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Abstract

We study the pricing decisions of firms in the presence of consumer inertia. Inertia,
which can arise from habit formation, brand loyalty, and switching costs, generates dynamic
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oligopoly settings. For example, dynamic incentives can limit the equilibrium price effects
of a horizontal merger. However, the way that the merger is implemented—whether the
merged firm maintains separate brands or consolidates them into a single entity—can have
large effects on equilibrium prices in the presence of inertia. We develop an empirical
oligopoly model to estimate consumer inertia and dynamic pricing incentives using market-
level data. We apply the model to a hypothetical merger of retail gasoline companies.
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1 Introduction

Consumers are often more likely to buy a product if they have purchased it previously. This

tendency reflects both exogenous preferences and state-dependent utility that is affected by

past behavior (Heckman, 1981). Consumer state dependence, or inertia, may arise from habit

formation, brand loyalty, or switching costs. In response to consumer inertia, profit-maximizing

firms will internalize the effect of their current price on demand in future periods.

In this paper, we study the influence of consumer inertia on competition and pricing in

oligopoly settings. We develop a model of inertia where a portion of consumers develop a

product-specific preference, or affiliation, for the most recently purchased product. This formu-

lation nests typical implementations of dynamic consumer behavior, including switching costs

and brand loyalty. We then use the model to evaluate the impact of consumer inertia on equi-

librium price levels and the implications for horizontal mergers.

We provide two contributions related to the analysis of mergers. First, we show that the

effects of mergers on equilibrium prices depend on the presence of inertia. Using numeri-

cal simulations and an empirical model, we then show that the predictions of a static model

can diverge meaningfully from the true effects, primarily because of misspecified first-order

conditions for prices. The second contribution is to highlight an important feature of merger

implementation. After a merger, a firm may decide to maintain separate brands or consolidate

them into a single brand. As we show below, this decision, which may not matter in static

models, can have substantive implications in the presence of inertia.

A primary goal of the analysis is to provide an empirical framework to identify consumer

inertia and conduct counterfactuals in settings where data on prices and quantities is avail-

able, but more detailed consumer-level data is not. Thus, identification relies upon aggregate,

market-level data. The demand model we introduce is a straightforward extension of the stan-

dard discrete-choice logit model with myopic consumers. In contrast to the identification prob-

lem in a typical random coefficients model, the distribution of unobserved heterogeneity in our

model evolves to reflect past purchase behavior. To disentangle heterogeneity in preferences

from state dependence arising from previous purchases, we impose restrictions on the demand

system and rely on the panel structure of data. Intuitively, consumer inertia in our model is

reflected through shocks that generate semi-persistent correlations in shares. Fully persistent

features, such as brand quality, can be captured by fixed effects.

We begin by evaluating theoretical properties of the steady-state equilibrium of our model

using numerical simulations. Inertia can lead to higher equilibrium prices, as consumers be-

come locked into a particular product or brand over time. We denote the extent to which a firm

sets higher prices due to the presence of state-dependent consumers as dynamic market power.1

We show that dynamic market power can influence horizontal market power—the extent to
1As consumer inertia can also lead to lower equilibrium prices (Dubé et al., 2009), it is possible that dynamic

market power is reduced with greater inertia.

1



which competitors constrain prices. Our results show that the dynamic component often has a

greater impact on equilibrium prices than a reduction in competition via a merger. Therefore,

to understand the competitive conditions in a market, it can be informative to assess both of

these dimensions of market power.

In evaluating horizontal market power, we show that modeling the type of merger is criti-

cal. A merged firm can decide to consolidate the merged brands into a single entity or maintain

them as separate brands. In practice, both types of mergers occur with some frequency. For

example, in the airline industry, mergers typically result in one of the brands being eliminated.2

Conversely, with consumer product mergers, the acquiring firm often maintains both existing

and acquired brands.3 In retail gasoline, both types of mergers have occurred, with BP elimi-

nating the Amoco brand after its 1998 acquisition, while Exxon maintained the Mobil brand for

service stations after its acquisition in 1999.4

Our numerical simulations illustrate how consumer dynamics can influence post-merger

outcomes. In a static setting, distinguishing between types of mergers may not be relevant;

we show that mergers of either type deliver the exact same outcome for symmetric firms with

logit demand. However, in the presence of consumer inertia, differences in dynamic pricing

incentives can lead these two merger types to deliver directionally opposite effects relative to

the static model. Accounting for these differences is relevant for the decisions of firms and

competition authorities, which typically employ static empirical models to estimate consumer

demand and simulate counterfactual post-merger prices. Such static models could, for example,

substantially over-predict the price effects of a merger. Thus, failing to account for consumer

inertia may misstate the potential for horizontal market power and affect merger enforcement.

These findings highlight the need for empirical models to appropriately represent firms’

dynamic pricing incentives and the structure of the post-merger firm. Real-world environments

diverge from the setting of our steady-state analysis in that firms are often asymmetric and

face time-series variation in marginal costs and demand. To incorporate these features, we

develop an empirical model to estimate demand and evaluate dynamic pricing incentives using

panel data. We then provide an approach to simulate counterfactuals with dynamic oligopoly

pricing, which we use to quantify the price effects of inertia and competition (via mergers) in

an application using data from retail gasoline markets. In doing so, we create a framework that

accounts for both the dynamic and horizontal dimensions of market power and can address key

policy questions.

An advantage of the demand model is that it can be estimated using aggregate market-level

shares and prices, which is the typical data used in demand estimation and merger simulation.
2Historical examples include Delta-Northwest, United-Continental, and Southwest-AirTran mergers, leaving

Delta, United, and Southwest, respectively.
3Coca-Cola launched Gold Peak Tea in 2006, acquired Honest Tea in 2011, and acquired Peace Tea in 2015. They

maintained these three separate ready-to-drink iced tea brands through 2022.
4Interestingly, BP re-introduced the Amoco brand for retail stations in 2017.
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Our model allows us to separately identify the choice probabilities for consumers of different

unobserved types and states. Thus, we allow for endogenous unobserved heterogeneity through

the presence of a serially correlated state variable for each firm. To achieve identification, we

limit the degree to which static unobserved heterogeneity enters the model. Thus, we give up

more flexible static substitution patterns in order to capture substitution patterns that reflect

consumer dynamics, while still relying on aggregate data.

We use a series of Monte Carlo experiments to verify that our approach can correctly iden-

tify the dynamic and static components of the model with market-level data. Further, we show

that our approach does not falsely attribute static consumer heterogeneity to state dependence.

Specifically, we generate data using a static random coefficients demand system, and then esti-

mate our dynamic model using the simulated data. The simulations show that, in our modeling

framework, any bias from persistent unobserved heterogeneity loads onto the static parameters,

and we correctly estimate zero state dependence. Thus, at a minimum, our empirical approach

can be used to test for the presence of consumer inertia, even when persistent unobserved het-

erogeneity is more complex than we model. This test can be valuable for empirical analysis,

antitrust investigations, and policy design, as our analyses show that the dynamic components

of demand can be of first-order importance for equilibrium outcomes.

To conduct counterfactuals, we impose a supply-side model of price competition. In contrast

to the literature, we invoke relatively weak assumptions about supply-side behavior. From the

estimated demand model, we obtain the derivative of static profits, which we use to infer

the dynamic component of the firms’ first-order conditions. We project these estimates onto

state variables to construct a reduced-form approximation of the dynamic pricing incentives.

This approximation is consistent with a model of Markov perfect equilibrium where firms use

limited state variables to forecast their continuation value. We use forward simulations to verify

that realized equilibrium payoffs are consistent with these forecasts. We then use the model to

evaluate horizontal and dynamic market power in our empirical setting.

As a case study, we apply the model using data from retail gasoline markets. This setting has

a relatively homogeneous product, minimal transaction costs, and, to the extent there is inertia,

it may be considered relatively short-lived. Thus, to the extent that dynamic incentives matter

in this market, such incentives may be important across a broad set of consumer markets. There

is some existing evidence of pricing patterns in retail gasoline that are consistent with consumer

affiliation, such as slow-to-adjust cost pass-through (e.g., Lewis and Noel, 2011). Furthermore,

retail gasoline has a direct link to antitrust concerns. In June and December of 2017, the FTC

challenged Alimentation Couche-Tard’s acquisitions of Empire Petroleum Partners5 and Holi-

day,6 respectively, on the basis of overlapping retail gasoline stations in a number of states. In
5https://www.ftc.gov/news-events/press-releases/2017/06/ftc-requires-retail-fuel-station-convenience-store-o

perator
6https://www.antitrustalert.com/2017/12/articles/ftc-developments/the-latest-ftc-challenges-retail-fuel-stati

on-and-convenience-store-transaction-requires-ten-localized-divestitures-in-wisconsin-and-minnesota/
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2021, after 7-Eleven’s acquisition of Speedway, the FTC ordered the divestiture of 192 stations

to mitigate harms to competition.7 In August 2021, FTC Chair Lina Kahn stated that the FTC

would be taking more aggressive steps to deter mergers in the industry.8

Prior to estimating the model, we present reduced-form evidence of dynamic demand and

dynamic pricing incentives in retail gasoline markets. Using consumer-level data on retail gaso-

line purchase histories, we find evidence of dynamics in consumer demand. For example, we

find that after purchasing from the same brand at least three times in a row, a household

purchases from the same brand in the next period 90 percent of the time. However, if they

interrupt their spell by buying from a different brand, they return to the previous brand only 57

percent of the time. We also find that consumers are less likely to return to the previous brand

if there is a longer period between purchases. These patterns are consistent with our model of

state-dependent demand and are more challenging to reconcile with purely static demand.

Similarly, we find evidence that firms internalize dynamic pricing incentives. We find that

new entrants initially price lower than established firms but raise prices over time. We then

examine cost pass-through, and we show that firms begin raising prices in anticipation of pre-

dictable future cost increases. Finally, we note that roughly 3 percent of our data have negative

price-cost margins. These findings can be rationalized by retail gasoline stations internalizing

the effect of current prices on future affiliated consumers.

We estimate the demand model using a panel dataset of prices, shares, and costs for retail

gasoline stations. In this context, the model is best interpreted as one of habit formation or

consumer inattention, wherein some consumers return to the gas station from which they pre-

viously purchased without considering alternative sellers. We find evidence of strong demand

dynamics. We estimate that 64 percent of consumers have the tendency to become affiliated

to the brand from which they previously purchased.9 The remaining 36 percent are “shoppers”

that are unaffected by consumer inertia. Consumers that become affiliated to a brand are not

very price sensitive, with an average elasticity of −0.53. Shoppers are much more price sen-

sitive, with an average elasticity of −6.0. Though shoppers are a minority of consumers that

purchase gasoline, they are important for disciplining prices in equilibrium. Across all consumer

types, firms face an average elasticity of −1.8. In addition to the contemporaneous elasticity,

the dynamic incentives facing firms play an important role in disciplining equilibrium markups.

To empirically evaluate horizontal market power, we perform a merger analysis between two

major gasoline retailers and re-compute the price-setting equilibrium in each period. With the

dynamic model, we estimate that brand consolidation would increase prices for the merging

firms by 2.4 percent post-merger. A static model of brand consolidation, on the other hand,
7https://www.ftc.gov/news-events/news/press-releases/2021/11/ftc-approves-final-order-requiring-divestitu

res-hundreds-retail-gas-diesel-fuel-stations-owned-7
8https://www.mitchellwilliamslaw.com/webfiles/08-25-21\%20Brian\%20Deese\%20Letter.pdf
9The National Association of Convenience Stores, a retail fueling lobbying association, found in its 2018 annual

survey that 57 percent of respondents have a preference for a specific brand to fill up gasoline. See, https://www.
convenience.org/Topics/Fuels/Documents/How-Consumers-React-to-Gas-Prices.pdf
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predicts an average price increase of 5.4 percent, which would likely result in greater antitrust

scrutiny. In this case, the dynamic incentive to invest in future demand mitigates the increase

in horizontal market power obtained after a merger. By comparison, the dynamic model also

predicts that a merger with joint pricing for separate brands results in a price increase of over

4.9 percent for the merging firms. Thus, modeling the precise structure of the post-merger firm

is important for predicting the magnitude of price effects.

To evaluate dynamic market power in the empirical model, we calculate equilibrium prices

if we change the strength of inertia or the share of consumers affected by inertia. Increasing the

strength of inertia by 10 percent leads to a 4.7 percent increase in equilibrium prices. Increasing

the share of consumers prone to inertia by 0.10 results in prices that are 1.7 percent higher.

These effects are in the same range as the price effects for the merging firms in the merger

counterfactuals. We conclude that a relatively modest change in the strength or prevalence of

affiliation can affect prices by as much as the elimination of a major competitor. Thus, we use

the model to assess the relative magnitudes of dynamic and horizontal market power.

More generally, competition authorities often analyze mergers in markets that are likely

to be characterized by consumer inertia. For example, in its lawsuit against Swedish Match-

National Tobacco, the Federal Trade Commission (FTC) cited strong brand loyalty as a barrier

to entry.10 Similarly, the US Department of Justice cited customer switching as an important

factor in its case against the UPM-MACtac merger.11 In defense of its acquisition of TaxACT,

H&R Block cited the importance of dynamic incentives in exerting downward pricing pressure

post-merger (Remer and Warren-Boulton, 2014). Both the FTC and DOJ routinely investigate

mergers in consumer product markets, where inertia in brand choice has been documented.

Consumer inertia is a central feature of many technology markets, such as those served by

Amazon, Google, Apple, and Facebook, which are currently under heavy scrutiny by antitrust

agencies. Yet, perhaps due to computational complexity or compressed investigative timelines,

the supply-side impacts of inertia are seldom quantified in these investigations.

The paper proceeds as follows: In Section 2, we introduce the model and present results

from numerical simulations. Section 3 presents the data for our empirical application and

reduced-form evidence of dynamics. Section 4 provides implementation details and results for

dynamic demand estimation. In Section 5, we introduce our approach to evaluate dynamic

pricing incentives and construct counterfactuals. Section 6 concludes.

Related Literature

We consider the implications of consumer state dependence on the pricing behavior of firms,

building on an empirical literature that includes Dubé et al. (2009). We add to the literature
10See, “Commentary on the Horizontal Merger Guidelines,” 2006, https://www.justice.gov/atr/file/801216/dow

nload
11Ibid.
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by examining the effect of competition and changes in market structure in such settings. As

we show, state dependence can have a large effect on the interpretation of outcomes when

studying inter-firm competition. Our analysis of mergers complements theoretical work on

dynamic price competition when consumers are habit-forming or have switching costs (see,

e.g., Farrell and Shapiro, 1988; Beggs and Klemperer, 1992; Bergemann and Välimäki, 2006).

Such features link directly to our notion of consumer affiliation. More generally, there are

alternative strategic reasons for dynamic pricing, including experience goods (Bergemann and

Valimaki, 1996), network effects (Cabral, 2011), learning-by-doing (Besanko et al., 2018), and

search (Stahl, 1989). Our goal is not to distinguish among potential mechanisms that drive

dynamic pricing, but to instead put forward a tractable empirical model that can be used to

quantify the impacts of competition in contexts with such dynamics.

We contribute to the empirical literature that estimates state dependence in consumer pref-

erences. Meaningful switching costs, due to brand loyalty or consumer inertia, have been

found in consumer packaged goods (Shum, 2004; Dubé et al., 2010), health insurance (Han-

del, 2013), and auto insurance (Honka, 2014). Hortaçsu et al. (2017) find that consumer

inattention and brand loyalty lead to substantial inertia in retail electricity markets. Bronnen-

berg et al. (2012) and Eizenberg and Salvo (2015) evaluate the presence of habit formation

in soft drink markets. When explicitly modeled, the above papers assume that consumers are

myopic when choosing among products, which we also maintain. Conceptually, our demand

model shares similar features to that of Dubé et al. (2009) and Dubé et al. (2010). Relative to

that model, we give up some flexibility in order to estimate demand with a panel of market-level

price and quantity data, rather than requiring individual customer data. These less stringent

data requirements, as well as our supply-side innovations, allow our model to be applied in a

wide variety of settings where it is typically difficult to account for consumer inertia.

The existing literature has primarily relied on consumer-specific purchase histories to docu-

ment state dependence, whereas our method allows for the recovery of such state dependence

using aggregate, market-level data. For an analysis of inter-firm competition, market-level data

tends to be more readily available. One paper that has used aggregate data to estimate switch-

ing costs is Shcherbakov (2016), which provides an informal argument for the identification of

switching costs from aggregate data in the context of television services.12 Shcherbakov (2016)

estimates a structural model with persistent observed heterogeneity and therefore richer static

substitution patterns than our model. The empirical strategy of that paper is to obtain valid

instruments for price and quality, and then impose that lagged values of these instruments are

also orthogonal to the structural demand shock. The intuition is that these past variables influ-

ence the current market share (through state dependence) but are uncorrelated with demand

shocks. By contrast, we impose directly that innovations in the demand shocks are uncorrelated,
12We are aware of two other papers that estimate switching costs using aggregate data: Nosal (2011) and Yeo

and Miller (2018). These papers have less formal identification arguments than Shcherbakov (2016).
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without implicitly making additional assumptions about instruments, and we demonstrate that

our approach recovers the correct demand parameters with Monte Carlo exercises. Another

distinction of our framework is that we allow for and estimate a proportion of consumers who

are unaffected by inertia, which can vary across markets. Thus, our model is more restrictive

along the static dimension but allows more flexibility in terms of consumer dynamics.

We contribute to a growing body of empirical models of dynamic demand. Existing work

focuses on different contexts that drive dynamic behavior. Hendel and Nevo (2013) consider

a model with storable goods and consumer stockpiling. Gowrisankaran and Rysman (2012)

and Lee (2013) consider the purchase of durable goods with forward-looking behavior by con-

sumers. In contrast to these papers, we focus on settings with positive dependence in pur-

chasing behavior over time. The literature highlights the issue, common to our setting, that

misspecified static models can produce biased elasticities. Hendel and Nevo (2013) point out

that this will matter in a merger analysis. We complement this point by showing that dynamic

incentives, rather than biased elasticities, can be a primary concern in model misspecification.

For our empirical application, we propose a reduced-form method to approximate the dy-

namic incentives in supply-side pricing behavior, allowing us to side-step some of the challenges

present in the estimation of dynamic games. Compared to value-function approximation meth-

ods proposed by Bajari et al. (2007) and Pakes et al. (2007), we rely more heavily on the

structure of the demand model and place weaker assumptions on supply-side behavior. Specif-

ically, we evaluate the static demand derivatives using a standard model of demand, and we

plug these estimates into the firm’s first-order condition to recover the dynamic pricing incen-

tive. This approach offers certain advantages relative to estimating the price policy function,

as in Bajari et al. (2007). First, it allows us to test for the presence of dynamic pricing behav-

ior, rather than assuming it. Second, our method of estimating firms’ dynamic incentives does

not require us to take a stance on the discount rate or beliefs of firms, as the role of both are

captured by the dynamic pricing incentive.

In the empirical model, we estimate the derivative of the value function directly, circum-

venting some of the computational challenges of estimating the value function (see, e.g., Farias

et al., 2012; Sweeting, 2013) and eliminating a recursive step. We motivate our estimation of

this function as either a limited-information equilibrium concept or an approximation to full-

information behavior by firms, as in Weintraub et al. (2008) and subsequent work. Our focus

on the pricing behavior of firms precludes the use of several developments in the conditional

choice probabilities literature, which relies on discrete actions (e.g., Aguirregabiria and Mira,

2007; Arcidiacono and Miller, 2011).
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2 A Model of Oligopolistic Competition with Consumer Inertia

We develop a dynamic model of oligopolistic competition with product differentiation where

consumers may become affiliated with the firm from which they purchased previously. Affil-

iation may be interpreted as habit formation, brand loyalty, or switching costs.13 We place

parametric restrictions on the form of affiliation for empirical tractability. Consumers in the

model are myopic in that they maximize current period utility rather than a discounted flow of

future utility. This assumption is likely a good fit for retail gasoline markets, where consumers

do not choose a gas station anticipating that it will limit their future choice set. Despite this,

some consumers are likely to return to the same gas station due to habit formation, brand

loyalty, or inattention. Myopia is also likely a reasonable assumption for other consumer prod-

ucts, including many products purchased at grocery stores, where product affiliation has been

documented.14

As detailed below, we introduce consumer dynamics by allowing for endogenous unob-

served heterogeneity in a differentiated product demand model. We then place the demand

model into a dynamic oligopoly setting. Even though consumers are myopic, key dynamics

arise when firms internalize the effect of sales today on future profits through the accumulation

of affiliated consumers.15 We use the model to numerically and empirically examine the impact

of consumer inertia on market power, in general, and in the context of horizontal mergers.

2.1 Demand

We extend the logit discrete choice model to allow for unobserved heterogeneity that depends

on past purchases. The first assumption below presents a random coefficients utility formulation

with myopic choice. The second assumption restricts the random coefficients so that the type-

specific utility shock affects only a single product, corresponding to our notation of consumer

affiliation. The third assumption places restrictions on the evolution of consumer types over

time.

