

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 1

Intelligent Artificiality:

Algorithmic Microfoundations for Strategic Problem Solving
Mihnea Moldoveanu
Desautels Professor of Integrative Thinking
Vice-Dean, Learning, Innovation and Executive Programs
Director, Desautels Centre for Integrative Thinking
Founder and Director, Mind Brain Behavior Institute
Founder and Director, RotmanDigital
Rotman School of Management, University of Toronto

Visiting Professor
Harvard University, Graduate School of Business Administration

 Name of author
Harvard Business School

Name of author
Harvard Business School

Name of author

Working Paper 19-072

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 2

Abstract

This paper introduces algorithmic micro-foundations for formulating and solving strategic

problems. It shows how the languages and disciplines of theoretical computer science,

‘artificial intelligence’ and computational complexity theory can be used to devise a set of

heuristics, blueprints and procedures that can help strategic managers formulate problems,

evaluate their difficulty, define ‘good enough solutions’ and optimize the ways in which they

will solve them in advance of attempting to solve them. The paper introduces both a framework for

the analysis of strategic problems in computational terms, and a set of prescriptions for

strategic problem formulation and problem solving relative to which deviations and counter-

productive moves can be specified and measured.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 3

1. Introduction: Formulating and Solving Strategic Problems Using Computational Language

Systems. Strategic problem formulation was recently brought into the focus of inquiry [Baer,

Dirks and Nickerson, 2013] in strategic management, with calls for the development of

‘microfoundations’ that will help us make sense of the social and cognitive bases for defining

problems before solving them. The upshot to such inquiry is both deriving prescriptive

advice on which problem to try solving before ‘plunging in’ [Bhardwaj, Crocker, Sims and

Wang, 2018] and providing a nuanced model of the individual and interpersonal choices

involved in strategic problem solving. This emphasis on decoding the ‘problem formulation

process’ has been applied to strategic and operational problem solving from multiple

domains [Moldoveanu and Leclerc, 2015] as a generative blueprint for ‘strategic innovation’

that results from synthesizing spaces of possible solutions by choosing the language and

ontology in which problems are framed – rather than simply generating solutions within a

search space that is either ‘given’ through conversational habit. This article contributes a set

of computational and algorithmic ‘microfoundations’ to the study of problem formulation

and structuration. It leverages the abstraction (conceptualization, ideation and the

structuration of thought and blueprinting of action) layers developed by computer scientists

and complexity theorists over fifty years to provide both a way of studying and teaching

problem formulation and structuration across strategic domains, and to generate a useful

abstraction layer for strategic problem solving.

The field of problem definition and structuration has a rich and textured history in

the field of artificial intelligence [Simon, 1973] where the need to encode a problem solving

procedure as a set of algorithmic steps to be performed by a digital computer requires

careful consideration of the definition of the problem (objectives, constraints, the space of

possible solutions) and the structuration of the solution search process (accounting for

situations in which the process of search changes the space of possible solutions). Even a

simple and disciplined application of Simon’s conceptualization of problem definition and

structuration can significantly benefit the practice of strategic problem shaping and solving

by providing strategists with ways of thinking about what they do when they ‘think’, ‘talk’,

‘argue’, and ‘decide’ [Moldoveanu and Martin, 2009; Christian and Griffiths, 2017; Valiant,

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 4

2006]. However, the practice of problem shaping and structuration has made strides in the

field of ‘algorithmics’ (including machine learning and deep learning) In the intervening

period [see, for instance, Sedgewick and Wayne 2011; Cormen, Leiserson and Rivest, 2011;

Hromkovic, 2003] the field of ‘algorithmics’ has grown in depth, breadth and explanatory

coverage to the point where it can ably provide a comprehensive description language and

associated prescriptive prompts for intelligently coping with strategic problems.

Algorithmic thinking and computational thinking: Computational Foundations for Problem Formulation.

[Wing, 2006; Wing, 2008; Wolfram, 2016]. The usefulness of the computational modeling

toolkit to disciplines outside of computer science has not gone un-noticed. Wing [2006;

2008] posited ‘computational thinking’ as a kind of analytical thinking that allows people

working in any discipline to structure their problem solving processes more productively by

deploying useful abstractions and methods used by computer scientists and engineers to

solve large scale problems that usually exceed the computational powers of individual

humans. She argues that problem solving routines that lie in the algorithm designer’s toolbox

(such as recursion) are useful to problem solvers in all domains – and not just to

programmers coding solutions to algorithmic problems: it is a ‘conceptualization skill’ and

not just ‘a rote mechanical skill’. Both Wing and Wolfram [2016] focus on ‘abstraction’ and

the use of ‘multiple abstraction layers’ as critical to the discipline of computational thinking,

which, once mastered, can be deployed across domains as varied as linguistics, genomics,

economics, cognitive science and sociology. What about strategic management?The task we set

for ourselves in this paper is to come up with a computational abstraction layer for business

problems that helps both strategic managers and researchers ‘cut across domains of practice’

and on one hand generate a set of algorithmic micro-foundations for strategy problem

solving and on the other offer insights and guidelines to practitioners engaging with live,

raw, ill-defined, ill-structured, potentially intractable problems.

‘Intelligent Artificiality’: Learning from Machines to Solve Problems Machines Won’t Solve. To help

shape perceptions about the project of building computational microfoundations for

strategic problem solving, we reverse the phrase ‘AI’ and posit ‘Intelligent Artificiality’ (IA)

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 5

as the practice that human problem solvers in general and business problem solvers in

particular to appropriate and deploy algorithmic and computational methods to problems in

their own domains. The project of intelligent artificiality is summarized in Figure 1. The

loosely-worded, ‘fuzzy’ problems that strategic managers often use to encode their

predicaments (top layer) are defined, calibrated and classified to yield ‘stylized business

problems’ (second layer from top), which are then mapped into a set of canonical problems

(third layer from top) framed in a language amenable to algorithmic treatment. They inform

the search for solution-generating processes – algorithms, heuristics – tailored to the

structure of the problem to be solved. The analysis protocol can also be run backwards, to

generate coherent and precise problem statements for business strategists using templates

and models drawn from the canonical repertoire of problems in computer science.

Figure 1. A synoptic view of the process by which ‘raw’ problems in business are defined and encoded as
canonical business problems and subsequently as canonical algorithmic problems for which highly efficient
solution search procedures can be found.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 6

For example, the loosely worded challenge (‘We need to resolve a major personal

accountability problem at the level of the top management team’) can be defined and

structured more precisely and actionably as (‘Re-allocate decision rights to members of the

top management team so as to increase a composite metric of accountability (comprising

both results and self-reports) by 50% over the next two quarters, maintaining current levels

of incentives and without firing anyone’), which then maps into a canonical problem

(MAXSAT: allocate variables to clauses (decision rights to agents) so as to maximize a global

objective function) for which highly efficient search procedures from the field of algorithm

design (divide and conquer, local neighborhood search) can be applied to solve the problem

far more efficiently than would be possible via experimentation or even ‘offline’ simulation.

We proceed by introducing computational micro-foundations for defining and

structuring strategic problems and show how this representation allows us to guide the

structuration of strategic problems and resgister departures from optimal or non-dominated

structuration strategies. We introduce problem calibration as the process by which strategists

specify what constitutes a ‘good enough’ solution, and introduce a typology of (well-defined

problems) that allows strategists to productively parse and optimize the solution process. We

show how sizing up a problem by measuring the best-case, average-case and worst-case

complexity of its solution procedure can help strategists estimate – in advance of solving a

problem or just ‘plunging in’ – the time and resources a solution will likely require. We

discuss solution search processes for problems of different complexity – and provide a map

by which strategic problem solvers can choose solution search procedures best suited to the

structure and complexity class of their problems. Finally, we work out the implications of the

algorithmic micro-foundations for strategic problem solving to the design and management

of problem solving teams and groups.

2. What is the Problem and What Kind of Problem is It? Problem Definition,

Structuration and Calibration.

 A significant gap in the literature on problemistic search that originated in the work

of Cyert and March [1963] is a focus on problem definition and formulation as precursors to

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 7

the adaptive selection of behavioral solutions to problems arising from mismatches between

aspirations and results. As a recent review [Posen, Keil, Kim and Meissner, 2018] points out,

attempts to address this gap must grapple with constraints of resources and rationality – and

that is what computational modeling techniques do, by design: algorithm designers must

deal, methodically and in advance of ‘solving the problem’ with the memory, computational

and interface (I/O) constraints of the device they are planning to run the executable version

of the code that embodies the solution search procedure chosen.

Defining Problems. Much of the literature on strategic problem solving starts by assuming that

problems are ‘given’ and problem statements are ‘self-evident’ – but this is one of the

assumptions that causes the ‘problem formulation gap’ in the problemistic search field – and

which can cause strategists to simply ‘plunge in’ to solving a problem before carefully

defining the problem statement. By contrast, the algorithmics literature focuses narrowly and

on defining problems in ways that admit of systematic searches for solutions under time and

resource constraints, and using as much as prudent but no more than available resources for

storing information and performing computational operations [Simon, 1973; Cormen,

Leiserson and Rivest, 2011; Hromkovic, 2003].

A well-defined problem [Moldoveanu and Leclerc, 2015] minimally involves the

specification of a mismatch between current and desired conditions and the time required to

move from the current to the desired conditions. This requires a specification of (observable

and measurable) current and desired conditions – along with their methods of measurement.

For example, defining the ‘fuzzy problem’: ‘We have a major accountability problem within the top

management team’ can be accomplished by first specifying the metrics for current and desired

conditions (‘accountability’ as measured by average response time to mission critical emails

to other management team members; percentage of individual commitments to the rest of

the team fulfilled as measured by minutes to management team meetings; responses to

survey of management team members and their direct reports on the degree to which a

‘commitment culture’ that promotes making sharp promises and keeping them or breaking

them with advance notice and with good reason exists) and then specifying the percentage

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 8

improvement in the overall metric sought (eg 50%), the time frame in which the

improvement must be made (eg 6 months) and sharp constraints on changes that must be

heeded (no change to membership of the team; no change to incentive structure; no change

to schedule of top management team meetings). The loosely worded problem can be

phrased as a well-defined problem statement, eg: ‘We are seeking to change a composite

accountability metric involving response times, percentage of individuals commitments to

the rest of the team fulfilled and the mean of subjective reports on the degree to which the

organization has a culture of commitment by 50% over the next 6 months, subject to

maintaining current team membership and compensation structures and the current schedule

of executive team meetings.’

 While discussions of problem formulation and problem framing in the management

field [Mintzberg, Raisinghani and Theoret, 1976; Lyles and Mitroff, 1980 – and the literature

they spawned] stop at the specification of desired conditions, the algorithmic problem

solving field additionally requires us to use a precise language system for stating the problem –

one that allows algorithmic search procedures to be deployed on the solution search space

generated by the language system in question. Because in computer science problems the

language system is pre-determined (e.g. by a programming language)– much of the literature

on problem formulation either does not focus on the language system or proceeds directly to

the enumeration of a solution search space [Simon, 1973]. If we expect a well-defined

problem to generate a solution search space, however [Moldoveanu and Leclerc, 2015], then

we must choose a language system that will enable choices (‘possible solutions’) over

variables that are observable and controllable. Given the constraints of the problem in this

case, we can focus on the decision rights of members of the top management team (See Figure

2 below, based on the partitioning of decision rights in [Moldoveanu and Leclerc, 2015,

which builds augments the partitioning of decision rights introduced in [Jensen and

Meckling, 1998(1995)]) and trying to re-allocate decision rights over key decision classes

(hiring, sales, budgeting, business development) so they encourage consistent and timely

reporting and information sharing between management team members.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 9

Figure 2. Eight distinct kinds of decision rights that one might allocate to members of a management team.

