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Abstract 

 

This paper introduces algorithmic micro-foundations for formulating and solving strategic 

problems. It shows how the languages and disciplines of theoretical computer science, 

‘artificial intelligence’ and computational complexity theory can be used to devise a set of 

heuristics, blueprints and procedures that can help strategic managers formulate problems, 

evaluate their difficulty, define ‘good enough solutions’ and optimize the ways in which they 

will solve them in advance of attempting to solve them. The paper introduces both a framework for 

the analysis of strategic problems in computational terms, and a set of prescriptions for 

strategic problem formulation and problem solving relative to which deviations and counter-

productive moves can be specified and measured.  
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1. Introduction: Formulating and Solving Strategic Problems Using Computational Language 

Systems. Strategic problem formulation was recently brought into the focus of inquiry [Baer, 

Dirks and Nickerson, 2013] in strategic management, with calls for the development of 

‘microfoundations’ that will help us make sense of the social and cognitive bases for defining 

problems before solving them.  The upshot to such inquiry is both deriving prescriptive 

advice on which problem to try solving before ‘plunging in’ [Bhardwaj, Crocker, Sims and 

Wang, 2018] and providing a nuanced model of the individual and interpersonal choices 

involved in strategic problem solving. This emphasis on decoding the ‘problem formulation 

process’ has been applied to strategic and operational problem solving from multiple 

domains [Moldoveanu and Leclerc, 2015] as a generative blueprint for ‘strategic innovation’ 

that results from synthesizing spaces of possible solutions by choosing the language and 

ontology in which problems are framed – rather than simply generating solutions within a 

search space that is either ‘given’ through conversational habit. This article contributes a set 

of computational and algorithmic ‘microfoundations’ to the study of problem formulation 

and structuration. It leverages the abstraction (conceptualization, ideation and the 

structuration of thought and  blueprinting of action) layers developed by computer scientists 

and complexity theorists over fifty years to provide both a way of studying and teaching 

problem formulation and structuration across strategic domains, and to generate a useful 

abstraction layer for strategic problem solving.  

The field of problem definition and structuration has a rich and textured history in 

the field of artificial intelligence [Simon, 1973] where the need to encode a problem solving 

procedure as a set of algorithmic steps to be performed by a digital computer requires 

careful consideration of the definition of the problem (objectives, constraints, the space of 

possible solutions) and the structuration of the solution search process (accounting for 

situations in which the process of search changes the space of possible solutions). Even a 

simple and disciplined application of Simon’s conceptualization of problem definition and 

structuration can significantly benefit the practice of strategic problem shaping and solving 

by providing strategists with ways of thinking about what they do when they ‘think’, ‘talk’, 

‘argue’, and ‘decide’ [Moldoveanu and Martin, 2009; Christian and Griffiths, 2017; Valiant, 
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2006]. However, the practice of problem shaping and structuration has made strides in the 

field of ‘algorithmics’ (including machine learning and deep learning) In the intervening 

period [see, for instance, Sedgewick and Wayne 2011; Cormen, Leiserson and Rivest, 2011; 

Hromkovic, 2003] the field of ‘algorithmics’ has grown in depth, breadth and explanatory 

coverage to the point where it can ably provide a comprehensive description language and 

associated prescriptive prompts for intelligently coping with strategic problems. 

Algorithmic thinking and computational thinking: Computational Foundations for Problem Formulation. 

[Wing, 2006; Wing, 2008; Wolfram, 2016]. The usefulness of the computational modeling 

toolkit to disciplines outside of computer science has not gone un-noticed. Wing [2006; 

2008] posited ‘computational thinking’ as a kind of analytical thinking that allows people 

working in any discipline to structure their problem solving processes more productively by 

deploying useful abstractions and methods used by computer scientists and engineers to 

solve large scale problems that usually exceed the computational powers of individual 

humans. She argues that problem solving routines that lie in the algorithm designer’s toolbox 

(such as recursion) are useful to problem solvers in all domains – and not just to 

programmers coding solutions to algorithmic problems: it is a ‘conceptualization skill’ and 

not just ‘a rote mechanical skill’.   Both Wing and Wolfram [2016] focus on ‘abstraction’ and 

the use of ‘multiple abstraction layers’ as critical to the discipline of computational thinking, 

which, once mastered, can be deployed across domains as varied as linguistics, genomics, 

economics, cognitive science and sociology. What about strategic management?The task we set 

for ourselves in this paper is to come up with a computational abstraction layer for business 

problems that helps both strategic managers and researchers ‘cut across domains of practice’ 

and on one hand generate a set of algorithmic micro-foundations for strategy problem 

solving and on the other offer insights and guidelines to practitioners engaging with live, 

raw, ill-defined, ill-structured, potentially intractable problems. 

