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Abstract 
 
 

We  two-dimensional measure of organizational complexity that distinguishes 
between the informational and computational dimensions of complexity and aims to 
function as a maximally context-invariant environment for posing fundamental 
questions about organizational dynamics, akin to the role and function of a phase 
space in in classical mechanics. The new measure and associated space allows us to 
understand the effects of a researcher’s or manager’s choice of model or representation 
on the resulting complexity measure of a phenomenon and to measure the 
complexity of any organizational phenomenon that can be represented in a form 
amenable to an algorithmic description. We use the new complexity measure to 
present a unified treatment of complexity coping mechanisms, complexity-driven 
organizational failure and complexity-adaptive innovation and draw new 
distinctions enabling new questions whose answers will be useful to researchers and 
executives alike.  
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1. Introduction. 

Science is (all and only) that which can be explained to a computer. The rest is art. 

   Donald Knuth 
  
 ‘Complexity’ is a label given by many C-level executives to a wide range of 
phenomena they report themselves to find ‘troubling’, ‘challenging’, ‘intractable’ or 
‘unmanageable’ [IBM Report, 2013]. But the ambiguity in the referent of the word in 
business and consulting parlance is matched by the ambiguity of its referent in 
discourse spanning the natural and social sciences. We most frequently do not know 
what others think we mean – or indeed what we mean -  when we talk about 
complexity, on account of many, parallel, inchoate intuitions and measures of 
complexity that are commonly and frequently held, often at the same time, by many 
people. The ambiguity can serve useful dialogical purposes: It allows conversations 
between speakers that are in fact oblivious to the depths of their miscommunication 
to take place in ways that safeguard the illusion of understanding. But it undermines 
attempts to build descriptive, prescriptive or ascriptive [Moldoveanu, 2011] models 
that allow us to represent and intervene in organizations on the basis of a measure of 
‘complexity’ as a dependent or independent variable. The problem has both 
epistemological and pragmatic projections. Both need to be addressed to make talking 
about complexity minimally useful. That is what we intend to do infra. 
 

Ambiguity about Complexity: What could ’Organizational Complexity’ Mean? The study of 
organizational ‘complexity’ is beset by a duality of the meaning of the word complexity 
that refracted onto common language use. The Oxford English Dictionary tells us that 
two ideas are incorporated in the word’s  reference:  

1. In one sense, an entity is complex if is made up of several interconnected 
elements that jointly constitute a whole (e.g. a ‘building complex’). A complex 
situation, problem, product, process, procedure or predicament is complex in 
virtue of its being made up of many simple but structurally or functionally 
interconnected or interdependent entities and thus ‘complex’ in virtue of its 
structure, or dynamics, or of both. 
 

2.  In another sense, an entity is complex if it is not simple to understand (in the 
sense of Verstehen), predict or explain. In contrast to ‘complex’ as an attribute 
of the components that constitute an entity and of the relations between them, 
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the second meaning of ‘complex’ in lay usage refers to the relationship between 
the ‘complex’ entity and its observer. This sense of ‘complex’ matches the 
intuition that what one observer (at one point in time) finds ‘complex’ may not 
qualify as ‘complex’ for another observer (or the same observer at a different 
time).  

 
Multiple Referents of ‘Complexity’. 
 ‘Complex’ has been canonically used as an adjective to describe organizations 
and organizational phenomena [see, for instance, Cyert and March, 1963; March and 
Simon, 1958; Weick,1995]. It gained prominence in approaches that link organizational 
design (i.e. organizational structure and processes) to the complexity of the 
organizational environment [e.g. Mintzberg 1979]. Although less precise than the 
meaning of ‘complex’ in the natural sciences, the ‘complexity’ of the organizational 
environment was understood as a result of factors such as the number of sources of 
influence in the environment, the speed and relative degree of synchronicity with 
which causes and effects propagate through a network of environmental influences, 
or the sensitivity of the overall environment to single point events or the influence of 
single social or economic actors [Scott, 1981]. These original intuitions about 
organizational complexity have been formalized with increasing exactitude by 
scholars of organizational phenomena [McKelvey, 1999; Cohen, 1999] using structural 
models developed in the natural sciences (NK(C) systems, for instance). Of course, 
‘complexity’ has many more possible referents than those that have been adduced as 
dependent variables in well-cited studies. A person is neurologically complex, 
psychologically complex, spiritually complex, morally complex, socially complex – 
and each use of the word ‘complex’, supra, will have very different formal 
representations. Measuring the complexity of neuronal dynamics entails very 
different a priori commitments than does measuring the complexity of one’s moral 
reasoning patterns. 

 In the natural sciences, we similarly find many ways of giving meaning to the 
word ‘complex’. Algorithmic information theorists [Li and Vitanyi, 1993] equate 
complexity of an object with the length of the shortest string of bits that can be used to 
represent it. In physics and engineering [Casti, 1991; see Shannon and Weaver, 1949] 
one speaks of the entropy of an entity, or the number of mutually exclusive and 
collectively exhaustive states that the entity can assume in virtue of its constitutive 
elements and their properties. In theoretical computer science [Cormen, Leiserson, 
and Rivest, 1993], complexity relates to the difficulty – gauged by the number of 
required operations - of executing an algorithm whose output simulates the behavior 
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of the entity in question, and is referred to as computational complexity. In the general 
systems theory of Herbert Simon [1962] (which has found resonance in the study of 
organizations [Miller, 1993; Anderson, 1999]) ‘complexity’ relates to the degree of 
coupling of a multi-component system, which is similar to the use of ‘complex’ in 
attempts to model biological systems using Boolean networks [Kauffmann, 1993]. But 
the natural sciences, unlike organization science and the ‘CEO speak’ of consultants, 
have had to deal with the problem of sharpening referential precision far more 
explicitly. And they have: we find (Tables 1A-1C) a host of complexity measures that 
speak to different purposes and call out different kinds of difficulties  vis a vis a 
phenomenon: the difficulty of describing it (table 1A), the difficulty of synthesizing it 
(Table 1B) and the difficulty 9of synthesizing it from a description of known 
complexity (Table 1C). 

The challenge for anyone who wishes to use the words ‘complex’ and 
‘complexity’ in a way that disambiguates their referents (and it may be that not all, 
and not even many users of these words share this intent) is to either make clear the 
specific choice of definition of a complexity measure, or to create a measure of 
complexity that spans the range of options in a way that makes ‘complexity’ 
transparent in its usage. The path to the first option is self evident. We will pursue 
the second option here. 
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Table 1 A. ‘Complexity’ measures that Speak to How Difficult a Phenomenon is to Describe. 

Measure Explanation 

‘Log-p 

Information’ 

Measures (in bits, if base-2 logarithm) the amount of information embodied in a point measure of the 
likelihood of a random variable. 

(Shannon) Entropy Measures (in bits, if base-2 logarithm) the amount of uncertainty involved in the probability distribution 
of a random variable 

Algorithmic 
Complexity 

Measures (in bits) the length of the shortest program that will specify the object as output. 

Minimum 
Description Length 

Measures (in bits) the minimum length of the hypothesis that best encodes the data. 

Fisher Information Measures the amount of information that an observable random variable carries about an unknown 
parameter of a distribution modelling the random variable. 

Renyi Entropy Measures (in bits, if base-2 logarithm) the diversity, uncertainty, or randomness of a system. 

 

Code Length, 
Huffman Code 
Length, Shannon-
Fano Code Length, 
Error-correcting 
Code Length, 
Hamming Code 
Length 

 

Measures of the number of coding digits assigned to a message, according to different coding 
algorithms 

Chernoff 
Information 

Measures of the bounds of the sums of the distributions of independent random variables. 

Information 
Dimension 

Measures of the normalized entropy of finely quantized versions of the random vectors. 

Fractal Dimension Measures of the detail (complexity) of a pattern, as a ratio of the change in detail to the change in scale. 
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Lempel-Ziv 
Complexity 

Measures the least possible number of steps in which a sequence can be generated, via the number and 
length of the repeated sections. 

 

Table 1B. Measures that Speak to ‘How hard a Phenomenon is to Synthesize’. 

Measure Explanation 

Computational 
Complexity 

Measures (in time, or space) the amount of resources required to run an algorithm. 

Time Computational 
Complexity 

Measures (in number of operations) the time it takes to run an algorithm that generates the object. 

Space Computational 
Complexity 

Measures the amount of memory space needed to run an algorithm. 

Information-Based 
Complexity 

Measures  

The branch of computational complexity that deals with the intrinsic difficulty of the approximate 
solution of problems for which information is partial, contaminated, and priced 

Logical Depth Measures (in number of operations) the time it takes to run the shortest program that will specify 
the object as output. 

 

The evaluation of the complexity relies on the choice of a model of computation, which consist in 
defining the basic operations that are done in a unit of time. 

Thermodynamic Depth Measures (in bits) the amount of uncertainty for macroscopic states of physical systems. 

Cost Measures (in $) the amount of money used to produce something or deliver a service. 

Crypticity Measures the difference between a process’s hidden state information and its observed 
information. 
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Table 1C. Measures that Speak to How Hard A Phenomenon is to Synthesize Starting from a 
Description of a certain Complexity. 

Measure Explanation 

Metric entropy Measures how the uncertainty or information of the system evolves (grows) in time, or under iteration 
for a map. 

Fractal dimension Measures of the detail (complexity) of a pattern, as a ratio of the change in detail to the change in scale. 

Excess entropy Measures how much additional information (in bits) must be gained in order to reveal the actual 
uncertainty (entropy density, hµ) 

Stochastic 
complexity 

Measures the fewest number of binary digits with which the data can be encoded (relative to a class of 
models). 

Sophistication Measures (in bits) the structural (algorithmic) information of a string, the minimum complexity of the 
best model for the string. 

Effective measure 
complexity 

Measures the relative memory required to calculate the probability distribution of the next symbol of a 
sequence.  

Topological 
epsilon-machine 
size 

Measures the number of states of an epsilon machine (the unique minimal representation of stationary 
stochastic processes whose states are the equivalence classes of infinite histories with the same 
probability distribution over futures), 

Conditional 
information 

Measures the expected value of the mutual information of two random variables given the value of a 
third. 

Schema length Measures the total number of nodes in the schema (a subset of strings with similarities at certain string 
positions) 

Hierarchical 
complexity 

Simon’s theory of hierarchy: a large proportion of the complex systems we observe in nature exhibit 
hierarchic structure. On theoretical grounds we could expect complex systems to be hierarchies in a 
world in which complexity had to evolve from simplicity. In their dynamics, hierarchies have a property, 
near-decomposability, that greatly simplifies their behavior. 