Assumption 1: Myopic Discrete Choice Consumers in each market select a single product

j ∈ J that maximizes utility in the current period, or they choose the outside good (indexed

by 0). Each consumer i is indexed by a discrete type, hi, and a time-varying state, zit. The

first feature, hi , captures exogenous and persistent unobserved heterogeneity.16 The second

feature, zit, allows the distribution of preferences to change endogeneously over time through
13For certain parameter values, the model can also be interpreted as a model of search or inattention.
14For example, see Dubé et al. (2010).
15Slade (1998) estimates a model of habit-forming consumers and sticky prices. That model, however, explicitly

imposes a cost of price adjustment. Our model does not rely upon a menu cost to explain dynamic price adjustments.
16The discrete type assumption for the random coefficient model is made elsewhere in the literature. See, for

example, Berry et al. (2006) and Berry and Jia (2010).
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state-dependent utility.

Consumer i receives the following utility for choosing product j in period t:

uijt(zit) = δjt + σjt(zit;hi) + ϵijt. (1)

Consumers receive an additively-separable common component δjt, a state-dependent shock

that may be type-specific σjt(zit;hi), and an idiosyncratic shock, ϵijt. The common component

will typically be a function of firm j’s price, and takes the form δjt = ξjt + αpjt in the standard

logit model (with α < 0).

We denote the probability that a consumer of type h in state z chooses product j as sjt(z;h).

We normalize the utility of the outside good to be zero. Given the standard assumption of a

type 1 extreme value distribution on the utility shock, ϵijt, the choice probabilities of consumers

are:

sjt(z;h) =
exp(δjt + σjt(z;h))

1 +
∑

l exp(δlt + σlt(z;h))
. (2)

The overall share of product j, Sjt is given by the weighted average of choice probabilities for

consumers across states and types.

The mean utility δjt may depend on time varying-observable characteristics as well as fixed

effects. In the empirical application, we makes use of this latter feature to allow for serial

correlation in unobservable utility shocks over time.

Assumption 2: Consumer Types Our framework allows for both endogenous and exogenous

unobserved heterogeneity. We consider unobserved exogenous heterogeneity in a simple form

by assuming that there are two latent consumer types, h ∈ {0, 1}. We assume that consumers

with h = 0 are unaffected by state dependence, so that σjt(z; 0) = σjt(z
′; 0) ∀z, z′, and we

normalize σjt(z; 0) to zero for all z. We term these consumers “shoppers.”

Demand from shoppers is given by the standard logit choice probabilities, as can be seen

following equation (2). It is well known that logit demand restricts consumer substitution

patterns to be proportional to market share, which may be unappealing in certain settings.

We impose this restriction to make progress on identifying and estimating a model with state

dependence with only market-level data.17

Consumers with a latent type h = 1 can be affected by state dependence. Let the fraction of

consumers of this type be given by λ.
17For applications, such as antitrust investigations, market-level data are common, while more detailed data

about diversion are often not available (Valletti and Zenger, 2021). Moreover, the imposition that diversion is
proportional to share may be palatable in more narrow product markets (Miller and Sheu, 2021), in which there
are fewer dimensions of differentiation (e.g., luxury SUVs vs. automobiles). In practice, antitrust agencies have
employed this assumption during investigations and in court. For example, this assumption was used by the DOJ’s
economic experts’ in challenges to the H&R Block/TaxACT merger in 2011, the GE-Elextrolux merger in 2015, the
AT&T/Time Warner merger in 2018, and by the FTC in its analysis of the Reynolds-Lorillard tabacco merger in 2015.
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Assumption 3: Single-Product Affiliation We now place restrictions on the state-dependent

demand shocks, σjt(z;h), for consumers that are affected by state dependence. We assume that

each consumer state corresponds to an affiliation (utility shock) to a single product. Further,

we assume that there is a single state corresponding to each product. Thus, a consumer in state

z = j is affiliated to product j. We assume that a consumer affiliated to product j receives a

perceived benefit for that product, σjt, and the benefit is uniform relative to the other products,

i.e., σjt = σjt(j; 1)− σjt(z
′; 1) ∀z′ ̸= j.

Thus, we define affiliation to be a product-specific state dependence in preferences. The

model can be interpreted as brand loyalty when σjt is a positive level shock that reflects an in-

ternal benefit for purchasing from the same brand. Alternatively, the model may be interpreted

as a switching cost model when σjt is a level shock representing the costs (physical and psy-

chic) of switching to another brand. These two interpretations are empirically indistinguishable

because only the relative utilities affect choices in the formulation of the discrete choice model.

The model can also accommodate habit formation and a special case of search.18 Distinguishing

among these different mechanisms lies outside the scope of this paper but may be important,

especially when examining questions about welfare. The brand loyalty and the switching cost

models can have identical outcomes but divergent welfare predictions, as σjt is a net benefit in

the former and a net cost in the latter.

We assume that consumers become affiliated with the product they purchased in the pre-

vious period, or, if they chose no product in the previous period, they are affiliated with the

outside option, j = 0. Hence, in our model, affiliation is only a function of a consumer’s pre-

vious choice, rather than a longer purchase history.19 Based on these assumptions, we can

represent the state of each market in each period by the vector rt = {rjt}, where rjt denotes

the fraction of h = 1 consumers that are affiliated to product j in period t.

The share of state-dependent consumers affiliated to product j in period t+1 can be denoted

as:

rjt+1 =
∑
z∈0,J

rztsjt(z; 1) (3)

Thus, the share of consumers that are affiliated to a product depends on previous period choices

(and therefore prices) and the underlying distribution of types. The evolution of states follows
18In the habit formation interpretation, a consumer gets either an extra benefit for repeating earlier behavior or

bears a cost for adjusting behavior. In contrast to the switching cost model, other aspects of preferences may change.
For example, consumers may become less price sensitive to the affiliated product, in addition to realizing a level
shock.

In the special case where σjt renders affiliated consumers inelastic, the model has a search or inattention inter-
pretation. In this case, the unaffiliated consumers are those that engage in search and realize full information about
the choice set. Affiliated consumers are inattentive and simply buy the previous product. This extends standard
search models (e.g., Varian, 1980; Stahl, 1989) by allowing for a mixture of consumers that search and those that
do not. The fraction that do not search is endogenous and depends on past prices.

19We make this simplifying assumption in order for the model to be estimated with market-level data, rather than
with individual-level panel data. In Section 3 we present evidence that in retail gasoline markets, consumers may
switch brand loyalty based upon their most recent purchase, and loyalty is not entirely a long-run phenomenon.
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a Markov process, where the state can be expressed as a function of the joint distribution of

states, types, and choices in the previous period.

Assumption 4: Demand Specification To proceed with our analysis, we make additional

parametric assumptions about utility. First, in equation (1), we specify δjt = ξjt + αpjt, where

ξjt is comprised of product and time (and, later, market) fixed effects.

Next, we assume that the affiliation shock affects the utility level by a constant amount for

all products, ξ, while we set the affiliation shock for the outside good to 0. Thus, we chose

σ0t = 0 and σjt = ξ ∀j > 0. In addition, we need take a stance on the baseline utility levels

that type h = 1 consumers receive for products they are not affiliated to. We assume that

σjt(z
′; 1) = 0 ∀z′ ̸= j, so that type h = 1 consumers receive the same utility for products they

are not affiliated to as shoppers. This rules out arbitrary persistent differences in preferences

between the two types of consumers and implies that a consumer of type h = 1 who chooses

the outside option has the same choice probabilities as a shopper in the subsequent period.

Because of this equivalence, we suppress types in the choice probability expression sjt(z) going

forward, denoting the choice probabilities of shoppers as sjt(0). We also refer to the combined

set of shoppers and consumers with z = 0 as unaffiliated.

We can thus represent the utility of a consumer i in state z for product j > 0 is as follow:

uijt(zit) = ξjt + αpjt + 1[j = zit]hiξ̄ + ϵijt. (4)

Here, zit denotes the consumer’s product choice in period t−1. Consumers subject to affiliation

always have a value of hi = 1, and shoppers always have a value of hi = 0. We therefore

represent σjt = 1[j = zit]hiξ̄. Finally, we assume the error term, ϵijt, follows the type-1 extreme

value distribution, which yields the choice probabilities specified in equations (2) and (3).

2.2 Supply

We assume that firms set prices to maximize the net present value of profits. We restrict atten-

tion to Markov perfect equilibria. Current-period profits are a function of shares. The aggregate

share of product j across consumer types and states is:

Sjt = (1− λ)sjt(0) + λ

J∑
z=0

rztsjt(z). (5)

The aggregate share of product j can thus be written as a weighted sum of its share of unaf-

filiated consumers, sjt(0), and affiliated consumers, sjt(z)∀z ̸= 0. Note that the total weight

on unaffiliated consumers in any period is (1 − λ) + λr0t, as some fraction of state-dependent

consumers may have chosen the outside option in the prior period. Note also that firm j will

make sales to consumers affiliated to other firms, z ̸= j, but the probability that such consumers
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will choose firm j is strictly lower than the choice probability of an unaffiliated consumer when

the utility shocks {σjt(z)} are positive.

Assumption 5: Competition in Prices We assume that firms set prices in each period to

maximize the net present value of profits from an infinite-period game. Prices are set as a best

response conditional on the state and contemporaneous prices of rival products. Firms cannot

commit to future prices. The state vector in each period is summarized by marginal costs, ct,

the distribution of affilation across consumers, rt, and other variables that are captured by the

vector, xt, such as expectations about future costs. Entry is exogenous. The objective function

for firm k can be summarized by the Bellman equation:

Vk(ct, rt, xt) = max
pkt|p−kt

{
(pkt − ckt)Skt + βE(Vk(ct+1, rt+1, xt+1)|pt, ct, rt, xt)

}
. (6)

Prices in each period optimize the sum of current-period profits (pkt − ckt)Skt and the con-

tinuation value. Both of these components depend upon marginal costs and the distribution

of consumer states, rt. Thus, when the perceived continuation value is non-zero, firms antici-

pate how price affects the future distribution of consumer states and also the impact of future

changes to marginal costs. Note that the state space does not include previous period prices.

We therefore exclude strategies that depend directly upon competitors’ historical prices, such

as many forms of collusion.

Assumption 6: Expectations Consistent with the Markov perfect framework, we make the

relatively weak assumption that the continuation value function is stable conditional on the

state and prices. In contrast to the typical setup for a dynamic game, we place minimal re-

strictions on expectations, discount rates, and the perceived continuation value. Instead, our

empirical approach is to directly estimate a reduced-form model of (the derivative of) the con-

tinuation value. We describe this approach in more detail in Section 5.

Thus, market equilibrium is characterized by consumers making (myopic) utility-maximizing

purchase decisions and firms pricing as the best response to other firms’ prices, conditional on

the state.

2.3 Theoretical and Numerical Analysis

To assess equilibrium pricing incentives in markets with consumer inertia, we first consider a

deterministic setting where marginal costs are constant. We use numerical methods to analyze

steady-state prices in an oligopoly game with Bertrand price-setting behavior.20

20For the monopoly case, it is possible to obtain analytical results that can highlight the role of investment and
harvest incentives. We present these results in Appendix A.1.
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We employ this approach to help develop an understanding about equilibrium incentives.

When we turn to the empirical approach in later sections, we consider an environment with

time-series variation in demand and cost shocks. These shocks generate a dynamic equilib-

rium with prices that are not in the long-run steady state. We therefore implement a different

simulation approach to assess price effects in our empirical setting.21

2.3.1 Steady-State Approach

For this analysis, we specify the utility function as in (4):

uijt(z) = ξj + αpjt + 1[j = z]hiξ̄ + ϵijt.

Each firm k sells a set of products, j ∈ Jk, and maximizes the expected discounted value of

profits. Therefore, firm k’s value function takes the following form:

Vk(r) = max
pk|p−k

πk(p, r) + βVk(r
′). (7)

Here, p and r are vectors of prices and affiliated customers, respectively, and r′ is a vector

specifying each product’s affiliated customers in the next period. In accordance with the model

above, an element of r′ ≡ f(p, r) is r′j =
∑

z∈0,J rztsjt(z) =
1
λ (Sjt − (1− λ)sjt(0)). Static profits

are πk(p, r) =
∑

j∈Jk(pj − cj) · sj(p, r). We drop the expectations operator, as we consider a

deterministic steady state.

To find the steady-state prices and affiliated shares for each firm, we focus on Markov perfect

equilibrium.22 Firm k’s profit-maximizing first-order conditions are then:

∂πk
∂pj

+ β
dVk(r

′)

dr′
dr′

dpj
∀j ∈ Jk = 0. (8)

Next, we specify the derivatives of equation (7) with respect to r and evaluate them at the

prices that solve each firm’s first-order conditions, which will be the prevailing prices at the

steady state. These derivatives, in conjunction with the steady-state condition, dV ′

dr′ = dV
dr , yield

the following system of equations:

dVk(r)

dr︸ ︷︷ ︸
J×1

=

[
∂πk
∂p

dp

dr
+
∂πk
∂r

]
︸ ︷︷ ︸

J×1

[
I − βfp(p, r)

dp

dr
− βfr(p, r)

]−1

︸ ︷︷ ︸
J×J

. (9)

In this equation, ∂πk
∂p , ∂πk

∂r , fp(p, r), fr(p, r) are known, conditional on values of p and r.

21In the empirical application, after estimating demand, if we were to set demand and cost shocks to zero, then
we could use the same approach as in this section to solve for counter-factual prices.

22Although we do not prove that the equilibrium is unique, the simulation results support there being a single
steady-state equilibrium.
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The remaining unknowns are dp
dr and dVk(r)

dr . To solve the model, we impose the steady-state

condition governing the evolution of affiliated customers, r′ = r. The full set of steady state

conditions, provided by equation (9) and r′ = r, allow us to solve for steady-state prices and

shares, conditional on the J × J derivative matrix, dp
dr . The values of dp

dr are determined by the

model.

In our simulations, we solve for the values of dp
dr numerically using a local approximation

method. First, we provide a guess for the matrix d̃p
dr and calculate the implied steady-state values

for p, r, and dVk(r)
dr , leveraging the J first-order conditions. We then numerically differentiate p

with respect to r to obtain an estimate d̂p
dr . If the absolute distance between the guess d̃p

dr and the

implied estimate d̂p
dr are identical up to rounding error, a solution is found. Otherwise, we take

the average of d̃p
dr and d̂p

dr as the guess in the next iteration. For additional details, see Appendix

A.2.

Consistent with Dubé et al. (2009), equilibrium prices may be increasing or decreasing for

different levels of affiliation.23 With greater affiliation, firms face less elastic demand, but the

incentive to invest in future demand tends to increase. Whether or not prices increase with

affiliation depends on the relative weights on these forces and underlying market parameters.

Importantly for our context, these forces interact with the market structure, so that the presence

of affiliation can have differential effects on prices post-merger.

Consider a merger in which firm k acquires product b and maintains it as a separate brand.

In the case of static demand, the post-merger change in pricing incentives for a product j ∈ Jk

at the pre-merger equilibrium prices is given by
∑

l∈{Jk,b}
∂πl
∂pj

−
∑

l∈Jk
∂πl
∂pj

= ∂πb
∂pj

. In the case of

substitutes, ∂πb
∂pj

is greater than zero and the firm raises prices.

For dynamic demand, the post-merger change at the pre-merger steady-state prices is in-

stead:

Change in dynamic first-order condition:
∂πb
∂pj

+ β

(
dṼk(r

′)

dr′
− dVk(r

′)

dr′

)
dr′

dpj
, (10)

where Ṽk now also incorporates the discounted flow of profits from product b. The first term,
∂πb
∂pj

, is equivalent to the change in the static first-order condition, though it is evaluated at

different equilibrium prices. The second term may be positive or negative, and thus consumer

dynamics can either exacerbate or mitigate incentives to raise prices post merger. On the one

hand, the acquiring firm will internalize the fact that an increase in price for product j will

increase the number of customers affiliated to the new brand b, increasing future profits for that

brand. On the other hand, such a price increase would reduce the affiliated customers of brand

j. This has an indirect effect of incentivizing lower future prices for all firms in the market
23We provide specific examples to illustrate this in Appendix A.3.
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and reducing future profits for the acquired brand.24 The tradeoff can be conceptualized as

balancing the re-capture of lost (affiliated) customers by the acquired brand versus the desire

to maintain a higher stock of affiliated consumers to soften competition. The characteristics

of the market and whether the acquirer maintains separate brands determines how consumer

dynamics affect post-merger price increases.

2.3.2 Distinguishing Types of Mergers

In the presence of consumer inertia, it is important to define precisely the implementation

of a horizontal merger. We consider two types of mergers. The first type of merger unites

pricing control of two products under a single firm and the merged firm maintains these as

separate products. We refer to this as a joint pricing merger. This is a common setting in many

differentiated product mergers when the combined firms maintain separate brands/products.

The second type of merger consolidates two products under a single brand and effectively

offers a single product after the merger. We refer to this type of merger as brand consolidation.

This type of merger typically occurs in settings where retail location is important and the post-

merger firm rebrands all locations under one brand. This is often the case in retail gasoline

mergers, but also occurs in other industries, such as wireless phone service (T-Mobile/Sprint)

and airlines (American Airlines/USAir).

To implement a brand consolidation merger, we need to make an assumption about the

utility that consumers of the removed product receive from buying the remaining brand. We

assume that, at pre-merger prices, the consolidated brand will have the same combined share

of shoppers as the separate pre-merger brands. We assume that consumers that were affiliated

to the removed brand transition to state 0 following the merger. To implement this assumption,

we adjust the value of ξj for the remaining brand of the post-merger firm.25 We make this

assumption in order to make an “apples-to-apples” comparison to joint pricing mergers. In the

context of retail gasoline markets, this is akin to assuming that shoppers do not derive direct

value from the brand, but from other features such as the location. One implication of our

assumption is that we de-emphasize the preference for brand variety that arises in a direct

interpretation of the logit model.

A second implication of this assumption is that at pre-merger prices, the share of affiliated

customers increases for the remaining brand relative to the two separate brands. Given our

adjustment to ξj , the effective choice probabilities for the affiliated consumers post-merger

have an intuitive representation: they are equivalent to the sum of the choice probabilities of a

pre-merger consumer that was affiliated to both of the merging brands.26

24When the elements of dṼk(r
′)

dr′ − dVk(r
′)

dr′ are positive, the tradeoff depends on the magnitudes of these elements

weighed by the elements of dr′

dpj
, which are positive except for

dr′j
dpj

, which is negative.
25See Appendix B for technical details of the implementation.
26Since our model only allows for affiliation to a single brand, this is a hypothetical comparison. This can be
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In practice, however, alternative assumptions on the utility provided by the post-merger

brand can be incorporated into our model. For example, in a merger investigation, an antitrust

authority may learn that the merging parties are planning to remove a brand from the market.

Furthermore, they may also obtain an estimate of what fraction of customers are likely to

transition over to the acquiring firm. In such a case, our model may be used to estimate the

impact of brand consolidation. The parameters ξj and ξ̄ can be calibrated so that the post-

merger share of the remaining product matches the antitrust agency’s estimate of the probability

that a consumer switches to the new brand. This adjustment can be done more generally, even

to reflect the aggregate shares of both affiliated and unaffiliated consumers.

2.3.3 Dynamic and Horizontal Market Power

We use numerical simulations to decompose the potential impacts of dynamic and horizon-

tal market power in the presence of consumer inertia. To measure dynamic market power,

we compare the three-firm oligopoly price with consumer affiliation to a baseline price where

consumers have no state dependence, but the markets are otherwise identical. To measure

horizontal market power, we compare the three-firm oligopoly price to the price that prevails

following a merger between firms one and two.27

We attempt to simulate data from the support of parameters that produce reasonable out-

comes for margins and shares. We employ a “shotgun” approach, generating simulations with

many different parameters and selecting only the markets that meet certain criteria. We first

take Halton draws of the demand parameters such that ξ ∈ [0, 10], ξ̄ ∈ [0, 10], α ∈ [−10, 0], and

set each firm’s marginal cost to one. For each draw of these demand parameters, we construct

three-firm markets for λ ∈ {0.05, 0.1, 0.15, ..., 0.70}. We then restrict the analysis to markets

where firms have shares between 0.05 and 0.30 (yielding an outside share between 0.10 and

0.85) and margins between 0.05 and 0.75.28 Finally, to avoid composition affects, we only ana-

lyze markets with demand parameters that converged for all values of λ.29 The data generating

process yields 6,566 markets whose parameters are summarized in Appendix Table 9.

In Figure 1, we plot the effects of affiliation and reduced competition on prices. The plots

employ simulation results from the 469 baseline parameter values of ξ, ξ̄, and α that converged

for all λ ∈ [0.05, 0.70], or 6,566 markets. Panel (a) measures dynamic market power by plot-

ting price effects as a function of λ. Percent changes are calculated relative to no consumer

shown by considering the following. For a merger between firms 1 and 2, we adjust the merged value of ξmt so that
exp(ξmt) = exp(ξ1t) + exp(ξ2t) at given price levels. It is also then the case that exp(ξmt + ξ) = exp(ξ1t + ξ) +
exp(ξ2t + ξ). Plugging this into the standard share equations, it is straightforward to confirm the above statement.

27Note that we use a (competitive) oligopoly price as a baseline, rather than price equal to marginal cost. Also,
as marginal cost is constant across simulations, using price as a measure of market power is equivalent to the
commonly used markup or margin metric.