‘Intelligent Artificiality’: Learning from Machines to Solve Problems Machines Won’t Solve.  To help 

shape perceptions about the project of building computational microfoundations for 

strategic problem solving, we reverse the phrase ‘AI’ and posit ‘Intelligent Artificiality’ (IA) 
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as the practice that human problem solvers in general and business problem solvers in 

particular to appropriate and deploy algorithmic and computational methods to problems in 

their own domains. The project of intelligent artificiality is summarized in Figure 1. The 

loosely-worded, ‘fuzzy’ problems that strategic managers often use to encode their 

predicaments (top layer) are defined, calibrated and classified to yield ‘stylized business 

problems’ (second layer from top), which are then mapped into a set of canonical problems 

(third layer from top) framed in a language amenable to algorithmic treatment. They inform 

the search for solution-generating processes – algorithms, heuristics –  tailored to the 

structure of the problem to be solved. The analysis protocol can also be run backwards, to 

generate coherent and precise problem statements for business strategists using templates 

and models drawn from the canonical repertoire of problems in computer science. 

 

Figure 1. A synoptic view of the process by which ‘raw’ problems in business are defined and encoded as 
canonical business problems and subsequently as canonical algorithmic problems for which highly efficient 
solution search procedures can be found. 
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For example, the loosely worded challenge (‘We need to resolve a major personal 

accountability problem at the level of the top management team’) can be defined and 

structured more precisely and actionably as (‘Re-allocate decision rights to members of the 

top management team so as to increase a composite metric of accountability (comprising 

both results and self-reports) by 50% over the next two quarters, maintaining current levels 

of incentives and without firing anyone’), which then maps into a canonical problem 

(MAXSAT: allocate variables to clauses (decision rights to agents) so as to maximize a global 

objective function) for which highly efficient search procedures from the field of algorithm 

design (divide and conquer, local neighborhood search) can be applied to solve the problem 

far more efficiently than would be possible via experimentation or even ‘offline’ simulation. 

We proceed by  introducing computational micro-foundations for defining and 

structuring strategic problems and show how this representation allows us to guide the 

structuration of strategic problems and resgister departures from optimal or non-dominated 

structuration strategies. We introduce problem calibration as the process by which strategists 

specify what constitutes a ‘good enough’ solution, and introduce a typology of (well-defined 

problems) that allows strategists to productively parse and optimize the solution process. We  

show how sizing up a problem by measuring the best-case, average-case and worst-case 

complexity of its solution procedure can help strategists estimate – in advance of solving a 

problem or just ‘plunging in’ – the time and resources a solution will likely require. We 

discuss solution search processes for problems of different complexity – and provide a map 

by which strategic problem solvers can choose solution search procedures best suited to the 

structure and complexity class of their problems. Finally, we work out the implications of the 

algorithmic micro-foundations for strategic problem solving to the design and management 

of problem solving teams and groups. 

2. What is the Problem and What Kind of Problem is It? Problem Definition, 

Structuration and Calibration. 

 A significant gap in the literature on problemistic search that originated in the work 

of Cyert and March [1963] is a focus on problem definition and formulation as precursors to 
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the adaptive selection of behavioral solutions to problems arising from mismatches between 

aspirations and results. As a recent review [Posen, Keil, Kim and Meissner, 2018] points out, 

attempts to address this gap must grapple with constraints of resources and rationality – and 

that is what computational modeling techniques do, by design: algorithm designers must 

deal, methodically and in advance of ‘solving the problem’ with the memory, computational 

and interface (I/O) constraints of the device they are planning to run the executable version 

of the code that embodies the solution search procedure chosen. 

Defining Problems. Much of the literature on strategic problem solving starts by assuming that 

problems are ‘given’ and problem statements are ‘self-evident’ – but this is one of the 

assumptions that causes the ‘problem formulation gap’ in the problemistic search field – and 

which can cause strategists to simply ‘plunge in’ to solving a problem before carefully 

defining the problem statement. By contrast, the algorithmics literature focuses narrowly and  

on defining problems in ways that admit of systematic searches for solutions under time and 

resource constraints, and using as much as prudent but no more than available resources for 

storing information and performing computational operations [Simon, 1973; Cormen, 

Leiserson and Rivest, 2011; Hromkovic, 2003].  

A well-defined problem [Moldoveanu and Leclerc, 2015] minimally involves the 

specification of a mismatch between current and desired conditions and the time required to 

move from the current to the desired conditions. This requires a specification of (observable 

and measurable) current and desired conditions – along with their methods of measurement. 

For example, defining the ‘fuzzy problem’: ‘We have a major accountability problem within the top 

management team’ can be accomplished by first specifying the metrics for current and desired 

conditions (‘accountability’ as measured by average response time to mission critical emails 

to other management team members; percentage of individual commitments to the rest of 

the team fulfilled as measured by minutes to management team meetings; responses to 

survey of management team members and their direct reports on the degree to which a 

‘commitment culture’ that promotes making sharp promises and keeping them or breaking 

them with advance notice and with good reason exists) and then specifying the percentage 
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improvement in the overall metric sought (eg 50%), the time frame in which the 

improvement must be made (eg 6 months) and sharp constraints on changes that must be 

heeded (no change to membership of the team; no change to incentive structure; no change 

to schedule of top management team meetings). The loosely worded problem can be 

phrased as a well-defined problem statement, eg: ‘We are seeking to change a composite 

accountability metric involving response times, percentage of individuals commitments to 

the rest of the team fulfilled and the mean of subjective reports on the degree to which the 

organization has a culture of commitment by 50% over the next 6 months, subject to 

maintaining current team membership and compensation structures and the current schedule 

of executive team meetings.’ 