Grammatical 
complexity 

The level of a type of grammar, in terms of Chomsky’s 3 criteria (the class of language it generates, the 
type of automaton that recognizes it, and the form its rules must have). 
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What We Shall Do. We will cogitate on fundamental results from mathematics, 
computer science, and physics to develop a complexity measure that can be 
informatively applied to  organizational phenomena regardless of the models and 
metaphors used to represent them. We will show this measure is quantifiable, 
invariant under actor-observer transformations (avoiding the subjectivity/objectivity 
traps), and maximally transferrable across a broad range of both organizational 
phenomena and ways of representing them. We put forth an explicit model of 
organizational complexity that generalizes across different representational frameworks. 
We will build on work that has conceptualized organizations as ‘repositories of 
problem solving knowledge’ [Marengo, Dosi,Legrenzi and Pasquali, 2000; 
Moldoveanu and Bauer, 2004; Moldoveanu, 2009;2017;2019] and linked the 
algorithmic structure of problems to the organizational structure of firms to 
articulate a complexity measure that is maximally ‘framework-invariant’ and that 
helps one bridge explicitly between problem-solving activities (which can be seen as 
instantiating ‘algorithms’ running on a suitable substrate) and organizational 
processes and phenomena – including organizational failures and sub-optimal 
adaptations to complexity. We shall synthesize a measure of complexity that 
transcends the boundaries of any specific disciplinary approach to organizational 
phenomena while retaining the relationships between complexity measures and the 
representations of phenomena to which they refer.  The new framework will provide 
not only a new set of linkages among ‘old’ entities, but also one for describing 
organizational dynamics as a set of intelligible and possibly intelligent adaptations to 
complexity. We will make clear what can be meant by both complexity-driven 
organizational failures and ‘complexity challenges’ to executive function - and 
‘innovating in complexity space’. 

 

2. The Representation-Dependence of ‘Organizational Complexity’. The class of 
entities whose complexity can be directly measured has the essential property of 
representationality: they are models, renderings, simulations, algorithms, lists, etc – 
that individually or jointly represent   objects, events and phenomena. When we 
refer to ‘the complexity of X’  (C(X)) we (can only properly intend to) refer to ‘the 
complexity of representation R of X – (C(R(X)).  To sharpen this point, consider 
the problem of measuring the ‘complexity of a car’. Whatever route to the analysis 
of the object ‘car’ one takes -  as a network of discrete elements such as masses, 
springs and dashpots, energy sources and sinks, or as set of closed systems of 
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energy flows, or as a set of design rules applied to assembly schemata, or as a set 
of mechanical and electrical sub-assemblies that can be combined according to 
specific compatibility conditions - one must commit to a representation of the car 
before one can talk about the ‘complexity of the car.’  To get a complexity measure 
from a representation, we need to tailor the complexity measure to the 
representation: 

• For a set of sub-assemblies model of the car, one can define complexity 
as some multiplicative or additive combination of the number of sub-
assemblies and the number of links between them.  

• However, if the sub-assemblies have complex interfaces that take a long 
time to program, debug and integrate, then one might take that fact into 
account and factor the computational complexity of fitting two 
components together into one’s complexity measure.  

• If we want the ‘complexity of the car’ to include the difficulty of 
designing and manufacturing it, then we might also focus on the 
algorithmic complexity of the design and manufacturing processes – the 
number of elementary cognitive and physical operations these processes 
minimally entail.  

The representation-dependence of the measurement of the complexity of 
objects and phenomena is troubling. It does not readily allow observers to reliably 
communicate with one another about the complexity of objects phenomena in a 
language that picks On the contrary, it engenders and fosters referential confusion: 
person A will say a car is complex  - and mean ‘complex’ in a substructure-dependence 
sense while person B will say it is complex – and mean ‘complex’ in an algorithmic 
sense -  and neither will, sans  further elucidation, know what the other ‘meant’. This 
state of affairs may be acceptable if the two definitions are strongly positively 
correlated across a wide range of systems. But they are not. The problem comes to 
light most forcefully when one theorizes about the ‘complexity of an organizations’ 
products’ and wants to compare the complexity of a car with the complexity of a 
computer-aided design program. In spite of the fact that interesting – and several, in 
each case - complexity measures have been developed for ‘cars’ and ‘design 
programs’, these complexity measures are different among them, and do not allow 
researchers to bring together car-complexities with design-program-complexities 
under the umbrella of a theory or argument purporting to capture something 
fundamental about complexity  
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 Despite the increasing interest in organizational complexity (e.g. Etilraj 
and Levinthal 2004, McKelvey 2004, Rivkin 2000, Levinthal and Warglien 1999, Brown 
and Eisenhardt 1998, Westhoff et al. 1996, Kauffman 1988), the definition of 
‘complexity’ remains tied to particular frameworks which may equate it with ‘non-
obvious order’, ‘irreducible disorder’ or various combinations thereof.  Complexity 
has been defined by appeals to chaos theory (Thiétart and Forgues 1995) or the theory 
of complex adaptive systems, in particular to genetic algorithms (Holland 1975, 
Holland et al. 1986) and to Kauffman’s NK(C) models and Boolean networks 
(Kauffman 1993, McKelvey, 1999, Rivkin, 2000). The use of the attribute ‘complex’ in 
these cases carries with it the descriptive apparatus of the language system that 
generated its specific usage:  

• An organization is ‘complex’ in the sense of ‘chaotic’ if the dynamic 
behavior of some of the variables that describe ot instantiate the sensitive 
dependence on initial conditions characteristic of the dynamics of 
systems described by specific nonlinear ordinary or partial differential 
equations – without, however, having any good reason to believe that 
organizations can or should be described by such equations or others in 
their class.   

• An organization is ‘complex’ in the sense of ‘made up of a large number 
of tightly coupled interacting components’ if there exists some 
representation (networks of influence or friendship, technical or 
informational dependencies among structural units, etc) that can be 
validly predicated of that organization, but the complexity measure – 
and the specific ‘complexity’ value it returns will depend on the 
observer’s choice of both the specific modeling approach (organizations 
as networks of entities) and the specific choice of variables that are 
measured (networks of information flows, networks of influence, 
networks of value linked activity chains, etc.).  

• An organization is ‘complex’ in the sense of ‘random’ or ‘unpredictable’ 
to its CEO if the set of predictive models and representations that she is 
using to predict the consequences of her and others’ actions to a set of 
variables critical to the survival of the organization reliably and 
unexplainably fail to produce predictions of useful levels of accuracy. 

The first step towards a solution to the problem of the representation-
dependence of complexity is to accept that measuring the complexity of an object or 
phenomenon requires we first represent it using a specific model, schema or 
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‘language’, and only then calculate its complexity by computing the complexity of that 
specific representation.  

Of course, we are after a way of measuring complexity that is independent of 
the precise representation we choose. The basic method by which we compute the 
complexity of (“car, represented as network of discrete mechanical components”) 
should be the same as that by which we compute the complexity of (“car, represented 
as procedural difficulty of design and manufacturing steps”) and should also be the 
same as the basic method by which we compute the complexity of (“AcetylCoEnzyme 
A, represented as network of chemically interacting organic sub-assemblies and 
reaction sequences”). This does not mean the value of the complexity measures 
computed by this method in the three different cases will be the same; in fact, 
differences in the specific values of complexity turned up by applying the same 
method of computing complexity to different representations of the same 
phenomenon or object will be interesting to researchers and useful to practitioners.  

The second step in our quest for a transcendental complexity measure is to 
recognize we are interested in maximally efficient representations: If we want to find the 
complexity of the representation, via ordered pairs, of a straight line segment given 
by {(1,1), (2,3), (3,5), (4,7),(5,9),(6,10),(7,13),(8,15),(9,17)}, we will first compress the data 
describing the segment to (x,y:y=2x-1; Nx ⊂ ) (which is more compact than the 
representation based on enumerating the ordered pairs) and then measure the 
complexity of the (compressed) representation. The compressed representation does 
not immediately and self-evidently reproduce the original representation: It must first 
be fed into a computational device that can interpret it as a set of instructions which, 
when executed, produce the representation it had compressed. A true complexity 
measure will also take into account the difficulty of producing the uncompressed 
representation from the compressed representation – the number of operations this 
task will require of a machine or other entity capable of algorithmic operations.  

Complexity as Informational Depth and Computational Load. We speak of the 
complexity of an organizational phenomenon as the complexity of a set of 
observations or models we choose to use to represent it. These observations amount 
to a digital object that can be represented in binary form and whose complexity we 
decompose into two parts: 

The informational depth of a phenomenon – also known as ‘algorithmic 
information’ and hereafter abbreviated by ‘I’ – represents the amount of information 
contained in the representation of a phenomenon and is measured as the length – in 
number of bits – of the shortest program that can simulate the phenomenon (by 
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reconstructing or synthesizing its representation) (Cover and Thomas 1991, Li and 
Vitányi 1997). Measuring informational depth is a two-step process. The first step 
(representation) maps the phenomenon (a set of observations) onto its description (a 
digital object), i.e. onto a sequence of symbols that defines (what is included in) the 
phenomenon under study. The second step, reduction (or, compression) maps the 
description into the shortest program that, when run on a computational device, 
reconstructs the digital object. Thus, the second step maps a digital object onto 
another; it maps the description onto a program that contains all information 
necessary for a computational device to generate the digital object. As many such 
programs are possible, it maps the description to the shortest program. 

By definition, the shortest program that reconstructs a given digital object 
contains no redundancy: the shortest program that can simulate a certain digital object 
is a sequence of symbols that cannotbe compressed any further. It is ‘algorithmically 
random’: no substring contains any information about the rest of the string [Cover and 
Thomas, 1991]. Thus, the length of the shortest program capable of reconstructing a 
particular digital object establishes a lower bound for the algorithmic information 
content of this object. It has been proven impossible (Chaitin 1974, 1982, Li and Vitányi 
1997), to rule out with certainty the possibility of progress in the sense of a pattern 
being discovered in a string heretofore considered random (i.e. incompressible). The 
string ‘0110101000001 0011110011001100111111100111011’ seems random to a lay 
person; some mathematicians, however, recognize this string as the first 42 digits of 
the binary representation of 2 −1  and, therefore can replace a long string with a short 
program that calculates 2 −1 .  