28The range for each parameter is selected such that parameter values just outside the bounds of the range result
in outcomes that often fall above or below our share and margin criteria.

29We set the upper bound of λ to be 0.70, because for higher values of λ there were often markets where the
post-merger equilibrium did not converge or pre-merger margins fell above 0.90.
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Figure 1: Potential Price Effects

(a) Dynamic Market Power
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(b) Horizontal Market Power
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Notes: Panel (a) displays the mean percent price increase and for a three-firm oligopoly above the baseline model
with no dynamics in consumption (λ = 0). Panel (b) displays the mean percent price increase of a merger to a
duopoly for two types of mergers: joint pricing control and brand consolidation, for different values of λ. The
plots reflect 469 baseline parameter values of (ξ, ξ̄, α) that converged for all λ ∈ {0.05, 0.1, 0.15, ..., 0.70}, or 6,566
markets in total.

affiliation (λ = 0) while holding fixed the other parameters in the model. On average, prices

increase with the fraction of customers prone to affiliation for values of λ ≤ 0.55 and decrease

thereafter. At lower values, a marginal increase in λ raises the “harvest” incentive more than

the “invest” incentive, leading to higher prices. However, above some threshold, an increase in

λ yields a relatively stronger incentive to invest in future demand, and prices fall. In our simu-

lations, both market share and profits increase monotonically with λ (not shown). On average,

affiliation results in moderate price increases compared to a static demand model. However,

the impact of dynamic market power can be quite substantial depending on the underlying

demand parameters. The 90-10 range of outcomes is plotted with the transparent area. When

λ > 0.4, the 90th percentile market exhibits dynamic market power resulting in prices more

than 15 percent higher than a static model.

In panel (b), we plot the price effect of horizontal market power on prices across different

values of λ. We measure horizontal market power by comparing the prices in the symmetric

three-firm oligopoly to the post-merger prices in both joint pricing and brand consolidation

mergers. In our symmetric setting, brand consolidation mergers provide greater horizontal

market power relative to joint pricing mergers across all levels of λ. This is in part due to how

we specify brand consolidation mergers, as we assume the consolidated brand retains the same

combined share of shoppers. Still, there is large overlap in the 90-10 percentile range across

the two merger types, demonstrating that both can enable comparable levels of horizontal

market power. Another interesting feature of panel (b) is that horizontal market power slightly

decreases, on average, in joint pricing mergers, but it increases in brand consolidation mergers.
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This highlights that the interaction between consumer inertia and a decrease in competition

depends critically on the mechanism through which competition is reduced.

2.3.4 Implications for Mergers and Enforcement

The above analysis demonstrates that brand consolidation and joint pricing mergers can have

diverging effects in the presence of consumer inertia. In these simulations, the average per-

centage merger price effect is 3.8 percent for joint pricing mergers and 6.5 percent for brand

consolidation mergers.

By contrast, in a symmetric oligopoly, the joint pricing and brand consolidation mergers we

consider have identical price effects when demand is characterized by the static logit model. We

provide a proof in Appendix B. Thus, precisely modeling the structure of a horizontal merger

may have heightened importance in markets characterized by consumer inertia, and failing to

account for consumer inertia could have meaningful effects on antitrust enforcement.

To illustrate this, consider the following hypothetical scenario. The true underlying model

is the three-firm market with consumer state dependence due to affiliation. A practitioner

observes each firms’ pre-merger prices, marginal costs, and aggregate market shares. This data

is then used to recover the demand parameters of the standard logit model (without affiliation),

and then the price effects of a merger are simulated. We perform this experiment for each of

the numerically generated markets, and consider both joint pricing and brand consolidation

mergers.

The “average” market is one that, a priori, would typically raise moderate concern from the

US antitrust agencies; HHI (1067) falls in the “unconcentrated” range, but the change in HHI

(712) generally warrants a thorough investigation. The average pre-merger difference between

price and cost is 0.26, and the mean market share is 0.17. We use these mean values to calculate

the “Upward Pricing Pressure” index, 0.17
1−0.17 · (1.26− 1) = .053, which is just over the threshold

that may trigger an investigation.30 The full range of markets spans those that would receive no

scrutiny and those that almost certainly would be challenged. Thus, the simulations generate

a reasonable set of markets within which to explore merger effects in the consumer affiliation

model. Additional statistics are reported in Table 10 in the Appendix.31

Figure 2 plots the merger price effects related to the pre-merger market share of each sym-

metric firm. To generate the graph, we run a local polynomial regression of the merger price

effect on one of the symmetric firm’s pre-merger market share. We generate fitted lines for

(i) the joint pricing merger effect, (ii) the brand consolidation merger price effect, and (iii) a
30See, for example, Farrell and Shapiro (2010) and Miller et al. (2017). This calculation assumes that diversion

is proportional to market share, which is often assumed at the early stages of an antitrust investigation.
31Tables 11 and 12 in the Appendix explore the extent to which demand parameters can predict equilibrium prices

using reduced-form regressions. On average, increasing the rate of affiliation (λ) and the strength of the affiliation
(ξ̄) tends to increase pre-merger prices, but their impact on the effect of a merger is dependent upon the type of
merger. Higher values for λ and ξ̄ decrease prices in joint pricing mergers but increase prices in brand consolidation
mergers. However, these relationships do not hold in every instance.
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Figure 2: Price Increase by Market Share
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Notes: The lines depict a local polynomial regression of firm 1’s merger
percent price change on its pre-merger market share.

misspecified static logit model (which generates the same price effect, regardless of the merger

type). In line with intuition, the price effect of a merger is increasing with pre-merger market

shares.

The figure indicates that, on average, the static model yields a prediction that is biased

upward relative to joint pricing and biased downward relative to brand consolidation. The

average prediction bias, defined as the static prediction minus the price effect, is 1.5 and -1.2

percentage points for joint pricing and brand consolidation mergers, respectively. Scaled by the

magnitude of the true price effect, the mean bias is 67.3 and -19.7 percent for the two types

of mergers. Thus, for both types of mergers, incorrectly assuming static demand will lead to

substantially biased predictions.

These biases can primarily be explained by shifts in the “harvesting” and “investment” in-

centives for the merged firm and its rivals. For these simulations, we find that the magnitude of

the bias increases with market share with respect to joint pricing mergers, but decreases with

respect to brand consolidation mergers. This indicates that the static model fails to capture the

shift in incentives toward invest for joint pricing, and this missattribution is greater at higher

market shares. On the other hand, the static model fails to account for the shifts in the in-

centives toward harvest for the brand consolidation merger, and the bias is greater with lower

market shares.

The average direction of the bias displayed in Figure 2 need not hold in every market. For

brand consolidation mergers, static models tend to under-predict the true dynamic price effect,

but almost 25 percent of simulations resulted in over-predictions. For joint pricing mergers, all

of the included markets showed that static models resulted in over-predictions, but we were

able to obtain under-predictions with other parameterizations. Appendix Figure 7 plots the

distributions of bias across all 6,566 markets. Finally, we note that these results reflect a stylized
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case with a three-firm symmetric oligopoly. Still, these findings highlight the importance of

properly accounting for dynamics when simulating the price effects of mergers.

In general, model misspecification can yield biased predictions because the underlying de-

mand elasticities are biased. In this case, that is not the primary factor. Note that we obtain the

same (misspecified) elasticity for the static model, but the direction of bias can go in opposite

directions depending on the type of merger. Thus, biased predictions from the static model

arise primarily from the omission of dynamic incentives to invest in future demand, rather than

a biased elasticity or mean utility parameters alone.32

The above results suggest that affiliation has implications for counterfactual exercises, such

as merger simulation. Antitrust agencies often infer elasticities from markups calculated using

accounting data (see Miller et al., 2013), which omit the dynamic incentive of firms. In addition

to generating incorrect elasticities, failing to account for the dynamic incentives in first-order

conditions can have large direct effects on post-merger predictions. These results highlight the

benefit of an empirical model that can account for consumer dynamics, which we pursue in the

following sections.33

3 Data and Reduced-Form Evidence of Dynamics

We now introduce the data used in the demand estimation and empirical application. To moti-

vate the empirical application, we also provide evidence of dynamic demand and dynamically

adjusting retail gasoline prices.

A host of previous studies have found that retail gasoline prices may take multiple weeks

to fully incorporate a change in marginal cost.34 One innovation of our study is that we use

separate measures of unexpected and expected costs to see if, consistent with forward-looking

behavior, firms respond differentially to these two types of costs.

3.1 Data

The main empirical analysis relies upon daily, regular fuel retail prices for nearly every gas

station in the states of Kentucky and Virginia, which totals almost six thousand stations. As

a measure of marginal cost, the data include the brand-specific, daily wholesale rack price

charged to each retailer as well as federal, state, and local taxes. We therefore almost perfectly

observe each gas station’s marginal cost changes, except for privately negotiated discounts
32The static model is calibrated to be more elastic, on average, than the share-weighted elasticity in the dynamic

model (−4.74 vs. −3.86). More elastic demand generates smaller merger price effects in the logit model.
33For certain applications, an informal analysis of consumer dynamics may provide a useful indication of static

model bias. Our results show how price predictions from static merger simulations could be revised downward
when only pricing control is expected to change in a merger. In Appendix A.6, we provide more detail on how
dynamics affect simulation bias. Therein, we again find that the relationship between the strength of dynamics and
bias is a function of the type of merger under evaluation.

34For a review, see Eckert (2013).

20



per-gallon that are likely fixed over the course of a year. The data ranges from September

25th, 2013 through September 30th, 2015. The data was obtained directly from the Oil Price

Information Service (OPIS), which has previously provided data for academic studies (e.g.,

Lewis and Noel, 2011; Chandra and Tappata, 2011; Remer, 2015).

OPIS also supplied market share data. This proprietary data is the standard used by industry

participants to track local market shares.35 The data is reported by week and county for each

gasoline brand. In our analysis, we treat consumers as choosing among brands in a county.36

Due to contractual limitations, OPIS only provided each brand’s inside market shares, not the

actual volume. Thus, to account for temporal changes in market-level demand, we supple-

ment the share data with monthly, state-level consumption data from the Energy Information

Administration (EIA). We describe our adjustment in Section 4.3. To account for differences

in demographics across markets, we merge the data with measures of income and population

density from the American Community Survey.

To provide additional evidence to support the presence of consumer inertia in retail gasoline,

we first document purchasing patterns using an additional NielsenIQ dataset. We employ the

consumer panel data, which allows us to track individual household purchasing decisions over

time. These data do not include prices or provide comprehensive market estimates, and we use

this data only to document patterns of repeat purchases.

3.2 Dynamic Demand: Evidence from Consumer Data

In this section, we use household-level data to provide evidence of consumer inertia in retail

gasoline markets. Using the Nielsen Consumer Panel data, we analyze household purchases of

gasoline from 2007 through 2018. With this data, we find patterns consistent with consumer

state dependence.37 We make the following sample restrictions. First, we exclude very small

and very large purchase amounts, dropping trips where households spend less than $10 or

more than $120 on gasoline. We exclude gasoline purchases from warehouse clubs and grocery

stores, as gasoline is more likely to be a secondary reason for the trips in those cases. After these

restrictions, we limit the analysis to households that make at least 26 purchases of gasoline in
35See https://www.opisnet.com/product/pricing/retail-fuel-prices/marketsharepro/. OPIS calculates these data

from actual purchases that fleet drivers charge to company cards issued by Wright Express (WEX). WEX is the largest
provider of fleet cards (to businesses that have fuel expenses) in the United States, with over 4 million drivers and
95 percent coverage of fuel retailers (https://www.wexinc.com/about/partner/fuel-partners/). OPIS indicates that
there is a high correlation between these market share data and actual retail volumes, which they obtain directly
from some retailers but cannot share due to contractual restrictions. These data may understate purchases from
certain types of stations, such as supermarkets and wholesale clubs, but the fact that gasoline brands use it to track
the shares of rivals makes it suitable for our purposes.

36In some instances, the brand of gasoline may differ from the brand of the station. For example, some 7-Eleven
stations in the data are identified as selling Exxon branded gasoline.

37Our data do not allow us to distinguish among different mechanisms driving consumer inertia, such as brand
loyalty or habit formation. It is also possible that preferences for a brand of gasoline may stem, in part, from gasoline
being an “experience” good, especially for new brands.
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Figure 3: Fraction of Repeat Purchases by Household
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Notes: This figure depicts the distribution of households by fraction of repeat purchases. For each household we
calculate the average fraction of gasoline purchases that are a repeat purchase, defined as returning to the same
brand as the previous purchase. We restrict the sample to households with at least 26 gasoline purchases in a year.

a given year, equivalent to one trip every two weeks. 63 percent of trips are from households

that meet this threshold. We obtain qualitatively similar evidence of dynamics without these

sample restrictions.

Within this sample, the median time between purchases is 7 days, and the mean is 8.6

days. That is, the typical consumer makes one purchase each week. In over 90% of cases, the

household only purchases gasoline during the trip. In the remaining cases, the household may

additionally purchase snacks, lottery tickets, etc.

For a high-level perspective on state dependence, we first explore the propensities of house-

holds to return to the same brand. We define a repeat purchase to be when a household

purchases gasoline from the same brand as they did in their previous purchase. Then, for each

household, we calculate the fraction of gasoline purchases that are repeat purchases. Figure

3 plots the distribution of the fraction of repeat purchases across households. There are three

characteristics of this plot that are consistent with our model of consumer inertia. First, repeat

purchases are exceedingly common in retail gasoline markets. For the median household, 73

percent of their trips are repeat purchases. Second, their is a mass of households that shop

almost exclusively at a single brand: the 90th percentile household has 98 percent of their

gasoline purchases categorized as a repeat purchase. Finally, there is a lot of variation in the

tendency to make a repeat purchase, including a large number of households where less than

50 percent of their consumption is a repeat purchase. Overall, we view this as evidence of con-

sumer inertia, with different “types” of households; some that exhibit strong brand affiliation

and others that tend to shop around.
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Next, we exploit the panel data to study how inertia might affect individual households. We

look at the sequence of purchase patterns, and, in particular, what happens after consumers

switch retailers/brands. To frame the analysis, consider a hypothetical scenario in which a

household shops from brand A two-thirds of the time and brand B one-third of the time.

If there were no consumer inertia, then we would expect the probability that the household

chooses brand A for a purchase would be 0.667, regardless of which brand they chose in the

previous period. However, if consumer inertia is present, then we would expect the probability

to depend on the identity of the previous brand. One possibility is that the household chooses

A with probability 0.8 if it purchased from A previously and with probability 0.4 if it purchased

from B previously; such a process yields an overall probability of choosing A about two-thirds

of the time.

To show these dynamics in the data, we identify all spells where a household purchases

from the same brand for at least 3 consecutive trips. This provides 156,150 distinct spells. In

these spells, the probability that the next trip is a repeat purchase, excluding the first three

trips, is 0.903.

We then analyze household choice probabilities after the spell has ended, and a different

brand has been chosen. We define the brand chosen during spell the as brand A and the

brand that was switched to after the spell as brand B. After having switched to brand B, the

probability that the next purchase is from brand A is 0.565, much lower than the probability of

staying with A conditional on purchasing from them in the previous period.38 This difference

is consistent with consumer inertia shifting the purchase probabilities of households and can

be rationalized by a discrete choice model where the utility of a particular brand depends on

the brand chosen in the previous period. The probabilities likely reflect a mix of those prone to

inertia as well as those that are not, as well as other factors, such as price changes and entry.

We also find that the probability of staying with brandB, after having switched to them with

the previous purchase, is 0.266, while the probability of purchasing from any another brand,

C, is 0.169. The greater odds of purchasing from the new brand is also suggestive of consumer

dynamics. These statistics are summarized in Table 1.

We also leverage the data on the duration between purchases to provide additional evidence

on the role of consumer inertia. In our model, consumers that choose the outside option lose

their affiliation to a particular brand. In the data, this would be captured by longer periods

between purchases, when the consumer chooses not to purchase. We denote the number of

days since the previous purchase as the “purchase interval.” Longer intervals could arise due to

idiosyncratic, household-specific shocks, or (e.g.,) higher prices.

Consistent with our model of consumer inertia, households are less likely to return to the

same brand after a longer interval. Moreover, this effect is strongest for households that make
38This is also fairly close to the average share of purchases from the prior brand over the course of the year, which

is 0.592.
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Table 1: Evidence of Dynamic Patterns in Shopping Behavior

Variable Value

Probability of Repeat Purchase After At Least Three Consecutive Trips 0.903

Conditional on Switch, Probability of Switching Back to Prior Brand 0.565
Conditional on Switch, Probability of Staying with New Brand 0.266
Conditional on Switch, Combined Probability of of Staying with New Brand or Switching Back 0.831

Notes: Each statistic is calculated from spells that have at least three consecutive trips to the same brand.

repeat purchases more frequently, and the effect is zero for households that are the least likely

to make repeat purchases. This is consistent with our assumption that some consumers are

“shoppers” and are unaffected by inertia. We provide additional details of this analysis in

Appendix C.1.

These purchase patterns can be rationalized by two key features of our model. First, our

model allows for latent consumer types: those that exhibit state dependence and those that do

not. Second, the probability of purchasing from a brand increases if the consumer purchased

from the brand in the previous period. The dynamics in behavior documented above are more

challenging to rationalize with only static unobserved heterogeneity in preferences.

3.3 Dynamic Pricing

We now present reduced-form evidence of dynamic pricing. Consistent with a model where

firms accumulate affiliated consumers over time, we find that new entrants price lower relative

to established competitors in the same market, and that this discount dissipates over time.

Second, we examine cost pass-through and show that firms are slow to adjust to marginal

cost changes. Moreover, firms anticipate expected changes in future costs by raising prices in

advance of the change. In the presence of consumer affiliation a firm will change it’s current

price in response to an expected future cost change, as it affects the current value of investing

in future demand. The ability to separately estimate the response to expected and unexpected

costs is a key innovation of our study.

3.3.1 Dynamic Pricing of New Entrants

When forward-looking firms price to consumers that may become affiliated, there is an incentive

to initially offer prices below the static optimum. In this setting, we expect a new entrant, all

else equal, to initially price below its competitors. As the new entrant builds up its share of

affiliated customers, its prices will gradually converge to its competition.

We test for and find evidence consistent with this dynamic pricing pattern in the data. To

perform the analysis, we first identify a set of new entrants, defined as a gas station whose

first price observation is at least six weeks after the start of the data and does not exit in the
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Figure 4: New Entrant Prices
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Notes: A data point measures the average difference between a new en-
trant’s price and the county average price, for the given number of weeks
after entry. The line is created using local polynomial regression.

remainder of the sample. To ensure there is sufficient data and to control for composition

effects in the analysis, we limit the set of entrants to those with at least one year of post-entry

price data. Using this filter, we identify 193 entrants. We compare prices for entrants to the

594 stations in those counties that are present for the entire sample.

Figure 4 depicts the average difference between an entrant’s price and all other stations’

prices in the same county, sorted by the number of weeks after entry. The figure demonstrates

that gas stations enter with a price that is, on average, two cents per gallon less than incum-

bents’ prices. Entrants’ prices then slowly converge over time to the market average. For the

first 8 weeks following entry, new entrant prices are on average 2.1 cents per gallon lower

than incumbents’ (standard error: 0.24). From weeks 9 through 24, entrant prices are 1.1

cents per gallon lower (standard error: 0.17). These differences are highly significant, and,

based on our empirical demand estimates, are economically meaningful for attracting unaffili-

ated consumers. Our model predicts this behavior, as a profit-maximizing firm would initially

price lower attract shoppers and raise its price over time as consumers became affiliated and

less elastic. Though this pattern could be driven by other mechanisms, it is another piece of

evidence that is consistent with the model of consumer inertia.

3.3.2 Cost Pass-through

To highlight the temporal component of cost pass-though, we separately estimate how gas

stations react to expected versus unexpected cost changes. Beyond motivating the structural

model, these results also demonstrate the importance of capturing firms’ anticipated price re-

sponses when estimating cost pass-through rates. For example, to analyze how much of a tax

increase firms will pass-on to consumers, it is imperative to recognize that firms may begin to
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adjust their prices prior to the tax increase being enacted; failure to account for this response

may lead to underestimating pass-through rates.

We construct our measure of expected cost by using gasoline futures and current wholesale

costs to project 30-day-ahead costs. Unexpected costs represent deviations from this projec-

tion.39 We incorporate the main components of marginal costs for retail gasoline, which include

the wholesale cost of gasoline and the per-unit sales tax. We estimate the following model:

pnt =

50∑
s=−50

βsĉn(t−s) +

50∑
s=−50

γsc̃n(t−s) +

50∑
s=−50

ϕsτn(t−s) + ψn + εnt. (11)

Here, pnt, is the price observed at gas station n at time t. ĉn(t−s) and c̃n(t−s) are the expected and

unexpected wholesale costs observed with lag s, and τn(t−s) is the state-level sales tax.40 Using

the estimated coefficients on the cost measures, we construct cumulative response functions

to track the path of price adjustment to a one time, one unit cost change at time t = 0. We

incorporate 50 leads and lags to capture the full range of the dynamic response. We focus our

results on unexpected and expected costs, as we do not have enough tax changes in our data to

estimate a consistent pattern of response.