   While discussions of problem formulation and problem framing in the management 

field [Mintzberg, Raisinghani and Theoret, 1976; Lyles and Mitroff, 1980 – and the literature 

they spawned] stop at the specification of desired conditions, the algorithmic problem 

solving field additionally requires us to use a precise language system for stating the problem – 

one that allows algorithmic search procedures to be deployed on the solution search space 

generated by the language system in question. Because in computer science problems the 

language system is pre-determined (e.g. by a programming language)– much of the literature 

on problem formulation either does not focus on the language system or proceeds directly to 

the enumeration of a solution search space [Simon, 1973]. If we expect a well-defined 

problem to generate a solution search space, however [Moldoveanu and Leclerc, 2015], then 

we must choose a language system that will enable choices (‘possible solutions’) over 

variables that are observable and controllable. Given the constraints of the problem in this 

case, we can focus on the decision rights of members of the top management team (See Figure 

2 below, based on the partitioning of decision rights in [Moldoveanu and Leclerc, 2015, 

which builds augments the partitioning of decision rights introduced in [Jensen and 

Meckling, 1998(1995)]) and trying to re-allocate decision rights over key decision classes 

(hiring, sales, budgeting, business development) so they encourage consistent and timely 

reporting and information sharing between management team members.  
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Figure 2. Eight distinct kinds of decision rights that one might allocate to members of a management team. 

Moreover, given this representation of the problem, we can specify and enumerate a 

space of possible solutions: given N members of the team, each of whom can have (code as 

a ‘1’) or not have (code as a ‘0’) a specific kind of decision right over decisions falling into 

one of D classes, we can generate a solution search space of (2 8N-1) (number of distinct 

allocations of  8 kinds of decision rights to each of N managers, excluding (-1) the ‘no 

decision right to anyone’ allocation) ) x D (kinds of decisions), and either exhaustively or 

selectively evaluate possible allocations with respect to their likely consequences to the 

accountability of the group as a whole.  
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Defining the problem in this way gives a further refinement to the problem 

statement we have synthesized, namely: ‘We are seeking to change a composite 

accountability metric involving response times, percentage of individuals commitments to 

the rest of the team fulfilled and the mean of subjective reports on the degree to which the 

organization has a culture of commitment by 50% over the next 6 months, subject to 

maintaining current team membership and compensation structures and the current schedule 

of executive team meetings by re-allocating the decision rights of top management team members over 2 

different decision classes (strategic, operational) to promote (a) denser information sharing on critical decisions 

and (b) greater alignment between the specific knowledge of each team member and her level of authority over 

decisions requiring the use of that knowledge .’ 

Structuring problems. As Simon [1973] points out, problems need not only be well-defined, but 

also well-structured (i.e. not ill-structured) for them to be reliably solvable by an algorithmic 

procedure. An ill-structured problem is one whose solution search space changes as a 

function of the specific steps we take to solve the problem. Strategic problems have a much 

greater risk of being ill-structured on account of the Heisenbergian uncertainty [Majorana, 

2006 (1937); Moldoveanu and Reeves, 2017] implicit in social and human phenomena: The 

act of measuring a particular variable relating to a social group (‘commitment’, ‘cohesion’, 

‘motivation) can influence (increase or decrease) the values of the very variables that we are 

trying to measure. In the context of solving a problem like P:  ‘We are seeking to change a 

composite accountability metric involving response times, percentage of individuals 

commitments to the rest of the team fulfilled and the mean of subjective reports on the 

degree to which the organization has a culture of commitment by 50% over the next 6 

months, subject to maintaining current team membership and compensation structures and 

the current schedule of executive team meetings by re-allocating the decision rights of top 

management team members over 2 different decision classes (strategic, operational) to 

promote (a) denser information sharing on critical decisions and (b) greater alignment 

between the specific knowledge of each team member and her level of authority over 

decisions requiring the use of that knowledge ’ – the very act of jointly measuring both 

current allocations of decision rights among members of the top management team and  the 
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degree to which a commitment culture exists in the organization (via self-reports and 

surveys, for instance) can influence the estimate of both sets of variables. Members of the 

top management team may under-report or over-report their own decision rights, depending on 

the degree to which they believe they will lose them by any proposed solution; or 

strategically distort their responses to surveys meant to supply information to be used in an 

‘organizational accountability’ metric in order to mitigate the degree to which a radical 

restructuration of their authority will be brought about.  