Measuring the informational depth of a phenomenon as the length of a random 
bit string seems counter-intuitive but there is nothing paradoxical about this approach: 
A scientific theory is comprised of theorems, axioms, and inference rules. Its theorems 
are reducible to its axioms – the basic statements from which all other statements can 
be derived. Its axioms and inference rules, however, are irreducible: they cannot 
themselves be derived from other statements that comprise the theory in question. 
They represent that which we must take for granted in a theory. Analogously, 
reducing a phenomenon to a random bit string that, when run on a computer, can 
simulate the phenomenon, identifies the amount of information that cannot be derived 
and therefore must be listed (as a sequence of independent bits that make no reference 
to each other).  

The computational load of a phenomenon – also known as ‘time complexity’ and 
abbreviated by ‘K’ – the total number of operations or the total time – required to 
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execute the program that produces the representation of that phenomenon as its 
output (see, for instance, Garey and Johnson, 1979; Cormen, Leiserson and Rivest, 
1993; Papadimitriou, 1994 for discussions of computational complexity or time 
complexity, both of which are equivalent to ‘computational load’ in our sense). 
Partitioning the information required for simulating a class of phenomena into ‘input’ 
(the parameters of a specific element) and ‘algorithm’ (the procedure applying to the 
entire class) makes it possible to infer the computational load of a digital object from 
knowledge of the computational load of other objects in the same class. In the case of 
matrix multiplication, computational load grows quadratically with the size (number 
of cells) of the matrix. Efficient algorithms for sorting and searching decision trees 
(which can simulate various categorization and prioritization tasks) require run times 
that grow logarithmically as a function of input size (Cormen, Leiserson and Rivest 
1993). The paradigmatic example of problems for which no tractable (P-hard) solution 
algorithm isknown to exist is the Traveling Salesman Problem (TSP) (Garey and 
Johnson 1979) and is representative of many managerial logistics problems 
[Moldoveanu and Bauer, 2004]. Examples of other organizational or managerial 
problems that have been shown to be NP-hard include: strategic analysis and 
competitive decision making (Moldoveanu and Bauer 2004), diagnostic reasoning 
(Miller et al. 1982), software design (Abelson and Sussman 1984), engineering systems 
design (Chapman, Rozenblit and Bahill 2001), and the discovery of equilibria in 
competitive games (for n players choosing their strategy depending on the other 
players’ choice) (Gilboa 1989). 

 

Transcendental (K,I-Space) Representation of Organizational Complexity. We are 
now in a position to put together the two dimensions of complexity into a single, non-
separable algorithmic procedure we shall call COMP, and we define based on a 
refinement of Bennet’s [1988] insight on combining informational and computational 
dimensions of complexity. COMP operates as follows (Figures 1,2): 

a. for a given digital object (a finite representation of a phenomenon or object) 
O, a chosen computational device (Turing machine) TM, and a particular 
maximum number of computations Kmax, COMP outputs the informational 
depth I(O, TM, Kmax) of the program P(O) that can generate O   on TM using up 
a maximum of Kmax operations TM if such a program exists, or returns an error 
message if such a program does not exist;  

or, 
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b. for a given digital object (an in-principle computable representation of a 
phenomenon) O, a chosen computational device (Turing machine) TM, and a 
particular maximum number of bits of program memory – or, a maximum 
informational depth Imax, COMP outputs the computational load K(O, TM, Imax) 
of the program P(O) of maximum size Imax that can generate O  on TM  iff such 
a program exists, or returns an error message if such a program does not exist. 

Ω3

Ω2

Ω1

IMAX

I (Ω1)

I

Ω4

K (Ω1) KΩ
MAX K

Figure 1: I-Driven Search for the Complexity of a Representation.  Ω2, Ω3, Ω4 are “invisible”
objects to COMP,* which is constrained in its search by IMAX, KMAX
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Figure 2. K-Driven Search for the Complexity of a representation.
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`Both instantiations of COMP require that it find the program P that satisfies 
the requisite I-level or K-level constraint if P exists. This makes it possible to 
interpret an error message as proof for the non-existence of P conditional on having 
decided on the computational machine TM that will perform the search. 

In its first instantiation, COMP searches for P by going through all of the 
possible bit strings that can function as input to TM and returning an ERROR 
message if O cannot be computed in fewer than Kmax operations, or the pair, (I(O), 
K(O)) otherwise, corresponding to the informational depth and computational load 
of synthesizing O  on TM.  

There is no upper bound on the search space: a (potentially) infinite number 
of bit strings may have to be searched, and therefore COMP in the first instantiation 
is not itself computable. COMP can search for P in the second instantiation by going 
through all of the bit strings of length less than or equal to Imax (there are at most 
2Imax of them) and measuring the computational complexity K of each program. 
However, because there is no a priori constraint on K, there is also no guarantee that 
COMP can find P in a finite number of operations: we do not know the maximum 
amount of time we have to wait for finding P, and therefore we cannot infer the non-
existence of P from not finding an Imax-long program P that does not converge to O 
after k iterations, for any finite k. Therefore COMP in the second instantiation is not 
computable either, and there is no guarantee that COMP will return P satisfying 
constraints on either I alone or K  alone, given that P exists.  

Given this challenge, we propose a modified definition of COMP (and call it 
COMP*), which is computable  at the cost of constraining the search space in which 
we look for the complexity of an object O and therefore eliminating the logical link 
between the existence of P and its discovery by COMP*. In the new definition, for a 
given digital object (a binary representation of a phenomenon) O, a chosen 
computational device (Turing machine) TM, and a particular maximum number of 
bits of program memory – or, a maximum informational depth Imax and a maximum 
number of operations Kmax, COMP* outputs the computational load and 
informational depth (K*(O, TM), I*(O, TM)) of the program P*(O) of maximum size 
Imax that can generate O on TM in Kmax operations or fewer iff P* exists, or returns an 
ERROR message iff P* does not exist.  COMP* searches for the complexity of O in a 
window that is determined by the dimensions (Kmax, Imax). This definition of the 
‘complexity search function’ makes the (resource-bounded) complexity of a 
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phenomenon (that can be represented by a binary object O) a computable quantity, 
and makes precise the assumptions that go into assigning a complexity measure to a 
phenomenon and the limitations of any possible complexity measure: 

 

a. the complexity measure (I*(O), K*(O)) is relative to a particular Turing Machine 
(TM). This is a known result in complexity theory [Li and Vitanyi, 1993]. In our 
context, this assumption is important because it highlights the importance of 
being precise about the underlying modeling language in which a 
phenomenon is represented (i.e. the language in which P is written); 

b. the complexity measure (I*(O), K*(O)) is relative to a particular window, (Kmax, 
Imax) that limits the search space. Some program P** may have lower 
informational depth than I*(O); however, if they entail (on TM) a 
computational load greater than Kmax, then COMP* will not find it, as COMP* 
only looks in the window (Kmax, Imax). This makes our estimates for the 
complexity of an object (and its associated phenomenon) dependent on the 
current state of the art of computational speed (related to Kmax ) and memory 
density (related to Imax).  

 

4. Organizational Dynamics in Complexity Space: ‘Coping’, ‘Innovating’ and ‘Failing’. 
 

We model organizational dynamics in the 2D complexity space introduced above by 
representing organizational phenomena in terms of their informational and 
computational dynamics. The aim is to synthesize a space for representing 
organizational structure and dynamics that functions at a level of abstraction similar 
to that of a phase space in classical and quantum mechanics [Thorne et al, 2018]. The 
value of such a space in the modeling of physical systems, for instance, is that it allows 
the modeler to predict and control the dynamics of large numbers of systems that are 
equivalent to one another on the basis of the topology of their phase spaces [Figure 3]. 
It would surely be of great interest to arrive at a similar classification of interpersonal 
and organizational phenomena on the basis of their canonical dynamics in complexity 
space.  

We model organizational behaviors as mechanisms that operate on complexity: 
as mechanisms for reducing, increasing maintaining one or both values of our 
complexity measure for a set of phenomena conditional upon a set of agreed upon 
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representations thereof. 1 The organizational costs associated with the informational 
depth and computational load of its phenomena are not immediately obvious. They 
need to be specified. We do so by asking: what is the problem that the organization 
must solve to successfully carry out a high I - high K task?  

a. The costs of informational depth. High-I tasks confront the organization with 
the problem of beholding: a minimal representation of an activity must be 
beheld (collectively or individually) in order for the activity to represent 
purposefully pursued organizational behavior and the informational depth 
of a task is the minimum amount of information that the organization must 
behold, as it is the minimal representation of the behavior in question. 
Discovering or  creating the required information, embodying it (and thus 
turning it into action) and encoding- decoding it  (for the purpose of 
storage/recall and communication-coordination) are all constitutive 
components of beholding and thus can be understood as the core sources of 
I-related organizational costs.  

b. The costs of computational load. High-K tasks confront the organization 
with the problem of executing: K measures primitive operations (or, minimal 
behavioral steps) that the organization must go through in order to carry 
out a task. Given a finite total number of operations that comprise a 
particular task, one can improve an organization’s ability to carry out the 
task satisfactorily by increasing the frequency with which basic operations 
ban be performed (‘speed’), the number of people and machines that are 
carrying out the task in parallel (‘resources’) and the time available for the 
task to be completed (‘duration’). Accordingly, speed, resources and time 
are the critical components of K-related organizational costs.  

To highlight the use of this complexity-space approach and its relative 
representational and modeling power – let us focus on a familiar example in the 
literature on organizational complexity: Herbert Simon’s picture of two watch 

                                                        
1 Executives can rationally choose to increase the complexity of an overall predicament fpor themselves and 

others: A laggard in a solidifying industry, for example, can act to throw an emerging industry standard in disarray, 
increasing the complexity of the predicament for every other firm in the industry (including itself); and its actions can 
be rationalized, as it can do no worse than finish last, which is the most likely outcome under current conditions in 
any case. A top management team member can choose to undermine a particular strategic agenda by challenging 
closely held assumptions on which the agenda is based without advancing alternative assumptions on which a new 
agenda can be built, thus creating high levels of complexity along both the dimensions of informational depth ( as ‘no 
plan’ is always equivalent to the entire gamut of raw data and imperatives that managers regard as true or useful) and 
computational load (in the form of logistical tasks of setting up new planning meetings, governed by new agendas and 
decision making processes, etc.) imposes a high immediate cost of execution.  
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makers (Hora and Tempus) each tasked with making a ‘complex’ (i.e. many parts, 
many links between them in Simon’s (1962) language) watch of about 1000 parts. 
Simon used this picture to argue that complex, purposefully guided systems ‘evolve’ 
towards hierarchical, modular architectures. Tempus assembles watches using a 
‘serial’ process, assembling one watch at a time by putting together parts 1 through 
1000 according to a specified plan. Hora, on the other hand, creates intermediate 
assemblies of about 10 parts each, which she then puts together into incrementally 
larger assemblies, until a full watch is completed. Simon makes a special assumption 
about the influence of the environment: if either watch maker is interrupted while 
putting together an assembly, that assembly is lost. He shows that even for very small 
probabilities of exogenous ‘interruption’, Hora will fare considerably better than will 
Tempus (assuming each has the goal of putting together as many correctly assembled 
watches as possible in a given period of time).  