Figure 5 plots the cumulative response functions for unexpected and expected costs. Panel

(a) displays the results for unexpected costs. Prices react suddenly and quickly at time zero,

but it takes about four weeks for the prices to reach the new long-run equilibrium. Estimated

pass-through peaks at 0.72 after 34 days, with an average of 0.64 over days 21 through 50.

Panel (b) displays the cumulative response function for expected costs. Notably, firms begin

to react to expected costs approximately 28 days in advance, with a relatively constant adjust-

ment rate until the new long-run equilibrium passthrough is reached 21 days after the shock.

The estimated pass-through rate averages 1.01 over days 21 through 50. Though the total du-

ration of adjustment is longer compared to the unexpected cost shock, the firm incorporates

the cost more quickly after it is realized. This coincides with substantial anticipation by the

firm; the price already captures about 40 percent of the effect of the expected cost shock the

day before it arrives.41

Thus, a reduced-form analysis of pricing behavior shows that retail gasoline prices adjust

slowly to changes in marginal cost, and also that price changes anticipate expected changes

in marginal costs. These patterns are consistent with forward-looking behavior by firms and
39For details, see Section C.3 in the Appendix.
40To more easily incorporate future anticipated costs into the regression, we do not present an error-correction

model (Engle and Granger, 1987), which is commonly used to estimate pass-through in the retail gasoline literature.
As a robustness check, we estimated the price response to expected and unexpected costs using the error-correction
model, and we found very similar results.

41A striking result from these estimates is the difference in the long-run pass-through rates. Expected costs
experience approximately “full” pass-through – a cost increase leads to a corresponding price increase of equal
magnitude. On the other hand, unexpected costs demonstrate incomplete pass-through, moving about only 64
cents for each dollar increase in cost.
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Figure 5: Cumulative Pass-through
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Notes: Panels (a) and (b) depict the cumulative price change in response to a one unit cost change at time = 0.
Response functions are created from the estimated parameters of equation (11).

dynamic demand arising from consumer affiliation. Readers might wonder about the relevance

of asymmetric pricing, i.e., whether the price response is the same for positive and negative

cost shocks. In robustness checks, we find little evidence of asymmetry. Furthermore, in our

data, we do not find evidence of Edgeworth price cycles.

4 Empirical Application: Demand Estimation

Given the reduced-form evidence of dynamic demand and supply behavior, we now present

the empirical application of the model to the retail gasoline markets described in the previous

section. First, we outline our estimation methodology. We divide it in two stages, as demand can

be estimated independently of the supply-side assumptions. Our method of demand estimation

relies on data that is widely used in static demand estimation: shares, prices, and an instrument.

After outlining the methodology, we present results for demand estimation. In Section 5, we

use the estimated demand system to analyze the dynamic incentives faced by suppliers. We use

these results to consider a merger between large gasoline retailers.

4.1 Identification

We discuss the identification argument in three parts. First, we show that the structure of the

model is sufficient to identify the unobserved distribution of choices (i.e., the vector {sjt(z)})

conditional on observed shares Sjt, the share of consumers subject to state dependence λ, and

the strength of the affiliation shock σjt(z). Second, the vector {sjt(z)} allows us to recover the

mean utility for unaffiliated consumers and estimate the static demand parameters. Third, we
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discuss the assumptions that allow us to identify the dynamic parameters.

Identification of Type-Specific Choices

A key challenge with aggregate data and unobserved heterogeneity is that we do not separately

observe choice patterns by unobserved consumer type. In our context, we observe the aggregate

share, Sjt, which is a weighted combination of the {sjt(z)} and depends on the distribution of

affiliated consumers for each product {rjt}. Observed shares are determined by the following:

Sjt = (1− λ)sjt(0) + λ
J∑

z=0

rztsjt(z). (12)

To separate out {sjt(z)} from Sjt, we leverage the structure of the model. With discrete types,

we show exact identification of the choice distribution without supplemental assumptions.

Proposition 1 With discrete types, the distribution of choice patterns is identified conditional on
the distribution of types and type-specific shocks.

Using the dynamic extension of the logit demand system detailed in section 2, we obtain

the familiar expression for the log ratio of shares of unaffiliated consumers from equation (2):

ln sjt(0)− ln s0t(0) = δjt (13)

Likewise, we obtain the following relation for the shares of affiliated consumers:

ln sjt(z)− ln s0t(z) = δjt + σjt(z). (14)

To show identification, we substitute equation (13) into (14) and use the fact that
1

s0t(j)
− 1

s0t(0)
= exp(δjt)(exp (σjt(j))− 1) to obtain the following two relations:

sjt(z) = s0t(z)
sjt(0)

s0t(0)
· exp (σjt(z)) (15)

sjt(0) =

(
s0t(0)

s0t(j)
− 1

)
1

exp (σjt(j))− 1
. (16)

Thus, we show that the J + J2 unknowns {sjt(z)}|j ̸=0, can be expressed in terms of the J + 1

unknowns {s0t(j)} and s0t(0). These J + 1 unknowns are pinned down by the adding-up

condition 1−
∑

j sjt(0)− s0t(0) = 0 and the observed share equations, which provide the other
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J restrictions:

Sjt = (1− λ)

(
s0t(0)

s0t(j)
− 1

)
1

exp (σjt(j))− 1
(17)

+ λ
J∑

z=0

rzts0t(z)
sjt(0)

s0t(0)
· exp (σjt(z))

Identification requires {rjt}, which is the state describing the share of state-dependent con-

sumers that are affiliated to each product. Given our assumptions about the evolution of de-

mand, the value for j can be calculated from the prior period values for Sj(t−1) and sj(t−1)(0):

rjt =
J∑

z=0

rz(t−1)sj(t−1)(z) (18)

=⇒ rjt =
1

λ

(
Sj(t−1) − (1− λ)sj(t−1)(0)

)
(19)

Given an initial value {r∗j0}, equation (19) can be used to iteratively identify the future values

of the state. We discuss the choice of this initial state vector in our empirical application. There-

fore, the unobserved state-dependent choice probabilities {sjt(z)} are identified conditional on

λ and {σjt(z)}, i.e., the parameters governing unobserved heterogeneity.

Identification of Static Demand Parameters

We now allow for the observation of multiple markets, which are denoted with the subscript m.

From equation (13), we obtain the utility of the unaffiliated (type 0) consumer in each market,

{δjmt}. This is analogous to recovering the mean product utility as in (Berry et al., 1995). We

make the standard assumption that the utility is linear in characteristics:

δjmt = αpjmt + π (pjmt × Incomejmt) +Xjmtγ + ηjmt. (20)

The utility depends on price, p, and the interaction of price with market-average income,

both of which are endogenous. The exogenous covariates, X, may contain multi-level fixed

effects. With valid instruments for p and (p× Income), these linear parameters are identified

using standard instrumental variables arguments.

Identification of Dynamic Demand Parameters

We have so far shown exact identification of static demand parameters conditional on the

parameters governing unobserved heterogeneity. To identify λm and σjt(j), we need to em-

ploy additional moments. We use fixed effects to model unobserved serial correlation in de-

mand, and we calculate the residual demand innovations, ηjmt, after accounting for these fixed
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effects. Specifically, we include fixed effects that capture aggregate period-specific demand

shocks, product-specific persistent demand, and market-specific seasonal patterns. We then

assume that the residual demand innovations are uncorrelated over time. We assume that

E[ηjmt · ηjm(t+1))] = 0 holds on average within each brand (j), which provides us sufficient

moments (16) to identify our four dynamic parameters.42 The parameters are pinned down by

the patterns of serial correlation in the data and the entry of brands into new markets.

In the context of our model, demand may be serially correlated due to persistent brand-

market preferences, aggregate period-specific demand shocks, and market-specific seasonal

patterns—all of which are captured by fixed effects. We attribute the residual serial correla-

tion to consumer inertia, where future demand is shaped by the pricing decisions of firms.

Thus, we load the systematic autocorrelation in residual demand innovations to the endoge-

nous response of consumers, rather than treating such correlation as a feature of an exogenous

stochastic process. Our assumption would be violated if brands systematically realized brand-

specific transitory demand shocks within local markets. Depending on the degree to which this

is the case, our results may be thought of an “upper-bound” on the impact of consumer inertia.

In our application, we parameterize the dynamic parameters λm and σjmt(j) as follows:

λm =
exp(θ1 + θ2Incomem + θ3Densitym)

1 + exp(θ1 + θ2Incomem + θ3Densitym)
(21)

σjmt(j) = ξ̄. (22)

Thus, we allow the share of consumers subject to state dependence to vary with market-level

measures of median household income and (log) population density. This specification allows

for the possibility that consumer characteristics, as captured by income and population density,

affect the prevalence of consumer inertia.43 We assume that affiliated customers receive a

constant level shock to utility ξ̄.

Separate identification of λm and ξ̄ is made possible by the structure of the model. λm,

the share of consumers that become affiliated, does not depend on price, whereas the impact

of ξ̄ on shares does. As can be seen by examining equations (13) and (14), a change in price

affects δjmt, which shifts the relative choice patterns, holding fixed ξ̄. Intuitively, this would

be reflected in the data by how the serial correlation in shares varies with price levels in the
42In estimation, we use the sum of the covariance and the correlation moments (squared), weighting each contri-

bution by the number of observations in the data for that brand-market combination. We use both covariance and
correlation to reduce the influence of outlier observations. One could construct related moments by using lagged
prices as instruments, under the assumption that the prices are uncorrelated with the innovation in the demand
residual.

43There are a number of studies finding that consumer behavior in retail gasoline markets are affected by income.
See, for example, Nishida and Remer (2015), Levin et al. (2017), and Donna (2021). Population density can
capture the differences in behavior for consumers that choose to live in more urban versus more rural areas, as well
as serving as a proxy for different commuting patterns in high-traffic areas.
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market. The parameters (θ1, θ2, θ3) are identified by how these serial correlation patterns covary

with demographic characteristics.

The presence of entry aids the identification of the dynamic parameters. In our model, new

brands have zero affiliated consumers when they enter the market. The presence of dynamic

demand allows these new entrants to initially price lower (as shown in Figure 4) and have low

shares, and, over time, increase both prices and shares as they accumulate affiliated consumers.

The estimated parameters reflect the magnitudes of these patterns. In the 241 markets in our

data, 90 experience the entry of a new brand.

Monte Carlo Simulations

To support the identification arguments, we use Monte Carlo simulations to demonstrate that

our approach indeed recovers the correct dynamic parameters when state dependence is present.

We generate simulated data for 6 brands across 50 regions and 100 periods with different val-

ues for λ. The same estimation approach used in the empirical section of this paper recovers

the correct values of the dynamic parameters, ξ and λ. We report the details of these exercises

in Appendix D.

One potential concern is that the presence of persistent unobserved heterogeneity, which can

generate autocorrelation in individual purchasing behavior, may be falsely attributed to state

dependence in estimation. We use additional Monte Carlo exercises to address this concern

directly. We simulate markets with random coefficients logit demand and no state dependence,

and we show that our estimation routine correctly and precisely estimates zero state depen-

dence (λ = 0). In our modeling framework, the bias from ignoring random coefficients loads

onto the static parameters (price coefficient and intercept), not the dynamic parameters. Intu-

itively, this is because the econometric model picks up the influence of past prices on demand

in future periods and can identify when this effect is absent.

Finally, we use the Monte Carlo exercises to highlight the potential impacts of model mis-

specification. Using the simulated data, we estimate demand elasticities using a static logit

model when the underlying model has persistent unobserved heterogeneity or state depen-

dence. As one might expect, the estimated elasticities are biased in each case. However, we find

that the degree of bias is greater for the specifications with (unaccounted for) state dependence.

One reason for this is that, with state dependence, the prices reflect dynamic considerations in

addition to the demand elasticities.

These exercises motivate the potential importance of accounting for state dependence and

the value of our modeling framework, which can correctly identify within-consumer state-

dependence even when between-consumer heterogeneity is richer than our model allows.
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4.2 Implementation Details

For our estimation approach, we estimate the dynamic parameters (θ1, θ2, θ3, ξ) and static de-

mand parameters (α, π, γ). As discussed around equation (20), the static demand parameters

can be identified using an instrumental variables regression, after extracting the (latent) shares

of the unaffiliated consumers. We make use of this method to efficiently estimate multilevel

fixed effects, which are captured by γ.

Our estimator follows a method-of-moments approach built around the assumption that the

residual shocks are uncorrelated. Specifically, our objective function is constructed from the

empirical analogs of the covariance moment E[ηjmtηjm(t+1)] = 0 and the correlation moment
E[ηjmtηjm(t+1)]√

E[η2jmt]
√

E[η2
jm(t+1)

]
= 0. In testing, we found that using both sets of moments helped to miti-

gate the effect of extreme values in our empirical setting. We aggregate both of these by brand,

which yields 16 × 2 = 32 underlying moments. We weight each moment by the number of

observations when constructing the objective function.

Formally, the estimate of the dynamic parameters θ̃ ≡ (θ1, θ2, θ3, ξ) is given by

θ̂ = argmin
θ̃
g(θ̃)′Wg(θ̃), g(θ̃) =

[
gcov(θ̃)

gcorr(θ̃)

]
(23)

where gcov(θ̃) and gcorr(θ̃) are each J × 1 and are the sample analogs of E[ηjmtηjm(t+1)] and
E[ηjmtηjm(t+1)]√

E[η2jmt]
√

E[η2
jm(t+1)

]
, respectively. W is a diagonal matrix where the entries are the square

root of the number of observations for corresponding brand j over the square root of the total

number of observations.

The static parameters are identified by a nested regression within this outer loop using stan-

dard exogeneity conditions for Xjmt and the exclusion and relevance conditions to instrument

for pjmt and (pjmt × Incomejmt). The routine proceeds in the following steps:

1. Pick a value for the parameters (θ1, θ2, θ3, ξ), which yield corresponding values for λm and

σjmt(j).

2. Starting with the first period, solve for the J +1 unknowns {s0t(j)} and s0t(0). These are

obtained using the non-linear system of equations discussed in Section 4.1, conditional

on the values of rjmt. Use the initial value r∗jm0 for the first period and iterate forward

using the law of motion to calculate rjmt for subsequent periods.

3. Solve for sjmt(0) for each firm, period, and market given the J + 1 values above and

equation (16). Calculate δjmt = ln sjmt(0)− ln s0mt(0).

4. Run the regression from equation (20) using the δjmt obtained in the previous step to

solve for the linear parameters (α, π, γ). Obtain the residuals η̂jmt and construct the

objective function described above.
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5. Repeat 1-4 to find the values for (θ1, θ2, θ3, ξ) that minimize the (observation-weighted)

sum of squared values for the empirical moments specified in equation (23).

The regression for equation (20) may involve instrumental variables and the use of panel data

methods such as fixed effects. In our empirical application, we make use of both.

The estimation methodology employs two tricks to speed up the computation of the dynamic

model. First, we are able to specify the J+1 unknowns, {sjt(0)}, in each market-period in terms

of only two unknowns, s0t(0) and
∑

0,z rzts0t(z). After obtaining these two parameters, we have

an explicit formula to calculate the other J − 1 values. We describe this result in Appendix E.

This means that the non-linear solver44 in step 2 only has to find two parameters for each

market-period. Second, the linear form for the nested regression allows for a quick calculation

of the inner part of the routine and allows for serial correlation in unobservables.

In models with state dependence and unobserved heterogeneity, one consideration is the

initial value of the unobserved state. Because we have a long panel, with 104 separate time

observations, we have a sufficient “burn-in” period where this issue does not much affect our

estimates.45 As a baseline, we set r∗jm0 equal to the value of the mean observed share in that

market in the period prior to the first week of our sample, i.e., Ej [Sjm0]. We run robustness

checks with alternative values for r∗jm0, and we obtain very similar point estimates. We discuss

these below in Section 4.4.

4.3 Data for Structural Model

To construct market shares that allows for the outside option (j = 0), we merge the market

share data provided by OPIS with monthly state-level consumption provided by the EIA. We

assume that the maximum observed quantity in the EIA data reflects 75 percent of the total

potential market, and we scale the OPIS county-level shares according to the time variation in

quantities for the corresponding state, i.e., 0.75×quantityst/maxt{quantityst} for state s. Thus,

if OPIS provides a market share for product j of 0.40, and the observed quantity in that state

for that period is two-thirds of the maximum observed in the sample, we construct a market

share of 0.20 = 0.40× 0.75× 2
3 for product j and an outside option share of 0.50.

We supplement the EIA-adjusted weekly brand-county share measures with the average

prices for the brand in a week-county. To reduce the occurrence of zero shares, which do not

arise in the logit model, we use a simple linear interpolation for gaps up to two weeks. We

assume that the station was not in the choice set when shares are missing or zero.46 We drop
44To solve for these unknowns, we use a modified contraction mapping that uses the average of the previous guess

and the implied solution for the two parameters in each market. This modification improves stability.
45We find that it takes approximately 7 weeks for different starting values to converge to same time time-series

patterns for r, i.e., the choice of the initial value does not substantially affect the values of the latent variables for
periods 8 through 104.

46After all cleaning steps, approximately 1 percent of observations have zero shares, and over 90 percent of these
zero share occurrences are in spells of 6 weeks or longer.
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Table 2: Summary Statistics by County

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max N

Num. Brands 4.52 1.46 1 3 6 8 241
Price 2.87 0.11 2.53 2.77 2.96 3.14 241
Wholesale Price 2.25 0.06 2.02 2.21 2.28 2.44 241
Margin 0.21 0.06 0.06 0.17 0.24 0.44 241
Num. Stations 22.33 27.88 1.88 7.69 25.59 239.13 241

Notes: Table displays summary statistics averaged across each of the 241 markets in the sample.

any observations that have missing prices, missing shares, or missing shares in the previous

week. This includes dropping the first week of data, for which we do not have previous shares.

Table 2 provides summary statistics of the data for the 241 counties in KY and VA. There

is cross-sectional variation in wholesale prices, margins, and the number of stations in each

county. To reduce the sensitivity of the analysis to brands with small shares and to make

the counterfactual exercises more computationally tractable, we aggregate brands with small

shares into a synthetic “fringe” brand. We designate a brand as part of the fringe if it does not

appear in ten or more of the 241 markets (counties). Additionally, if a brand does not make

up more than 2 percent of the average shares within a market, or 10 percent of the shares for

the periods in which it is present, we also designate the brand as a fringe participant for that

market. This reduces the maximum number of brands we observe in a county to 8, down from

24. Across all markets, we analyze the pricing behavior of 16 brands, including the synthetic

fringe.47

We also take steps to reduce measurement error in the number of stations in our data. We

assume that stations exist for any gaps in our station-specific data lasting less than 12 weeks.

Likewise, we trim for entry and exit by looking for 8 consecutive weeks (or more) of no data

at the beginning or end of our sample. After cleaning, we retain 110,844 observations in our

sample.

We implement regression equation (20) as follows:

δjmt = αpjmt + π (pjmt × Incomem) + γNjmt + ζjm + ϕt + ψm,month(t) + ηjmt (24)

We obtain δjmt = ln
(
sjmt(0)
s0mt(0)

)
following steps 1 through 3 from Section 4.2. We have shares

and prices at the brand-county-week level. Within-county shares of unaffiliated consumers de-

pend on prices, station amenities, and demographic characteristics of the local population. The

brand-county fixed effects, ζjm, control for cross-sectional variation in the number of stations,

brand amenities,and local demographic characteristics.48 We observe station entry and exit
47Summary statistics by brand are presented in Table 21 in the Appendix. The fringe brand is, on average, 13

percent of the shares for the markets that it appears in. As we designate a fringe participant in nearly every market,
the aggregated fringe has the highest overall share (12 percent).

48Station amenities include, for example, the presence of food (snack or restaurant), co-location with a super-
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and include the number of stations for the brand in that market, Njmt, which is identified by

within-brand-county variation over time. Because we model demand and product choice at

the brand-county level, the number of stations within a county can be thought of as a product

feature, where more locations correlate with higher product quality.

Thus, brand-county fixed effects, which are identified by the panel, allow us to account

for a first-order component of heterogeneity in preferences. Another important component of

preferences in this model is price sensitivity. To account for heterogeneity in price sensitivity,

we interact price with the log median household income in the county.49

In addition to the brand-county fixed effects, we employ panel data methods to address

other unobservables. We allow for the fact that δjmt may be correlated over time in ways

not dependent on (p,N, ζ). We let the time-varying unobserved components of demand be

specified as ϕt +ψm,month(t) + ηjmt. That is, we estimate period (weekly) fixed effects {ϕt} and

county-specific (monthly) seasonal demand shocks {ψm,month(t)}.50 Once we incorporate these

fixed effects, the identifying restriction for the dynamic parameters is that the brand-market-

period specific shock ηjmt is uncorrelated across periods, after accounting for aggregate period-

specific shocks, county-level seasonal patterns, and brand-county level differences. Thus, our

model attributes the residual brand-specific correlation in demand over time within a market

to unobservable consumer types arising from affiliation.

We allow for endogeneity in pricing behavior by instrumenting for pjmt with deviations in

wholesale costs arising from crude oil production in the US. The instrument (Z1) is constructed

from a regression of deviations of wholesale costs (from the brand-county average) on the

interaction of weekly US production of crude oil with the average wholesale cost for the brand

in the county.51 This gives us brand-county-specific time variation in our instrument which is

(a) correlated with the wholesale cost and (b) plausibly not linked to demand. We chose this

measure, rather than instrumenting directly with brand-state wholesale costs, to allow for the

possibility that local variation in wholesale costs over time may reflect brand-specific demand

shocks.