Moreover, given this representation of the problem, we can specify and enumerate a

space of possible solutions: given N members of the team, each of whom can have (code as

a ‘1’) or not have (code as a ‘0’) a specific kind of decision right over decisions falling into

one of D classes, we can generate a solution search space of (2 8N-1) (number of distinct

allocations of 8 kinds of decision rights to each of N managers, excluding (-1) the ‘no

decision right to anyone’ allocation)) x D (kinds of decisions), and either exhaustively or

selectively evaluate possible allocations with respect to their likely consequences to the

accountability of the group as a whole.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 10

Defining the problem in this way gives a further refinement to the problem

statement we have synthesized, namely: ‘We are seeking to change a composite

accountability metric involving response times, percentage of individuals commitments to

the rest of the team fulfilled and the mean of subjective reports on the degree to which the

organization has a culture of commitment by 50% over the next 6 months, subject to

maintaining current team membership and compensation structures and the current schedule

of executive team meetings by re-allocating the decision rights of top management team members over 2

different decision classes (strategic, operational) to promote (a) denser information sharing on critical decisions

and (b) greater alignment between the specific knowledge of each team member and her level of authority over

decisions requiring the use of that knowledge .’

Structuring problems. As Simon [1973] points out, problems need not only be well-defined, but

also well-structured (i.e. not ill-structured) for them to be reliably solvable by an algorithmic

procedure. An ill-structured problem is one whose solution search space changes as a

function of the specific steps we take to solve the problem. Strategic problems have a much

greater risk of being ill-structured on account of the Heisenbergian uncertainty [Majorana,

2006 (1937); Moldoveanu and Reeves, 2017] implicit in social and human phenomena: The

act of measuring a particular variable relating to a social group (‘commitment’, ‘cohesion’,

‘motivation) can influence (increase or decrease) the values of the very variables that we are

trying to measure. In the context of solving a problem like P: ‘We are seeking to change a

composite accountability metric involving response times, percentage of individuals

commitments to the rest of the team fulfilled and the mean of subjective reports on the

degree to which the organization has a culture of commitment by 50% over the next 6

months, subject to maintaining current team membership and compensation structures and

the current schedule of executive team meetings by re-allocating the decision rights of top

management team members over 2 different decision classes (strategic, operational) to

promote (a) denser information sharing on critical decisions and (b) greater alignment

between the specific knowledge of each team member and her level of authority over

decisions requiring the use of that knowledge ’ – the very act of jointly measuring both

current allocations of decision rights among members of the top management team and the

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 11

degree to which a commitment culture exists in the organization (via self-reports and

surveys, for instance) can influence the estimate of both sets of variables. Members of the

top management team may under-report or over-report their own decision rights, depending on

the degree to which they believe they will lose them by any proposed solution; or

strategically distort their responses to surveys meant to supply information to be used in an

‘organizational accountability’ metric in order to mitigate the degree to which a radical

restructuration of their authority will be brought about.

 The Heisenbergian uncertainty that accrues to the definition of strategic problems

and requires us to structure them is pervasive in strategic problem solving scenarios. For

instance, the problem: “How do we increase cumulative research and development productivity by 10%

over the next 24 months subject to not increasing R&D spend?” can induce distortion of information

required to estimate current R&D productivity. The problem: “How do we decrease sales cycle

duration by a third over the next quarter subject to maintaining the membership of the current sales force?”

can induce distortions in the reporting of information used to estimate both current sales

cycle (“what constitutes a ‘closed’ sale?”) and realistically achievable target sales cycle

duration. Structuring strategic problems, therefore, is essential to decoupling the process by

which the problem is defined and a solution search space is generated from the problem by which

initial conditions are measured and desired conditions are specified and measured. Strategic managers can

attempt to structure problems by at least three different classes of moves:

‘Always-on measurement’: In the age of ‘big data’ and ubiquitous observation of behaviors and

even micro-behaviors, they can deploy a fabric of organizational measurement systems and

platforms that constantly track large sets of variables that are useful to the solution of broad

classes of problems, which gives the top management team discretion as to which problem to

attempt to solve at any one point in time. In our examples, variables relating to levels and

degrees of authority of top management team members, to sales cycle duration and current

R&D productivity can be constantly maintained in regularly updated databases which can be

mined for composite measures aimed at defining organizational change problems.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 12

‘Unobtrusive measures’. Strategic managers can also deploy unobtrusive and indirect measures

of the values of the variables that are directly relevant to a strategic problem. They can use

accounting data and online behavior to monitor sales cycle dynamics; or, email spectroscopy

and mining of exchanged messages to figure out average and median response times to

sensitive communications. Unobtrusive measures may allow strategic managers to address

the Heisenbergian uncertainty of targeted, transparent measurement by cutting off the

inferential chain which motivates those supplying the data to distort it in order to influence

the solution that will be adopted.

‘Outsourcing of strategic problem solving’. Large strategy consultancies can function as effective

‘insulators’ that help strategic management teams solve problems. Their engagements are

often phrased in broad terms (see Table 1 in the Appendix), which allows them considerable

latitude in probing, inquiring and measuring variables of interest in advance of announcing

the problem to be solved – thus effectively decoupling the process of measurement from

that of problem definition and solution search space enumeration. This suggests that the

value of strategic consultancies as Heisenbergian uncertainty minimizers is independent of

their value as framers, shapers and solvers of strategic problems.

Calibrating Problems: What is a Good Enough Solution? Core to the problemistic search literature

is the notion of bounded rationality of problem solvers [Simon and March, 1958]. The search

for solutions is conceived as narrow, local and sparse [Nelson and Winter, 1982]. This

rudimentary conception of organizational problem solving closely tracks that of the

mainstream economic analysis of optimization [Dixit, 1990], wherein value maximizers

search – and evaluate the gradient of the payoff curve – in the close proximity of their

current conditions. This approach significantly misses significant sources of heterogeneity in

the deployment of problem solving prowess, and fails to distinguish between and among

different kinds of bounds to rationality.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 13

By contrast, computational science makes sharp distinctions among informational

bounds (memory: how much can you store?), computational bounds (how quickly can you

calculate?) and communication bounds (how quickly can you communicate and coordinate

with others in a multiprocessing environment?) which are just as important in organizational

settings in which useful data is scarce and expensive to produce, the time and resources

available for systematically eliminating dominated solutions is scarce, and problem solving is

increasingly performed in groups and collectives that require constant communication to

‘stay on the same page’. A computational abstraction layer for strategic problem solving

allows us to study the challenge of selectively and purposefully bounding and deploying rationality,

summarized by the question: When is it worth trying to solve this problem to this level of accuracy?

Computational science teaches us that much depends on having the right algorithm - or, problem

solving procedure, at hand.

To take a simple example, suppose a strategic manager faces a decision between two

lotteries. The first pays $1MM no matter what (once one chooses it). The second costs

$1MM to participate in, but pays $10MM if the 7th digit of the decimal representation of the

square root of 2 is the number 7¸and $0 otherwise (leading to a $1MM loss). Without (any

digital computer or) knowledge of a method for computing the decimal square root of 2, the

expected value of the second lottery is $0: a one in ten chance (there are 10 digits) of guessing

at the number correctly and realizing the $10MM gain, minus the cost outlay of $1MM for

participating in the lottery. However, if the decision maker knows ‘Newton’s Method’

(actually known to the Babylonians much earlier) for calculating an arbitrarily large number

of digits in the square root of 2, then she can do much better than guessing. The method uses

the first terms of a Taylor series expansion of f(x) = x2-2 to generate a recursive set of

approximations to √2: Starting with an initial guess x0, successive iterations are generated

via: xn+1 = x n- f(xn)/f ’(xn), which, for f(x)= x2-2, gives: xn+1 = x n-(xn
2-2)/2xn.. The method not

only allows one to exactly calculate the tenth digit of the decimal representation of the

square root of 2 (and therefore the decision maker to realize a net gain of $9MM over the

expected value of a decision maker who simply guesses), but it also allows her to estimate

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 14

the expected informational value of each additional calculation that generates a more

accurate answer, i.e. xn+1 = x n- f(xn)/f ’(xn) (which in this case is 2 bits/iteration).

1

1.5

1.4166675

1.4142156862745098039215686274509803921568627450980392156862745

1.4142135623746899106262955788901349101165596221157440445849057

1.4142135623730950488016896235025302436149819257761974284982890

1.4142135623730950488016887242096980785696718753772340015610125

1.4142135623730950488016887242096980785696718753769480731766796

Figure 3. The first eight iterations in the recursive application of Newton’s Method to the calculation of the

square root of 2 to an initial guess of ‘1’ as the answer.

Recursion is useful not only because it can be used to replace a difficult and

cumbersome calculation with a set of easier calculations [Wing, 2006], but also because,

importantly, it allows the problem solver to estimate the expected value of turning the

recursion crank one step further in advance of doing so (Figure 4).

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 15

Figure 4. Graphical representation of the information dynamics of a recursive estimation procedure.

Strategic Equilibria. Recursive estimation can play a useful role in interactive reasoning

of the type that allows two oligopolists selling un-differentiated products with uniform

marginal cost of c into a price-taking market with downward sloping demand curve

parametrized by a-c (where a is a constant), by allowing each supplier to reason its way

recursively down a hierarchy of iterative ‘best responses’, whose generating function is

[Saloner, 1991]: q0=0; qn+1=(a-c)/2 – qn/2, that generates the series shown in Figure 5.

Importantly, the strategic managers in each firm can calculate not only their best response to

the product quantities the competitor chooses to produce, but also the loss or gain they stand

to make by thinking to the next level of recursion (or, by thinking their way to the Nash

Equilibrium).

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 16

Figure 5. Iterative ‘best responses’ of two duopolists selling an undifferentiated product costing c into a
market with a downward sloping demand curve parametrized by a-c.

3. How hard is the problem we are about to try solving? Prior Analytics for Problem

Complexity. An important contribution that a computational abstraction layer for strategic

problems contributes to the way in which bounded rationality is treated in the strategic

problem formulation and problemistic search literature is a way of sizing the problem –

figuring how hard it will be and what resources will be required to solve it, before trying to

solve it. ‘Plunging in’ and just trying to solve a business problem without a sense of its

definition or structure is often counterproductive, on account of ‘dead ends’, coordination

failures among multiple problem solvers, or simply running out of time and resources while

still trying to solve the problem but before even an approximate solution or solution concept

has been derived [Moldoveanu, 2011]. Postulating ‘bounded rationality’ and ‘muddling

through’ problems as catch-all explanations for sub-optimal problem solving behaviors

misses the cases in which strategic managers optimize and ration their own strategic thinking

according to the expected value of a good-enough solution [Moldoveanu, 2009] or devise

“strategies for coming up with a strategy” [Reeves, Haanaes and Sinha 2015], deploying

computational prowess and ‘optimization cycles’ to solve the problems most worth solving,

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 17

to the level of accuracy required for the situation at hand. Prescriptively, positing a uniformly

bounded rationality – as a constitutive condition for a problem solver misses out on

opportunities for optimizing the ways in which computational prowess and intelligence may

be deployed by a strategic manager to achieve better solutions to problems deemed ‘too

difficult’ or ‘intractable’.

 By contrast, algorithm designers often start their problem solving work by forming

estimates of the difficulty of a problem and the degree to which it can be solved using the

computational and memory resources available to them [Cormen, Leiserson and Rivest,

2011]. They think through the worst-case, best case and average case complexity of

searching a database for a name before actually beginning to code the algorithms or designing

interfaces to the database, in order to determine whether or not the search procedure will

generate an answer in the appropriate time for the end user. To make sure that their solution

is scalable to databases or various sizes, they generate estimates of the running time (T(n)) of an

algorithm as a function of the number of entries in the database n; and they derive upper and

lower bounds on the run time of the algorithm as a function of the number of independent

variables n by examining the behavior of T(n) as n increases.

