p in S (see [10, pp. 366-9]):

 Am )(A; p)= JA(dp,;p) A(dP 2; PI) ...A(A ;P T-I)A(P T- 2 ;dP T- 2)

 A(T)(A ; p) is to be interpreted as the probability of going from the price vector p
 into the set A in T periods, i.e., the probability that PT( ) will be in A if the starting

 point is the price vector p.
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 STOCHASTIC EQUILIBRIA 659

 For measuring the dependence of 7rT, the distribution of PT, upon the initial
 condition, we can use the following indicator IT defined solely in terms of

 A(T)(A ; P):

 (5.10) AT = SUp SUp IX(T)(A; p) _ A(T)(A; q)I.
 AeIN(S) p,qeS

 If '1T < 1 for some T it is known that there exists a probability distribution n*
 which is invariant such that for any A in X(S)

 ITCT(A) - 7c*(A)I X 3 e - T for positive constants 3, ,B.

 Of course, such exponential convergence is quite a strong and special property,
 not obtainable under weaker conditions (than AT < 1 for some positive T). It is
 possible, however, that weaker conditions will suffice to prove "local stability" in

 the sense of convergence of itT to an invariant distribution if 7ro belongs to a well-
 chosen subset of M(S).

 6. FURTHER CHARACTERIZATION OF STOCHASTIC EQUILIBRIUM: SOME OPEN

 QUESTIONS

 Suppose that the process is in stochastic equilibrium. What can we say about

 the time-paths of prices and excess demand vectors along alternative evolutions

 <(Ko> of the economic environment? A natural question is to ask whether the excess
 demand vectors C( ,Pt( )) converge to zero for almost every realization of the
 process. We do not know reasonable sufficient conditions for this to happen. It
 is possible, however, to say something about the behavior of the time-averages.

 It is known that a Markov process such as the one described above with an

 initial distribution that is invariant is itself a stationary stochastic process. Hence

 if T is the invariant c-field (see, e.g., Breiman [4, p. 108]) and E(pOIT) is the random
 vector which is the conditional expectation of po given , the well-known ergodic
 theorem tells us that

 T

 (6.1) lim 1/T E p,( ) E(p01T) a.s.
 T-oo t= o

 One can also study the stationary process 4( ; Pt( )) when the price process Pt(

 is stationary. Suppose H* is such that Ejj4( , PO( ))II is finite. Then
 T

 1/T E (( ; Pt( )

 will converge almost surely to EC(; Po( )IT). If E4(; Po( )IT) is not zero, say it is
 negative in some component, then for a sufficiently large T, the sum of excess
 demands per period

 T

 Z (( ; Pt( ))
 t =,o

 will almost surely be large and negative in that component, i.e., certain stocks will
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 660 J. R. GREEN AND M. MAJUMDAR

 pile up. It is natural to ask how the agents are likely to respond, and what mechan-
 ism can possibly ensure that the process will continue in the same way. This

 remains a serious difficulty involving the concept of equilibrium as a stationary
 distribution of prices.

 It seems that the difficulty will remain so long as we are unable to specify how
 the agents react to situations in which their plans are not realized and expectations
 not fulfilled. Work on this and related questions in a Bayesian setting is now in
 progress. Models of this type may be useful for studies of job-search equilibria

 and persistent unemployment, in partial equilibrium interpretations in which
 expected excess demand is negative in equilibrium. In contrast with the deter-

 ministic models, the steady state is-consistent with observation of changing prices
 (and is possibly more appealing from a descriptive point of view). Clearly more
 knowledge about the characteristics of these steady states will lead to a better

 understanding of the working of exchange mcchanisms in the presence of stochastic
 factors.

 Harvard University

 and

 Stanford University

 Manuscript received August, 1972; revision received October, 1973.
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