We interact the above instrument with Incomem to create a second instrument, Z2, to ac-

count for the endogeneity of (pjmt × Incomem). Both US crude oil production and income are

plausibly exogenous with respect to local, time-varying demand shocks. Figure 8 in the Ap-

market, car services, and proximity to an interstate. Demographic characteristics might include median household
income, population, population density, and commute percent. These do not vary much over time in our sample.
We do not directly account for commuting patterns in our analysis.

49We do not control for unobserved heterogeneity in price sensitivity, which would add a significant computational
burden. Despite a wide range in market-level median income in our data (from $20,000 to $124,000, or a spread
of 1.8 log points) we find modest effects of income on price sensitivity.

50We benefit from the size of our dataset. 95 percent of county-months have at least 18 observations, and 99
percent of county-brands have at least 40 observations.

51Our measure of the average brand-county wholesale cost is the fixed effect obtained by a regression of wholesale
costs on brand-county and weekly fixed effects, thereby accounting for compositional differences across time. We
obtain the quantity of crude oil produced in the U.S. each week from the EIA.
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Table 3: Estimates of Static Demand Parameters

Static Model Dynamic Model

(1) (2) (3) (4)

Price −0.022∗ −0.260∗∗∗ −2.315∗∗∗ −2.198∗∗∗

(0.014) (0.038) (0.507) (0.458)

Price × Income −0.135∗∗∗ 0.077∗∗∗ −0.007 0.006
(0.021) (0.023) (0.032) (0.033)

Number of Stations 0.016∗∗∗ 0.064∗∗∗ 0.063∗∗∗ 0.058∗∗∗

(0.004) (0.010) (0.010) (0.010)

IV No No Yes Yes
Brand-County FEs X X X
Week FEs X X X
County-(Month of Year) FEs X X X
Observations 110,844 110,844 110,844 110,844

Notes: Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Table displays the esti-
mated coefficients for a logit demand system, where the dependent variable is the log ratio of
the share of the brand to the share of the outside good. For the first three models, the depen-
dent variable uses observed aggregate shares. For the fourth model, the dependent variable
uses the shares of unaffiliated consumers in the dynamic model, which depend on the esti-
mated dynamic parameters. Standard errors are clustered at the county level. For the dynamic
model, standard errors are calculated via the bootstrap.

pendix summarizes the time-series variation by plotting mean total market shares and mean

prices during our sample in panel (a). In panel (b), we plot the mean instrument Z1 against the

mean price. As the figure shows, there is a strong correlation with the instrument, constructed

from US production of crude oil, and prices. Prices display seasonal patterns, reflecting de-

mand, while our instrument does not.

4.4 Results: Demand Estimation

For the empirical application, we implement the methodology described in the preceding sec-

tions. At the solution, our parameter estimates deliver an objective close to zero. The implied

overall autocorrelation in shocks is −0.0007, and the overall covariance is −0.0003.

The estimates for the linear parameters are reported in Table 3. For comparison, the first

three columns report coefficient estimates from a logit demand regression using observed

shares. The fourth column reports the results for unaffiliated customers from our dynamic

model. We obtain a similar price coefficient with our dynamic specification, though the eco-

nomic meaning of the coefficients are different as the shares used in estimation only reflect a

subset of consumers that are unaffiliated. In the static model, all consumers are assumed to be

unaffiliated. We estimate essentially no relationships between income and price sensitivity for
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Table 4: Estimates of Dynamic Demand Parameters

Affiliation Rate Strength of Affiliation
Baseline Income Density Utility Shock

θ1 θ2 θ3 ξ̄

Coefficient 0.584 -0.741 0.287 5.833
95 Percent CI [0.48, 0.75] [-1.35, 0.27] [0.09, 0.51] [5.00, 6.53]

Notes: Table displays the estimated non-linear coefficients from the dynamic model. The first
three parameters imply that, on average, 64 percent of consumers that purchase develop an
affiliation for that brand. Brands located in areas with higher incomes and higher population
densities have greater rates of affiliation, though this heterogeneity is not statistically signifi-
cant. The last parameter shows the level shock for affiliated customers, which is positive, as
expected. Confidence intervals are shown with brackets and are calculated via the bootstrap.

unaffiliated consumers, as the estimated coefficient of 0.006 is close to 0 with small standard

errors. On the other hand, we find that an increase in the number of stations that a brand has

in a market has a statistically significant positive effect on demand for unaffiliated consumers.

Table 4 reports estimates of the dynamic parameters. The parameters θ1, θ2, and θ3 imply

that 63.6 percent of consumers, on average, are subject to state dependence and develop an

affiliation for the brand they previously purchased from (i.e., E[λm] = 0.636). The coefficient of

−0.741 on income indicates that markets with lower-income consumers are populated by more

consumers that are prone to affiliation, though this relationship is not statistically significant

at the 95 percent level. On the other hand, the statistically significant coefficient of 0.287

on population density indicates there is a higher share of state-dependent consumers in more

dense areas. One possible explanation for this is that consumers in urban environments may

drive less frequently and thus be more prone to affiliation. Both of these demographic variables

are standardized, so each coefficient corresponds to an increase of one standard deviation.

The estimated utility shock to affiliated consumers, ξ̄, implies that the affiliated consumers

are inelastic with respect to price. Across observations, the mean own-price elasticity for af-

filiated consumers is −0.53, and the median is −0.38. On average, an affiliated consumer

re-purchases from their preferred brand 92 percent of the time. In the estimated model, affili-

ated consumers do not respond much to prices when the levels are low, but they do when the

prices are higher. The average (absolute) weekly price change in the data is 5 cents per gallon,

and the 25th and 75th percentile price changes are 1.6 cents and 7.5 cents, respectively. We

therefore find that affiliated consumers do not typically switch brands within this range of price

changes. The unaffiliated consumers, however, are highly elastic, with an average own-price

elasticity of −5.96. This implies that for a 1 percent increase in price (roughly 3 cents), the

station will lose 6 percent of its unaffiliated consumers. This high level of price sensitivity for a

subset of retail gasoline consumers seems plausible, as some “shoppers” have been found to go

well out of the way to save a few cents per gallon.52

52For example, the National Association of Convenience Stores found in their 2018 survey that 38 percent of
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On average, roughly 76 percent of a brand’s customers come from affiliated consumers in

any week in equilibrium. The remaining share comes from shoppers (comprising 15 percent of

purchasers for a given brand) and non-shoppers who may be unaffiilated or affiliated to a differ-

ent brand. The average weighted elasticity, which weighs affiliated and unaffiliated consumers

by their relative (purchasing) proportions, is −1.86. This weighted elasticity captures the ef-

fective elasticity faced by a firm and is different than the elasticity obtained when estimating

a static model. A “naive” estimate using a static model would result in a value of −5.7, which

implies a much greater loss in market share for a given price increase than we estimate from

the dynamic model. At the market level, the parameter estimates imply an aggregate weekly

elasticity of demand of −1.20. This is fairly close to the aggregate elasticity over a two-day hori-

zon of −1.38 estimated by Levin et al. (2017). Estimates of elasticities vary in the literature due

to differences in how the markets are defined. Typically, a broader scope in terms of geography

and time horizon yields more inelastic demand.53 In addition, the existing estimates do not

account for consumer inertia, which, as highlighted above, can yield more inelastic demand.

We have tested the robustness of our demand estimates along a few dimensions. First, we

consider the impact of the initial value of the unobserved state on our estimates. As discussed

in Section 4.2, because our dataset consists of a long panel with 104 time periods, the initial

choice of r∗jm0 may not matter much in estimation. After several periods, the system converges

toward the steady-state regardless of the initial value. The estimates will be less sensitive to

the initial choice if more observations reflect the steady-state values. To evaluate the potential

impact, we consider two extreme choices of r∗jm0. First, we assume that no affiilation exists at

the start of the sample, imposing r∗jm0 = 0 for all brands and markets. At the other extreme,

we scale up r∗jm0 from the baseline so that all non-shoppers are affiliated to a brand in the

first period (i.e., we multiply the baseline values so that they sum to 1 in each market). Each

extreme scenario delivers similar point estimates to those in our baseline specification. All of

the dynamic parameters and reported static parameters are within the 95 percent confidence

intervals of our baseline estimates. For example, we obtain estimates for α of −2.439 and

−2.081, ξ of 6.01 and 5.91, and a mean value for λm of 0.617 and 0.637 for these two alternative

specifications.

Second, we test for the uniqueness of our solution by randomly drawing initial values for

the dynamic parameters in the estimation algorithm. We confirm that our estimation routine

gets identical parameter estimates across random initial values (up to a negligible rounding

error).

people would drive 10 minutes out of their way to save 5 cents per gallon. See, https://www.convenience.org/Topi
cs/Fuels/Documents/How-Consumers-React-to-Gas-Prices.pdf

53For example, Levin et al. (2017) find an aggregate elasticity of −0.31 after 20 days, which is much more inelastic
than their two-day estimate. Li et al. (2014) estimate an aggregate elasticity of −0.1. In terms of more narrow scope,
the estimates of Houde (2012) of −10 to −15 reflect an elasticity at the station level, instead of the brand-county or
county/aggregate level, which we would expect to result in more elastic estimates.
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Table 5: Summary of Implied β ∂E[Vj(·)|·]
∂pjt

Group Mean Min p25 Median p75 Max

All -0.122 -0.715 -0.165 -0.094 -0.051 0.040

Notes: Table displays the estimated derivative of continuation value. A finding of zero
would indicate the absence of forward-looking behavior by firms. Negative values indi-
cate that firms are pricing lower in that period than the optimal myopic price.

5 Empirical Application: Supply-Side Analysis

5.1 Dynamic Pricing Behavior

Given the demand estimates, we construct the components in each firm’s Bellman equation

from equation (6). We assume that the price for each brand is set to maximize discounted

profits at the county level. Following equation (8), the dynamic condition for optimal pricing

for a single-product firm that owns brand j is:

∂πjt
∂pjt

+ β
∂E [Vj(rt+1, ct+1, xt+1)|pt, rt, ct, xt]

∂pjt
= 0, (25)

where pjt is the average price for the brand in a county and ∂πjt

∂pjt
is the derivative of the per-

period profits. This derivative equals ∂Sjt

∂pjt
(pjt − cjt) + Sjt for single-brand firms.

The estimation of dynamic parameters, along with our measures of marginal costs, allow

for a direct estimate of the derivative of the static profit with respect to price: ∂πjt

∂pjt
. If this

were zero, it would imply that firms are pricing myopically in the context of the model, as they

are simply maximizing the current-period profits. When it is non-zero, it implies that dynamic

considerations are affecting a firm’s pricing decision.

On average, we find that ∂πjt

∂pjt
is positive. This implies that firms are systematically pricing

lower than the myopic profit-maximizing price. We interpret this as evidence of forward-looking

behavior and the presence of dynamics, consistent with the reduced-form evidence of Section

3.3.2. Based on equation (25), we attribute the difference between
∑

l∈Ji
∂πlt
∂pjt

and 0 to be ac-

counted for by the derivative of the continuation value (DCV), β ∂E[Vj(·)|·]
∂pjt

. That is, the dynamic

incentive is the residual that rationalizes the observed pricing behavior of the firms, conditional

on the demand-side assumptions, the data, and Bertrand price competition.54 After estimating

demand in an independent step, we are able to recover these residuals directly.

Summary statistics for the value of the derivative of the continuation value (DCV) are pre-

sented in Table 5. The mean and median are negative, which implies that, typically, a reduction

in price would increase the expected future return. We estimate a positive residual in only 3
54Other explanations may be plausible. For example, a component of this residual may be profits obtained by

complementary products, such as food sold at retail gasoline stations.
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percent of observations. The magnitudes are significant: the mean of −0.122 implies that a

1 cent increase in price would increase static profits by roughly 4 percent.55 Intuitively, firms

are lowering prices to invest in future demand. Such behavior allows firms to occasionally

have negative price-cost margins, which occur in 2.7 percent of the observations in our data.

This result, combined with our reduced-form findings of anticipatory pricing for expected costs,

provides consistent evidence of forward-looking pricing behavior in retail gasoline.

5.2 Supply-Side Estimation

To estimate counterfactual pricing behavior by firms, it is necessary to estimate how dynamic

incentives vary with state variables and firm actions. Two approaches are possible. The first is

to take a stance on the beliefs of firms and, via forward simulation, solve for the equilibrium

continuation value function. We develop an alternative approach in which we rely on the

structural demand model to calculate the static component of profits, and we use a functional

approximation to capture dynamic incentives.56

Specifically, we approximate the dynamic component of firms’ first-order conditions (the

DCV) directly with a reduced-form model that is a function of state variables. Using the data

and the estimated demand parameters, we obtain estimates of the DCV and project these es-

timates on state variables, including measures that capture expectations. We estimate the fol-

lowing dynamic first-order condition:

∂πjt
∂pjt

+Ψj(pt, rt, ct, xt; θ) + ζjt = 0. (26)

For any observed or counterfactual data point, we construct ∂πjt

∂pjt
directly using the structural

demand estimates. We use Ψj(·) to approximate β ∂E[Vj(·)|·]
∂pjt

from equation (25), and ζjt is the

unobserved error. We can use this function to approximate how the dynamic incentives change

with the state and the endogenous pricing decisions by firms, allowing for counterfactual anal-

ysis. In general, Markovian assumptions allow for the continuation value to be expressed as a

function of the state and firm actions.

This approach is an alternative to that of Bajari et al. (2007), who use an approximation to

the policy function and, based on this, leverage model structure to estimate the dynamic incen-

tives and static parameters. Conversely, we use structural modeling to obtain static parameters

and calculate a reduced-form approximation to the dynamic incentives. Our approach has three

key advantages. First, the static component of profits is obtained without having to make any

assumptions about firm expectations and discount rates. Second, we avoid the need to make
55The average (scaled) profit in our data is 0.029. Price-cost margins are approximately 21 cents per gallon.
56Note that we cannot make use of the steady-state relationship from equation (9) because time-varying demand

and cost shocks imply that components like dVk(r)
dr

may vary period-to-period and the equilibrium of the system
varies accordingly.
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dimension-reducing assumptions, such as constructing a limited grid for prices, that are less

palatable in our setting.57 Third, utilizing an approximation for the DCV greatly reduces the

computational time needed to re-compute equilibria. For our approach to accurately represent

behavior, we require that the state variables included in the reduced-form approximation cap-

ture the payoff-relevant states (including market structure) and also that the counterfactual

states can be reasonably interpolated from the data.

This reduced-form approach is consistent with a structural model (and solving for the equi-

librium DCV) under the assumption that (i) the information set of firms matches the informa-

tion set of the econometrician and (ii) firms perform limited forecasts of the evolution of the

future profits, consistent with the approximation used in estimation. Thus, our approach can

be considered as an attempt to replicate the forecasting behavior of firms that use regression

analysis to predict future profits. In this case, the firms’ beliefs can correspond to the econome-

trician’s estimates. To provide a sense of how close our estimates come to rational expectations,

we use forward simulations to calculate realized profits when firms set prices according to

equation (26). In other words, we assume that firms’ forecasts of the DCV correspond to Ψ(·),
and we evaluate how close these forecasts are to the realized DCV when firms choose prices

following these forecasts. We discuss these forward simulations below.

To estimate Ψj(·), we project the estimated DCV onto the stock of affiliated consumers

(rjmt×λm), the derivative of own share with respect to price, marginal costs, and expectations

of future costs. Our model and descriptive evidence suggests that these variable play an im-

portant role in expectations of future profits. We also include the fraction of state-dependent

consumers λm, the number of stations, the total number of stations for all brands, and the

number of brands as market-level controls. We do not include market-level or brand-level

fixed effects. Instead, we use cross-market variation to quantify the relationships between the

selected covariates and the DCV.

The results of estimating equation (26) are reported in Table 6. The first specification

reports the coefficients from a regression of the DCV on the dependent variables. As the DCV

is negative on average, a negative coefficient implies that the variable is associated with a

stronger dynamic pricing incentive, or a greater deviation from the optimal static price. We

flip the sign on the own-price derivative, which is also negative, to facilitate interpretation.

The eight-parameter model has an R2 of 0.97. Overall, the reduced-form approach captures

the vast majority of the price variation that cannot be explained by static optimization. The

high degree of explanatory power of the parsimonious model provides some confidence for

reasonable interpolation and extrapolation in counterfactual analysis.

We find that a higher share of affiliated consumers, rjmt × λm, increases the magnitude of

the DCV, corresponding to an increased investment incentive when pricing. Thus, though the
57Relatedly, under the policy function approach, an insufficiently flexible policy function may be incompatible

with equilibrium prices.
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Table 6: Dynamic Pricing Incentive: Regressions

β
∂E[Vj(·)|·]

∂pjt
Sensitivity

(1) (2)

rjmt × λm −0.889∗∗∗ 6.428∗∗∗

(0.001) (0.017)

− dSjmt

dpjmt
−0.540∗∗∗ 6.416∗∗∗

(0.001) (0.037)

Marginal Cost −0.001∗∗∗ 0.019∗∗∗

(0.000) (0.002)

Cost Change (30-Day Ahead) 0.014∗∗∗ −0.092∗∗∗

(0.000) (0.012)

λm 0.010∗∗∗ 0.438∗∗∗

(0.001) (0.015)

Num. Stations (Brand) 0.000∗∗∗ 0.011∗∗∗

(0.000) (0.000)

Num. Stations (Market) −0.000∗∗∗ −0.001∗∗∗

(0.000) (0.000)

Num. Brands (Market) −0.001∗∗∗ 0.042∗∗∗

(0.000) (0.001)

Constant Yes Yes
Observations 110,844 110,844
R2 0.973 0.785

Notes: Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. Ta-
ble displays the estimated coefficients from a regression of the dynamic
pricing incentive on state variables. The second column reports the re-
gression with a measure of sensitivity, which is the log absolute value of
the dynamic pricing incentive. In general, a negative coefficient in the
first column implies a greater sensitivity to dynamics when pricing, gen-
erating a positive coefficient in the second column.

presence of less-elastic affiliated consumers provides a direct incentive to raise prices, they also

provide a dynamic incentive to keep prices high. The coefficient on the own-price derivative

indicates that dynamic incentive is greater when the derivative (which is also negative) is larger

in magnitude. This indicates that demand from unaffiliated consumers also play a role in dy-

namic incentives. One mechanism to explain this is that some unaffiliated (state-dependent)

consumers become affiliated to that brand in the future, so the derivative captures the possi-

bility of attracting more future affiliated consumers. Increases in marginal costs tend to make

firms more sensitive to dynamic profit considerations, while increases in future expected costs

lead firms to place relatively less weight on future profits. Finally, we find that the number of
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stations and brands have relatively small coefficients, after controlling for the above factors.

To help interpret how sensitive firms are to dynamic considerations, the second column of

Table 6 reports a regression where we replace the value of the DCV with the logged absolute

value. Thus, the coefficients reflect the semi-elasticity for the magnitude of the dynamic incen-

tive. A positive coefficient in the second column indicates that an increase in the variable makes

a firm more sensitive to dynamic considerations, whereas a negative coefficient indicates a re-

duced sensitivity to dynamic considerations when pricing. Typically, a negative coefficient in

the first column corresponds to a positive coefficient in the second, as the average value for the

DCV is negative. The results in the second column suggest that firms’ dynamic considerations

are most sensitive to the stock of affiliated consumers and the own-price derivative. The results

show a modest marginal relationship on the overall share of state-dependent consumers in the

market.

Verification with Forward Simulations

To verify that our estimate of Ψ(·) is consistent with realized profits, we use forward simulations

to calculate the discounted present value of per-period profits when a firm unilaterally deviates

its price. For each brand in each market and each period, we slightly perturb the price for

that brand. We re-compute shares in that period and then calculate equilibrium play in future

periods, while imposing that firms construct beliefs using our estimate of Ψ(·). We use the

incremental change in profits along this simulated path to evaluate β ∂E[Vj(·)|·]
∂pjt

under rational

expectations. Our simulated change in future profits are positively and significant correlated

with the recovered estimates of Ψ(·) (the correlation coefficient is 0.549). Using an annual

discount factor of 0.95, we calculate an average simulated value for the derivative of −0.064.

This is roughly half of the mean estimate of −0.122 in Table 5. Thus, our approach to capturing

firm expectations seems directionally well-aligned with realized equilibrium profits. If taken

seriously, these results suggest that firms do not have perfect information about the effects of

prices on future profits, or they do not discount according to standard models. The simulations

suggest that firms may over-estimate the loss of future profits from raising prices today.58 For

additional details about the simulations, see Appendix G.

5.3 Horizontal Market Power: Merger Simulation

To evaluate the impact of dynamic pricing incentives on horizontal market power, we simulate

a merger between Marathon and BP, which are the number one and number four (non-fringe)

brands in terms of overall shares in our sample. Out of the 241 markets, they overlap in 75.