 Suppose the problem we are trying to solve is that of ordering a list of numbers that

initially show up in random order (initial conditions) so as to produce a list in which the

same numbers appear in ascending order. An intuitive but systematic method for doing so is to

read each number (left to right), compare it with each of the number(s) to the left of it, and

then insert it to the left of the smallest number it has been compared (Figure 6).

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 18

Figure 6. Elementary steps for sorting a list of numbers (low to high) using the INSERTION
SORT procedure.

To figure out how hard the sorting problem is to solve using INSERTION SORT, we

can evaluate how costly the algorithm is to run, by listing its elementary operations (left

column, below) assigning a cost to each operation (middle column) and counting the number

of times that each operation has to be performed (right column).

i ← 1

while i < n c1 n-1 times

 j ← I c2 n-1 times

 while j > 0 and A[j-1] > A[j] c3 n-1 times

 swap A[j] and A[j-1] c4 n(n-1)/2 times

 j ← j – 1 c5 n(n-1)/2 times

 i ← i + 1 c6` n-1 times

Figure 7. ‘Sizing up’ the costs of running the sorting procedure INSERTION SORT on a list that is n numbers long
by counting the total number of operations and the unit cost per operation. The unit cost is usually in units of TIME that the
hardware on which the code embodying the algorithm runs normally takes to complete an operation of the kind specified in the left-
most column

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 19

 With these estimates, an algorithm designer can figure out if the algorithm works

quickly enough randomly ordered lists of desired length to produce ordered lists in the time

that a user of the code would deem acceptable (simply by taking the cost-weighted sum of all

of the operations). To form more robust expectations of the cost of the algorithm when the

size of the input list is unknown, the designer might perform an asymptotic analysis of the rate

at which the cost of running the code grows as a function of the number of entries n in the

list. By inspection of Figure 7, we see that the n2 terms in the cost function, in the limit as n

becomes large will grow far more quickly than the terms that vary with n alone (eg. n-1).

Asymptotically, an upper bound on the growth of T(n) as n grows will be n2, which can be

represented by saying that T(n)=O(n2) (‘is of the order of n2).

 Applying the sizing of problems to the space of strategic challenges requires we

understand the basic operations we take to be standard in algorithm design (listing,

comparison, selection, addition, etc.) will be different and have different marginal cost structures

than those performed by humans. A strategic management meeting aimed at creating a short

and ordered list of strategic investment projects may proceed by first pre-ranking the projects

based on electronically polling the entire management team, distributing the preliminary

ranking to the management team members, securing agreement on the process by which

elimination of projects will proceed, and then (pending approval of this particular process)

identifying a ‘minimum score’ that a viable project must have, identifying the projects that

clear that hurdle, and (if they are too many or their costs exceed the budget available)

discussing the costs and benefits of each of the n lowest ranked projects before re-ranking

them and eliminating the n-k lowest. Although the specification of this solution procedure falls

short of specifying operations at the same level of precision as that of INSERTION SORT,

it nevertheless allows managers to (a) evaluate the likely costs (time, probability of conflict,

number of online and offline meetings) required for each step, (b) evaluate the costs of

implementing alternative deliberation and selection/ranking procedures and (c) examine the

behavior of the implementation costs of any chosen procedure as a function of the number

of projects, the number of decision makers, and the distribution of scores of the projects

after an initial round of evaluations by decision makers.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 20

 Just as with the implementation of an algorithm on a computer the costs of

enumerating possible solutions are different from the costs of evaluating and ordering solutions in

terms of desirability, so in strategic problem solving we can have different kinds of costs for

each elementary operation, depending on the kind of evaluation we would want to perform

on candidate solutions. In the case of the problem maximizing joint commitment and

collaboration by the re-allocation of 8 kinds of decision rights to N management team

members over 3 different classes of decisions, we might see out a solution by the following

procedure:

ENUMERATION: specify the full set of decision right allocations to each of the members

of the management team. [This will require 3 x 2 8N-1 low cost operations.]

COARSE GRAIN ELIMINATION: Eliminate the solutions that are obviously non-

functional (like: giving no ratification rights to any decision maker (a factor of 2 reduction in

the space of solutions), giving no initiation rights to anyone (another factor of 2), giving no

monitoring rights to anyone (factor of 2), giving no sanctioning rights to anyone (factor of 2)

and giving no prior and posterior information rights to anyone (factor of 4). [This entails the

again very low cost of listing the 2 6 dominated solutions and crossing them off the list].

COARSE GRAIN EVALUATION: Break up the resulting solutions into a number (ranging

from 1 3 x 2 8N-6-1) of classes of viable solutions that can be ordered in terms of their

attractiveness (eg: not everyone should have ratification rights on every decision in this class;

at most 1 executive should have sanctioning rights, etc.) – which will require at least 1 and at

most 3 x 2 8N-6-1 different evaluations – which can be low cost (performed by the CEO and

requiring mental simulation work, or high cost (performed by gathering industry data that

supports a causal inference from decision right re-allocation to enhancements in

accountability);

FINE GRAIN EVALUATION. Choose up to K different solutions from the classes of

viable solutions using a decision rule (eg 1 per each different class; the most promising

solution in each class; the most promising K solutions, cutting across classes, etc) and

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 21

carefully evaluate their benefits and costs vis a vis the overall objective function. This will

require at least 1 and at most K different operations, which may be lower (if performed by

the CEO) or higher (if performed by the CEO in collaboration with the top management

team, which will entail coordination and deliberation costs).

FINAL SELECTION: Evaluate each of the K solutions deemed most promising, rank them

according to desirability, select a final decision right allocation to be implemented for the top

management team. This will require at least 1 and at most K different operations, which may

be lower (if performed by the CEO) or higher (if performed by the CEO in collaboration

with the top management team, which will entail coordination, deliberation and ‘debacle’

costs.

 To make the use of the computational abstraction layer to such problems more

transparent, it is important to notice that while the basic operations of an algorithm like

INSERTION SORT have been defined and fixed (by programming languages, machine

languages and hardware architecture), the basic operations involved in solving a problem like

REALLOCATE STRATEGIC DECISION RIGHTS can be defined in ways that seem

most natural to the problem solver. Enumerating solutions can be done in different ways

(mechanically, lexicographically) by different people, as can simulating the likely effects of a

particular re-allocation and evaluating the costs and benefits of that re-allocation. The point

of making the procedure by which the problem is solved explicit is to allow the strategic an

executive to visualize the sequence of operations required, to measure alternative ways of

solving the problem (by changing operations or sequences of operations) and to estimate the

time and resources required to achieve a comprehensive solution to the problem.

As Porter and Nohria [2018] show, the ways in which CEO’s in large, complex

organizations allot and apportion their time may exhibit significant levels of X-inefficiency

[Leibenstein, 1966: inefficiency arising from sub-optimal cross allocation of an important

resource (time in this case) to tasks having different expected values] arising from

uncertainty about how much time to allocate to different activities, or, alternatively, to how

long each of a set of activities required to bring about a particular outcome will take. Their

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 22

research produced an exceptionally valuable transversal picture of time allocation by CEO’s

to different classes of activities (Figure 8). However, what is needed in order to effectively

re-structure time allocations is a longitudinal picture of time allocation that lays bare the

sequences of activities that are linked together to produce an outcome (eg: a series of emails

set up to motivate a meeting at which everyone shows up mentally present and fully

prepared to make a decision by a deliberation process all agree with).

Figure 8. X-inefficient? Tabulation of relevant dimensions of the evidence on the allocation of time
by CEO’s (from Porter and Nohria, 2018).

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 23

A computational abstraction layer can be used to specify both the basic set of

organizational operations (meetings, preparation, scheduling) required to carry out a task (a

strategic re-structuration of levels of authority) and to create a bottom-up estimate of the

costs of these operations (in time) – which in turn allows the strategic planner to choose

activity sequences on the basis of an understanding of their real cost structure, and to optimize

the cost of each operation. An operational cost approach to planning a strategic re-allocation

of decision rights might proceed by creating a set of bottom-up estimates of the basic

operations involved in carrying out the organizational task, and then (a) to plan the sequence

of operations on the basis of a tally of the current estimate of the time-costs of each

operation and (b) to invest in reducing the costs of each operation and the degree to which

these costs scale with the number of whose agreement is required for their successful

completion.

Operational Unit Cost of operation Estimate of How Cost

Scales with N

(Multiplicative factor)

Securing agreement for a meeting from N

participants

2 days N2

Scheduling the meeting 2 days N2

Preparing agenda and pre-work materials 3 hours 1

Answering pre-meeting questions and

socializing answers

2 hours N

Deliberating on Alternatives 1 hour 0.1 x N

Securing Principled Agreement of preferred

option

0.5 hour N

 Table 1. Sample operation-wise estimation of the time complexity of a requisite sequence of tasks
(operations) required to carry out a strategic re-organization of decision rights

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 24

The computational analysis of business problems makes clear why and how

modularization helps make problem solving more efficient and organizations more proficient

at solving certain kinds of problems. In the example of INSERTION SORT, ‘costing out’

each operation – highlights the benefits of creating algorithmic modules that perform these

operations very quickly, thus decreasing the marginal cost of the loop that uses them, and

thus the overall cost of ordering an entire list. In the case of a strategic problem like

DECISION RIGHT REALLOCATION, it may be that certain kinds of operations (eg.:

‘getting together a meeting of people who will all have read the pre-work materials and will

show in time minded to address the task at hand’, or ‘evaluating the coordination costs to a

team of a re-allocation of authority’) can become ‘multiple re-use’ modules whose marginal

costs can be decreased through learning based on repetition and the incorporation of

feedback, leading to a much faster implementation of strategic transformation.

Designing Google. Sizing a problem can be critical to the design of a strategic solution to a market

problem – as the case of the design of Google centrality indicates. The ‘ill-defined problem’

of ‘ordering the Web’ just before the founding of Google was to produce a rank-ordering or

semi-ordering (in terms of relevance, salience, footprint, impact, known-ness, etc) of the ~

109 www pages on the Internet. To turn it into a well-defined problem [Moldoveanu and

Leclerc, 2015] represent the Internet as a (directed, not fully connected) network in which

web pages are nodes (n in number) and the links between them are the links (m in number)

from one page to another that a surfer might follow in ‘surfing the Web’.

Now the problem can be defined as that of ordering all web pages according to

measures of their centrality (like between-ness, Bonacich, closeness) in the graph that

represents the network of the Web, within a time that makes this measure relevant (24

hours) and using the available computational resources of the company at the time (defined

in GBytes of RAM and GFLOPS (billions of floating point operations per second) of

computational speed. The problem was also well-structured, as unobtrusive crawlers

jumping from one site to another were unlikely to affect the behavior of web site owners and

developers in ways that changed the problem on the time scales envisioned.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 25

The challenge to solving the problem can only be revealed through sizing the problem

by figuring out how many operations are required to compute the centrality measure of different nodes

such that this measure will order the World Wide Web. To do so, we need O(n, m) estimates

of the rate at which the complexity of the problem grows with the number of web pages (n)

and links between them (m). When we do so, however (Figure 8) we find that the number of

operations required to compute betweenness, closeness and eigenvector (Bonacich)

centrality measures for a large network grows very quickly as a function of the number of

nodes and edges in the network (web pages and hyperlinks between them), and that the

computational complexity of making these calculations exceeds that which can be

accommodated on available (1998) resources during short ‘refresh’ cycles (a few hours).