The (K,I) formalism allows us to ask - and answer questions that Simon himself 
did not because he could not:  

• What is the optimal level and degree of modularization of a complex 
task or product?  

• What are the costs and benefits to Tempus to changing his/her approach 
to making watches to resemble those of Hora, given that he already has 
started down the path of serial assembly?  

• If Tempus grows to a (multi-employee) Tempus, Inc. and Hora similarly 
turns into Hora, Inc. employing many different watch makers, what 
additional complexity-driven effects appear?  

• What are the costs and benefits of modularization in this case?  

• Besides the costs imposed by high numbers of components and high 
numbers of links among them, what are the ((I, K)-space) complexity 
costs of Hora Inc. and Tempus, Inc.?  

• Other than modularization, what are the complexity coping mechanisms 
that Tempus, Inc. and Hora, Inc. can deploy to mitigate these complexity 
costs?  

• What are the complexity costs of the actions involved in minimizing the 
complexity costs of a particular task and how should they be 
incorporated in the representation of a reflexive organizational 
complexity coping mechanism? 
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We partition organizational complexity coping mechanisms into three distinct 
classes:  

• First, organizations can reduce complexity by looking for redundancies, 
short-cuts and optimal trade-offs between I and K. These measures effect 
direct cuts in the complexity measures of organizational tasks and 
behaviors, with attending reductions in complexity costs.  

• Second, organizations can reduce complexity by changing criteria of 
optimality and convergence of a particular sequence of tasks; they can 
choose to settle for approximate solutions to organizational problems and 
approximate responses to the market requirements for a product, or to 
settle for probabilistic and statistical rather than deterministic performance 
to a specified set of product, process or procedural standards.  

• Finally, organizations can choose to re-design and re-partition the 
internal individual, group or organization-level resources carrying out a 
particular task, by changing the boundaries of the organization, the 
boundaries of the group or (and) the (K,I)-profile of the skill and 
capability  set of the individuals making up the group or team. Let us 
consider these mechanisms seriatim, with examples furnished by Hora, 
Tempus and their scaled-up counterparts, Hora, Inc. and Tempus, Inc. 

Here they are, seriatim: 

Seeking Short Cuts: Changes in Process, Representation and Trade-offs Between I and K. 
Perhaps the most commonly occurring family of complexity coping mechanisms 
comprises attempts to exploit local redundancies – either functional ones, providing 
reductions in computational load (K), or representational ones, providing reductions 
in informational depth (I) – and attempts to effect optimal trade-offs between I and K.  

K-Wise Search for Most Efficient Algorithms: Exploiting Functional Redundancy. 
Functional redundancy can be conceptualized in (K,I) –space as a set of steps that are 
an integral part of a task, but are – under some representation of the task – redundant. 
Suppose that Tempus drills 2 micro-machined parts on a high-precision machine for 
every watch assembly that she puts together, then walks away from the machine to go 
on to preparing the next part. During this time, he must find a place (dust and static-
free) to store the micro-machined parts. The storage operation, along with the setup 
and shut-down time for the micro-drill become part of the K-count of his watch 
making process. More functionally minded, Hora decides to drill the micro-machined 
parts in batches of, say, 200, corresponding to one week’s supply of watches, and thus 
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saves 100 times the cost of machine set-up and shut-down steps and part storage steps 
that Tempus must incur. Exploiting K-wise redundancy has to do with seeking a 
partitioning of the production function that entails the fewest number of steps. This is often 
achieved through the basic operations of pooling parts and pooling inventories of 
finished product, whose costs (the expected value of the loss associated with part and 
finished product inventories) must be traded off against the cost savings due to K-wise 
minimization. 

I-Wise Search for Most Efficient Algorithms: Exploiting Representational 
Redundancy. Finding ‘the right’ representation of the production task is equally 
important for the minimization of the informational depth associated with that task. I 
is only provisionally the most compact representation of a task. (It is minimal until 
another, more efficient representation is found). While there exist some hard limits on 
representational compactness (for example, no classical 2-bit representation of the 
decimal number 9 is achievable, regardless of advances in representational 
‘technology’), these limits are not easy to come by (as there exists no algorithm that 
can discover them for any representation) and are not obvious upon inspection of a 
particular task enunciation (for example, is the General Theory of Relativity minimal in 
the I-sense?) Looking for ‘short-cuts’ in I may mean either looking for redundant 
symbols (for example: ‘e’, ‘u’, ‘an’, ‘y’, ‘l’ can be understood as redundant to ‘rdndt 
smbls’ in the unpacked representation redundant symbols – where the vowels and 
some consonants serve as ‘error-correcting devices’ increasing intelligibility in spoken 
and written language), or looking for languages that provide the minimal 
representations for a particular task (for example, the mathematical language of 
integral calculus, ���

V

dxdydzzyxF ),,( is informationally more efficient than the 

natural language representation (‘divide up the closed volume V into small volume 
elements with sides dx,dy,dz, evaluate the function F(x,y,z) at each point inside the 
volume V, multiply the function at each point by the volume dxdydz in the 
neighborhood of the point at which F is evaluated, take the limit as the volume element 
in question tends to zero of the sum of all of the volume elements in V multiplied by 
the volume elements in question’) of the exact same operation (to someone or 
something equipped with the semantic conceptions corresponding to the words and 
symbols in question).  

Suppose both Hora and Tempus must face the problem of storing many 
different watch designs  - which they have to produce quickly, upon demand. Tempus 
– in linear fashion – takes the approach of storing – in a file drawer or a digital 
computer – all of the watch designs (say, 1000) that he feels he needs. Hora stores only 
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a few watch designs and then stores only the differences between these watch designs 
and the remaining designs. Assuming that watch designs are contain some levels of 
redundancy, the informational storage requirements of Hora will be significantly less 
than those of Tempus.  

To show how the representation-dependence of efficiency (or, complexity)  
figures into the watch design and manufacturing process, suppose that Tempus uses 
encoded bitmap images of the various watch designs in a large computer memory. 
The total number of bytes that Tempus needs to store is equal to the number of bytes 
per bitmap (1000 x 1000pixels x (16bits/pixel)/(8bits/byte)))~2MB of a design multiplied 
by the number of different watch designs (1000), giving 2000MB - 2GB. Hora passes 
her watch designs through a program that generates a Bezier spline (a special, highly 
flexible function used to efficiently represent 3-dimensional surfaces and textures in 
memory-intensive applications such as video games) representation thereof, storing 
only the ‘Bezier coefficients’ associated with each design (up to 1000, times 16 bits 
each) plus a table of the used Bezier splines (up to 1000, each of which can be 
compressed to a 1000-bit-number algorithmic representation), and, accordingly, needs 
only approximately 128KB to store a single watch design and therefore just over 1 MB 
to store the entire watch design collection, as compared to the 2GB needed by Tempus 
for the same task.  

We should thus expect organizations to develop internal languages and codes 
(Arrow 1974) that serve the purpose of decreasing representational complexity (or, 
informational depth in our language). These representation technologies need not be 
technically sophisticated – as were our examples; indeed, the density of acronyms and 
terms of art in law and medicine and the ‘euphemistic’ languages used by strategy 
consultants and professors of strategy can be seen as representational languages (in 
the case of ‘business talk’) and codes mapping observational language into a more 
compact representation (in the base of law and medicine) seems to us to indicate the 
presence of an overarching compression heuristic enjoining the generation of 
increasingly compact representational representations (in the minimal-I sense) over 
time. 

Optimizing Trade-offs between I and K. To see how informational depth can be 
traded off for computational load, consider two processes for finding out the outcome 
of a coin toss on a soft surface. The first (high I) relies on a precise measurement of the 
initial position, upward acceleration, height from the ground and angular momentum 
of the coin, followed by the computation of its precise trajectory using a model based 
on Newton’s laws. The second (high K) relies on performing many blind coin tosses 
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and measuring the relevant heads/tails frequencies, then making (the usual, 
somewhat suspect) assumptions equating (finite) frequencies with (approximate) 
probabilities to derive ‘the probability of heads’ there-from. In the second case, I 
(which in the first example is embedded in the accurate representation of the initial 
conditions of the coin and the model for tracing the trajectory of the coin through the 
air) is traded off for a large number of locally ‘dumb’ operations (coin tosses) which, 
in the aggregate, can be said to provide the modeler some intelligence regarding the 
outcome of a future toss. Depending on the marginal costs of I and K encountered by 
organizations, we would expect to be able to refer to parts of the activity sets as 
attempts to effect optimal trade-offs between the informational depth and 
computational load of their tasks.  

Suppose Hora could achieve another tenfold efficiency in the representation of 
the watch design library (over that he already has achieved relative to Tempus) by 
using a set of basis functions that are ‘self-similar’ – they are identical to themselves at 
ever smaller spatial scales, and therefore have a ‘fractal’ structure (Barnsley 1986). 
Once such a fractal kernel is found for representing an image, very large compression 
ratios are achievable. However, since each image has ‘its own’ fractal kernel that must 
be constructed ‘from scratch’, the computational load of the compression process far 
exceeds that of any other compression process. Should Hora dispose of large 
computational devices and only limited memory, however, it would be reasonable for 
her to attempt to trade off greater computational load for lesser informational depth.  