In these 75 markets, the average (post-merger) HHI is 1511, and the mean change in HHI
58One of the benefits of our approach is that we do not have to take a stand on beliefs or expectations to assess

dynamic behavior and conduct counterfactuals. However, this points to how our framework could be used to test
different models of firm beliefs.
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resulting from the merger is 383. In 8 markets, the resulting HHIs are greater than 2500, and

the changes are greater than 200, meeting the typical thresholds that are presumed likely to

enhance market power. The merger would change twelve markets from 3 firms to 2 firms and

eighteen markets from 4 firms to 3 firms. We allow the firms to merge at the beginning of

September 2014, and we calculate counterfactual prices and shares for the second half of the

sample.59

In Section 2, we showed that the price effects of a merger can depend on the way the

merger is implemented, especially in the presence of consumer inertia. To measure the potential

empirical impact, we consider the two alternative merger scenarios described in that section:

a joint pricing merger and a brand consolidation merger. In the joint pricing scenario, the

merged firm has pricing control over both brands, which they maintain as distinct entities.

In the brand consolidation scenario, the merged firm consolidates the assets under a single

brand. To implement a brand consolidation merger, we need to make an assumption about

how much utility consumers of the product removed from the market will receive from buying

the consolidated brand. As in the theoretical analysis, we assume that, at pre-merger prices, the

consolidated brand will have the same combined share of unaffiliated customers as the separate

pre-merger brands. This assumption, in the context of the demand model, will also give the

merged firm an advantage in retaining affiliated consumers.

For the joint pricing scenario, we also need to make an assumption about the cross-price

effects on the continuation value, i.e., β∂E [Vk] /∂pjt when k and j are owned by the merged

firm. For our baseline results, we assume that the effects are proportional to the diversion

ratios Dkj , so that ∂E [Vk] /∂pjt = Djk∂E [Vk] /∂pkt. The diversion ratios capture the relative

effects on shares, which should be correlated with the effects on profits. Our counterfactual

results are qualitatively similar with moderate changes in this scaling factor, such as assuming

the cross-price effects are zero. As expected, if we reduce the impact of the cross-price effects

on the continuation value, we get a lower impact on post-merger prices.

Table 7 displays the mean effects on prices, shares, and profits of the two mergers. The first

three columns report the effects from the joint pricing scenario, and the second three columns

report the effects from the brand consolidation scenario. In either scenario, the overall price

effects are moderate. The joint pricing scenario predicts that the merging firms will raise prices

by 4.9 percent, with an 18 percent decrease in shares and a meaningful increase in profits.

Rival firms in the same market see an increase in share and a small (negative) change in prices.

Profits increase for merging firms and rivals, and, overall, prices in the market increase by 1.6

percent.

The brand consolidation scenario predicts a price increase for the merging firms of 2.4 per-
59Because our inelastic affiliated customers might technically purchase at very high prices, we impose a choke

price of $5 in demand and impose a penalty for prices that exceed this value. The baseline functional form of demand
may not be reasonable for extreme out-of-sample values. Across all merger counterfactuals, only 8 observations
approach the choke price.
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Table 7: Merger Effects

Dynamic Model: Dynamic Model: Static Model:
Joint Pricing Brand Consolidation Brand Consolidation

Brand Price Share Profit Price Share Profit Price Share Profit

Marathon-BP 4.91 -18.09 25.26 2.37 10.92 51.2 5.35 -16.74 34.44
Other -0.33 9.44 5.85 1.53 -9.60 2.95 0.61 3.86 11.28

Overall 1.55 -2.93 15.16 2.05 -0.38 26.08 2.40 -5.40 22.39

Notes: Table displays the mean percent changes in prices, shares, and profits from counterfactual mergers
between two brands in our data. The first six columns provide estimates from dynamic models that account
for consumer inertia. The first three columns report a counterfactual joint pricing merger and the second three
columns report a counterfactual brand consolidation merger. The last three columns provide the estimates
for a brand consolidation merger from a static model that is calibrated to match prices, margins, and shares
from the same data. Price effects are weighted by share.

cent, roughly half that of the joint pricing prediction. However, in the brand consolidation

scenario, the merging firms also realize an increase in market share. This occurs because brand

consolidation provides the merging firm with an advantage in retaining affiliated consumers

and yields a greater investment incentive. Recall that our merger holds the choice probabilities

for unaffiliated consumers to be identical post-merger at the pre-merger prices. In this scenario,

if we hold prices fixed at the pre-merger levels, we would find that the merging firm accumu-

lates greater shares over time due to the superior ability to retain affiliated consumers. In the

brand consolidation merger, the combined share of affiliated consumers (r) for the merging

firms rises from 0.39 in the observed baseline to 0.44. By contrast, in the joint pricing scenario,

the average combined share falls to 0.32.60 This highlights how the incentives to invest or

harvest can vary across the two types of mergers.

Another difference between the two mergers is in the effects on rivals. In contrast to the

joint pricing scenario, the brand consolidation scenario sees rivals increase prices by 1.5 percent

and lose profits as consumers are attracted to the consolidated brand. Thus, a change in the

relative ability to retain affiliated consumers shifts the relative incentives to invest or harvest,

as shown by the differences in behavior for the merging and non-merging firms across the two

merger scenarios. Empirically, this is captured by the shift in the static and dynamic components

of the first-order condition. The joint pricing scenario provides an immediate incentive to raise

prices to increase current-period joint profits. The brand consolidation scenario also has this

static incentive, but there is also an immediate dynamic incentive to invest as the acquiring

brand can now capture more state-dependent consumers that are unaffiliated, as captured by

the coefficient on −dSjmt

dpjmt
in Table 6. The relative strength of these two forces in the longer-run

equilibrium determines which of the two mergers leads to greater price changes.

For comparison, we report the results from a merger analysis using a static model in the

60It takes approximately 10-15 weeks to reach the new level of affiliated shares.
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last three columns of Table 7. We calibrate a standard logit demand system to identical prices,

margins, and shares that are used to estimate the dynamic model. We use a brand consolidation

merger to illustrate the potential effects. The static model predicts price effects of 5.4 percent

for the merging firms, and 2.4 for the market overall. The median price change for the merging

firms is 4.6 percent in the static model. By comparison, roughly one-third of markets in the joint

pricing counterfactual exceed that value, while only 9 out of 75 markets have price changes at

least that large in the dynamic brand consolidation counterfactual.

Consistent with our simulations in Section 2, we find that the predictions of a dynamic

model with consumer inertia can diverge from those of a static model. The dynamic incentive

to invest in future demand can mitigate the short-run incentive to raise prices post-merger,

dampening the exercise of horizontal market power. Further, the way that the merger is im-

plemented can have a large impact on equilibrium prices. In the brand consolidation merger

above, the merging firms have an added incentive to invest, leading to price increases that are

on average less than half of that in a static model.

Despite the differences in levels, the predictions for the merging firm price changes are di-

rectionally similar. Across markets, the correlation between any two of three types of mergers

ranges from 0.713 to 0.750. Across merger types, a greater combined pre-merger share cor-

relates with a higher price increase post-merger. Thus, the standard intuition that a merger

between larger firms could lead to higher price changes holds in all three models.

A key departure from the simulations in Section 2 is that the empirical setting has asymme-

tries across the brands within a market. Previously, we showed that, in a static setting, both

types of mergers predict identical price effects in a symmetric oligopoly. With asymmetries

among firms, static mergers can yield different predictions for joint pricing and brand con-

solidation. This is one reason why our empirical results may not track one-for-one with the

examples of Section 2.

5.4 Dynamic Market Power

In the previous section, we used the empirical model to evaluate the role of horizontal market

power in the presence of consumer inertia. In this section, we isolate the role of dynamic

market power. To do so, we change the strength of affiliation, ξ, and the share of consumers

that are affected by inertia, λ.

Specifically, we simulate counterfactual scenarios where ξ increases by 10 percent and a

second in which λm increases by 0.10 in every market. The latter corresponds to an average

change in λm of 16 percent. Thus, we consider the impact of both the strengh of affiliation

and the share of “shoppers” on equilibrium prices. We use the same 75 markets as the previous

subsection to facilitate a comparison to the horizontal market power effects in Table 7.

Table 8 reports the results from the counterfactual scenarios. The first three columns report

the equilibrium effects of an increase in the strength of state dependence, and the second
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Table 8: Equilibrium Effects of State Dependence

Increase ξ̄ by 10 Percent Increase λ by 0.10

Brand Price Share Profit Price Share Profit

Marathon 4.51 -2.4 45.8 1.90 6.5 29.0
BP 4.58 -1.8 52.2 1.91 4.9 27.7
FRINGE 4.50 -0.6 63.3 1.42 6.3 29.1
Shell 4.90 -2.0 53.6 1.72 5.6 26.5
Speedway 5.04 -2.0 60.6 1.67 7.3 29.7
Exxon 5.51 -3.3 48.8 1.66 7.0 24.9
Valero 4.40 -1.9 51.5 1.77 3.0 26.7
Sheetz 5.71 0.0 78.7 1.03 10.1 26.3
Loves 4.52 -1.3 51.1 2.14 5.4 31.4
Pilot 4.42 2.2 126.1 1.04 8.9 41.5
Hucks 3.82 -2.4 67.3 1.56 5.7 36.6
Sunoco 5.11 -2.0 42.4 2.73 -3.8 19.8
Citgo 5.67 -1.0 59.3 1.36 5.9 21.5
Thorntons 4.00 -1.9 56.2 1.76 6.5 32.6

Overall 4.68 -1.8 53.6 1.73 6.1 28.1

Notes: Table displays the mean percent changes in prices, shares, and profits from coun-
terfactual scenarios with different portions of consumers affected by state dependence.
The first three columns report the equilibrium effects with a greater strength of state
dependence, and the second three columns report the effects with a greater share of
consumers affected by dependence.

three columns report the effects of an increase in its prevalence. The results are reported by

brand, and they are sorted by the mean share in the 75 relevant markets from the previous

subsection. Thus, Marathon and BP appear as the two largest brands in these markets. If the

state dependent utility shock increased by 10 percent, then overall prices would increase by 4.7

percent and average shares would fall by 1.8 percent. All firms realize an increase in profits,

with some smaller brands (Huck and Thorntons) realizing the lowest increases in prices. There

is also variation in the change in shares, with Pilot realizing an increase in shares (and the

largest gain in profits), while Sheetz having zero change in equilibrium.

Increasing λ yields smaller effects on prices (1.7 percent), though firms increase shares by

6.1 percent and profits still increase by a meaningful amount. Interestingly, the effects on prices,

shares, and profits are not perfectly correlated across the two counterfactuals. For example,

Sheetz has the second-largest increase in profits from a change in the strength of affiliation but

the third-smallest profit change from an increase in the prevalence of state dependence. These

results suggest that multiple dimensions of a firm’s relative position in the market influence the

impact of consumer inertia.

In terms of magnitudes, these effect on prices and profits are in the same ballpark as the

effects of mergers between Marathon and BP (Table 7). In rough terms, increasing the strength

of affiliation has a similar effect on prices as the joint pricing merger, though shares do not

fall by as much and profits, accordingly, increase by more. By contrast, increasing the share
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of consumers affected by inertia by 0.10 has effects on prices, shares, and profits that are

roughly three-fifths that of a brand consolidation merger. Thus, the model allows us to quantify

the relative effects of dynamic incentives and horizontal competition when evaluating market

power. Our findings suggest that policies that produce even modest changes in the prevalence or

magnitudes of switching costs (or consumer inertia, more generally) may have a similar impact

on welfare as large changes to market structure, such as those that occur through mergers.

6 Conclusion

We develop a model of consumer inertia that accounts for commonly observed dynamic pricing

behavior, such as the slow adjustment of prices to changes in cost. The dynamics result from

competing firms optimally setting prices to consumers that may become loyal or habituated to

their current supplier. Dynamic market power reflects the incentives of firms to set different

prices in response to consumer inertia, relative to static consumer demand. We show that

accounting for dynamic market power is important when performing counterfactual exercises,

such as merger simulation.

We present reduced-form evidence consistent with consumer inertia in retail gasoline mar-

kets. Consumers purchase histories show patterns consistent with inertia. On the supply side,

new retail locations initally set prices below incumbents, then slowly raise prices over time.

Prices also slowly adjust to changes in marginal costs, and prices anticipate future changes in

expected costs. The evidence suggests that, even in a relatively competitive market with a ho-

mogeneous product, accounting for dynamics in consumer behavior and firm behavior may be

important.

We develop and estimate an empirical model that can identify dynamic demand parameters

using data on price, shares, and an instrument. Results suggest that 64 percent of retail gaso-

line consumers are prone to consumer inertia, and these consumers are relatively insensitive

to price changes. Conversely, we find that unaffiliated consumers are price sensitive and play

an important role in disciplining equilibrium prices. We evaluate the dynamic incentives that

affect prices. We show, both theoretically and empirically, that failing to account for dynamic

demand can cause significant biases when predicting post-merger price increases. Furthermore,

we show the importance of distinguishing between brand consolidation and joint pricing merg-

ers. Finally, we evaluate the relative impacts of dynamic and horizontal market power in our

empirical setting. Counterfactual analyses show that a relatively small change in the number of

consumers subject to inertia can impact prices as much as a change in competition arising from

a merger.
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Appendix

A Theoretical and Numerical Analysis: Additional Results

A.1 Monopoly Case

We analyze steady-state prices in a monopoly market (with an outside good) to show how

habit-forming consumers affect optimal prices and markups. The monopolist sells product j

and the outside good is indexed as product 0. In the steady state, rjt = rj(t+1) = rj and

cjt = cj(t+1) = c. Given the model detailed in the body of the paper, the monopolist’s steady-

state number of affiliated consumers, rssj , is:

rssj = rss0 sj(0) + rssj sj(j)

=⇒ rssj =
rss0 sj(0)

1− sj(j)
.

In monopoly case, we also have that rss0 = 1 − rssj . It follows that we can express rssj as a

function of the choice probabilities for product j.

rssj =
sj(0)

1− sj(j) + sj(0)
(27)

Using the steady-state value of affiliated consumers, the fraction of consumers subject to

affiliation, λ, and the aggregate share equation, Sj we can solve for the steady-state pricing

function.

The steady-state period value is:

V ss(rss, css) = (pss − css)((1− λ+ λrss0 )sj(0) + λrssj sj(j)) + βV ss

= (pss − css)(sj(0) + λrssj (sj(j)− sj(0))) + βV ss

=
pss − css

1− β
· (sj(0) + λrssj (sj(j)− sj(0))).

This equation represents the monopolists discounted profits, conditional on costs remaining

at its current level. Thus, profits are increasing in both λ and the difference in choice prob-

abilities of affiliated and unaffiliated consumers. These results are straightforward: affiliated

consumers are profitable. Also, note that a model with no affiliation is embedded in this for-

mulation (λ = 0 and sj(j) = sj(0)), in which case profits are simply the per-unit discounted
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profits multiplied by the firm’s market share. Because the steady-state can be expressed entirely

in terms of product j choice probabilities and affiliated customers, we simplify the following

notation: sj(j) = sj , sj(0) = s0, and rj = r.

Maximizing the steady-state value with respect to pss yields the firm’s optimal pricing func-

tion:

pss = css +
−s0 − λrss

(
sj − s0

)
ds0

dp + λdrss

dp (sj − s0) + λrss
(
dsj

dp − ds0

dp

)
︸ ︷︷ ︸

m = markup of price over marginal cost

. (28)

The second term, m, on the right-hand side of equation (28) captures the extent to which

the firm prices above marginal cost (in equilibrium). As this markup term depends upon choice

probabilities, it is implicitly a function of price. Thus, as in the standard logit model, we cannot

derive an analytical solution for the steady-state price. Nonetheless, we derive a condition

below to see how markups are impacted by consumer affiliation. In the usual case, m will be

declining in p, ensuring a unique equilibrium in prices.

Are markups higher or lower in the presence of affiliation? When affiliation is absent,

λ = 0 and sj = s0, equation (28) reduces to the first-order condition of the static model,

pss = css − s0

ds0/dp
. Denoting the markup term with affiliation as md and the markup term from

the static model as ms, we compare these two terms at the solution to the static model:

md =
−s0 − λrss

(
sj − s0

)
ds0

dp + λdrss

dp (sj − s0) + λrss
(
dsj

dp − ds0

dp

) ⋛ − s0

ds0/dp
= ms.

For a given price, the terms s0 and ds0/dp are equivalent across the two models. First, we

substitute in rss in terms of choice probabilities from equation (27) as well as it’s derivative

with respect to p. Then rearranging term, we obtain a simple condition relating the levels of

the markup terms:

md ⋛ ms ⇐⇒ −∂s
0

∂p
⋛ −∂s

j

∂p
. (29)

A higher value for md indicates higher markups and higher prices. Thus, whether or not

markups are higher in the dynamic model depends upon the price sensitivity of affiliated con-

sumers relative to shoppers. We can further say that if the denominator of md is negative then

md > ms ⇐⇒ −∂s0

∂p > −∂sj

∂p , meaning that markups are higher if affiliated customers are less

price sensitive. The sign of the denominator will depend upon the specified demand system.

This is an intuitive result. However, there is a nuanced point to this analysis, stemming from

the fact that there is not a direct mapping between our assumption of positive dependence and

the condition in (29). Given our extension of the logit formulation, ∂s0

∂p = ∂δ
∂ps

0(1 − s0) and
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∂sj

∂p = (∂δ∂p + ∂σ
∂p )s

j(1 − sj). Thus, whether or not markups are higher also depends on the

derivative of the type-specific shock with respect to price and the relative distance of s0 and sj
from 0.5 (at which point s(1−s) is maximized). Therefore, steady-state markups may be higher

or lower with the presence of consumer affiliation. If we make the additional assumption that

affiliated consumer utility is less sensitive to price, i.e. −∂δ
∂p > −(∂δ∂p +

∂σ
∂p ), we might expect that

markups are higher in the presence of consumer affiliation. However, the results show that it is

still ambiguous whether markups are higher in the steady state, as sj may be close enough to

0.5 relative to s0 to flip the inequality.

Thus, the presence of positively affiliated consumers may, counter-intuitively, lower the

steady-state price, relative to the static model. The intuition for this result is akin to those

summarized in Farrell and Klemperer (2007); with dynamic demand and affiliation, firms face

a trade-off between pricing aggressively today and “harvesting” affiliated consumers in future

periods. In the steady state, our model shows that either effect may dominate.

A.2 Simulation Methodology

The number of unknowns in the system is J + J + J × J , for p, r, and dp
dr . The law of motion in

the steady state gives us J restrictions (r = f(p, r)). This allows us to solve for r given p. We

solve for p and dp
dr using steady-state conditions.

We implement the following procedure to solve numerically for the steady state:

1. Provide an initial guess for the matrix dp
dr .

2. Solve for steady-state values of p, r, and dVk(r)
dr given the guess for dp

dr . Use the J restric-

tions implied by the first-order conditions (one for each product j)

dVk(r
′)

dr′
· dr

′

dpj
= − 1

β

∑
l∈Jk

∂πl
∂pj

,

to solve for dVk(r)
dr , where dVk(r)

dr = dVk(r
′)

dr′ in the steady state. Note that πk, in this notation,

is equal to the sum of profits from all products by a firm.

3. Take the numerical derivative of pwith respect to r. Approximate the numerical derivative

by slightly perturbing r: r̃j = r + ϵj , where j indicates a perturbation in the jth element.

Re-solve for p using the first order condition. Calculate

dp

drj
≈ p∗(r + ϵj)− p∗(r − ϵj)

2 |ϵj |

Stack these vectors horizontally to obtain an approximation for dp
dr .

4. Calculate the absolute distance between the approximation of dp
dr calculated in the previ-

ous step and the initial guess for dp
dr .
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5. If the calculated distance falls below a critical value, then the solution is found. If not,

update the guess for dp
dr as the average between the initial guess and the approximation

calculated in step 3. Repeat steps 1-4 above until a solution is found.
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A.3 Simulation: Example Markets

Figure 6: Monopoly and Oligopoly Prices with Consumer Affiliation

(a) Nonmonotonic
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Notes: Panel (a) is generated using the following parameter values: ξ = 0.04, ξ̄ = 4.15, and α = −0.84. Panel (b) is
generated using ξ = 2.33, ξ̄ = 0.04, and α = −2.73. Marginal cost is set to one for both figures.

To illustrate the impact of affiliation on pricing incentives, we plot the equilibrium prices for

two different sets of utility parameters in Figure 6. Panel (a) plots the equilibrium prices for a

monopolist and a three-firm symmetric market, for increasingly large values of λ and otherwise

identical demand parameters. The equilibrium prices increase with the rate of affiliation for

values of λ less than 0.5, and then decrease again. This figure highlights the potential impor-

tance of affiliation on equilibrium prices, and that the impact on price may be non-monotonic

in the proportion of consumers prone to affiliation. The non-monotonicity is a result of two

countervailing affects. At low levels of λ firms face increasing inelastic demand and therefore

increase prices. As λ increases past 0.5, however, the incentive to invest in future demand

swamps the elasticity effect and puts downward pressure on prices. Note that firms’ profits

continue to increase, even as prices begin to decrease.