Motivated in part by addressing the computational difficulty of synthesizing a

centrality-based relevance or importance measure for all available Web pages using available

computational resources at the time to produce an estimate that refreshes in a time frame

that makes the measure of immediate interest, Brin and Page [1998] introduced Google

centrality as a proxy for the important or relevance of a Web page that can be computed (a)

with substantially fewer operations than available centrality measures and (b) whose

estimates can be recursively improved – taking advantage of increases in computational

capacity of hardware processors. They proceed by starting from the adjacency matrix that

describes the network of web pages Aij with entries aij= 1 (node connected to node j); 0 (otherwise)

and normalizing the non-zero entries (so they sum up to 1) and replacing the 0 entries with

1/N, where N is the total number of nodes to create the Markov transition matrix Sij, from

which they calculate the Google Matrix Gij= aSij + (1-a)/n, where a is a parameter representing

a ‘damping factor’ ((1-a) being the probability that a Web surfer suddenly signs off during the

process of skipping among web pages passed on the hyperlinks embedded in them [Ermann,

Frahm and Shepelyansky, 2015]. (The Google search engine uses an a value of 0.85.) For

values of 0<a<1, G belongs to the class or Perron-Frobenius operators and its right

eigenvector L(i/G) has real, non-negative elements corresponding to the probabilities that a

random surfer can be found on Web page i, and is its PageRank. This construction enables a

super-fast computation method for PageRank(i) based on recursion: Start with an initial guess

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 26

PageRank0 and generate the next iteration by multiplying the previous guess by the Google

matrix Gij: PageRankl+1= GijPageRankl. – which only takes O(n+m) operations to compute

(rather than O(nm) as in the other centrality measures’ cases). Fast convergence of the

algorithm (after up to 100 iterations) is guaranteed by selecting (1-a) to be suitably small (a

to be suitably large, respectively).

A computational abstraction layer contributes to the strategist not just a set of

heuristics for sizing problems and solving them in situations in which the complexity of the

solution process matters, but also a set of models and templates for defining problems – in

this case as a set of network position problems (Table 2).

Table 3. Using network position searches as problem definition and shaping tools for common
business problems.

Loosely worded problem
(‘challenge’)

Tighter formulation Definition as a Network Search
Problem

Identify the influencers of
pharma product buyer decisions
in a large health care provider
network

Find the most respected physicians
and basic researchers in the
relevant fields.

Find the nodes with the greatest degree and Bonacic
centrality in the graph G of publications (nodes) and
citations and co-citations (edges) of published findings,
within a week.

 Change the perception of the
market regarding the ‘monolithic
culture’ of the firm.

Increase the diversity of the
sources of outbound information
about the company in Web
materials and social media.

Find and order the degree centrality of nodes in the
graph G of communicators (nodes) disseminating
messages (links) through various outlets (nodes)
within a week and change the spread of these nodes by
a factor of 2 with a quarter.

Increase the efficiency of
coordination of the organization
around rapid-turnaround design
tasks.

Increase the spread and
distribution of project-relevant
information so that more people
are in the know more of the time.

Find the information flow centrality of all decision
makers in graph G of project-relevant
communications (email, text) and increase the average
centrality of the lowest 30% of the nodes by a factor of
3 within a month.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 27

 Table 2. Order of magnitude (O(n,m) Estimates of the Rate of growth of Time complexity (T(n,m)) as a
function of the number n of nodes and number m of links in a network.

CENTRALITY

MEASURE TO BE

COMPUTED

Computational

complexity as a

function of nodes

and edges in the

network

Number of

operations

required to

order a billion

(n) web pages

connected

with 500

billion (m)

ties…

…connected

with 50

billion ties…

… with 5

billion ties…

… with 0.5

billion ties…

Betweenness: The probability

that any network shortest path

(geodesic) connecting two nodes

J,K pass through node i

T(n,m)=O(nm)

WORST CASE:

O(n3)

5x1020 5x1019
 5x1018

 5x1017

Closeness: The inverse of the average

network distance between node I and

any other node in the network

T(n,m)=O(nm)

WORST CASE:

O(n3)

5x1020
 5x1019

 5x1018
 5x1017

Bonacich: the connectedness of a

node i to other well-connected

nodes in the network

T(n,m)=O(nm)

WORST CASE:

O(n3)

5x1020
 5x1019

 5x1018
 5x1017

Google PageRank: ‘the

probability that a random surfer

can be found on page i

T(n,m)=O(n+m) 5x1011

(5x1013)

assuming 100

iterations

5x1010

(5x1012)

assuming

100 iterations

5x109

(5x1011)

assuming

100 iterations

5x108

(5x1013)

assuming

100 iterations

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 28

Creating, Sanitizing and Camouflaging Toxic Debt. The Great Recession of 2008 (aka

‘financial crisis’) has been conceptualized as a classic ‘market for lemons’ problem [Akerlof,

1981] compounded by the computational complexity of detecting defective products in large

batches [Arora et al, 2010]. DeMarzo [2005] shows how a collection of mortgages held by a

bank with borrowers whose risk of default is broadly and independently distributed across

borrowers and falling into different risk classes can be tranched and re-assembled into a

collection of securities that lower risk for their buyer by spreading it across the risk classes

into which mortgages had been previously assembled by the bank (who is the lender for the

mortgage and also the seller of the CDO security).

Because the bank sells many CDO’s (N), each of which is based on tranches from

many mortgages (M) drawn from many different risk classes (L), it can use its superior

knowledge of risk class profiles and the added degree of freedom afforded by the mix-and-

assemble process by which it creates CDO’s to over-represent mortgages drawn from certain

(higher) risk classes (usually the ones it would like to convert into cash as soon as possible –

the ‘toxic’ ones) and realize a gain (over the fair market value of the CDO) by selling all of

the CDO’s at the same price. This gain can be understood as a ‘computational’ one: a buyer

whom is aware of the seller’s lemon camouflage strategy would have to inspect the graph

(Figure 9) of CDO’s and mortgages (grouped into risk classes) and identify and examine its

densest subgraphs (collections of nodes that are linked the maximal number of links) in order to

determine the degree to which over-representation of mortgages from any one of K risk

classes can skew the distribution of returns in any one of N CDO’s.

Sizing the problem of finding the densest sub-graph(s) of a network is the key to

realizing the ‘computation gain’ of camouflaging lemons. Goldberg’s algorithm [Goldberg,

1984] does so at a computational cost of O(nm) – multiplicative in the size (nodes n and

edges m) of the entire network, and therefore not easily computable for large networks

(hundreds of thousands or millions of nodes). If a buyer is (a) aware of the possibility of the

‘complexity camouflage’ of lemons and (b) in the possession of Goldberg’s algorithm for

detecting dense subgraphs linking mortgages to CDO’s based on them, then she may still be

computationally challenged (or unable) to detect them. If the seller knows this, then he might

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 29

be able to get away with skewing the distribution of returns on some CDO’s without

affecting the market price of the CDO bundle.

Figure 9. Illustrating the graph structure of constructing N CDO securities from a collection of M
mortgages that have been grouped into L risk classes.

However, a buyer that is equipped with a more efficient algorithm for detecting the

densest subgraph(s) of a network (such as the greedy algorithm-based approach of [Charikar,

2000], which has a complexity of O(n+m) for producing a reliable estimate) then she may be

able to check on the degree to which the seller has planted lemons and camouflaged them

using his knowledge of the computational complexity of detecting them. Finally, if a buyer

knows that the seller is using a specific approximation scheme for detecting dense subgraphs

of mortgages and CDO’s, then she might look for lemon planting strategies (kinds of

subgraphs) that the approximation scheme specifically used by the buyer’s lemon sniffer may

not be able to detect with the requisite reliability and in the time normally allotted.

Once again, a computational abstraction layer contributes a set of problem definition

tools – aimed at formulating problems relating to the detection, measurement and

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 30

optimization of highly important network structures (such as sub-graphs and cliques: Table 4) –

similar to that for defining and sharpening problems of detecting, measuring and

purposefully changing network position. – in a way that highlights the versatility of graph searches

more generally in the definition of strategy problems.

Loosely worded problem

(‘challenge’)

Tighter formulation Definition as a Network Search
Problem

How do we increase our
presence and influence using
Web communities that
discuss our products?

Identify the HUBS of users
that participate in discussion
forums about the company’s
products in the Web and
seek to influence these users
by shaping their dialogue
and letting them persuade
one another.

Find the DENSEST SUBNETWORKS of
users and discussants in Web forums and
discussion circles within 2 weeks (nodes are
individuals, edges are co-presence on discussion
foruym), communications targeted to their current
linguistic practices within 2 additional weeks.

How do we increase the
collaborative capability of our
R&D groups?

Identify the size and
distribution of the most
densely knit social circles
among researchers and
increase the size of these
circles.

Find the distribution of K-CLIQUES (fully
connected subnetworks of the
communication network (nodes are
researchers, directed edges are pairwise
communications, edge weights are
communication frequency) of researchers)
within 1 week, re-design workspaces to
increase the maximum and average clique
size by a factor of 1.5 over a month.

How do we decrease the cost
structure of our value-linked
activity chain?

Identify the relevant
structures in the network of
value-linked activities and
seek lower cost replacements
for the most prominent
activity units.

Find the MINIMUM VERTEX COVER
of the network of value-linked activities
(nodes are individual activities, directed
edges are value links that capture the degree
to which value created by activity J is
dependent on value created by activity K)
within a month, identify lower-cost
substitutes for these activities within
another month.

Table 4. Table 3. Using network structure and topology searches as problem definition and shaping
tools for common business problems.

Designing Complex Products and Services. ‘Graph searches’ constitute suggestive but tight

generative models for business problems requiring the fast search for nodes and structures

of potentially very large networks, which are increasingly prevalent in ‘Big Data’

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 31

environments [Moldoveanu, 2015]. However, using network searches as abstraction layers is

also useful to the process of problem definition in situations that are not themselves

immediately suggestive of a network representation. For example, the problem of designing

or modifying a strategically important new product or service can be represented as a

problem well known to computer scientists – the Knapsack Problem (Figure 10): a hiker

going on a long and arduous trek has more tools, utensils and other items than she can pack

in the only knapsack she knows she can take along. The knapsack has a finite volume – as

does each candidate item. Additionally, each item has a certain value to the hiker, which she

knows or can estimate. Her challenge is to find the combination of items that will give her

the maximum value, subject to fitting inside the volume of the knapsack – hence the name

of the problem.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 32

Figure 10. A Graphical Representation of the Knapsack Problem, wherein the volume of each item is
represented as a unit cost c, and the total volume of the knapsack is represented as a total cost constraint C*.

 The solution search space for the problem comprises all of the possible combinations of

items that could ‘pack’ the full knapsack. Solving the problem by exhaustive enumeration

and evaluation of the possible solutions entails packing the knapsack with all possible

combinations of items (of which there are 2N-1 if there are N items), evaluating the total

estimated value of each combination, ranking all feasible (volume-fitting) combinations

according to their total values, and selecting the combination of items that has the maximum

total value.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 33

 Seen as the problem of packing a knapsack, the problem seems unnecessarily

formalistic and complicated (people pack knapsacks all of the time without worrying about

enumerating a solution search space that increases exponentially in the number of items).

However, seen as a component of a computational abstraction layer for business problem

solving, the problem is a model for a number of problems that show up in business– such as

that of optimizing the set of features F of a new product, where each feature has a cost and

is expected to add a particular value to the product, subject to an overall cost constraint on

the new product, with the aim of maximizing the value of overall product (which may be

additive, sub-additive, or super-additive in the values of the individual features). If the

number of features is large, their costs and marginal values added are not easy to calculate

and the overall value of the product can only be estimated once a full set of features and the

relationships between them has been specified, then the growth in the complexity of the

product design process as a function of the number of features becomes highly relevant.