Trade-offs between I and K are to be contemplated by any organization facing 
the choice between compressing its explicit knowledge base to a minimal set of rules 
and imperatives that are ‘common knowledge’ (in the technical sense that everyone 
knows them, knows everyone knows them, and so forth [Lewis, 1969]) among its 
members who can ‘figure out’ (by performing high-K tasks) all of their local 
implications and count on others to do the same and creating pools of impressions, 
factoids, ‘stories’, myths and metaphors that are not logically connected and are less 
likely to collectively become ‘common knowledge’ but provide richer local cognitive 
and intuitive maps to those that possess them. Even though a classification of 
organizational knowledge on the basis of its ‘axiomatizability’ and actual degree of 
axiomatization is beyond the scope of this paper, it is nevertheless a task that the (K,I) 
space analysis of productions tasks unveils as significant (and achievable). 
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Changing the Solution or Optimality Criterion: Approximation and Randomization. 

Approximation mechanisms loosen the selection criterion for what an 
acceptable solution is: they allow Hora and Tempus to build “90%” of a watch, 100% 
of the time”. Randomization mechanisms loosen the constraints on the statistics of an 
acceptable solution. They allow Hora and Tempus to build a “100% watch, 90% of the 
time”. Both mechanisms are used by computer programmers to cut through to a 
solution of an unmanageably complex design engineering problem (Cormen, 
Leiserson and Rivest 1990). Here is how they work in organizational settings as 
complexity coping mechanisms: 

Loosening Optimality Constraints: The Logic of Approximation. Approximate 
solutions are solutions that get designers of complex objects to within an acceptable 
distance of a finished final product. A linear approximation to a nonlinear function is 
an approximation of the nonlinear function that has the complexity of a linear 
function. It is usually good over a specified range of the input variables. For 
example, the variable X is a linear approximation to the variable X2 for values of X 
around 1 (where X=X2), and, more generally, LX is a good linear approximation to 
the function LX2 for values of X equal to l/L. As long as X is constrained to take on 
values that cluster around the specified limiting input values, the value of the output 
F(X) can be constrained to take on values that do not deviate by more than a 
specified amount from the exact value of the nonlinear function.  

Consider the design problem that Hora and Tempus face, i.e. the problem of 
producing a watch that maximizes an objective function (performance, for instance, 
measured in deviations of the time the watch shows from the exact time measured by 
an atomic Cessium clock that sets the standard for accuracy) given a large set of input 
constraints (factor costs, tolerance levels on parts that bear a particular acceptable 
cost). This problem can be represented as the ‘knapsack problem’ (filling a knapsack 
as closely as possible to its capacity with utensils that have pre-determined expected 
utilities), which is known to be NP-hard – explicitly to computer scientists and 
implicitly to engineering designers and developers. Hora has modularized her design 
process and breaks down the watch into 10 distinct sub-assemblies of 100 parts each - 
individually optimized. Then, assuming that the complexity of the design problem is 
exponential in the number of parts that must be taken into account in the design 
process, Hora will register a reduction in the computational complexity of her design 
task of 21000/(10 x 2100), or 0.1x 210, or, roughly a 100-fold decrease in K as a result of the 
breakdown of the ‘problem space’ into 10 individually tackled ‘sub-problems’.  
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The resulting solution may not be optimal relative to the solution of the full 
optimization problem, which contains 1000 different variables. Some ‘global maxima’ 
may be missed as a result. If the overall objective function is reasonably smooth, 
however, and therefore if the local maxima picked up by the 10 parallel 100-variable 
optimization processes do not deviate from the global maximum by more than an 
amount that is acceptable to the designer, then the trade-off between decreased 
complexity and decreased accuracy may well be worth making for Hora. Simon’s 
modularization logic with respect to making has a similar mechanism behind it: 
through modularization, Hora achieves a decrease in the expected value of the 
number of operations that she will have to perform to manufacture one watch in the 
presence of environmental interruptions. However, our example illustrates the 
advantages of modularization even in cases and situations where there are no 
environmental effects that drive the logic of modularization in a complex system. 

Loosening Deterministic Convergence Constraints: The Logic of Randomization. Another 
route to complexity coping is that of loosening constraints on the statistics with 
which the ‘exact’ answer or the globally optimal solution can be reached. 
Randomization techniques rely on disciplined guessing strategies that trade off 
statistical certainty for decreases in complexity. For example, a polynomial-time 
approximation to the answer to the Traveling Salesman Problem can be achieved at 
various levels of accuracy and reliability (eg: the probability that the solution 
achieved by intelligent guessing is indeed the optimal one) by using local searches 
around random guesses at the minimum path connecting all of the points in the 
network of cities or places that must be connected by a minimum-length path.  

Hora has now become Hora, Inc. - and Tempus has become Tempus, Inc. They 
now face the problem of mass-manufacturing their products on large assembly lines. 
In setting up these lines, they must solve TSP-like problems in setting up their 
assembly equipment (to minimize the distance that a watch or sub-assemblies of the 
watch must spend traveling around the shop floor before final assembly). Suppose 
Tempus, Inc. attempts to solve the problem by systematic searches among all of the 
possible allowable trajectories that a part must take around the shop floor: it then must 
solve the full TSP in order to get to the optimal solution. Hora, Inc., enlightened by the 
logic of randomization, searches along randomly chosen (or, pseudo-randomly 
generated)  initial paths around the shop floor. Depending on available resources, its 
managers control either the depth of the local searches or the number of initial starting 
paths. Hora has thus created a non-deterministic search environment that has a good 
chance of converging to the optimal solution, without incurring the full cost of solving 
the (intractable) problem Tempus must solve. It has traded off certainty of optimality 
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for lower computational load of the search process. Given that many such 
organizational search processes are (a) intractable [Rivkin, 2000; Moldoveanu and 
Bauer, 2004]  and (b) subject to the kind of environmental interruptions that Simon 
introduced to motivate his original work on complexity, the probability of completing 
a global search process ‘before interruption’ will often be less than the product of the 
probability of completing the local search processes before interruption and the 
probability that these search processes will lead to the optimal solution, which will 
become, for organizational designers, the ‘decision variable’ that governs switching 
between full/deterministic and local/probabilistic searches. 

 
Taking Optimization to Higher Levels of Awareness: Complexity Bounds on Complexity 
Coping. Consider the following hierarchy of problems that Hora or Tempus can – and 
perforce do -  face:  
Problem P: optimizing the watch-making process given a watch design; 
Problem PP: optimizing the watch design process given a set of desiderata about and 

constraints on the product; 
Problem PPP: optimizing the joint watch design and manufacturing processes given a 

set of desiderata and design constraints; 
Problem PPPP: optimizing the process of optimizing the watch design and 

manufacturing process given a set of desiderata and design constraints; 
Problem PPPPP: optimizing the process of optimizing the process of optimizing the 

watch design and manufacturing process given a set of desiderata and design 
constraints; 

Problem PPPPP…  . optimizing the process of …… 

What is a rational or reasonable end-point for this series of problems? Is any 
stopping point as good as any other? If not, is there a way of deriving a ‘ranking’ of 
various alternative stopping points? 

Reflexive entities like individuals and organizations can and often do turn 
optimization problems (as well as ‘justification problems’ and ‘argumentation 
problems’) into problems of infinite regress. Once catalogued as such, they become 
‘uninteresting’ and potentially even ‘uninteresting’ as objects of serious study. Many 
problems of infinite regress, however, can be rationally and even optimally truncated, 
provided that we can represent them in an appropriate space. The (K,I) space that we 
have introduced provides such a medium: Given that a design (or, optimization) 
problem has a particular level of difficulty (represented by a point in (K,I) space), it is 
possible to predict when a reflexive, optimization-minded manager will choose to cut 
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through the infinite hierarchy of problems outlined above through to a behavioral 
solution and ‘just do it’. It is that point at which the difference of the expected benefits 
of carrying out this optimization and the  ((K,I)-parametrized) difficulty (costs) of the 
higher level optimization problem will precisely cancel out the difference of the 
expected benefits ‘just acting’ on the basis of the current predicament and the (K,I)-
related costs of that predicament.  

Thus: Hora will undertake to optimize its design and manufacturing process if the 
expected benefits of doing so less the complexity costs of doing so will outweigh the 
expected benefits of going with its current plans less the complexity costs of going 
with its current plans. To estimate the complexity costs of an unknown or not-fully-
articulated optimization problem, Hora can develop complexity-wise heuristics, or, 
heuristics about the complexity classes of certain problems. It may develop (perhaps 
not fully articulated) intuitions about the complexity of knapsack-like and TSP-like 
problems, or about the memory and information access requirements of certain design 
representations and languages for representation. These heuristics will become 
embedded in its ‘design philosophy’, which can now be precisely articulated as the 
regions in the space spanned by I and K that the organization will avoid through its 
planning processes. Thus, a global, infinite-regress-free optimization can be 
contemplated in the (K,I) design framework, provided, of course, that we forego the 
requirement for certainty about the optimality of the resulting solution. 

Complexity-Driven Structuration: Changing the Structures Organizations Use to Carry 
Out Tasks. 

Not all complexity coping is rationally planned adaptation to locally changing 
tasks and goals. Indeed, the literature on organizational structuration teaches that 
many organizational structures are ‘sticky’ and stable over long periods of time, as are 
organizational routines and heuristics. The purpose of this section is to provide a 
representation of organizational structuration approaches using the (K,I) framework, 
and to show how organizational structures, routines, heuristics and patterns of 
reasoning can be understood in a single, unified framework.  

A computer programmer facing a difficult programming task is most often 
constrained by the hardware on which she operates. She may work in a multi-
processor environment or a single processor environment, each of which will 
influence level of parallelization of the code that may be achieved. She may be bound 
to work in one or another of the structured computer languages (like JAVA, J) 
available and compilable on the hardware she uses. She may already have libraries of 
subroutines (such as those for computing the logarithm or sine or cosine of a number) 
that  provide gains in time-to-development over the development of new routines 
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‘from scratch’, even if these routines may end up being faster or more accurate than 
the inherited routines. She may have certain mental habits and ‘tricks’ that she uses to 
program,  of which she may not be conscious: these are complexity-coping 
mechanisms that have become part of her own programming ‘style’. This example 
already canvasses most elements of a (K,I)-based  model of the spatio-temporal 
structuration of organizations, as follows: 

Spatial Structuration: Hard-wiring group and organizational boundaries. 
Organizations are ‘always-already’ structured: into groups, teams, functional units 
and divisions, centres of excellence and cost minimization centres. These units jointly 
provide the ‘hardware fabric’ on which organizational tasks can be seen as ‘running’. 
In (K,I) terms, they represent the ‘sunk costs’ of previous structuration attempts, 
successes and failures. They give the status quo of the organizational processing 
environment, which imposes boundaries and constraints on the current complexity-
coping efforts of the organization. 