 The Heisenbergian uncertainty that accrues to the definition of strategic problems 

and requires us to structure them is pervasive in strategic problem solving scenarios. For 

instance, the problem: “How do we increase cumulative research and development productivity by 10% 

over the next 24 months subject to not increasing R&D spend?” can induce distortion of information 

required to estimate current R&D productivity. The problem: “How do we decrease sales cycle 

duration by a third over the next quarter subject to maintaining the membership of the current sales force?” 

can induce distortions in the reporting of information used to estimate both current sales 

cycle (“what constitutes a ‘closed’ sale?”) and realistically achievable target sales cycle 

duration. Structuring strategic problems, therefore, is essential to decoupling the process by 

which the problem is defined and a solution search space is generated from the problem by which 

initial conditions are measured and desired conditions are specified and measured. Strategic managers can 

attempt to structure problems by at least three different classes of moves: 

‘Always-on measurement’: In the age of ‘big data’ and ubiquitous observation of behaviors and 

even micro-behaviors, they can deploy a fabric of organizational measurement systems and 

platforms that constantly track large sets of variables that are useful to the solution of broad 

classes of problems, which gives the top management team discretion as to which problem to 

attempt to solve at any one point in time. In our examples, variables relating to levels and 

degrees of authority of top management team members,  to sales cycle duration and current 

R&D productivity can be constantly maintained in regularly updated databases which can be 

mined for composite measures aimed at defining organizational change problems. 
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‘Unobtrusive measures’. Strategic managers can also deploy unobtrusive and indirect measures 

of the values of the variables that are directly relevant to a strategic problem. They can use 

accounting data and online behavior to monitor sales cycle dynamics; or, email spectroscopy 

and mining of exchanged messages to figure out average and median response times to 

sensitive communications. Unobtrusive measures may allow strategic managers to address 

the Heisenbergian uncertainty of targeted, transparent measurement by cutting off the 

inferential chain which motivates those supplying the data to distort it in order to influence 

the solution that will be adopted. 

‘Outsourcing of strategic problem solving’. Large strategy consultancies can function as effective 

‘insulators’ that help strategic management teams solve problems. Their engagements are 

often phrased in broad terms (see Table 1 in the Appendix), which allows them considerable 

latitude in probing, inquiring and measuring variables of interest in advance of announcing 

the problem to be solved – thus effectively decoupling the process of measurement from 

that of problem definition and solution search space enumeration. This suggests that the 

value of strategic consultancies as Heisenbergian uncertainty minimizers is independent of 

their value as framers, shapers and solvers of strategic problems. 

Calibrating Problems: What is a Good Enough Solution? Core to the problemistic search literature 

is the notion of bounded rationality of problem solvers [Simon and March, 1958]. The search 

for solutions is conceived as narrow, local and sparse [Nelson and Winter, 1982]. This 

rudimentary conception of organizational problem solving closely tracks that of the 

mainstream economic analysis of optimization [Dixit, 1990], wherein value maximizers 

search – and evaluate the gradient of the payoff curve – in the close proximity of their 

current conditions. This approach significantly misses significant sources of heterogeneity in 

the deployment of problem solving prowess, and fails to distinguish between and among 

different kinds of bounds to rationality.  
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By contrast, computational science makes sharp distinctions among informational 

bounds (memory: how much can you store?), computational bounds (how quickly can you 

calculate?) and communication bounds (how quickly can you communicate and coordinate 

with others in a multiprocessing environment?) which are just as important in organizational 

settings in which useful data is scarce and expensive to produce, the time and resources 

available for systematically eliminating dominated solutions is scarce, and problem solving is 

increasingly performed in groups and collectives that require constant communication to 

‘stay on the same page’. A computational abstraction layer for strategic problem solving 

allows us to study the challenge of selectively and purposefully bounding and deploying rationality, 

summarized by the question: When is it worth trying to solve this problem to this level of accuracy?  

Computational science teaches us that much depends on having the right algorithm  - or, problem 

solving procedure, at hand.  

To take a simple example, suppose a strategic manager faces a decision between two 

lotteries. The first pays $1MM no matter what (once one chooses it). The second costs 

$1MM to participate in, but pays $10MM if the 7th digit of the decimal representation of the 

square root of 2 is the number 7¸and $0 otherwise (leading to a $1MM loss). Without (any 

digital computer or) knowledge of a method for computing the decimal square root of 2, the 

expected value of the second lottery is $0: a one in ten chance (there are 10 digits) of guessing 

at the number correctly and realizing the $10MM gain, minus the cost outlay of $1MM for 

participating in the lottery. However, if the decision maker knows ‘Newton’s Method’ 

(actually known to the Babylonians much earlier) for calculating an arbitrarily large number 

of digits in the square root of 2, then she can do much better than guessing. The method uses 

the first  terms of a Taylor series expansion of f(x) = x2-2 to generate a recursive set of 

approximations to √2: Starting with an initial guess x0, successive iterations are generated 

via: xn+1 = x n- f(xn)/f ’(xn), which, for f(x)= x2-2, gives: xn+1 = x n-(xn
2-2)/2xn.. The method not 

only allows one to exactly calculate the tenth digit of the decimal representation of the 

square root of 2 (and therefore the decision maker to realize a net gain of $9MM over the 

expected value of a decision maker who simply guesses), but it also allows her to estimate 
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the expected informational value of each additional calculation that generates a more 

accurate answer, i.e. xn+1 = x n- f(xn)/f ’(xn) (which in this case is 2 bits/iteration).  