 Versatility and portability to different scenarios are highly useful components of a good

abstraction layer. Computer scientists routinely use one problem as a model for a different problem,

which allows them to export from the solution of one problem to the solution of a different

problem [Sedgewick and Wayne, 2014; Knuth, 2011]. One way to export insights from one

problem to another is to consider changes of variables that will map problems one into the

other – and together onto the canonical problem one has already dealt with. In the case of the

Knapsack Problem, re-labeling the network so the nodes become value-added activities in

an industry that can be constituted into more or less advantageous value-linked activity

networks allows us to frame the problem of the de novo design of platform-based businesses

(Uber, AirBnB, Dropbox, Salesforce.com) as problems of finding the optimal set of value-

linked activities that should be integrated within the same organization [Novak and

Wernerfeldt, 2002]. In the case of Uber, they include writing off depreciation of personal

vehicles and additional disposable income (drivers), predictable scheduling and billing, ease

of access and ubiquitous accessibility and secure, auditable, trackable payment (riders), traffic

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 34

decongestion and alleviation of parking lot overload (municipalities), scalability and marginal

profitability on a per transaction basis (shareholders) – each with an associated cost of

provisioning (designing, supporting, securing the platform; recruiting and certifying drivers,

etc) and an expected total value. Designing Uber can be modeled as solving a Knapsack

Problem where the “knapsack” is the value-linked activity network of the business and the

individual components are valuable activity sets that can be integrated on the same platform.

Seen in this form, the abstract-form Knapsack problem can be ‘exported’ to the design of

new businesses eg: (a secure, Blockchain based platform for tracking educational degrees,

courses, certifications, student loans, employer recommendations, job performance, skills;

or, a secure enterprise-level recruitment platform that allows seamless interaction between

employers and candidates on the basis of written documents (CV’s), candidate introduction

videos (‘video CV’s), interview transcripts, credentials and certificates, etc.)

 Using canonical problems to encode frequently recurring business problems offers up

possibilities for defining and shaping predicaments messy and peppered with idiosyncratic

details down to searchable solution spaces and systematic search procedures optimally suited

to their enumeration and evaluation. The well-known VERTEX COVER problem, for

instance, can be used to sharply and precisely model:

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 35

Figure 11. Schematic description of the VERTEX COVER PROBLEM, enjoining the problem solver to
find the set of nodes that collectively touch ALL of the edges of a graph.

 The problem of identifying the ‘key information agents’ in a large organizations –

those whose communications reach all members (nodes are people, edges are

communications in a particular medium);

 The problem of identifying the ‘critical set’ of components of a product – those

whose functionality affects the functionality of all of the other components (nodes

are components, edges are causal contributions of the functionality of one

component to that of another);

 The problem of identifying the ‘minimal trust core’ of a large group of users of a

product or service – the group of people whose communications are followed and

valued by other users (nodes are Web users, edges are ‘followed and liked by’ links

whose followership and ‘like’ scores are above a certain threshold.

“The Intractables”. Several of the ‘canonical’ problems we have seen – such as the Knapsack

and Vertex Cover problems – exhibit a level of complexity that grows very quickly with the

size of the problem. Computational science made a massive stride in its practical and

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 36

theoretical reach with the introduction of a sharp definition of ‘very quickly’ that allows

computational scientists to sort problems in advance of solving them. This distinction is

based on the difference in the growth of polynomial functions and super-polynomial

functions (for instance, exponential functions). The set of problems whose solution

complexity T(n) grows more quickly than any polynomial function T(n)>P(n), where P is any

polynomial function of n – has a structure to it [Cook, 1960]: many of the problems that fall

in that class are solvable in only probabilistically in polynomial time (or, they can be solved

in non-deterministic polynomial time) and any candidate solution to them can be verified

within polynomial time.

Knapsack

Satisfiability
(Cook, 1976)

3 SAT

Partition Vertex cover

Clique
Hamiltonian

circuit

transforms to transforms to

transforms to transforms to

transforms to

transforms to

Figure 12 : The Class of Intractable (NP-hard) problems, showing analytic reductions among different
common problems that are irreducibly complicated to solve.

 The rapid growth of computational science across fields as disparate as molecular

genetics, linguistics, legal analysis, actuarial science and high frequency trading can be traced

to the construction of a family of NP-hard problems that are structurally equivalent to one

another [Karp, 1972] (see Figure 12). This network of canonical problems that are known to be

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 37

intractable by analytical reduction one to the other allow one to size up the complexity of a

problem before attempting to solve it (simply by showing it to be analytically reducible to

another NP hard problem) and to device strategies for simplifying the problem by trading

off either the probability of finding its optimal solution or the accuracy of the solution itself.

Several of the problems we have considered – optimally re-allocating decision rights (SAT),

constructing a new product with an optimal set of features, drawing the boundaries of the

firm around the maximum ‘core’ of value linked activities (KNAPSACK), and identifying the

most significant networks of informers and contributors in an organization or market

(VERTEX COVER) - fall into the NP family, which allows strategists to see how their

difficulty scales as the number of their variables (features, activities, informers) grows.

 As ‘strategy problems’ are increasingly ‘big data’ problems comprising very large

numbers of variables and data points, it becomes critically important to examine the size of

the problems that ‘big data’ generates [Moldoveanu, 2015]. It is not just the number of

variables, the heterogeneity of the databases and formats in which the values of the variables

are stored and the ways in which data can be combined and re-combined to generate

predictions that matters, but also the rate at which the difficulty of classification and

prediction problems based on the data grows with the size of the data set. A precise

formulation of ‘learning algorithms’ (‘probably approximately correct’ learning [Valiant,

1984]) stresses the requirement that the difficulty of any learning routine or algorithm not

exhibit an exponential blow-up as a function of the number of instances required for

learning the concept. A computational abstraction layer that allows for explicit problem sizing

is equally important to those who are trying to solve both optimization problems (building the

optimal product or architecting the optimal team authority structure) and prediction problems

(building risk classes for mortgage defaults on the basis of millions of data points relating to

the borrowing behavior of users in different ethnic, cultural and demographic classes). (The

distinction is somewhat contrived: Prediction problems in the machine learning literature are

formulated in terms of the minimization of a ‘cost function’ (or the extremization of an

objective function) that represents the distance between observed, recorded and registered

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 38

data and data that is generated by a predictive model of the process that generates it, whose

parameters evolve as a function of the success of previous predictions.)

Kinds of Problems: A Tree Structured Picture of a Computational Abstraction Layer. It may be useful

to summarize work we have done so far on generating a computation abstraction layer that

supplies microfoundations for business problem solving in the form of a classification tree

(Figure 13 below) that helps strategists distinguish between:

 well-defined and ill-defined problems (presence of measurable current and desired

conditions, an objective function and a variable space that can be used to synthesize

a space of possible solutions);

 well-structured and ill structured problems (independence of the implementation of a

solution search procedure from changes in the solution search space itself);

 tractable versus intractable problems (super-polynomial (eg: exponential blow-up)

increase in the number of operations estimated to be required to solve the problem

as a function of the number of variables in the problem);

 difficult and simple problems (the degree to which the difficulty of the problem

stresses and stretches the resources of the organization).

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 39

Problems

Well

Defined

Ill Defined

(No well defined

current, desired

state, search space)

Well

Structured

Ill Structured (wicked)

(Search space defined

but changes as a

function of search

process

Easy

(Linear or

constant)

Hard

(nonlinear)

Tractable

(P hard)

Intractable

(NP hard/complete)

Figure 13. A ‘Classifier’ for Strategic Problems, showing the basic distinctions that we have drawn in the
paper thus far.

4. What is the best way to solve this problem? Algorithmic micro-foundations for
problem solving processes.

 A computational abstraction layer for business problem supplies the problem solver

not only with ways of defining, structuring and sizing problems, but also with a repertoire of

canonical problem solving techniques in the form of procedures for searching solution spaces that

are either provably optimal for certain kinds of problems and solution spaces, or can be

adaptively optimized to the problem the strategist is trying to solve. Making some further

relevant distinctions is what allows us to cut business problem solving at the joints using the

right concepts from computational science, as follows:

Types of Search: Deterministic and Probabilistic. Computer scientists distinguish between

deterministic and probabilistic searches of solution spaces. If we consider the problem of

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 40

evaluating the set (of all subsets) of 100 different possible value-linked features, each of

which can be specified into a final product, we see that searching exhaustively, in a

deterministic fashion (each step determined by the preceding one), will often be infeasible

under time and resource constraints. Many algorithms computer scientists use when faced

with such problems use the planned introduction of randomness (‘flip a coin or a sequence of l

coins after move k to decide what move k+1 should be) that can help to make the search

process faster at the cost of sacrificing certainty about achieving the optimal solution. Instead

of obsessing over each possible combination, one can start with random subsets of features,

and, after verifying they satisfy a total cost constraint, evaluate the total value of the product

that comprises them; then seek alternatives by making small substitutions (take out one

feature, add a lower cost feature from the set of features not yet included, and re-evaluate the

value function of the entire product.)

Kinds of Search: Global and Local. Similarly, in situations in which the sheer size of the solution

search space daunts the resource base of the problem solving organization, one can restrict

the search to lie in the neighborhood of a solution that is already known to work, but, which

we suspect, can be improved. Instead of searching globally, then, computer scientists seek

meaningful local neighborhoods within a solution search space, wherein to search for a good

enough solution. (Superficially, this looks like Simon’s first cut at articulating ‘satisficing’

[Simon, 1947], but it adds a useful refinement: the solution search space is restricted to a

local neighborhood that can be chosen to maximize the chances a good enough solution will

be found there.) A strategic problem solver seeking a reallocation of decision rights to her

team may choose to search in the neighborhood of either the current allocation of decision

rights (by adding or removing single decision rights from single agents and simulating or

emulating or experimenting to find likely consequences), or may choose to start in the

neighborhood of an allocation of decision rights found (by best practice mapping and

transfer machines like strategic consultancies) to be successful in the industry in which the

firm operates – or across other relevant industries.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 41

Modes of Search: Serial and Parallel. Parallelizable hardware architectures have enabled

computer scientists to make searching for solutions to difficult problems faster and thereby

cheaper by parallelizing the search process. Searching for a name in a database can be made

faster by splitting up the database into N non-overlapping sub-databases and having each of

N processors search each of the smaller data bases. In general, problems with large solution

search spaces are not immediately or self-evidently parallelizable: ordering a 1015-long list of

bit strings in order ascending in the numbers they specify cannot be done simply by splitting

up the list into 105 lists of 1010strings and ordering each – as the costs of then merging the

lists in an order preserving way can cancel out the benefits of parallelizing the search.

Business problems with large solution search spaces may be more easily parallelizable

(splitting up decision right allocations according to the types of decisions that they relate to)

or less so (splitting up a Web influence network into sub-networks in order to evaluate the

hub of maximally influential agents).

 What is particularly useful about these distinctions in business problem shaping and

solving is the ability to combine and concatenate them into a set of meta-algorithms for solving

difficult problems, as follows:

Meta-Algorithmics of Search: Strategic Ingenuity and Intelligent Adaptations to Complexity.

Divide and Conquer (DC). Algorithms designers often divide up larger problems into

smaller sub-problems, whose individual solutions can then be aggregated into the solution to

the entire problem (Figure 14). It involves (a) partitioning the problem search space into

smaller search spaces that can be more easily searched, and (b) piecing together the separate

solutions to the smaller problems to form (possibly sub-optimal, but still superior) solutions

to the larger, intractable, problem. The set of all possible subsets of a set of features of a

product can be divided up into subsets-of-subsets of features that can be searched

independently by several different individuals or teams working in parallel, provided that the

value of the product is strictly additive in the values of the features.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 42

Figure 14. Illustrating the Basic Intuition Behind the ‘Divide and Conquer’ Heuristic.