Suppose Hora, Inc. has inherited (from Hora’s old one-man shop) the 10-
assembly partitioning that was the basis of Simon’s analysis [Simon, 1962]. Its current 
organizational chart is structured into groups specializing in the 10 assemblies, simply 
on the basis of tradition and precedent generating path-dependent dynamics. 
Individuals with specialized skills are hired into the groups corresponding to the 
assemblies in question. The groups adopt pay-for-performance schemas and implicit 
reward and recognition structures optimized for the tasks they individually carry out. 
The complexity coping Spielraum of Hora, Inc. – its space of playful possibility and 
exploration -  is constrained by its 10-group contractual (implicit and explicit) 
structure in the same way in which a programmer’s task is constrained by a multi-
processing environment: it must take into account the (K,I) costs –along with all of the 
other, factor-price-related costs – of changing its structure around when entertaining 
new architectures, predicated on different structural partitionings of a watch.This 
problem will not beset Tempus, Inc.  - provided it has not hard-wired modularity 
norms into its organizational structure - which may therefore be favored when it 
comes time to radically change design architectures with changes in demand or 
technology. 

Temporal Structuration: Hard-wiring behavioral routines and sub-routines. 
Organizations are  ‘always-already’ temporally structured into behavioral routines 
and sub-routines (Nelson and Winter 1982) that are also both temporally sticky and 
locally efficient. Hora, Inc. may have developed routines corresponding to local, 
individual-assembly-oriented manufacturing processes (such as quality control 
routines and rework routines for non-functioning assemblies), whereas Tempus, Inc. 
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may have developed routines aimed at fast processing of a single watch down an 
assembly line. These routines provide a functional partitioning of the organizational 
problem space that constrains further complexity coping, by lowering the costs of 
routine-compatible or routine-embedded activities relative to those of out-of-routine 
activities. Hora, Inc., then, is likely to systematically forego global design and 
manufacturing optimization exercises (which cut across its already developed routine 
sets) whereas Tempus Inc. is likely to systematically forego routine sets concentrated 
on assembly-wise optimization (which would cut across its global optimization 
oriented routine sets).  

Socio- Cognitive and Linguistic Structuration: Hard-wiring optimization 
processes and representation languages. As Whitehead observed, human progress 
often consists of the rendering-unconscious of processes and activities that are 
consciously pursued (rather than the making-explicit of implicit knowledge, as 
claimed by [Nonaka and Takeuchi 1995] - a view that is perfectly consistent with the 
idea that unconscious mental processes are physiologically faster and metabolically 
cheaper than are conscious ones).  

In organizations, what is habituated in this way are the cognitive routines and 
sub-routines  - often referred to as ‘heuristics’ (Cyert and March 1963) and the 
languages and representations – communication codes, design categories and 
ontologies. Each of Hora, Inc.’s 10 structural groups, for instance, can develop quasi-
private languages for referring to individual components and sub-assemblies of 
components that are optimally (albeit locally) suited to their tasks. They can develop 
ways of talking (acronyms, special languages) that are optimally ‘designed’ for the 
modular task environment of Hora, Inc. They can develop ways of interpersonal inter-
relating (long group-wide planning and design meetings, etc.) that are propitious for 
both the nature of the task and the structure of the group. These ways-of-being (of 
thinking, talking, inter-relating) are likely to be different from those engendered by 
Tempus, Inc., where, for instance, the size of the group and the global nature of the 
design process make it impractical to hold practical group-wide meetings, which 
means that planning is de facto done through a  number of ad hoc, small group 
meetings, which in turn are likely to generate a quickly shifting fabric of ways-of-
talking, design ontologies and cognitive habits than those to be observed in Hora, 
Inc.All three forms of structuration (spatial through group composition and contract, 
temporal through routinization, social and linguistic through the development of 
interaction patterns and cognitive through habituation of conscious mental tasks) can 
in fact be understood as adaptive, complexity-driven moves in I,K-space:  
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 a. Spatial partitioning of the organization is a way of hard-wiring certain 
levels of modularization of planning, design and manufacturing into the 
organizational structure itself (and thus foregoing the costly optimization step of 
figuring out ‘the right’ level of modularization for each new task or sequence of 
tasks). The high-level problem on deciding on the right level of modularity is thus 
‘cut through’, leading to decreases in both I and K.  Such structuration can achieve 
the de facto parallelization of tasks, a common strategy for dealing with high-K 
problems in computer and algorithm design.  

b. Routinization functions in organizations in ways similar to those in which 
routines are used by programmers: as fast, dedicated processing units that are 
optimally matched to certain tasks. They provide local speed at the expense of 
flexibility to global changes in constraints and desiderata, and can be understood as 
boundedly optimal adaptations to high-K task environments.  

c. Ontological and ontic commitments, heuristics, linguistic tricks ad shortcuts and 
special languages, as well as other mental habits can be seen as adaptations to both high-
I and high-K environments. Ontologies and special languages can be seen as more or 
less well-adapted compression codes for large bodies of information needed for the 
successful performance of a task. They are the languages in terms of which I is 
instantiated: their own informational depth can only be analyzed in terms of their 
representation in other languages and ontologies and therefore can only be critiqued 
as being more or less informationally compact from the outside, i.e. relative to other 
languages and ontologies. Linguistic tricks and dialects can be seen as compressed 
versions of longer, natural-language or perceptual-language messages, whose 
informational depth can be criticized relative to other forms of referring and encoding 
based on the same ontologies and representational forms.  

d. Cognitive habits and heuristics can be seen as high-K adaptation devices, 
accomplishing the K-reduction function that behavioral routines carry out in 
organizations. They cut through the complexity of organizational optimization 
process to ‘good enough’ solutions or to solutions that are ‘on average’ optimal (with 
an acceptable frequency). This suggests that managerial ‘biases and fallacies’ can be 
exculpated in two ways from the usual charge of ‘irrationality’ - as approximations and 
as randomizations. In the first case, we would expect that they will perform in 
individual cases of furnishing predictions or other empirical judgments slightly (but 
tolerably) worse than their normative counterparts. In the second case, we would 
expect that they will perform on average as well as well as their normative counterparts 
normally do in furnishing predictions and other empirical judgments.  
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5. Complexity-Driven Organizational Failure in  I-K Space. 

Many accounts in recent literature implicate complexity in the processes that 
culminate in organizational breakdown or failure:  

• ‘normal accidents’ occur in organizations that can be adequately 
represented by numerous, tightly and densely coupled structural 
elements that are functionally relevant [Perrow, 1976; Weick, 1995];  

• environmental perturbations can and are statistically likely to cause 
densely, tightly coupled activity systems to break down [Simon, 1962];  

• tightly, densely coupled activity systems exhibit complexity-
catastrophe-related failures as the number of links and nodes between 
the activity systems making up the organizations increases;  

• the computational complexity of making competent predictions about 
the evolution of a tightly coupled activity system admitting of a Boolean 
network model becomes prohibitive for even moderate levels of average 
link density between the elemental activities making up the organization 
[Rivkin, 2000] diminishing the ability of managers to ‘plan’ and thus 
adapt strategically (rather than reacting blindly) ;  

• mismatches in ‘fundamental variety’ – or, degrees of freedom – between 
the organization and the part of the environment that is relevant to it 
limit the ability of the organization to new environmental conditions [see 
Scott, 1985, for review]; ‘noise’ and ‘error’ are amplified by 
computationally complex, serially coupled organizational production 
functions, decreasing survivability of value-linked activity chains in 
both the short run and the long run [Moldoveanu and Bauer, 2004; 
McKelvey, 1999].  

Difficulties of planning and purposive action attributable to risk, uncertainty 
and ambiguity [March and Olsen, 1972] – the normal ‘fog of business’ – can also be 
seen as being causally linked to complexity – specifically to the barriers erected by the 
complexity of either carrying out experiments or calculations aimed at creating or 
refining probabilistic estimates that enable or encourage action and thus redress the 
paralysis that unknown-ness and unknowingness can cause. In spite of the insight 
afforded by these approaches into organizational breakdown and failure, they turn up 
several important shortcomings: 
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A. they are based on particular underlying models of organizations (as 
structurally coupled functional activity systems, or value-linked activity chains; as 
algorithmically linked production functions, as information processing devices with 
‘wired-in’ representations for unknown-ness and unknowing-ness) and therefore are 
applicable within the representational space created by these models They do not – 
because they cannot -  therefore capture the problems created by difficulties in 
applying the models to phenomena (either constructively or descriptively); 

B. they therefore cannot easily be compared amongst themselves with regard 
to their predictions in specific cases. A particular level of complexity in one framework 
may entail a totally different level of complexity in another framework (consider 
value-linked activity systems described at different levels of resolution) and the same 
metric can have different interpretations in different representations (consider 
probabilistic representations of genuinely exogenous risk and of risk generated by 
internally produced noise or variance); 

C. they therefore offer a multitude of explanations of the process of 
organizational failure or breakdown that are not necessarily commensurable with one 
another, making it difficult to achieve progress in the study of breakdown through 
integration across the findings and insights associated with the different models, 
measures and frameworks.  

The (I-K) -based approach addresses these problems by accommodating the 
known representations of organizational complexity in a coherent framework that 
allows us to make novel, testable predictions about the rate, reparability and reversibility 
of organizational failures or breakdowns 

First, a  few specifications: 

a. Model-Independence. It is important to observe first that (I,K) framework 
presents us with a way of representing organizational complexity-driven 
failures in a way that is not dependent on any one or given model of 
organizations (as Boolean networks, or, as epistemically and substantively 
rational and unbiased processors of information and decision engines). Rather, 
it is possible to represent any model of organizations within the framework, 
and obtain a 2-dimensional complexity measure associated with it. It is also, of 
course, possible to make modifications that lie within model classes and retain 
the ability to use the (I,K)-based representation for organizational complexity: 
one can, for instance, change the basic activity sets that are considered to be 
critically linked, the nature of these activities and even the definition of what 
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constitutes an activity, while retaining the ability to apply the 2D complexity 
model to back out a complexity measure; 

b. Model-Invariance. It is not, however, the case that the complexity measure we 
arrive at will be invariant across a change of fundamental models: if an 
organizational task is (I1, K1)-complex under representation R1 and (I2, K2)-
complex under representation R2, then there is no guarantee that I1=I2 and 
K1=K2; and that is as it should be, as changes in basic categories and nature of 
the representation should be expected to effect changes in the fundamental 
complexity of an organizational task. A simple (in the (I,K)-sense), self-fulfilling 
self-model used by a top manager can be adopted across the organization to 
produce simple, self-fulfilling self-schemas for other managers and complex (in 
the (I,K) sense again) resulting organizational tasks and activities; 

c. Model-Transcendence. The (I,K)-based representation affords complexity 
modelers and researchers the opportunity to compare results that link 
complexity to organizational failure across different underlying models of the 
organization. The language of ‘moves in a space spanned by  (I,K)’ transcends 
any particular instantiation of an organizational model relative to which 
complexity was measured and the link between complexity and failure was 
established. 