 

1  

1.5  

1.4166666666666666666666666666666666666666666666666666666666675 

1.4142156862745098039215686274509803921568627450980392156862745 

1.4142135623746899106262955788901349101165596221157440445849057 

1.4142135623730950488016896235025302436149819257761974284982890 

1.4142135623730950488016887242096980785696718753772340015610125 

1.4142135623730950488016887242096980785696718753769480731766796 

 

Figure 3. The first eight iterations in the recursive application of Newton’s Method to the calculation of the 

square root of 2 to an initial guess of ‘1’ as the answer. 

 

Recursion is useful not only because it can be used to replace a  difficult and 

cumbersome calculation with a set of easier calculations [Wing, 2006], but also because, 

importantly, it allows the problem solver to estimate the expected value of turning the 

recursion crank one step further in advance of doing so (Figure 4).  
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Figure 4. Graphical representation of the information dynamics of a recursive estimation procedure.  

 

Strategic Equilibria. Recursive estimation can play a useful role in interactive reasoning 

of the type that allows two oligopolists selling un-differentiated products with uniform 

marginal cost of c into a price-taking market with downward sloping demand curve 

parametrized by a-c (where a is a constant), by allowing each supplier to reason its way 

recursively down a hierarchy of iterative ‘best responses’, whose generating function is 

[Saloner, 1991]: q0=0; qn+1=(a-c)/2 – qn/2, that generates the series shown in Figure 5. 

Importantly, the strategic managers in each firm can calculate not only their best response to 

the product quantities the competitor chooses to produce, but also the loss or gain they stand 

to make by thinking to the next level of recursion (or, by thinking their way to the Nash 

Equilibrium). 
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Figure 5. Iterative ‘best responses’ of two duopolists selling an undifferentiated product costing c into a 
market with a downward sloping demand curve parametrized by a-c. 

 

3. How hard is the problem we are about to try solving? Prior Analytics for Problem 

Complexity. An important contribution that a computational abstraction layer for strategic 

problems contributes to the way in which bounded rationality is treated in the strategic 

problem formulation and problemistic search literature is a way of sizing the problem –  

figuring how hard it will be and what resources will be required to solve it, before trying to 

solve it.  ‘Plunging in’ and just trying to solve a business problem without a sense of its 

definition or structure is often counterproductive, on account of ‘dead ends’, coordination 

failures among multiple problem solvers, or simply running out of time and resources while 

still trying to solve the problem but before even an approximate solution or solution concept 

has been derived [Moldoveanu, 2011]. Postulating ‘bounded rationality’ and ‘muddling 

through’ problems as catch-all explanations for sub-optimal problem solving behaviors 

misses the cases in which strategic managers optimize and ration their own strategic thinking 

according to the expected value of a good-enough solution [Moldoveanu, 2009] or devise 

“strategies for coming up with a strategy” [Reeves, Haanaes and Sinha 2015], deploying 

computational prowess and ‘optimization cycles’ to solve the problems most worth solving, 
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to the level of accuracy required for the situation at hand. Prescriptively, positing a uniformly 

bounded rationality – as a constitutive condition for a problem solver misses out on 

opportunities for optimizing the ways in which computational prowess and intelligence may 

be deployed by a strategic manager to achieve better solutions to problems deemed ‘too 

difficult’ or ‘intractable’. 

 By contrast, algorithm designers often start their problem solving work by forming 

estimates of the difficulty of a problem and the degree to which it can be solved using the 

computational and memory resources available to them [Cormen, Leiserson and Rivest, 

2011]. They think through the worst-case, best case and average case complexity of 

searching a database for a name before actually beginning to code the algorithms or designing 

interfaces to the database, in order to determine whether or not the search procedure will 

generate an answer in the appropriate time for the end user. To make sure that their solution 

is scalable to databases or various sizes, they generate estimates of the running time (T(n)) of an 

algorithm as a function of the number of entries in the database n; and they derive upper and 

lower bounds on the run time of the algorithm as a function of the number of independent 

variables n by examining the behavior of T(n) as n increases. 

 Suppose the problem we are trying to solve is that of ordering a list of numbers that 

initially show up in random order (initial conditions) so as to produce a list in which the 

same numbers appear in ascending order. An intuitive but systematic method for doing so is to 

read each number (left to right), compare it with each of the number(s) to the left of it, and 

then insert  it to the left of the smallest number it has been compared (Figure 6). 
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Figure 6. Elementary steps for sorting a list of numbers (low to high) using the INSERTION 
SORT procedure. 

To figure out how hard the sorting problem is to solve using INSERTION SORT, we 

can evaluate how costly the algorithm is to run, by listing its elementary operations (left 

column, below) assigning a cost to each operation (middle column) and counting the number 

of times that each operation has to be performed (right column).  

i ← 1 

while i < n     c1 n-1 times 

    j ← I     c2 n-1 times 

    while j > 0 and A[j-1] > A[j]  c3 n-1 times 

        swap A[j] and A[j-1]     c4 n(n-1)/2 times 

        j ← j – 1     c5 n(n-1)/2 times   

    i ← i + 1     c6` n-1 times 

Figure 7. ‘Sizing up’ the costs of running the sorting procedure INSERTION SORT  on a list that is n numbers long 
by counting the total number of operations and the unit cost per operation. The unit cost is usually in units of TIME that the 
hardware on which the code embodying the algorithm runs normally takes to complete an operation of the kind specified in the left-
most column 
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 With these estimates, an algorithm designer can figure out if the algorithm works 

quickly enough randomly ordered lists of desired length to produce ordered lists in the time 

that a user of the code would deem acceptable (simply by taking the cost-weighted sum of all 

of the operations). To form more robust expectations of the cost of the algorithm when the 

size of the input list is unknown, the  designer might perform an asymptotic analysis of the rate 

at which the cost of running the code grows as a function of the number of entries n in the 

list. By inspection of Figure 7, we see that the n2 terms in the cost function, in the limit as n 

becomes large will grow far more quickly than the terms that vary with n alone (eg. n-1).  