Panel (b) shows that the investment incentive can dominate and grow stronger for all values

of λ. Furthermore, the investment incentive can be blunted by competition. Prices remain

relatively flat for all values of λ in the three-firm market whereas, in the monopoly market,

the investment incentive is stronger and prices decrease at a faster rate. Thus, the relationship

between equilibrium prices and dynamics may depend upon market structure.
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A.4 Numerical Simulation Parameters

Table 9: Simulation Parameter Summary Statistics

Mean St. Dev. Min Pctl(25) Pctl(75) Max N
λ 0.38 0.20 0.05 0.20 0.55 0.70 6566
α -5.21 2.56 -9.96 -7.31 -3.12 -0.44 6566
ξ 5.27 2.60 0.04 3.29 7.37 9.99 6566
ξ 2.92 1.49 0.00 1.76 4.14 5.97 6566

Notes: Table displays summary statics for demand parameters for the
6,566 markets used in the numerical simulations. These markets were
generated from a broader set of parameter values and selected if the re-
sulting three-firm markets had firm shares between 0.05 and 0.30 (yield-
ing an outside share between 0.10 and 0.85), margins between 0.05 and
0.75, and converged for all values of λ ∈ {0.05, 0.1, 0.15, ..., 0.70}. See
the text for additional details.
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A.5 Merger Effects and Relation to Affliation Parameters

Table 10: Simulation Summary Statistics

Mean St. Dev. Min Pctl(25) Pctl(75) Max N
Pre-Merger Price 1.43 0.42 1.10 1.19 1.50 3.97 6566
Pre-Merger Margin 0.26 0.14 0.09 0.16 0.33 0.75 6566
Pre-Merger Market Share 0.17 0.07 0.05 0.11 0.24 0.30 6566
HHI: Pre-Merger 1067.35 776.19 76.28 339.49 1726.75 2695.59 6566
∆ HHI 711.57 517.46 50.85 226.33 1151.17 1797.06 6566
Joint Pricing Merger ∆ 3.84 3.37 0.25 1.30 5.32 20.57 6566
Joint Pricing Non-Merging Price ∆ 0.91 1.17 0.00 0.11 1.26 7.86 6566
Brand Consolidation Price ∆ 6.49 4.29 0.23 3.43 8.55 25.48 6566
BC Non-Merging Price ∆ 0.81 1.11 -1.14 0.07 1.17 8.64 6566
Prediction Bias: Joint Pricing 1.47 1.70 0.00 0.35 1.97 13.49 6566
Prediction Bias (pctg.): Joint Pricing 67.34 99.87 0.10 12.54 74.27 792.05 6566
Prediction Bias: Brand Consolidation -1.17 1.46 -8.63 -1.77 -0.22 4.34 6566
Prediction Bias (pctg.): Brand Consolidation -19.70 24.00 -76.01 -35.93 -4.16 181.04 6566
Dynamic Elasticity: Unaffiliated -5.76 2.37 -11.96 -7.55 -3.77 -1.29 6566
Dynamic Elasticity: Affiliated -2.13 1.90 -9.74 -3.14 -0.74 -0.08 6566
Dynamic Elasticity: Weighted -3.86 1.98 -10.03 -5.15 -2.24 -0.59 6566
Static Elasticity -4.74 2.08 -10.71 -6.15 -3.00 -1.34 6566

Notes: Margin is defined as p−c
p

. ∆ HHI is calculated at the pre-merger shares. Merger Price ∆ is the percentage
price increase from the merger. Prediction Bias is the static prediction minus the dynamic prediction, in percentage
points. Prediction Bias (pctg.) is the Prediction Bias divided by the dynamic Merger Price ∆. The weighted dynamic
elasticity is the average of the unaffiliated and affiliated elasticities weighted by the fraction of the firm’s customers
of each type.

Table 10 provides summary statistics for the merger simulations across all 6,566 simulated

markets.

Tables 11 and 12 provide results from regressions of pre-merger prices, price changes, and

the absolute value of the bias in the static prediction on the demand parameters. Pre-merger

prices increase with the fraction of affiliated customers (λ) and the strength of affiliation (ξ̄).

For joint pricing mergers, stronger dynamics, as represented by higher values of λ and ξ̄, reduce

merger price effects and generate a greater under-prediction that arises from a misspecified

static model, which increases the size of the bias. In brand consolidation mergers, higher values

of λ and ξ̄ instead generate larger merger price changes, which also introduces absolute bias

relative to the static prediction. However, these relationships do not hold in every instance, and

may interact in interesting ways. As we show in Figures 6 and 1, prices are often non-monotonic

in λ.
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Table 11: Joint Pricing Merger Simulation: Demand Parameters

(1) (2) (3) (4) (5)
Pre-Merger Price Price ∆ F1 Bias F1 Price ∆ F3 Bias F3

λ 0.128∗∗∗ -1.538∗∗∗ 4.190∗∗∗ 0.156∗∗∗ 8.680∗∗

(0.017) (0.093) (0.060) (0.038) (4.287)

α 0.144∗∗∗ 2.553∗∗∗ 0.674∗∗∗ 0.908∗∗∗ -15.754∗∗∗

(0.003) (0.017) (0.011) (0.007) (0.802)

ξ 0.026∗∗∗ 1.908∗∗∗ 0.433∗∗∗ 0.772∗∗∗ -15.215∗∗∗

(0.003) (0.017) (0.011) (0.007) (0.792)

ξ 0.040∗∗∗ -0.163∗∗∗ 0.543∗∗∗ 0.186∗∗∗ 1.607∗∗∗

(0.002) (0.013) (0.008) (0.005) (0.588)

Constant 1.883∗∗∗ 8.157∗∗∗ -0.451∗∗∗ 0.971∗∗∗ 29.107∗∗∗

(0.012) (0.067) (0.043) (0.028) (3.104)

N 6566 6566 6566 6566 6566

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are outcomes from a merger simulation that consolidates pricing control of products
1 and 2. F1 and F3 refer to firms 1 and 3, respectively. Pre-Merger Price is for firm 1. Price ∆ and Bias are the
merger price change and the absolute value of the simulation bias, respectively. Parameters correspond to the
dynamic demand model detailed in section 2. Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p <
0.01

Table 12: Brand Consolidation Merger Simulation: Demand Parameters

(1) (2) (3) (4) (5)
Pre-Merger Price Price ∆ F1 Bias Price ∆ F3 Bias F3

λ 0.128∗∗∗ 3.609∗∗∗ 1.406∗∗∗ 1.144∗∗∗ -676.899
(0.017) (0.115) (0.052) (0.039) (973.032)

α 0.144∗∗∗ 2.846∗∗∗ -0.282∗∗∗ 0.808∗∗∗ -79.986
(0.003) (0.022) (0.010) (0.007) (182.082)

ξ 0.026∗∗∗ 1.754∗∗∗ -0.512∗∗∗ 0.691∗∗∗ -144.450
(0.003) (0.021) (0.010) (0.007) (179.863)

ξ 0.040∗∗∗ 0.830∗∗∗ 0.410∗∗∗ 0.154∗∗∗ 9.927
(0.002) (0.016) (0.007) (0.005) (133.556)

Constant 1.883∗∗∗ 8.313∗∗∗ 0.802∗∗∗ 0.505∗∗∗ 930.684
(0.012) (0.083) (0.038) (0.028) (704.385)

N 6566 6566 6566 6566 6566

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variables are outcomes from a merger simulation that consolidates products one and two
under one brand. F1 and F3 refer to firms 1 and 3, respectively. Pre-Merger Price is for firm 1. Price ∆ and Bias are
the merger price change and simulation bias, respectively. Parameters correspond to the dynamic demand model
detailed in section 2. Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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A.6 Predicting Merger Effects (and Bias) for Merging Firms

Table 13: Joint Pricing Simulation: Merger Price Change and Bias

(1) (2) (3) (4) (5) (6)
Price ∆ Price ∆ Price ∆ Bias Bias Bias

Pre-Merger Market Share 27.834∗∗∗ 29.122∗∗∗ 10.971∗∗∗ 4.582∗∗∗ 3.264∗∗∗ 0.094
(0.276) (0.248) (1.522) (0.223) (0.185) (0.945)

Pre-Merger Margin 12.870∗∗∗ 13.087∗∗∗ 14.481∗∗∗ 7.184∗∗∗ 6.963∗∗∗ 12.024∗∗∗

(0.145) (0.129) (0.261) (0.118) (0.096) (0.196)

λ -3.612∗∗∗ -2.774∗∗∗ 3.696∗∗∗ 3.225∗∗∗

(0.087) (0.110) (0.065) (0.071)

α 1.013∗∗∗ 0.608∗∗∗

(0.100) (0.062)

ξ 1.039∗∗∗ 0.763∗∗∗

(0.098) (0.061)

ξ -0.446∗∗∗ 0.265∗∗∗

(0.012) (0.008)

Price ∆ -0.252∗∗∗

(0.008)

Constant -4.410∗∗∗ -3.337∗∗∗ 0.250 -1.224∗∗∗ -2.322∗∗∗ -3.583∗∗∗

(0.058) (0.058) (0.276) (0.047) (0.043) (0.171)

N 6566 6566 6566 6566 6566 6566

Notes: The dependent variables are outcomes from a merger simulation that consolidates pricing control of products
1 and 2. Observations are for firm 1. Price ∆ and Bias are the merger price change and absolute value of the static
prediction bias, respectively. Market share is the aggregate market share. Standard errors in parentheses. * p <
0.10, ** p < 0.05, *** p < 0.01

To provide directional guidance on static model bias in mergers, we look at price changes as

a function of pre-merger margins and shares, which are often used to simulate or approximate

unilateral merger price increases (Miller et al., 2016). Columns (1)-(3) of Tables 13 and 14 ex-

plore how the percentage price change from a merger relates to pre-merger margins and market

shares, which are often directly observed, as well as to primitives of the demand model. As is

typically the case in static models, both pre-merger shares and margins are positively related to

the size of the price change. Conditional on these observables, however, the dynamic parame-

ters dampen the effect of a joint pricing merger but increase the effect of a brand consolidation

merger. Correspondingly, the absolute value of the static model bias, which is the dependent

variable in columns (4)-(6) of Tables 13 and 14, increases in joint pricing mergers but decreases

in brand consolidation mergers as the pre-merger market share increases. Therefore, even if

affiliation cannot be directly estimated, price change estimates should be revised accordingly if

affiliation is expected to play an important role.
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Table 14: Brand Consolidation Simulation: Merger Price Change and Bias

(1) (2) (3) (4) (5) (6)
Price ∆ Price ∆ Price ∆ Bias Bias Bias

Pre-Merger Market Share 21.874∗∗∗ 21.389∗∗∗ 28.305∗∗∗ -9.580∗∗∗ -10.170∗∗∗ 2.505∗∗∗

(0.218) (0.215) (1.337) (0.174) (0.166) (0.930)

Pre-Merger Margin 24.937∗∗∗ 24.856∗∗∗ 25.640∗∗∗ 5.476∗∗∗ 5.377∗∗∗ 6.917∗∗∗

(0.115) (0.112) (0.229) (0.092) (0.087) (0.193)

λ 1.360∗∗∗ 0.978∗∗∗ 1.656∗∗∗ 0.590∗∗∗

(0.076) (0.096) (0.059) (0.070)

α -0.442∗∗∗ -0.244∗∗∗

(0.088) (0.062)

ξ -0.346∗∗∗ -0.305∗∗∗

(0.086) (0.060)

ξ 0.332∗∗∗ 0.236∗∗∗

(0.010) (0.008)

Price ∆ -0.235∗∗∗

(0.008)

Constant -3.919∗∗∗ -4.323∗∗∗ -7.044∗∗∗ 1.515∗∗∗ 1.023∗∗∗ -0.639∗∗∗

(0.046) (0.050) (0.243) (0.037) (0.039) (0.168)

N 6566 6566 6566 6566 6566 6566

Notes: The dependent variables are outcomes from a merger simulation that consolidates products one and two
under one brand. Observations are for firm 1. Price ∆ and Bias are the merger price change and the absolute
value of the static prediction bias, respectively. Market share is the aggregate market share. Standard errors in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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A.7 Distribution of Merger Prediction Bias

Figure 7: Distribution of Merger Prediction Bias

(a) Joint Pricing
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(b) Brand Consolidation
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Notes: Prediction bias is defined as the the prediction of a (misspecified) static logit model minus the true price
increase. Panel (a) depicts the bias when the merger consolidates pricing control of two products. Panel (b) depicts
the bias when the merger consolidates two products under one brand. A brand consolidation merger is defined in
the main text.

Figure 7 plots the distributions of bias across all 6,566 markets. Panel (a) depicts the dis-

tribution of bias for joint pricing mergers. In every instance the static model over predicts the

true dynamic effect. In a few markets that did not meet our inclusion criteria, the static model

under predicted the dynamic effect, so an upward bias will not always occur. However, our

results suggest that a static logit demand model incorrectly calibrated to a demand with con-

sumer inertia tends to exhibit upward bias. On the other hand, the bias in brand consolidation

mergers may be positive or negative. While static models are more likely to under-predict the

true dynamic price effect, almost 25 percent of simulations resulted in over-predictions. These

findings again highlight the importance of properly accounting for dynamics when simulating

the price effects of mergers. For our setting with symmetric three-firm oligopoly, we find that

the sign of the bias is highly predictable for joint pricing mergers.
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B Details on Brand Consolidation and Joint Pricing Mergers

B.1 Implementation of Joint Pricing Mergers

The implementation of joint pricing mergers is straightforward. We maintain the utility param-

eters from the demand side, and we assign the merged brands to the same firm. The merged

entity sets prices for both brands, internalizing the cross-price effects on the joint profits.

B.2 Implementation of Brand Consolidation Mergers

For a brand consolidation merger, we remove one brand (the acquired brand) from the market.

For this type of merger, there is a question of how the acquired assets translate into demand for

the merging firm.

In this paper, we assume that the shares of unaffiliated consumers (shoppers) would remain

the same if prices were maintained at the same level. Implicitly, we assume that the merged

entity retains the same retail locations, and that the brand has no effect on shoppers.

To implement this, we adjust the demand shock for the remaining product of the merged

firm so that the choice probabilities of unaffiliated customers are unchanged at pre-merger

prices. Let a denote the acquiring brand, and b denote the acquired (and removed brand).

Recall that the choice probabilities for unaffiliated consumers are given by

sjt(0) =
exp(δjt)

1 +
∑

k exp(δkt)
(30)

yielding δjt = ln (sjt(0)/s0t(0)). Recall that δjt = ξjt + αpjt. For the merged brand, we adjust

the utility shock fixed effect to ξ′at, where

ξ′at = ln

(
sat(0) + sbt(0)

s0t(0)

)
− αpab (31)

Here, sat(0)+sbt(0) is the combined pre-merger unaffiliated shares of products a and b, and pab
is the share-weighted average price of products a and b. For non-merging firms, we maintain

ξ′jt = ξjt.

This adjustment ensures that, if prices are held fixed (including share-weighted prices for

the merging brand), the choice probabilities of shoppers for all products, including the non-

merging products, are unchanged. Then, given the adjustment, we allow the firms to price

optimally.

Under these assumptions, the merging firm gets some benefit for affiliated consumers. Our

adjustment implies that exp(δ′at) = exp(δat) + exp(δbt), and therefore exp(δ′at + ξ) = exp(δat +

ξ) + exp(δbt + ξ). Doing the appropriate adjustment to the choice probability equations, this

implies that consumers affiliated to the merged brand choose it with the same probability as
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if they were affiliated to both brands a and b pre-merger. In implementation, we assume that

consumers that were affiliated to brand b become unaffiliated after the merger. We found

that whether or not affiliation transferred to the acquiring brand made little difference for our

counterfactuals.

B.3 Equivalence of Joint Pricing and Brand Consolidation in Symmetric Logit

We now prove that in a static logit model, a joint pricing and brand consolidation merger (as

defined in the previous subsection) will produce the same price effect if the merging firms are

symmetric.

Lemma 1: Suppose the following is true,

(i) Demand is characterized by standard logit.

(ii) While holding all else equal, at a price p̄, splitting firm m into two firms j and k yields

equal shares that sum to the share of the original firm: sm(p̄) = 2sj(p̄) = 2sk(p̄).

It follows that sm(p) = 2sj(p) ∀p, i.e., the relation in (ii) holds for any price.

Proof : By construction:

sm =
eξm+αp̄

1 + eξm+αp̄ +
∑

g e
ξg+αpg

= 2
eξj+αp̄

1 + 2eξj+αp̄ +
∑

g e
ξg+αpg

= 2sj (32)

Equation (1) is true if and only if eξm+αp̄ = 2eξj+αp̄. Dividing both sides by eξj+αp̄ and then

taking logs, we have ξm + αp̄− ξj − αp̄ = log(2). Therefore, ξm − ξj = log(2). It follows that if

(i) and (ii) are true then sl(p) = 2sj(p) ∀p.

Lemma 2: Suppose demand is characterized by logit. Suppose a single product firm has a

marginal cost, c, a market share, sm, and a profit maximizing price p∗. Then a two-product

firm with marginal cost, c, and product market shares give by sj(p) =
sm(p)

2 , will set the same

profit-maximizing price, p∗.

Proof : With logit demand, the first-order condition of one product for an N product firm is:

dΠ

dp1
= 1 + α(p1 − c1)(1− s1)− α

N∑
l=2

(pl − cl)sl = 0 (33)

Now, suppose all of the firm’s products have the same marginal cost, c, and that all of it’s

products are symmetric, δn = δ for all n. Then, equation (33) simplifies to:

dΠ

dpn
= 1− α(p− c)(s− 1)− α(N − 1)(p− c)s = 0 (34)
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Solving equation (34) for p yields the symmetric, profit-maximizing price for each product:

p∗ = − 1

α

[
1

1−Ns

]
+ c (35)

Now, suppose a single product firm sets a profit-maximizing price of p∗ and therefore has a mar-

ket share sl. Also, hold the number and characteristics of all other firms in the market constant.

Now suppose we replace the single product firm with a two product firm with marginal cost, c

and product characteristics, δj , such that sj(p∗) = sm(p∗)
2 . By equation (35), the two product

firm will set the same profit maximizng price, p∗. We therefore prove Lemma 2.

Lemma 1 and Lemma 2 help prove the following proposition.

Proposition: Let demand be characterized by logit. Consider the following two mergers of

symmetric single product firms with marginal cost, c:

(i) Joint pricing: After the merger, the firm retains both products and prices them to jointly

maximize post-merger profits.

(ii) Brand consolidation: After the merger, the firm removes one of its brands from the market.

For the consolidated product, the post-merger share would have the same market share

as the sum of the two single product pre-merger firms at pre-merger prices. Post-merger

the firm sets a profit-maximizing price for the one product it keeps in the market.

The post-merger price for the two products in merger (i) is the same as the price for the one

remaining product in merger (ii).
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C Reduced-Form Evidence: Additional Results

C.1 Dynamic Demand: Repeat Visits and Purchase Intervals

We build on our analysis from Section 3.2 using the NielsenIQ Consumer Panel Data. Here,

we leverage the data on the duration between purchases to provide additional evidence on

the role of consumer inertia. In our model, consumers that choose the outside option lose

their affiliation to a particular brand. In the data, choosing the outside option is captured by

longer periods between purchases, when the consumer chooses not to purchase. We denote the

number of days since the previous purchase as the “purchase interval.” Longer intervals could

arise due to idiosyncratic, household-specific shocks, or (e.g.,) higher prices.

We regress an indicator for repeat purchase on the the purchase interval, while controlling

for household-year and weekly fixed effects. The estimates are reported in column (1) of Table

15. We again find evidence consistent with our model of consumer inertia. In particular, the

coefficient of −0.0011 indicates that a longer purchase window is negatively related to the

probability of a repeat purchase. If households delay for a week (i.e., choose the outside good)

they are approximately 1% less likely to return to the same brand. This again suggests past

decisions affect brand choice, and is consistent with our model where consumer lose brand

loyalty when choosing the outside good.

To provide more detail on these dynamics, we subset households by the fraction of their

purchases that are repeat purchases, based on the data displayed in Figure 3. Bin 1 households

have less than 25% repeat purchases. Bin 2 includes those whose fraction is between 25% and

50%, Bin 3 includes those between 50% and 75%, and Bin 4 includes those between 75% and

99%. For this exercise, we exclude households with 100% repeat visits. These buckets are used

to proxy for consumers that may be more or less prone to inertia.

We then repeat the regression exercise for subsets of the data using each bin. The estimates

are reported in columns (2)-(5) of Table 15. The estimates indicate that the propensity of Bin 1

consumers to have a repeat purchase is not affected by the purchase interval. This is consistent

with our assumption that some consumers are “shoppers” and are unaffected by inertia. The

relationship between the purchase interval and the probability of a repeat purchase is stronger

in columns (3), (4), and (5), which may reflect the fact that a greater proportion of households

in those bins are prone to inertia/affiliation.

Finally, as a placebo test, we have also run a regression where we replace the dependent

variable (the interval from the previous purchase) with the interval until the next future pur-

chase. The coefficient estimate is almost exactly 0, with a t-stat of −0.01. This provides some

assurance that results in column (1) are due to consumer behavior and not spurious trends in

the data.
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Table 15: Predicting a Repeat Visit

(1) (2) (3) (4) (5)

Purchase Interval -0.0011∗∗∗ 0.0001 -0.0006∗∗∗ -0.0015∗∗∗ -0.0012∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.7329∗∗∗ 0.2060∗∗∗ 0.4054∗∗∗ 0.6425∗∗∗ 0.9285∗∗∗

(0.000) (0.003) (0.001) (0.001) (0.000)

Observations 2680548 42540 524061 766642 1347305
Household-Year FE Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes
Household-Year Group All Bin 1 Bin 2 Bin 3 Bin 4

Notes: The dependent variable is an indicator of whether a purchase is a repeat visit. Bin 1 households are those
whose fraction of repeat purchases is less than 25% of their total purchases. Bin 2 includes those whose fraction is
between 25% and 50%, Bin 3 includes those between 50% and 75%, and Bin 4 includes those between 75% and
99%. The sample is restricted to households with at least 26 gasoline purchases in a year and purchase intervals of
less than 60 days.