With these points in mind, we now reconstruct a typology of complexity-driven 
organizational failure. We distinguish between K-driven failures and I-driven failures 
and highlight the mechanisms underlying the two different types of failure are 
qualitatively different.  Organizational failure will be considered as an irreversible, 
systematic, costly and irreparable (or, very costly to repair) breakdown in the 
predictive capabilities of decision makers about the causal consequences of their 
actions in the context of the organization and its environment.  ‘Accidents’ and 
‘mishaps’ are distinguished from failures in that they are not systematic: what makes 
an entity ‘systematic’ is the extent to which its occurrence is causally linked to the basic 
patterns of behavior of the organization – the extent to which it predictably results 
from the way the organization behaves, as opposed to being related to exogenous 
events.  

K-Driven Failures. The definition of organizational failure just articulated  makes it 
possible to create a map of organizational failure modes as a function of the mismatch 
between the K-load of a manager’s model of the relevant activity of organization - 
including its response to the environment – and the computational complexity of the 
most predictively competent (‘ideal’) model thereof. We make two critical stipulations: 
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 a. Beside the ‘simple’ or tractable (P-hard) and ‘hard’ or intractable (NP-hard) 
tasks there are also tasks that provably never converge – uncomputable, or ‘infinite’ 
ones. Such tasks can model situations in which the ‘assumptions’ or ‘axioms’ of a 
model are not logically compatible: from ‘a and not-a’, anything at all can be proved 
[Popper, 1959] and thus a proof procedure running on an axiom set containing both 
of ‘a and not-a’ will never converge to a ‘steady state’. By the same mechanism, 
business plans based on internal contradictions will likely be associated with never-
ending chains of operations, representing tasks that will never converge to an output; 

b. In situations where both the managerial plan and the ideal plan are un-
computable, one cannot properly speak of failure properly. One can, however, speak 
of breakdown of the organization, as there is no task model that actually converges to 
an output, corresponding to an endlessly dithering organization; 

c. The rate at which the organization fails is correlated to the size of the 
mismatch in the K-load class of the managerial and ideal task models. The 
intuition for this is simple: 

I.Tractable (P-hard) models can approximate other tractable (P-hard) 
models, such that errors accumulate only slowly, and are reparable 
without changing complexity class. This is the typical realm of repeated 
and cumulative errors; 

II.Tractable (P-hard) models can also approximate (although more 
poorly) intractable (NP-hard) models, but errors accumulate much more 
rapidly and are not reparable without changing K-complexity class of 
the managerial model. Failure in such cases is slow to materialize (but 
accelerates over time); 

III.Tractable or intractable models cannot approximate un-computable 
models. Failure in such cases is sudden or instantaneous. 

 

With these stipulations in mind, let us examine the kinds of K-driven failures 
that we can now distinguish among, with examples drawn from possible 
organizational predicaments confronting Hora and Tempus (see Table 3 for a 
summary): 
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Complexity Class of Planner’s Model of the Task 

Complexity Class 
of ‘Ideal’ 
(Competent) 
Model of the Task 

Tractable (P-hard) Intractable (NP-
hard) 

Impossible (un-
computable, or, 
undecidable) 

Tractable (P-Hard) No failure. 

Errors are possible 
but inexpensively 
corrigible.. 

No failure.  

Errors are possible 
and more 
expensive, but still 
corrigible.  

‘Debacles’: No 
plan, as minimal 
computability is a 
pre-requisite for 
‘plan’ to function 
as a coordinative 
device. 

Intractable (NP-
hard) 

Slow failure due to 
gradual 
accumulation of 
incorrigible errors.  

No failure. 

Errors are possible 
and expensive, but 
still corrigible. 

‘Debacles’: No 
plan, as minimal 
computability is a 
pre-requisite for 
‘plan’ to function 
as a coordinative 
device. 

Impossible 
(undecidable) 

Fast failure due to 
irreversible 
breakdown in 
predictive power 
of model or 
coordinative 
power of plan.  

Fast failure due to 
irreversible 
breakdown in 
predictive power 
of model and 
coordinative 
power of plan.  

‘Breakdown’: 
organizational 
dynamics do not 
converge. 

 

Table 1.Map of  K-Driven  Failures. 

 Slow Failure Through Error Accumulation: P-P Mismatches. When managers’ task 
models and ideal task models are both tractable (P-hard),  though mismatched 
(missing variables or different parameters), we would expect that complexity-driven 
failure occurs through the accumulation of errors over time, and will be proportional 
to the size and nature of the mismatch between the managers’ task model and the ideal 
task model. Errors are reparable without changing complexity class, and thus repair 
costs are low relative to other classes. Suppose the managers of Tempus, Inc. have built 
a linear demand model and estimated its parameters using standard econometric 
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methods from actual data, but have not properly taken into account the influence of 
some variables such as seasonal shifts in willingness-to-pay (i.e. their coefficient 
estimates for these variables are incorrect relative to an ideal or correct model). This 
mismatch produces errors in demand forecasting, which can accumulate over time 
and lead to organizational failure (by a massive over-investment in non-revenue-
generating inventory, for instance). The eventual failure could at many points in time 
have been avoided (or, postponed) by the adjustment of the relevant coefficient of the 
managerial task model.  Accordingly, the ‘P-P mismatch’ failure regime may be said to 
be forgiving to managers and their organizations. 

 Fast Failure Modes. By contrast to the above case, consider two situations that 
lead to fast K-load-driven organizational failure. In the first, managers’ task models 
are tractable (P-hard), but ideal task models are not tractable (NP-hard). Suppose 
managers at Hora, Inc. face a sudden demand up-shift and must suddenly optimize 
watch production along a large assembly line. They have, however, only a scant 
understanding of maximal network flow models (which are NP-hard) that would 
allow them to optimize flow of parts and assemblies through the production line, and 
use simple, linear (P-hard) input-output (‘first in first out’, for instance) models of part 
and assembly flow through operations when they forecast the rate at which they will 
be able to fill demand for their products. Over time, errors compound rapidly because 
of the complexity class mismatch (as the difference between a greater-than-polynomial 
function and a polynomial function will always be a greater-than-polynomial 
function) and will lead to a fast failure mode. Moreover, this failure can only be 
avoided by changing the K-load class of the task model that Hora’s managers use 
(from P to NP), and thus it must be considered relatively unforgiving to the managers 
and their organization. In the second situation, managers’ task models are intractable 
(NP-hard) – as are ideal task models – but they are mismatched (in variables or 
parameter values) and the complexity difference between the two models is a greater-
than-polynomial function of a number of relevant variables that change in time. Once 
again, failure will be fast and unforgiving. This situation is exemplified by errors and 
flaws in competitive analysis that employs computationally heavy game-theoretic 
models of competitors’ actions, best responses, beliefs about other competitors, etc. 
Because iterated dominance reasoning is NP-hard [Gilboa, 1989] it is highly sensitive 
to assumptions about initial conditions and the number and value of variables and 
therefore highly susceptible to errors in such assumptions [Moldoveanu and Bauer, 
2004]. If managers at Hora and Tempus predicate their operational and financial 
assumptions on profit margins and revenues generated by a duopoly model in which 
they share one relatively undifferentiated market, but, unbeknownst to them, an 
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entrant (Kayros) suddenly enters the same market, their predictive capacities will 
break down quickly as a function of ‘market time’. Similarly, if, in the duopoly market, 
Hora’s managers assume that Tempus’ managers are rational and computationally 
capable of thinking their way to equilibrium (which Tempus’ managers are), but 
Tempus’ managers, while themselves rational, do not believe that Hora’s managers 
are rational and computationally capable of thinking their way through to 
equilibrium, then, over repeated instantiations of the market and without learning, 
profit margins will significantly lag behind the optimum achievable levels. Note that, 
even if it occurs in such instances, managerial and organizational learning will be more 
costly and difficult than in other situations, because the complexity of the underlying 
models acts as a noise amplifier [Moldoveanu and Bauer, 2004] which increases the 
variance of testable predictions and hypotheses about competitive interactions.  

 Instantaneous Failure Modes. Instantaneous failure modes will obtain in 
mismatches in which at least one of the two task models (managerial, ideal) will be 
uncomputable (or, will generate an undecidable problem). Consider, for instance, a 
situation in which Hora’s managers come to use two different language systems to 
refer to observable events (assembly line failures of a particular kind) that they – on 
reflection – would hold to be indistinguishable under all measurable aspects, and evolve 
adequate but mutually incompatible organizational routines for ‘handling’ these 
events, which are causally connected with the two language systems in question. If 
they are unaware of this ambiguity or – even though aware of it – have not evolved a 
successful way of playing the coordination game such that they ‘fall into’ one or 
another routine set (but not both), then the organization as a whole may be said to be 
‘stuck’ in an uncomputable ideal task model and will fail suddenly or instantaneously, 
no matter what the managerial model of the situation may be (tractable, intractable or 
uncomputable).  

Uncomputability and instantaneous failure need not result from error. They 
can arise from technological or demand discontinuity that amounts to a paradigm shift 
in the Kuhnian sense [Kuhn, 1962]. If Kayros (the entrant) succeeds in seeding and 
growing a demand for ‘time measurement and management experiences’  (enabled by 
a centrally located software agent that targets the end user on any meridian or parallel 
with precise time estimates and up-to-date relevant news which it downloads to any 
one of several electronically linked devices) rather than ‘watches’ to the point of 
challenging the Hora-Tempus duopoly and threatening to replace ‘time measurement 
instruments’ with ‘time measurement experiences’ , the problem of deciding which of 
the two end products will ‘win out’ in the end will be undecidable either in the ‘objects 
framework’ of Hora and Tempus (where only durable goods exist and are exchanged) 
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or in the ‘events’ framework of Kyros (where only experiences and signals exist and 
are exchanged).  