Asymptotically, an upper bound on the growth of T(n) as n grows will be n2, which can be 

represented by saying that T(n)=O(n2) (‘is of the order of n2). 

 Applying the sizing of problems to the space of strategic challenges requires we 

understand the basic operations we take to be standard in algorithm design (listing, 

comparison, selection, addition, etc.) will be different and have different marginal cost structures 

than those performed by humans. A strategic management meeting aimed at creating a short 

and ordered list of strategic investment projects may proceed by first pre-ranking the projects 

based on electronically polling the entire management team, distributing the preliminary 

ranking to the management team members, securing agreement on the process by which 

elimination of projects will proceed, and then (pending approval of this particular process) 

identifying a ‘minimum score’ that a viable project must have, identifying the projects that 

clear that hurdle, and (if they are too many or their costs exceed the budget available) 

discussing the costs and benefits of each of the n lowest ranked projects before re-ranking 

them and eliminating the n-k lowest. Although the specification of  this solution procedure falls 

short of specifying operations at the same level of precision as that of INSERTION SORT, 

it nevertheless allows managers to (a) evaluate the likely costs (time, probability of conflict, 

number of online and offline meetings) required for each step, (b) evaluate the costs of 

implementing alternative deliberation and selection/ranking procedures and (c) examine the 

behavior of the implementation costs of any chosen procedure as a function of the number 

of projects, the number of decision makers, and the distribution of scores of the projects 

after an initial round of evaluations by decision makers. 
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 Just as with the implementation of an algorithm on a computer the costs of 

enumerating possible solutions are different from the costs of evaluating and ordering solutions in 

terms of desirability, so in strategic problem solving we can have different kinds of costs for 

each elementary operation, depending on the kind of evaluation we would want to perform 

on candidate solutions. In the case of the problem maximizing joint commitment and 

collaboration by the re-allocation of 8 kinds of decision rights to N management team 

members over 3 different classes of decisions, we might see out a solution by the following 

procedure:  

ENUMERATION: specify the full set of decision right allocations to each of the members 

of the management team. [This will require 3 x 2 8N-1 low cost operations.] 

COARSE GRAIN ELIMINATION: Eliminate the solutions that are obviously non-

functional (like: giving no ratification rights to any decision maker (a factor of 2 reduction in 

the space of solutions), giving no initiation rights to anyone (another factor of 2), giving no 

monitoring rights to anyone (factor of 2), giving no sanctioning rights to anyone (factor of 2) 

and giving no prior and posterior information rights to anyone (factor of 4). [This entails the 

again very low cost of listing the 2 6 dominated solutions and crossing them off the list]. 

COARSE GRAIN EVALUATION: Break up the resulting solutions into a number (ranging 

from 1   3 x 2 8N-6-1) of classes of viable solutions that can be ordered in terms of their 

attractiveness (eg: not everyone should have ratification rights on every decision in this class; 

at most 1 executive should have sanctioning rights, etc.) – which will require at least 1 and at 

most 3 x 2 8N-6-1 different evaluations – which can be low cost (performed by the CEO and 

requiring mental simulation work, or high cost (performed by gathering industry  data that 

supports a causal inference from decision right re-allocation to enhancements in 

accountability); 

FINE GRAIN EVALUATION. Choose up to K different solutions from the classes of 

viable solutions using a decision rule (eg 1 per each different class; the most promising 

solution in each class; the most promising K solutions, cutting across classes, etc) and 
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carefully evaluate their benefits and costs vis a vis the overall objective function. This will 

require at least 1 and at most K different operations, which may be lower (if performed by 

the CEO) or higher (if performed by the CEO in collaboration with the top management 

team, which will entail coordination and deliberation costs). 

FINAL SELECTION: Evaluate each of the K solutions deemed most promising, rank them 

according to desirability, select a final decision right allocation to be implemented for the top 

management team. This will require at least 1 and at most K different operations, which may 

be lower (if performed by the CEO) or higher (if performed by the CEO in collaboration 

with the top management team, which will entail coordination, deliberation and ‘debacle’ 

costs. 