C.2 Dynamic Demand: Correlation in Shares Over Time

Though ultimately the importance of demand-side dynamics in the data is estimated by the

model, it is informative to examine the reduced-form relationships between key elements. The

dynamic model is one in which today’s quantity depends on the quantity sold last period. As

motivation for this model, we present the results from reduced-form regressions of shares on

lagged shares in Table 16.

This exercise demonstrates that even after including rich fixed effects to capture static vari-

ation in consumer preferences, lagged shares are a significant predictor of current shares. The

residual correlation in shares over time in the most detailed specification captures deviations

from specific county-brand seasonal patterns. A positive correlation is consistent with state

dependence in consumption. In specification (2), we show that lagged shares explain 95 per-

cent of the variance in current shares, and the coefficient is close to one. In specification (3),

we include measures of competition in the regressions, as well as a second-order polynomial

in own price. The competition measures, which include the mean and standard deviations of

competitor prices, are correlated with shares, but lagged shares still are the most important pre-

dictor of current shares. In specification (4), we include time and brand-county fixed effects.

In the final specification (5), we include rich multi-level fixed effects: county-brand-(week of

year), brand-state-week, and week-county. The coefficient of 0.628 on lagged shares in this

specification indicates that deviations in shares are highly correlated over time, even when we

condition on the most salient variables that would appear in a static analysis, adjust for brand-

county specific seasonal patterns, and allow for flexible brand-state and county time trends.

This finding is consistent with demand-side dynamics, as there are patterns in shares over time
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Table 16: Regressions with Share as the Dependent Variable

(1) (2) (3) (4) (5)

Price 0.009∗∗∗ 0.000∗∗ 0.004 −0.005 −0.073∗∗∗

(0.001) (0.000) (0.002) (0.004) (0.017)

Lagged Share 0.973∗∗∗ 0.963∗∗∗ 0.554∗∗∗ 0.628∗∗∗

(0.001) (0.001) (0.002) (0.003)

Price Squared −0.000 0.001 0.010∗∗∗

(0.000) (0.001) (0.003)

Comp. Price (Mean) −0.004∗∗∗ −0.002 −0.108∗∗

(0.001) (0.001) (0.045)

Comp. Price (SD) −0.000 0.003∗ 0.086∗∗∗

(0.001) (0.001) (0.024)

Comp. Stations −0.000∗∗∗ −0.000∗∗∗ −0.004∗∗∗

(0.000) (0.000) (0.000)

Num. Stations 0.000∗∗∗ 0.004∗∗∗

(0.000) (0.000)

Num. Brands −0.001∗∗∗ −0.003∗∗∗

(0.000) (0.000)

Week FEs X
County-Brand FEs X
Brand-State-Week FEs X
Week-County FEs X
County-Brand-WofY FEs X
Observations 174421 169931 169788 169770 156078
R2 0.00 0.95 0.95 0.96 0.98

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

that are challenging to explain with contemporaneous variables.61

C.3 Cost Pass-through: Identifying Expected and Unexpected Costs

We now analyze gas stations’ dynamic reactions to expected and unexpected costs. To disentan-

gle the reaction to anticipated and unanticipated cost changes, we leverage data on wholesale

gasoline futures traded on the New York Mercantile Stock Exchange (NYMEX). The presence of

a futures market allows us to project expectations of future wholesale costs for the firms in our

market.

To make these projections, we assume that firms are engaging in regression-like predic-

tions of future wholesale costs, and we choose the 30-day ahead cost as our benchmark.62

Using station-specific wholesale costs, we regress the 30-day lead wholesale cost on the current

61We have also estimated specifications that add lagged prices. Consistent with past prices and demand shocks
affecting current choices, lagged prices are significant and the lagged share coefficient is similar.

62Futures are specified in terms of first-of-the-month delivery dates. To convert these to 30-day ahead prices, we
use the average between the two futures, weighted by the relative number of days to the delivery date.
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wholesale cost and the 30-day ahead future. In particular, we estimate the following equation.

cnt+30 = α1cnt + α2F
30
t + γn + ϵnt (36)

Here, cnt+30 is the 30-day-ahead wholesale cost for station n, F 30
t is the 30-day ahead forward

contract price at date t, and γn is a station fixed effect. We use the estimated parameters

to construct expected 30-day ahead costs for all firms: ĉnt+30 = α̂1cnt + α̂2F
30
t + γ̂n. The

unexpected cost, or cost shock, is the residual: c̃nt+30 = cnt+30 − ĉnt+30.

For robustness, we construct a number of alternative estimates of expected costs, including

a specification that makes use of all four available futures. However, we found that these

alternative specifications were subject to overfit; the estimates performed substantially worse

out-of-sample when we ran the regression on a subset of the data. Our chosen specification is

remarkably stable, with a mean absolute difference of one percent when we use only the first

half of the panel to estimate the model. Expected costs constitute 74.6 percent of the variation

in costs (R2) in our two-year sample, which includes a large decline in wholesale costs due to

several supply shocks in 2014.

In subsection 3.3.2, we consider only the simple cut between unexpected and expected costs

to focus attention on this previously unexplored dimension of pass-through. In retail gasoline

markets, costs are highly correlated, with common costs tending to dominate idiosyncratic costs

at moderate frequencies. For robustness, we have estimated the cost pass-through (i) using only

common costs and (ii) controlling for the mean cost of rival brands (in the same county). In

either scenario, we find estimates that are very similar.

A Note on 30-Day Ahead Expectations

One of the challenges in discussing expectations is that they change each day with new infor-

mation. News about a cost shock 30 days from now may arrive anytime within the next 30

days, if it has not arrived already. Therefore, any discussion of an “unexpected” cost shock must

always be qualified with an “as of when.” Given previous findings in the gasoline literature

indicating that prices take approximately four weeks to adjust, a 30-day ahead window seems

an appropriate one to capture most of any anticipatory pricing behavior. Additionally, our find-

ings support this window as being reasonable in this context. We see no relationship between

unexpected costs or expected costs and the price 30 days prior.63

63We interpret slight deviations from a zero as arising from an underlying correlation in unobserved cost shocks.
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D Identification: Monte Carlo Exercise

We use Monte Carlo simulations to demonstrate that (1) our model does not incorrectly at-

tribute persistent between-consumer heterogeneity to state dependence, and (2) the model re-

covers the correct parameters when state-dependent demand is present. Therefore, our method

captures the presence of dynamic demand even when persistent unobserved heterogeneity is

generated from more complex preferences than we model. As discussed in the paper, this is

important because dynamic demand introduces bias not only through the demand elasticities

but also through the firms’ first-order conditions, which account for future demand. Further,

the simulations help illustrate how state dependence can generate biased elasticities when not

included in the model.

For the data-generating process, we assume that the indirect utility consumer i receives

from purchasing product j > 0 in region r and period t is:

uijrt = (β + π1Di) + (α+ π2Di)pjrt + ξj +∆ξjrt + ϵijrt, (37)

where pjrt is the retail price, ξj denotes product fixed effects, ∆ξjrt is a structural error term,

and ϵijrt is a consumer-specific logit error term.64 A consumer that selects the outside good

receives ui0rt = ϵi0rt.

Persistent consumer-specific preferences are governed by the parameters (π1, π2) and load

onto the demographic variable Di (e.g., “income”). This variable captures heterogeneity in

consumer preferences in the propensity to buy any good (π1) and price sensitivity (π2).

We consider 5 different choices for the parameters (π1, π2), including the baseline standard

logit. Specifically, for (π1, π2), we choose (0, 0), (4, 1), (8, 0), (0, 2), (8, 2). These specifications

help illustrate how different types of persistent between-consumer heterogeneity might intro-

duce bias into our model. We assume that Di is distributed according to the normal N(0,1)

distribution. For each specification, we simulate 50 regions and 100 periods, with 6 products

in each region-period. We draw 500 individuals in each region and use the standard choice

probability equations to calculate shares. We choose parameter values that result in reasonable

mean shares across specifications, ranging from 0.035 to 0.092. Since, for the purposes of this

exercise, we are interested in estimating demand, we simulate prices by randomly drawing

markups and adding these to marginal costs. The values used for the simulations are reported

in Table 19.

In addition to these static specifications, we also choose five dynamic specifications. As

in the paper, we assume that a fraction of consumers, λ, receive a preference shock, ξ̄, for the

product they purchased in the previous period. The remaining 1−λ consumers choose according

to the standard logit. We consider λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and set ξ̄ = 8. Thus, aside from

64The product fixed effects allow for persistent (shared) preferences for specific products, but these (as might be
expected) are easy to control for.
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Table 17: Monte Carlo Results: Dynamic Model Estimates

True Parameters Elasticity Estimate
Specification π1 π2 λ ϵD λ̂

1 0 0 0 -8.94 0.000
2 4 1 0 -4.29 0.000
3 8 0 0 -8.54 0.000
4 0 2 0 -1.78 0.000
5 8 2 0 -1.86 0.000
6 0 0 0.1 -5.64 0.095
7 0 0 0.3 -4.45 0.340
9 0 0 0.5 -3.85 0.496
9 0 0 0.7 -3.41 0.686
10 0 0 0.9 -3.05 0.888

the parameters π1, π2, and λ, all eight specifications share identical parameterizations.

Table 17 reports the 10 specifications in our simulations. To illustrate the magnitudes of the

impact of consumer heterogeneity and state dependence, we report in this table the true median

own-price elasticity. Because the richer preferences shift the marginal consumers, specifications

2 through 10 have less elastic demand than the baseline logit.

We estimate the model following the approach detailed in the body of the paper, assum-

ing the structure of the dynamic demand model. We use the same estimation code for each

specification, including the same (non-zero) initial parameter values, and we confirm that we

reach the minimum. The last column of Table 17 reports the estimated value for λ̂, the share

of consumers that are affiliated. The model recovers the true share of affiliated consumers,

even in the presence of random coefficients (which are not directly modeled in our empirical

specification). In specifications 1 through 5, the model estimates that 0.0 percent of customers

are subject to state dependence. By contrast, the estimates in specifications 6 through 10 are

close to the true values, with small differences that can be explained by sampling error and our

modest sample size.65

As an additional way to show the potential for random-coefficients demand to bias our

model, we provide the estimated price coefficients and demand elastictities from a (misspec-

ified) static logit model in Table 18. As expected, specifications 2 through 5 have substantial

bias in the estimated price coefficient (the structural parameter), but the specifications have

somewhat more modest bias in own-price elasticities. By contrast, the specifications with (un-

accounted for) dynamic demand yield greater bias in the own-price elasticities, even for small

values of λ.

We conclude two things from these simulations. First, our model is capable of correctly

recovering the true degree of state dependence, even when the between-consumer heterogene-

ity is more complex than the standard logit model. Our dynamic model does not attribute

65The estimated values for ξ̄ for specifications 6 through 10 are 8.0, 8.2, 7.9, 8.3, and 8.3, close to the true value
of 8. To ensure that the state dependence shock has bite (i.e., if ξ̄ = 0, λ is irrelevant), we set the minimum value of
ξ̄ to 3 in estimation. Specifications 1-5 are above this lower bound, but it is irrelevant as λ is estimated to be zero.
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Table 18: Unobserved Heterogeneity and Bias in Static Logit Estimates

Random Coefs Dynamics Price Coefficient Demand Elasticity
Specification π1 π2 λ α α̂ Std. Err. ϵD ϵ̂D % Bias

1 0 0 0 -3 -3.000 0.003 -8.94 -8.95 0.0
2 4 1 0 -3 -1.542 0.015 -4.29 -4.44 3.5
3 8 0 0 -3 -2.640 0.016 -8.54 -7.71 -9.7
4 0 2 0 -3 -0.679 0.014 -1.78 -1.93 8.4
5 8 2 0 -3 -0.688 0.014 -1.86 -1.94 4.7
6 0 0 0.1 -3 -2.099 0.008 -5.64 -6.21 10.0
7 0 0 0.3 -3 -1.730 0.010 -4.45 -5.02 12.7
8 0 0 0.5 -3 -1.554 0.011 -3.85 -4.43 15.3
9 0 0 0.7 -3 -1.436 0.012 -3.41 -4.04 18.4
10 0 0 0.9 -3 -1.348 0.013 -3.05 -3.73 22.2

Notes: Table 18 reports the results when the DGP has random coefficients (2-5) and has dynamic demand (6-8). The
true price coefficient is α, and the estimated coefficient from the logit regression is α̂. We estimate the (misspecified)
regression equation ln(sjrt/s0rt) = β+αpjrt+ ξj +∆ξjrt. We instrument for price with marginal costs plus a small
error term (see Table 2 for details on z and mc). We also report, in the last three columns, the true own-price
demand elasticity (ϵD), the estimated own-price demand elasticity (ϵ̂D), and the percent bias of the estimate. The
results show that both random coefficients and state dependence generate bias in static logit estimates.

persistent between-consumer heterogeneity to such dynamics in demand. Second, state depen-

dence in demand is as capable of generating bias when omitted from the model as persistent

unobserved heterogeneity (and perhaps more so, when accounting for the firms’ first-order con-

ditions). In many cases, within-consumer state dependence may be the most relevant feature

of the economic environment for the question at hand. In cases where persistent between-

consumer unobserved consumer heterogeneity is also important, our approach may be used as

a test for the presence of dynamic demand, and the results can inform the best model to use for

a more detailed analysis.
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D.1 Parameters for Monte Carlo Exercises

Table 19: Data-Generating Process

Parameter/Variable Value Description
β 2 Demand intercept
α -3 Mean price coefficient
ξj (2, 2, 1, 1, 0, 0) Product fixed effects

∆ξjrt U(0,1) Error term
Di N(0,1) Demographic variable

mcjrt U(1,3) Marginal costs
pjrt mcjrt + U(0,2) Prices
zjrt mcjrt + N(0,0.01) Instrument for price
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E Estimation Routine: Reducing the Computational Burden

Though the distribution of unobserved choices is identified, solving for the pattern of choices in

estimation is another matter. The traditional approach is to “concentrate out” the distribution

of unobserved heterogeneity while using a contraction mapping to solve (implicitly) for the

shares of the type 0 consumers (as in Berry et al. (1995)). In our setting, the assumption of

single-product affiliation allows us to reduce the computation burden, as the full distribution of

choice patterns in each market can be calculated directly after solving a system of equations in

two variables. Thus, we reduce the number of unknowns in each market from J to 2. This may

be used to speed up estimation by implementing a non-linear equation solver or a (modified)

contraction mapping.

In Section 4.1, we showed that the choice patterns can be expressed in terms of the J + 1

parameters {s0t(j)} in each market. We now show that the system reduces to two parameters

in each market, where the remaining J − 1 parameters are solved for by a quadratic function.

Under the assumption of single-product affiliation (σjt(z) = 0∀ z ̸= j), we obtain

∑
z

rzt · s0t(z) exp (σjt(z)) =
∑
z

rzts0t(z) + (exp (σjt(j))− 1) rjts0t(j). (38)

By substituting this expression into equation (17), we can obtain a quadratic equation for each

of the {s0t(j)}:

0 =λ
1

s0t(0)
rjt(exp(σjt(j)− 1)s0t(j)

2

+

[exp(σjt(j)− 1] (Sjt − λrjt) + λ
1

s0t(0)

∑
z∈0,J

rzts0t(z) + (1− λ)

 s0t(j)

− λ
∑
z∈0,J

rzts0t(z)− (1− λ)s0t(0)

Conditional on the dynamic parameters and observables, there are only two remaining un-

knowns: s0t(0) and
∑

z∈0,J rzts0t(z). Thus, we can solve for {s0t(j)} in each market using the

quadratic formula. As {δjt} are identified conditional on these choice probabilities, we can ob-

tain these mean utility parameters by solving for only two unknowns in each market, regardless

of the number of products.
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F Empirical Application: Additional Tables and Figures

F.1 Summary Statistics by Observation

Table 20: Retail Gasoline in Kentucky and Virginia: Oct 2013 - Sep 2015

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max N

Share 0.137 0.103 0.0003 0.060 0.183 0.688 110,844
Price 2.871 0.529 1.715 2.384 3.311 4.085 110,844
Wholesale Price 2.257 0.527 1.245 1.754 2.673 3.545 110,844
Wholesale FE 2.261 0.031 2.206 2.230 2.293 2.366 110,844
Margin 0.206 0.114 −0.440 0.132 0.272 1.048 110,844
Num. Stations 5.050 6.780 1 2 6 79 110,844

Notes: Table provides summary statistics for the observation-level data in the analysis. The greatest
number of stations a brand has in a single county in our data is 79. The 25th percentile is 2, and we
have several observations of a brand with only a single station in a market. The variable Wholesale
FE is the average wholesale price for a brand within a county. We interact this variable with the US
oil production data to generate an instrument for price in the demand estimation. Negative price-cost
margins occur in 2.7 percent of observations.
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F.2 Summary Statistics by Brand

Table 21: Summary of Brands

Brand Cond. Share Share Num. Markets Num. Stations Margins
1 Marathon 0.18 0.10 134 5.30 0.21
2 Sheetz 0.18 0.03 37 1.70 0.17
3 Speedway 0.17 0.03 39 3.70 0.18
4 Wawa 0.16 0.01 22 3.20 0.12
5 Exxon 0.15 0.07 116 4.60 0.25
6 7-Eleven 0.13 0.02 41 6.80 0.18
7 Shell 0.13 0.09 163 4.20 0.22
8 FRINGE 0.13 0.12 233 8.70 0.19
9 Pilot 0.12 0.01 21 1.40 0.13

10 BP 0.12 0.06 124 3.30 0.21
11 Loves 0.11 0.01 15 1.00 0.20
12 Valero 0.11 0.03 59 3.50 0.21
13 Thorntons 0.11 0.00 9 5.90 0.14
14 Hucks 0.11 0.00 10 1.90 0.15
15 Sunoco 0.09 0.01 32 4.70 0.28
16 Citgo 0.07 0.01 34 4.00 0.25

Notes: Table provides summary statistics by brand. The FRINGE brand is a synthetic
brand created by aggregating brands that do not appear in 10 or more of the 241
markets in our data. Additionally, if a brand does not make up more than 2 percent
of the average shares within a market, or 10 percent of the shares for the periods in
which it is present, we also designate the brand as a fringe participant for that market.

77



F.3 Shares, Prices, and Instrument

Figure 8: Shares and Prices

(a) Total Market Shares and Prices
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(b) Instrument and Prices
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Notes: Panel (a) displays the sum of market shares for all brands, excluding only the outside option, plotted with
the average price over the period in our sample. Both lines indicate seasonality, with peaks occurring during the
summer. Panel (b) plots the constructed instrument against the average price in our sample. Overall, there is a
strong negative correlation between the instrument and average prices.
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G Details on Forward Simulations

Figure 9: Simulated and Fitted Values
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Notes: Figure displays the equilibrium effect of a marginal increase in price on future profits. An
increase in price decreases future profits. This effect is diminishing over time. The points display
simulated values from the data, and the line displays fitted values from a regression model.

To test whether firm expectations are consistent with expected profits under our supply-side

approach, we simulate equilibrium prices and profits using marginal deviations for individual

prices. We perturb the price of a specific brand in a specific week in a specific market by

lowering that brand’s price by $0.01. We re-compute shares in that period, then we compute

equilibrium prices over the next 24 weeks. We repeat this experiment for all brands within the

market and the period, and we iterate over markets and periods. We limit our analysis to the

75 markets and 52 weeks affected by our merger counterfactual.

We use the difference in simulated profits and realized profits to compute the marginal

effect of a $0.01 change in price on profits τ periods in the future. By scaling the difference by

the magnitude of the price change, we obtain an estimate of the effect on current-period profits

and each period-specific component of the derivative
∂πj(t+τ)

∂pjt
. The simulated effect on current-

period profits from a price change matches the static derivative of the model. To calculate the

discounted future values, we use a weekly discount rate of β = 0.999, which corresponds to an

annual discount rate of 0.949. We use the discounted values of
∂πj(t+τ)

∂pjt
to obtain an estimate of

the full value of β ∂E[Vj(·)|·]
∂pjt

.

The dynamic equilibrium simulation shows that an increase in price today has a negative

effect on future profits, and this effect shrinks over time. To calculate the net present value of

the effect on profits, we use a fitted model to predict effects beyond 24 weeks and to mitigate

the effect of simulation noise. Specifically, we fit a curve of the form ln
(
− ln

(
Et[

∂πj(t+τ)

∂pjt
]
))

=

ω0 + ω1 ln(t) + ϵt. We estimate ω0 = 1.653 and ω1 = 0.119 with least squares regression, using

the 24 mean values for each period. Figure 9 plots the simulated effects on future profits against

the fitted values. The fitted values explain 99 percent of the variation in mean values.
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