The same kind of failure will obtain if the managerial task model is 
uncomputable (for instance, if it contains logical inconsistencies), even if the ideal task 
model is itself computable (tractable or intractable). The most intuitive example for 
this kind of failure comes from examining the effects of failures of logical closure in a 
business plan, which we can do if we consider a business plan as a logical model (with 
‘assumptions’, ‘theorems’ and ‘hypotheses’ that are tested by ‘data’). If Hora’s 
business plan calls for particular levels of investment during the following two 
quarters to support the development of a new watch design on the basis of 
assumptions about the demand for new designs and trailing earnings before income 
taxes and depreciation and current gross margins are hit by a price war with Tempus 
while design requirements have undergone subtle changes, then  the organization will 
fail in K-mismatch sense we have outlined here if its managers do not work the logical 
implications of these new conditions into their business model. Of course, working 
through all of the logical implications of a change in conditions may be an intractable 
task (NP-hard), and  engaging in it in such a situation can take the organization from 
one mode of possible failure (instantaneous on account of uncomputability) to another 
(fast on account of rapid error propagation).  

I-Driven Failures. To understand the kind of failure informational depth can lead to, 
consider the problem of predicting the evolution of a process whose most compact 
representation takes up L bits of memory. If a manager’s model of the task has 
informational depth of L-1 bits, then he or she will never do better than chance in 
predicting the evolution of the process in question. Even if the manager gets all of the 
L-1 bits ‘right’, there will be an extra non-redundant bit in the valid description of the 
process in question that the managerial model has no way of predicting. There exists 
no 2-bit representation of the number 9.  The constraint on the informational depth of 
the managerial model may be ‘hard’ – it may dictated by the ultimate beholding 
capacity of the manager or the organization as a whole – or it may be ‘soft’, in which 
case the manager can change the complexity class of his or her model and therefore 
hope to change complexity class of his or her model and thus match the fundamental 
informational depth of the process in question.  

Following this intuition, we stipulate - as we did in the K-driven failure case – 
that there exists a managerial task model (represented by a program) of informational 
depth IM and an ‘ideal task model’ represented by a program of informational depth 
II -  but we add – in each case – a finite memory meant to hold the  task models, 
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corresponding to the beholding capacity of the manager or of the organization as a 
whole. (It is not required for a single managerial mind to behold the model in question: 
I can be distributed among many members of the organization in ways that are or are 
not – as in Weick’s ‘group mind’ examples [Weick, 2005] – reducible to a linear 
aggregate of the models beheld by individual managers. )We now compare to the size 
of the ‘working memory’ the informational depth of the ideal model of a task, process 
or phenomenon (the ‘task model’) in order to distinguish between the following 
regimes: 

A. the sub-critical regime: the size of the minimal program representing the 
ideal task model is lower than the size of the memory available to represent it; 

C. the super-critical regime: the size of the minimal program representing the 
task model is greater than the size of the memory available to represent it. 

 

We can now make useful distinctions among different kinds of I –driven 
organizational failure by considering mismatches between the informational depth of 
managerial and ideal task models and their implications for the likelihood and 
reparability of failures of predictability. We will assume that the ideal task model will 
in all cases have higher informational depth than the managerial task model and ask: 
what kind of failures obtain in the different regimes, Table 2): 
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I- Complexity Class of Planner’s Model of the Task and Actual Plan. 

I-Complexity 
Class of 
Competent Model 
of the Task and 
‘Ideal’ Plan. 

Subcritical 

 

Critical Super-critical 

Sub-critical No failure.  

Errors are possible 
but inexpensively 
correctable.  

Infrequent failure.  

Errors are possible 
but inexpensively 
correctable.  

‘Conundra’: no 
plan is feasible.  

Critical Fast failure. 
Organizational 
response to plan is 
fundamentally 
‘unpredictable’.   

Infrequent failure. 
Errors are possible 
and more 
expensive, but 
corrigible, with the 
exception of errors 
arising from non-
self-delimiting 
programs. 

‘Conundra’: no 
plan is feasible. 

Super-Critical ‘Breakdown’: 
preconditions for 
existence of 
organization are 
negated in this 
regime. 

‘Breakdown’: 
preconditions for 
existence of 
organization are 
negated in this 
regime. 

‘Breakdown’: 
preconditions for 
existence of 
organization are 
negated in this 
regime. 

Table 4. I-Driven Failures. 

 

The Sub-Critical Regime. If the ideal task model can in theory be beheld by the 
organization, then I-driven failure is unlikely: errors caused by mismatches between 
II and IM can be rectified by systematically searching through the bit strings up to the 

beholding capacity M of the organization (there are M
M

k

k −∑
=1

2  of them). If Hora’s 

managers have a competitive model that does not include Tempus, Inc.’s managers’ 
correct conjectures about Hora, Inc.’s managers’ conjectures about the market, but 
their model of competitive interactions does have the additional degrees of freedom 
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corresponding to such conjectures, then their model can be rectified to include the new 
and relevant information. Note that in this case the organization can still fail from the 
accumulation of errors over time (slow or fast K-driven failure) arising from the 
accumulation of errors or incorrect estimates of the computational load of the task 
model. 

The Super-Critical Regime. If the ideal task model has an informational depth that 
exceeds that of the beholding capacity of the organization, the organization will fail in 
the I-sense with probability that is proportional to the mismatch between the 
informational depths of the two models. A two-bit prediction of an event that takes a 
minimum of 3 bits to represent will be right ½ of the time (assume the third bit will be 
random, as it lies above the representational capacity of the model); it will be correct 
¼ of the time when it attempts to predict events that take a minimum of 4 bits to 
represent, and, in general, it will be right with probability eI−22  when attempting to 
make predictions about events whose representations have informational depth Ie. If, 
for instance, the competitive model that Hora, Inc’s managers use has no conceptual 
space for Tempus’ conjectures about Hora’s strategies and payoffs – heeding these 
variables  simply ‘does not cross their minds’ -  -  and these conjectures are relevant to 
the outcome of the competitive interaction, then Hora, Inc. will achieve sub-optimal 
outcomes because of an I-driven failure that they cannot rectify by changing their 
model. The super-critical regime we have identified can be understood as capturing 
organizational failures driven by ‘unknown unknowns’ – which lie outside of the 
scope of managerial awareness because of informational depth constraints on the 
complexity of the organizational or managerial model.  

5. Concluding Comments. We have characterized organizational complexity using a 
2 dimensional measure that captures two essential and independent characteristics of 
the difficulties associated with coping with complexity. We called these dimensions 
informational depth and computational load and showed how a two-dimensional 
complexity measure allows us to understand organizational complexity coping 
mechanisms and organizational failure modes and regimes.  

The new complexity measure allows us to make explicit and clarify 
assumptions that are embedded in existing models, to make new and useful 
distinctions regarding the representation of organizational phenomena, and to open 
up new research questions and programs of inquiry. 

a. Explicitation of assumptions. We showed that existing approaches to 
complexity rely on a priori models or representations of organizational 
phenomena for the definition of complexity. Definitions of complexity as a 
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degree of linkage or coupling among different components of the 
organization, for instance (dating back to [Simon, 1962]), rely on specific 
partitionings of organizations into ‘parts and connections’ (or, nodes and 
edges, or, entities and links); they are not invariant across different possible 
representations of the organizational whole. Definitions of complexity in 
computational terms [Rivkin, 2000, for instance] have thus far relied on 
specific underlying models (NK(C) models in this case) that make possible 
the measurement of the computational complexity of making predictions 
about their temporal evolution. By explicitly introducing the additional step 
of modeling the process of modeling itself and measuring the complexity of 
the resulting model on a computational device, we have made the 
dependence of the complexity of a phenomenon on the model used to 
represent that phenomenon explicit. This move makes it possible to speak 
of the complexity of organizational phenomena modeled on the basis of 
different conceptual schemata. The complexity measure that we have 
introduced is still dependent on the choice of language in which models are 
articulated, or, equivalently, on the choice of Turing Machine used to 
simulate the phenomenon in question. This is a fundamental dependence, 
inescapable in view of the language-dependence of any observational or 
theoretical statement [see Kuhn, 1990, for instance]. Our framework allows 
us to make this dependence explicit. 

b. New Distinctions. We can now usefully distinguish between an 
informational and a computational component of the complexity of an 
organizational phenomenon, which allows us a more precise 
characterization of the organizational costs of complexity and permits us to link 
informational depth and computational load explicitly to costly 
organizational processes (beholding and executing) on which the 
organization as a whole may be understood to try to economize. 
Accordingly, organizational adaptations to complexity may be categorized 
using the new framework as moves and maneuvers that attempt to 
economize on I alone, K alone, moves along the I-K frontier of the 
organization and shifts of the frontier itself. Moreover, complexity-driven 
organizational failure modes driven by I and K were distinguished from 
each other, making an inquiry into the complexity-driven failure of 
organizations more precise. 
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New  Questions.  The new framework makes it possible to ask new questions about 
organizational adaptations to complexity that investigate the structure and dynamics 
of organizational complexity: 

I. What is the I-K complexity profile for various kinds of organizational production 
functions and does this profile correlate with organizational profitability? If a 
fundamental ‘complexity capability’ exists that allows organizations (such 
as IBM, Intel, Microsoft) to consistently register above-normal returns by 
executing tasks that lie above a complexity frontier that bounds the 
activities of other firms, it is now possible to analyze this capability and 
explore the ‘complexity profile’ of organizations in terms of I and K.. It is 
also possible to make predictions about the activity sets that organizations 
can tackle to leverage such a complexity capability. A move by IBM into 
bio-informatics looks like ‘diversification’ under the usual definitions of 
organizational capabilities, but appears to be consistent with the 
complexity profile of the organization.  

II. Do I or K bounds to organizational complexity serve as leading predictors of 
organizational failure? By making measurements of the complexity of 
production tasks possible, it is possible to make predictions about the 
likelihood of incumbents to survive technological or demand paradigm 
shifts (which can produce step function increases in both I and K.  

III. What is the complexity of the (organizational learning) processes? We have 
shown it is possible to measure the computational load of search processes 
and the informational depth required to conduct them. By combining these 
two costs, it is possible to make predictions about the true organizational 
costs of learning and to pose the organizational learning problem as an 
optimization exercise in complexity space. This approach can be extended to 
the question regarding the complexity of  learning about complexity, which 
would allow us to understand, in complexity space, the complexity 
economics of self-understanding. 
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