There is no guarantee the concatenation or integration of solutions to smaller sub-

problems will in general be an optimal solution to the bigger problem: Breaking up the

problem of evaluating the set of all possible decision right allocations to each of N

individuals on a team over decisions arising from K different classes of problems will not

generate an efficiently separable solution process if the efficiency of allocating certain kinds of

decision rights to some people (initiation rights) depends on the allocation of other kinds of

decision rights to other people (ratification rights). However, one may still be able to divide

up the problem of evaluating decision right allocations to certain classes of people

(ratification rights to executives; implementation rights to employees) and more efficiently

evaluate all allocations of other decision rights between executives and employees with

respect to their efficiency.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 43

The use of a divide and conquer heuristic is not limited to problems that can be

tightly formulated in graph-theoretic language. One can divide up the problem of ‘getting

people together for a meeting’ (desired conditions: they will all show up, at time t and

location S, informed and ready to engage in task T) by dividing up the task of inviting them

and motivating the meeting to K different convenors (who trust and copy one another on

emails). Each operation in the overall task can be defined ostensively (‘getting people of this

hierarchical rank to answer this kind of email’) – even if a precise algorithmic model for

‘answering this type of email’ is not available or not derivable – which allows us to quantify

the marginal and average cost of such operations in different environments, as a function of

the number of operations involved in the successful completion of a task. Similarly, the

problem of designing a strategy for the containment of a large information leak from the organization can

be divided up into a series of sub-problems (identifying the source of the leak, gathering

evidence for the act of leaking, sequestering access to information from the source) which

can be divided up among problem solvers specializing in the tasks relating to solving each

sub-problem.

Local Neighborhood Search (LNS). Algorithm designers deploy local searches around best-

guess solutions to solve problems that are clearly intractable if pursued on a brute force

basis. The Traveling Salesman Problem (TSP) – finding the minimum distance path connecting

N locations – has a solution search space (all N! fully connected circuits) that is super-

exponential (and thus super-polynomial) in size. The dramatic reduction in the time

complexity of TSP highlighted in Figure 12 above was accomplished by a procedure for

searching the N!- size search space of the TSP using a local search meta-algorithm named

after its inventors, Lin and Kernighan [Lin and Kernighan, 1973]. The procedure involves

selecting an ‘almost-complete’ tour of the cities (a ‘delta path’) which includes all of the cities

exactly once, except for the last one, measuring the total distance of the delta-path that had

been generated, making switches among the edges included in the delta path and edges that

are ‘available’ but not included, comparing the total distance of the modified circuit with its

last version, and retaining the more efficient path. One key to the (exponential) speed-up

achieved by this heuristic is the way in which edges are exchanged, which is (usually) 2 (eg: 1-

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 44

3&3-2 replaced with 1-2&2-3) at a time - entailing a search space of N(N-3)/2. The algorithm

allows for the exclusion ‘by inspection’ of many inferior paths: for instance, in the 4663 city

TSP one can exclude combinations such as(Toronto (Central Canada) Kelowna (Western Canada)-

London (Central Canada) without ‘evaluation’.

Problem:
“Find minimum-length
tour connecting Canada’s
4663 cities”

Solution:

Figure 15. A TSP Problem Search Space for Canada’s 4663 Cities and Solution to the Problem Using Lin

Kernighan Local Search Heuristic.

While the TSP can itself serve as a canonical problem model for problems of

strategic significance (‘find the optimal influence path within a network of consumers’) the uses

of local neighborhood searches as a way of simplifying business problems is highly exportable.

One can constrain the search for a new allocation of decision rights to members of a large

team by searching in the neighborhoods of current allocations (making small changes an

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 45

simulating or experimenting with their consequences) or in the neighborhood of allocations

that have been shown to work in cross sectional studies supplying correlative evidence, or

longitudinal studies supplying plausible causal evidence for their value.

Branch and Bound (BB) techniques partition the solution search space via a tree whose

nodes represent decisions among different families of a solutions. Calculating bounds on the

performance of a solution that arises from different branches of the tree, and deleting from

the search space branches likely to result in a sub-optimal solution. The key feature of a

good tree structure for BB methods is that it is ‘quickly prunable’: estimates of performance

bounds for different branches are calculated in advance, to lower the chances that an

optimum be ‘missed’ by the resulting search. For the TSP problem a BB-suitable tree search

can be built on the basis of whether or not a path contains a particular segment connecting two cities.

The first node of the tree creates two ‘buckets’ of possible routes: one containing routes

containing AB and one containing routes that do not. Subsequent nodes of the tree (there

will be N(N-1)/2 nodes for an N city tree in total) provide finer-grained partitioning of the

space of possible paths. The key to reducing the time complexity of the search is a tight

characterization of the best/worst case performance that one can expect from any given sub-

tree: Each fork of the tree cuts the number of search operations required by 50 per cent. BB

methods can be used to quickly narrow the search space of ‘big’ problems of strategic

choice. The computation and selection of the optimal Nash Equilibrium in a game – or of

the Nash Equilibrium that has a minimum payoff to one player of at least P – is and

intractable (NP-hard) problem [Austrin, Braverman and Chlamtak, 2011]. In a simultaneous

move oligopolistic competition game with 4 competitors, each of whom has 6 strategies at

her disposal, the search space for combinations of strategies has 1296 distinct outcomes (64).

A BB method can quickly narrow this space by 50% by eliminating combinations of

strategies that include a ‘low cost’ product or service offering on the basis of examining the

worst case scenario (a price war) that is likely to be triggered by this choice. Each step of

eliminating combinations of strategies that contain an undesired component will trigger a

similar contraction of the search space. In the case of optimizing the design of a new

product by choosing among features that have additive costs and values subject to a total

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 46

cost constraint and with the objective of maximizing value, one can ‘parse’ the overall

solution set by creating a tree whose branches explore the subsets of features containing

(x1=1) or not containing (x1=1) any particular feature, and bounding – along the length of

each subtree – the overall value of the resulting achievable subset.

Figure 16. The basic ‘decomposition of independent subspaces of solution search space’ principle of

the branch-and-bound approach.

Randomization need not be blind. The general set of approaches that pass under the

name of intelligent randomization provides a way of probing a large solution search space and

intensifying the search in the neighborhood of promising (but randomly generated)

solutions. A problem-generating model (a generative model) that yields to intelligently

randomized solution search procedures in the well-known NK model of (co)-evolutionary

dynamics introduced in [Kauffman and Levin, 1987]. N genes – whose phenotypic

expression is dependent on afferent contributions from at least K other genes – can generate

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 47

highly complex (many local optima) fitness landscapes (payoffs to the phenotype) as a

function of the specific informational content of the genes. The resulting NK model has

been used [Levinthal and Warglien, 1997; Ghemawat and Levinthal, 2008] to examine the

dependence of a firm’s performance on the structure and topology of its activity sets – or K-

wise coupled and interdependent interdependent ‘policies’. To a firm that aims to

strategically tailor the set of activities it pursues, the problem of choosing the set that

optimizes its performance (‘fitness’) was shown [Kauffman and Weinberger, 1989;

Weinberger, 1991] to be computationally equivalent to the well-known intractable (NP-hard)

k-SAT problem for k>1.1 . The NK strategic decision problem (‘Is there a fitness function

of the N activities, each mutually coupled to k others with value greater than V?’) maps into

the kSAT problem (‘Is there a set of variables whose aggregate satisfiability score is at least

V when plugged into a set of M k-variable formulas?’) trivially for M=N, and with padding

of the search space for M>N and M<N [Weinberger, 1996]. Rivkin [2000] argued the

intractability of the NK problem (derived from the intractability of the kSAT problem for

k>1) can make complex strategies (characterized by the design of value chains comprising

many linked activities) difficult to imitate. But the complexity of solving the kSAT problem

yields to searches of the solution space based on randomly permuting both the sets of initial

variables and the assignment of truth values to variables within a formula [Schoening, 2002;

Brueggermann and Kern, 2004; Ghosh and Misra, 2009]. These approaches achieve a worst-

case complexity of solving the 3SAT problem of (1.d)N (where d is a natural number

following the decimal point) instead of 2N, which, even for very large values of N can

produce a massive decrease in the complexity of the 3SAT problem (Table 3): a factor of

1020 reduction in the complexity of solving the 3SAT problem for N=100 is achieved by a

random walk based algorithm.

1 The problem takes as an input a set of N variables and a set of M Boolean expressions containing up to k
variables AND, OR, and NOT, and asks for an assignment of the N variables to the M expressions that will
make these expressions true (i.e. will ‘satisfy’ them, hence the name of the problem)

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 48

N
Exhaustive Search
Complexity 2N, Total
Number of Operations.

Random Walk Based Search
Complexity 1.334N, Total Number
of Operations.

1 2 1.3334

2 4 1.7796

3 8 2.3707

4 16 3.1611

10 1,048 17.7666

20 1,048,576 315.6523

100 1.27 x 1030 3.16 x 109

Table 3: Comparison of Computational Complexity of Solving 3SAT Problem Using Deterministic
Exhaustive Search (Column 2) Versus a Set of Rapid Random Walks (Column 3) As a Function of the
Number of Variables (Column 1).

Stochastic Hill Climbing. Randomized algorithms can be both local and adaptive

[Hromkovic, 2003]. The difficulty of searching the solution spaces of most hard problems

arises from the vast number of ‘local minima’ that some procedures (‘local hill climbing

based on gradient ascent’) can get trapped into. Knowing this, algorithm designers have

sought ways of ‘getting out’ of local optima [Sedgewick, 2011]. One way to do so is to

randomly ‘jump around’ a solution search space and vary the rate and size of the jumps,

using simple decision rules such as: ‘search deterministically and locally in gradient-

maximizing small jumps when hitting a promising solution’ and ‘jump far away when the

gradient levels off’.

Such stochastic hill climbing methods (SHC) [Michalewicz and Fogel, 2004] ease

limited search processes from the constraints of local optima by probabilistically causing the

searcher to ‘jump’ to different regions of the search space and thus to perform large

numbers of bounded local searches. SHC approaches to the problem of the optimal

allocations of N decision rights to M agents (generate the entire search space, encode

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 49

neighboring solutions (small differences in decision right allocations among people) in a

consistent fashion, execute a probabilistic version of local neighborhood search in the

vicinity of the allocation of decision rights the next jump lands on), of finding the core (or,

vertex cover) of an influence network (generate all possible subsets of nodes, explore their

connectedness in the network) can be used to significantly reduce the time required to find

optimal solutions. The success of the approach depends on the distribution of optima in the

solution search space: we can expect a ‘rugged landscape’ of many sharp peaks separated by

large troughs in the first case (changing one decision right given to one person can make a

very large difference) and a smoother landscape in the second.

Physically inspired algorithms [Xing and Gao, 2014] can take the form of intelligent

randomization, in a form intuitive for non-computational scientists. Simulated annealing

algorithms are based on the cycle of liquefying and cooling a metal or plastic in various forms,

allowing the heating process (‘going to a high entropy state’) to generate the ‘random search

step’ required to explore a potentially very large solution search space (all possible forms the

cooled metal can take). Simulated annealing algorithms specify various temperature gradients of

the search process: temperature denotes ‘mean kinetic energy’ of a state of particles

assembled in a macro-state (e.g. liquid), and the temperature of a search process increases with the

probability that the process will jump away from the local search it is currently performing

within a certain time window.

The method can be applied by strategists without a specific model of the

computational problem being solved. As one CEO anecdotally shared, he regularly runs

meetings aimed at deliberating on and selecting organization-wide policies by first allowing

the meeting to proceed without guidance or intervention from him, observing the process

and guessing at the likely solution the group will converge, and then either encouraging the

group to converge on the solution that seems to organically emerge or ‘blowing up’ the

process - by making comments that undermine the credibility of the process itself,

introducing information he knows not be known to others – depending on how globally

attractive he believes the solution the group is about to converge on to be. This is a case of

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 50

algorithmic insight being applied to a problem solving process without a specific model of

the process itself: many algorithmic processes can yield to ‘simulated annealing’ approaches.