 To make the use of the computational abstraction layer to such problems more 

transparent, it is important to notice that while the basic operations of an algorithm like 

INSERTION SORT have been defined and fixed (by programming languages, machine 

languages and hardware architecture), the basic operations involved in solving a problem like 

REALLOCATE STRATEGIC DECISION RIGHTS can be defined in ways that seem 

most natural to the problem solver. Enumerating solutions can be done in different ways 

(mechanically, lexicographically) by different people, as can simulating the likely effects of a 

particular re-allocation and evaluating  the costs and benefits of that re-allocation. The point 

of making the procedure by which the problem is solved explicit is to allow the strategic an 

executive to visualize the sequence of operations required, to measure alternative ways of 

solving the problem (by changing operations or sequences of operations) and to estimate the 

time and resources required to achieve a comprehensive solution to the problem.  

As Porter and Nohria [2018] show, the ways in which CEO’s in large, complex 

organizations allot and apportion their time may exhibit significant levels of X-inefficiency 

[Leibenstein, 1966: inefficiency arising from sub-optimal cross allocation of an important 

resource (time in this case) to tasks having different expected values] arising from 

uncertainty about how much time to allocate to different activities, or, alternatively, to how 

long each of a set of activities required to bring about a particular outcome will take. Their 
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research produced an exceptionally valuable transversal picture of time allocation by CEO’s 

to different classes of activities (Figure 8). However, what is needed in order to effectively 

re-structure time allocations is a longitudinal picture of time allocation that lays bare the 

sequences of activities that are linked together to produce an outcome (eg: a series of emails 

set up to motivate a meeting at which everyone shows up mentally present and fully 

prepared to make a decision by a deliberation process all agree with).  

 

Figure 8. X-inefficient? Tabulation of relevant dimensions of the evidence on the allocation of time 
by CEO’s (from Porter and Nohria, 2018). 
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A computational abstraction layer can be used to specify both the basic set of 

organizational operations (meetings, preparation, scheduling) required to carry out a task (a 

strategic re-structuration of levels of authority) and to create a bottom-up estimate of the 

costs of these operations (in time) – which in turn allows the strategic planner to choose 

activity sequences on the basis of an understanding of their real cost structure, and to optimize 

the cost of each operation. An operational cost approach to planning a strategic re-allocation 

of decision rights might proceed by creating a set of bottom-up estimates of the basic 

operations involved in carrying out the organizational task, and then (a) to plan the sequence 

of operations on the basis of a tally of the current estimate of the time-costs of each 

operation and (b) to invest in reducing the costs of each operation and the degree to which 

these costs scale with the number of whose agreement is required for their successful 

completion. 

Operational Unit Cost of operation Estimate of How Cost 

Scales with N 

(Multiplicative factor) 

Securing agreement for a meeting from N 

participants 

2 days N2 

Scheduling the meeting 2 days N2 

Preparing agenda and pre-work materials 3 hours 1 

Answering pre-meeting questions and 

socializing answers 

2 hours N 

Deliberating on Alternatives 1 hour 0.1 x N 

Securing Principled Agreement of preferred 

option 

0.5 hour N 

 

 Table 1. Sample operation-wise estimation of the time complexity of a requisite sequence of tasks 
(operations) required to carry out a strategic re-organization of decision rights 
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The computational analysis of business problems makes clear why and how 

modularization helps make problem solving more efficient and organizations more proficient 

at solving certain kinds of problems. In the example of INSERTION SORT, ‘costing out’ 

each operation – highlights the benefits of creating algorithmic modules that perform these 

operations very quickly, thus decreasing the marginal cost of the loop that uses them, and 

thus the overall cost of ordering an entire list. In the case of a strategic problem like 

DECISION RIGHT REALLOCATION, it may be that certain kinds of operations (eg.:  

‘getting together a meeting of people who will all have read the pre-work materials and will 

show in time minded to address the task at hand’, or ‘evaluating the coordination costs to a 

team of a re-allocation of authority’) can become ‘multiple re-use’ modules whose marginal 

costs can be decreased through learning based on repetition and the incorporation of 

feedback, leading to a much faster implementation of strategic transformation. 

Designing Google. Sizing a problem can be critical to the design of a strategic solution to a market 

problem – as the case of the design of Google centrality indicates. The ‘ill-defined problem’ 

of ‘ordering the Web’ just before the founding of Google was to produce a rank-ordering or 

semi-ordering (in terms of relevance, salience, footprint, impact, known-ness, etc) of the ~ 

109 www pages on the Internet. To turn it into a well-defined problem [Moldoveanu and 

Leclerc, 2015] represent the Internet as a (directed, not fully connected) network in which 

web pages are nodes (n in number) and the links between them are the links (m in number) 

from one page to another that a surfer might follow in ‘surfing the Web’.  

Now the problem can be defined as that of ordering all web pages according to 

measures of their centrality (like between-ness, Bonacich, closeness) in the graph that 

represents the network of the Web, within a time that makes this measure relevant (24 

hours) and using the available computational resources of the company at the time (defined 

in GBytes of RAM and GFLOPS (billions of floating point operations per second) of 

computational speed. The problem was also well-structured, as unobtrusive crawlers 

jumping from one site to another were unlikely to affect the behavior of web site owners and 

developers in ways that changed the problem on the time scales envisioned. 
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The challenge to solving the problem can only be revealed through sizing the problem 

by figuring out how many operations are required to compute the centrality measure of different nodes 

such that this measure will order the World Wide Web.  To do so, we need O(n, m)  estimates 

of the rate at which the complexity of the problem grows with the number of web pages (n) 

and links between them (m). When we do so, however (Figure 8) we find that the number of 

operations required to compute betweenness, closeness and eigenvector (Bonacich) 

centrality measures for a large network grows very quickly as a function of the number of 

nodes and edges in the network (web pages and hyperlinks between them), and that the 

computational complexity of making these calculations exceeds that which can be 

accommodated on available (1998) resources during short ‘refresh’ cycles (a few hours).  