Biologically inspired algorithms can be used to synthesize useful heuristics and problem

space search strategies in business, again, intuitively and often without the need for a precise

computational model that encodes the problem at hand. Genetic (or, evolutionary) algorithms

(GA) [Goldberg, 1989] combine the insight that randomization can produce (probabilistic)

speedup of search with a structured approach to the solution generation process inspired

from evolutionary biology [Baeck, 1996]. Using the basic operators of variation, selection,

recombination and retention applied to populations of ‘parent’ solutions or components of

solutions that can be concatenated or otherwise recombined, genetic programmers create

algorithmic frameworks for solving complicated problems by the intelligent recombination

and selection of randomly produced guesses at pieces of a solution. Primitive, random

candidate solutions or ‘partial solutions’ (eg.: delta paths in a Lin Kernighan representation

of TSP) are perturbed (‘mutation’) and combined (‘sexual reproduction’) to produce new

candidate solutions that are then selected on the basis of the quality of the solution they

encode [Fogel, 1995]. Mutation rate, selection pressure (‘temperature’ of the process) and

recombination intensity (binary, N-ary) are parameters under the control of the problem

solver. Exponential speedup of convergence to the shortest route was reported for the TSP

[Wang, Zhang and Li, 2007] based on the parallelization of the randomization operator

across members of a population of candidate solutions (‘mutation’, ‘recombination’) and the

iterative application of the selection operator at the level of the entire population.

As we saw with simulated annealing, evolutionary algorithms offer the strategist a

way of conceiving and structuring exploratory activity even when a precise encoding of the

solution search space onto the space of ‘genetic material’ on which evolutionary operators

do their work is not specified. For instance, organizational decision processes can be viewed

as selection mechanisms, carried out over alternative policies, investments, technologies, or

humans (hiring/firing/promotion). An analysis of selection mechanism described by

evolutionary programmers [eg Baeck, 1996] – such as tournament selection, Boltzmann

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 51

selection, roulette wheel selection, ranking based selection that is either ‘soft’ or ‘hard’

depending on the reversibility and corrigibility of the decision made– can be used as

templates for alternative selection processes embodied in the organization, and as templates

to experiment with alternative selection mechanisms that maximize organizational objective

functions. Alternative or auxiliary goals and objectives can also be specified and embedded

in the design of the selection (or recombination) procedure. They can include the ‘diversity

loss’ in the offspring population associated with certain kinds of selection rules, the

convergence rate of any selection scheme to the optimal solution allowed by the information

embodied in the parent populations, and the ‘sheer novelty’ generated by a suitably designed

mutation and selection process [Lehman and Stanley, 2010].

5. What is the best organizational architecture for solving the problem? Teams as

multiprocessor units.

 Software ‘runs’ on hardware. Computational designers regularly take advantage of

hardware configurations to improve the efficiency with which algorithms solve the problems

they were designed to solve. For shapers and solvers of business problems, studying and

abstracting from the partitioning and porting of ‘soft’ algorithms onto ‘hard’ processors can

offer a set of distinctions and choice points – as well as a set of normative schemata for

allocating tasks to people from which deviations observed in practice can be systematically

measured (which is the way what passes for purely descriptive theory is formulated in the

‘special sciences’). A computational abstraction layer provides a unitary language system in

which problem solving procedures are apportioned among processors and humans, enabling

both strategic managers to speak more transparently and competently to developers and

architects of algorithms and software, and those who primarily talk to machines to explain to

strategic managers what they are doing and why they are doing it. The distinctions arising

from understanding collective problem solving as a problem that partly relates to that of

porting software on hardware architectures highlight the dependence on the optimal

partitioning of tasks to problem solvers on the structure of the underlying problem and

choice of problem solution procedure, as follows:

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 52

Topology: Centralized and De-Centralized. Just like an algorithm developer must consider the

degree to which a central controller is used to schedule, allocate, distribute, and evaluate the

output of different tasks (solution to sub-problems or intermediate stages of a problem

solving process), business problem solvers must consider the degree to which decision rights

over various components of a problem solving task are centralized in one central person or

distributed across different problem solvers. Just as a RISC controller manages the inputs and

outputs of tasks across other processors, for instance, a chief architect or chief developer

must manage the inputs and outputs to different developers, which will enable them to do

their design jobs most efficiently. The decomposability of a problem matters to the optimal

structure of the processor units that solve it. Attempting to solve the Traveling Salesman

Problem by breaking up the N locations into two groups of N/2 locations, solving each

problem independently and then concatenating the solutions to generate a candidate solution

is not a good idea, as the combination of two optimal circuits joining N/2 locations will not

be equivalent to the optimal TSP circuit for the N locations. If humans were carrying out the

tasks of enumerating and evaluating the paths for k collections of N/k sub-circuits, then

significant coordination costs would result from having to piece together the optimal path

joining N cities, and a central processing unit would have to expend significant effort to

mitigate these coordination costs. On the other hand, a large strategy consultancy could

break up the process of evaluating the allocation of M decision rights over decisions in K

independent domains to a team of N people, there is a natural partitioning rule N=K that

allows for partitioning the problem to K different consultants (the processors), achieving an

order of eK reduction in the overall computational complexity of the task. And, finally,

solving the TSP by exhaustive search may be effectively separated by decoupling the core

tasks of enumerating all possible paths from that of evaluating the length of each path, from that

of finding the shortest path on the list. This approach is clearly not scalable to large numbers of

variables, but it offers the significant advantage that enumerators, evaluators and selectors can

specialize, and lower the marginal cost of each operation, which is useful in situations where

exhaustive search is feasible.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 53

Less obviously, the choice of a solution method for a particular problem can affect

the degree to which task centralization is beneficial. An evolutionary algorithm based

approach to the solution of the TSP will be far more amenable to a decentralized, peer to

peer task environment in which candidate circuits are quickly generated, and combined

(decentralized) and then evaluated using an agreed upon selection procedure (centralized).

Using a branch and bound approach to solve the Knapsack Problem for the set of optimal

features of a product subject to total cost constraints can similarly be decomposed into

parallelizable subtasks of evaluating the best and worst case scenarios that can result when

traveling down each of the branches that include/do not include a particular branch. Solving

for optimum strategies using backward induction similarly can proceed by de-centralizing the

processes by which particularly interesting and important ‘sub-games of the Nash tree’ are

evaluated.

Coherence: Synchronous and Asynchronous. As every real-time software developer knows, the clock

– both its speed and the degree to which a multiprocessor architecture is synchronized to it -

is a critically important component to implementing an algorithm in silicon in a way that

allows it to process information of certain average and worst case complexity under time

constraints of a maximum duration. The importance of the clock is easy to understand: the

advantage of decentralization of task performance is often the parallelization and

multiplexing of problem solving tasks. However, for a parallelized task to be significantly

more efficient than its serial counterpart, the processors must be synched up in order to

produce outputs that are jointly required at the next stage of the problem solving process.

Some tasks are more sensitive to differences in processing speed than others: a genetic

search among possible combinations of knapsack components will require tights

synchronization of the transitions between variation, recombination and selection steps because

delays compound over time, whereas a branch-wise decomposition of the same problem will

be far more tolerant to slippage of the local clocks relative to the central clock.

Functionality: Homogeneous and Inhomogeneous. Programmers and the hardware designers that

seek to offer them the structures on which their code will run know hardware can be

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 54

optimally configured to perform certain kinds of operations – such as complex

multiplications for Fast Fourier Transform Computation, add-select-compare processors for

Trellis decoders – and so forth. When developers must commit to a hardware architecture

before knowing in advance the kinds of operations their code will require, they opt for

architectures that have heterogeneous subunits specialized for different kinds of operations. By

analogy, business problem solvers called upon to solve wide ranges of problems across an

industry or several industries (a large strategy consultancy) can usefully heed this ‘diversity

heuristic’ in their own problem solving team constitution practice, and even optimize the

‘diversity gain’ they achieve for certain kinds of problems to exceed the sometimes higher

costs of coordinating problem solvers trained in different disciplines [Moldoveanu and

Leclerc, 2015]. A computational abstraction layer allows strategic problem solvers to

quantify this diversity gain: Hong and Page [Hong and Page, 2011] show that a group of

heterogeneous non-expert problem solvers outperform a group of experts on the task of

finding a solution when the problem is complex enough that it can only be solved by

generating and applying a set of heuristics whose value increases with its diversity.

7.Discussion. Intelligent Artificiality as a Computational Abstraction Layer for

Strategic Problem Solving.

We are now in possession of a computational abstraction layer for business problem

solving. Its expressive power is at least equivalent to that supplied by microeconomic theory

- which has been the predominant net exporter of conceptual frameworks for business

problem solving for the past fifty years. The language of marginal, average and sunk cost

analysis, marginal value comparisons and marginal rates of substitution, strategic

complements and substitutes, ‘comparative’ and ‘competitive’ advantage of various kinds,

equilibria of both the Arrow-Debreu and Nash variety, temporal discounting and

intertemporal substitutions, and so forth – can now be complemented, and, where inferior as

a prescriptive and ascriptive tool, replaced, by elements of a computational abstraction layer

comprising the following operators:

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 55

 DEFINITION – the definition of problems via the specification of a set of current

and desired conditions, time and resource constraints, and a space of independent,

dependent and control variables whose cross or tensor products can be used to specify

solution search spaces;

 STRUCTURATION – the shaping, filtering or transformation of a problem such

that the process of defining the problem, communicating the definition of the problem to

others who need to be involved in solving it, observing and measuring current conditions,

and designing methods of measurement for the desired conditions does not change or

modify the values or nature of the variables in question and the structure of the solution

search space;

 SIZING- the process of evaluating the time and resources required to solve a

problem before attempting to solve it;

 ENUMERATION – the process of specifying, individually or synthetically, the set

of solutions that satisfy the constraints of the problem;

 EVALUATION – the process of evaluating candidate solutions with respect to their

desirability;

 RECURSION – the process of iteratively narrowing the solution search space

through procedures aimed at synthesizing intermediate or along the way solutions, whose

performance vis a vis desired conditions increases with each iteration, and which allow the

problem solver access to a better approximation to a solution with each iteration;

 ELIMINATION – the elimination of dominated or inferior candidate solutions with

a view to narrowing the solution search space of the problem;

 RANDOMIZATION – the implementation of operations in a solution search

procedure that are probabilistically and not deterministically linked to the current state of the

problem-solving process;

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 56

 LOCALIZATION – the purposive narrowing of the search to a sub-space of the

solution search space, with a view to simplifying the search;

 PARALLELIZATION – the process of allocating different tasks in a problem

solving process to different problem solvers, who can work in parallel and thereby reduce

the total time required to attain an acceptable solution;

 CENTRALIZATION – the process of vesting decision rights over the allocation of

tasks and subtasks to different problem solvers as a part of the problem solving process;

 SYNCHRONIZATION – the process of aligning and coordinating the ‘clocks’ of

different problem solvers working on the same problem to as to minimize the losses

resulting from coordination failures;

 DIVERSIFICATION – the process of purposefully introducing heterogeneity in the

core skills and capabilities of problem solvers, to take advantage of the diversity gain accruing

to the application of a variety of different heuristics to solving a very complicated problem,

or for the purpose of maximizing the ‘insurance value’ of the problem solving team when it

is designed to confront a wide variety of heterogeneous problems.

 We conclude with a discussion of the measurement of problem solving performance.

Unlike economists, who focus primarily on allocational efficiency as a measure of process

performance and focus their efforts on observable outcomes, usually compared cross-

sectionally at the industry level, when they derive measures of comparative or competitive

advantage, computational scientists focus on the trade-offs between and among the accuracy,

reliability and speed that a particular kind of processor implementing a certain kind of algorithm operating

over and information set of a given size and dimensionality that a given problem solving process

(comprising silicon CPU’s and memory, algorithms, and data sources) can achieve in the

best, worst and average case scenarios expected.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 57

a=Accuracy of solution

B
(a,s,p)

A
(a,s,p)

P=Probability of Convergence

S = Speed of convergence
Competitive Advantage: ≥ , a,s,pA

(a,s,p)
B

(a,s,p)Figure 17. Hyperplanes of trade-offs for quantifying the performance of a problem solving process, comprising
the accuracy of the solution generated by the process, the probability of converging to a solution of that
accuracy, and the speed (inverse of implementation time) with which a solution of a particular accuracy can be
reached with a particular reliability.

 This three-dimensional measure of problem solving performance allows for the

contextualization of the measurement of the prowess of a team, group, organization or value

linked activity chain that transcends organizational boundaries to solve the specific problems

it confronts by being specific to the structure and definition of the underlying problem. But

it allows for the transfer of learning about problem solving across different problems of the

same structure, and therefore within firms, across firms and across industries. It unpacks the

black box of ‘process’ that economic models focused on measuring the efficiency of

processes by reference to inputs and outputs alone leaves opaque by being specific about the

individual operators and operations of problem solving, and about the link between the problem

structure, problem solving policy and resulting performance.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 58

The three-dimensional approach to the quantification and measurement of problem

solving performance contributes an alternative definition of comparative advantage of a firm

over another, and, where the firms are operating in a contested market domain – of their

respective competitive advantages. In Figure 17, firm A dominates Firm B along all

dimensions of problem solving prowess – speed, accuracy and reliability – in solving

problems of a particular structure. This unpacks comparative advantage in ways that

illuminate and point to improvement paths: by focusing on reducing the costs of the basic

organizational operations that comprise ‘everyday problem solving’, or by altering the

topology and coordination mechanisms of parallel problem solving groups; which is what an

abstraction layer that does not merely ‘represent’ or ‘describe’ experience and practice - but

also reveals guideposts to and levers for changing them - should do.

References

 Akerlof, G. A. 1970. The Market for “Lemons”: Quality Uncertainty and the Market
mechanism. Quarterly Journal of Economics, 84(3): 488-500.
 Arora, S., Barak, B., Brunnermeier, B. and Ge, R. 2010. Computational Complexity
and Information Asymmetry in Financial Products . Innovations in Computer Science (ICS)
Conference.
 Austrin. P., M. Braverman and E. Chlamtac. 2011. Inapproximability of NP Complete
Variants of Nash Equilibrium, arXiv:1104.3760v1.
 Back, T., 1996. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms. Oxford University Press.

Baer, M., Dirks, K.T. and Nickerson, J.A., 2013. Microfoundations of strategic
problem formulation. Strategic Management Journal, 34(2), pp.197-214.

Bhardwaj, G., A. Crocker, J. Sims and R. Wang. 2018. Alleviating the Plunging In
Bias, Elevating Strategic problem Solving. Academy of Management Learning and Education, 17.3.

 Brin, S., and L. Page. 1998. Bringing Order to the Web: A Hypertext Search Engine.
Mimeo, Stanford University.
 Charikat, M. 2000. Greedy Approximation Algorithms for Finding Dense
Components in a Graph. Proceedings of APPROX: 84-95.
 Chen, X., X. Deng and S.-H. Teng. 2009. Settling the Complexity of computing Two-
Player Nash Equilibria. FOCS. J. Association for Computing Machinery, 56:3.

Christian, B. and Griffiths, T., 2016. Algorithms to live by: The computer science of human
decisions. Macmillan.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 59

 Cook, S. 1971. The Complexity of Theorem Proving Procedures, Proceedings of the Third
Annual ACM Symposium on the Theory of Computing.
 Cyert, R.M. and J.G. March. 1963. A Behavioral Theory of the Firm. New Jersey:
Prentice-Hall.

DeMarzo, P.M., 2004. The pooling and tranching of securities: A model of informed
intermediation. The Review of Financial Studies, 18(1), pp.1-35.

Dixit, A., 1990. Optimization in Economic Theory. New York: Oxford University Press.

Ermann, L., Frahm, K.M. and Shepelyansky, D.L., 2015. Google matrix analysis of
directed networks. Reviews of Modern Physics, 87(4), p.1261.

 Fogel, D.B. 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.
IEEE Press, Piscataway.
 Fortnow, L. 2009. The Status of P versus NP Problem. Communications of the ACM.
52(9). 78-86.
 Garey, M.R., and D.S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP Completeness. San Franscisco, Freeman.

Ghemawat, P. and Levinthal, D., 2008. Choice interactions and business
strategy. Management Science, 54(9), pp.1638-1651.

 Ghosh, S.K., and Misra, J. 2009. A Randomized Algorithm for 3-SAT. Honeywell
Technology Solutions Laboratory.
 Goldberg, D.E. 2008. Genetic Algorithms. Perason Education.
 Holland, J. H. 1962. Outline for a Logical Theory of Adaptive Systems. Journal of the
ACM. 9(3): 297-314.
 Hong, L. and S.E. page. 2004. Groups of Diverse problem Solvers can outperform
groups of high ability problem solvers. Proceedings of the National Academy of Sciences. 101(46),
16385-16389.
 Hromkovic, J. 2003. Algorithmics for Hard Problems: Introduction to Combinatorial
Optimization, Randomization, Approximation and Heuristics. 2nd edition, Springer, Heidelberg.
 Jensen, M.C. and W.H. Meckling. 1998. Specific and general Knowledge and
organizational Structure. In Jensen, M.C. , Houndations of Organizational Strategy, Boston:
Harvard Business School Press.
 Karp, R.M. 1972. Reducibility Among Combinatorial Problems. In Miller, R.E., and
J.W. Thatcher, eds., Complexity of Computer Computations. Plenum, New York.
 Kauffman, S. and Levin, S., 1987. Towards a general theory of adaptive walks on
rugged landscapes. Journal of theoretical Biology, 128(1), pp.11-45.

 Knuth, D.E. 2011. The Art of Computer programming. New York: Addison Wesley.

 Lehman, J. and Stanley, K.O., 2010, July. Efficiently evolving programs through the
search for novelty. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation (pp. 837-844). ACM.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 60

Leibenstein, Harvey (1966), “Allocative Efficiency vs. X-Efficiency”, American
Economic Review 56 (3): 392–415

 Levinthal, D., and P. Ghemawat. 1999. Choice Structures, Business Strategy and
Performance: An NK Simulation Approach. Working Paper 00-05, Wharton School.
 Levinthal, D.A., and Warglien, M. 1997. Landscape Design: Designing for Local
Action in Complex Worlds, Organization Science, 10(3); 342-57.
 Lin, S., and B.W. Kernighan. 1973. An Effective Heuristic Algorithm for the
Traveling Salesman Problem. Operations Research. 21. 498–516.
 Lyles, M. and I. Mitroff. Organizational problem Formulation: An Empirical Study.
Administrative Science Quarterly. 25:1. 102-119.
 Majorana, E.2006. The Value of Statistical laws in the Physical and Social Sciences. in
Bassani, G.F. scientific Papers of Ettore Majorana. New York: Springer.
 March, J. G.1991. Exploration and Exploitation in Organizational Learning.
Organizational Science. 2: 71-87.
 March, J. G., Simon H. A. 1958. Organizations. John Wiley, New York
 Martello, S., and P. Toth. 1990. Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons, Chichester, New York.
 Michalewicz, Z., and D. Fogel. 2004. How to Solve It: Modern Heuristics. Springer,
Heidelberg.

Mintzberg, H., Raisinghani, D. and Theoret, A., 1976. The structure of"
unstructured" decision processes. Administrative science quarterly, pp.246-275.

 Moldoveanu, M. and Reeves M., 2017. ‘Artificial intelligence: The gap between
promise and practice.’ Scientific American Online. November.
 Moldoveanu, M. and Leclerc, O., 2015. The Design of Insight: How to Solve Any Business
Problem. Stanford University Press.

 Moldoveanu, M.C. 2011. Inside Man: The Discipline of Modeling Human Ways of Being.
Stanford Business Books Stanford.
 Moldoveanu, M.C. 2009. Thinking Strategically About Thinking Strategically: The
Computational Structure and Dynamics of Managerial Problem Selection and Formulation,
Strategic Management Journal. 30: 737-763.
Moldoveanu, M.C. and R.L. Martin. 2009. Diaminds: Decoding the Mental Habits of Successful
Thinkers. Toronto: University of Toronto Press.

Nelson, R. and Winter, S., 1982. An evolutionary theory of the firm. Belknap,
Harvard, 41.

 Novak, S. and Wernerfelt, B. (2012), On the Grouping of Tasks into Firms: Make-or-
Buy with Interdependent Parts. Journal of Economics and Management Strategy. 21: 53–77
 Page, L. 2001. Methods for Node Ranking in a Linked Database. United States Patent.
 Porter, M.E. and Nohria, N., 2018.How CEO’s Manage Their Time. HARVARD
BUSINESS REVIEW, 96(4), pp.41-51.

MOLDOVEANU: INTELLIGENT ARTIFICIALITY 61

Posen, H.E., Keil, T., Kim, S. and Meissner, F.D., 2018. Renewing Research on
Problemistic Search—A Review and Research Agenda. Academy of Management Annals, 12(1),
pp.208-251.

Reeves, M, Haanaes K., and Sinha J., 2015. Your Strategy Needs a Strategy. Boston,
Harvard Business School Press.
 Rivkin, J. 2000. Imitation of Complex Strategies. Management Science. 46: 824-844.
 Schoening, U. 2002. A Probabilistic Algorithm for k-SAT Based on Limited Local
Search and Restart, Algorithmica, 32: 615-623.
 Sedgewick, R. and Wayne, K., 2011. Algorithms. Addison-Wesley Professional.

 Siggelkow, N., and Levinthal, D. 2005. Escaping Real (Non-Benign) Competency
Traps: Linking the Dynamics of Organizational Structure to the Dynamics of Search. Strategic
Organization. 3(1): 85-115
 Siggelkow, N., and Levinthal, D. 2003. Temporarily Divide to Conquer: Centralized,
Descentralized, and Reintegrated Organizational Approaches to Exploration and
Adaptation. Organizational Science. 14: 650-669.
 Simon, H.A., 1973. The structure of ill structured problems. Artificial intelligence, 4(3-
4), pp.181-201.

 Valiant, L. 2006. Probably Approximately Correct. Cambridge: Harvard University Press.

 Valiant, L.G., 1984. A theory of the learnable. Communications of the ACM, 27(11),
pp.1134-1142.

Wang, L., J. Zhang, and H. Li. 2007. An Improved Genetic Algorithm for TSP,
Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong.

 Weinberger, E.D. 1996.NP Completeness of Kauffman’s N-k Model: A Tunably
Rugged Energy Landscape. Santa Fe Institute Working Paper 96-02-003.

Wing, J.M., 2006. Computational thinking. Communications of the ACM, 49(3), pp.33-
35.Wing, 2008

Wing, J.M., 2008. Computational thinking and thinking about
computing. Philosophical transactions of the royal society of London A: mathematical, physical and
engineering sciences, 366(1881), pp.3717-3725.

Wolfram, S. 2016. ‘How to teach computational thinking.’ Stephen Wolfram Blog.

 Wright, A. H., Thompson, R. K., and Zhang, J. 2000. The Computational Complexity
of N-K Fitness Functions. IEEE Transactions on Evolutionary Computation. 44(4): 373-379.

Wolfram, S, 2016. ‘How to teach computational thinking.’ Stephen Wolfram Blog.

Xing, B. and Gao, W-J.. 2014. Innovative Computational Intelligence: 134 Clever Algorithms.
New York: Springer.