Motivated in part by addressing the computational difficulty of synthesizing a 

centrality-based  relevance or importance measure for all available Web pages using available 

computational resources at the time to produce an estimate that refreshes in a time frame 

that makes the measure of immediate interest, Brin and Page [1998] introduced Google 

centrality as a proxy for the important or relevance of a Web page that can be computed (a) 

with substantially fewer operations than available centrality measures and (b) whose 

estimates can be recursively improved – taking advantage of increases in computational 

capacity of hardware processors. They proceed by starting from the adjacency matrix that 

describes the network of web pages Aij with entries aij= 1 (node   connected to node j); 0 (otherwise) 

and normalizing the non-zero entries (so they sum up to 1) and replacing the 0 entries with 

1/N, where N is the total number of nodes to create the Markov transition matrix Sij, from 

which they calculate the Google Matrix Gij= aSij + (1-a)/n, where a is a parameter representing 

a ‘damping factor’ ((1-a) being the probability that a Web surfer suddenly signs off during the 

process of skipping among web pages passed on the hyperlinks embedded in them [Ermann, 

Frahm and Shepelyansky, 2015]. (The Google search engine uses an a value of 0.85.) For 

values of 0<a<1, G  belongs to the class or Perron-Frobenius operators and its right 

eigenvector L(i/G) has real, non-negative elements corresponding to the probabilities that a 

random surfer can be found on Web page i, and is its PageRank. This construction enables a 

super-fast computation method for PageRank(i) based on recursion: Start with an initial guess 
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PageRank0 and generate the next iteration by multiplying the previous guess by the Google 

matrix Gij: PageRankl+1= GijPageRankl.  – which only takes O(n+m) operations to compute 

(rather than O(nm) as in the other centrality measures’ cases). Fast convergence of the 

algorithm (after up to 100 iterations) is guaranteed by selecting (1-a)  to be suitably small (a  

to be suitably large, respectively).  

A computational abstraction layer contributes to the strategist not just a set of 

heuristics for sizing problems and solving them in situations in which the complexity of the 

solution process matters, but also a set of models and templates for defining problems – in 

this case as a set of network position problems (Table 2).  

Table 3. Using network position searches as problem definition and shaping tools for common 
business problems. 

 

Loosely worded problem 
(‘challenge’) 

Tighter formulation Definition as a Network Search 
Problem 

Identify the influencers of 
pharma product buyer decisions 
in a large health care provider 
network 

Find the most respected physicians 
and basic researchers in the 
relevant fields. 

Find the nodes with the greatest degree and Bonacic 
centrality in the graph G of publications (nodes) and 
citations and co-citations (edges) of published findings, 
within a week. 

 Change the perception of the 
market regarding the ‘monolithic 
culture’ of the firm. 

Increase the diversity of the 
sources of outbound information 
about the company in Web 
materials and social media. 

Find and order the degree centrality of nodes in the 
graph G of communicators (nodes) disseminating 
messages (links) through various outlets (nodes) 
within a week and change the spread of these nodes by 
a factor of 2 with a quarter. 

Increase the efficiency of 
coordination of the organization 
around rapid-turnaround design 
tasks. 

Increase the spread and 
distribution of project-relevant 
information so that more people 
are in the know more of the time. 

Find the information flow centrality of all decision 
makers in graph G of project-relevant 
communications (email, text) and increase the average 
centrality of the lowest 30% of the nodes by a factor of 
3 within a month. 
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 Table 2. Order of magnitude (O(n,m) Estimates of the Rate of growth of Time complexity (T(n,m)) as a 
function of the number n of nodes and number m of links in a network. 

 

 

CENTRALITY 

MEASURE TO BE 

COMPUTED 

Computational 

complexity as a 

function of nodes 

and edges in the 

network 

Number of 

operations 

required to 

order a billion 

(n) web pages 

connected 

with 500 

billion (m) 

ties… 

…connected 

with 50 

billion ties… 

… with 5 

billion ties… 

… with 0.5 

billion ties… 

Betweenness: The probability 

that any network shortest path 

(geodesic) connecting two nodes 

J,K pass through node i  

T(n,m)=O(nm) 

WORST CASE: 

O(n3) 

5x1020 5x1019
 5x1018

 5x1017
 

Closeness: The inverse of the average 

network distance between node I and 

any other node in the network 

T(n,m)=O(nm) 

WORST CASE: 

O(n3) 

5x1020
 5x1019

 5x1018
 5x1017

 

Bonacich: the connectedness of a 

node i to other well-connected 

nodes in the network  

T(n,m)=O(nm) 

WORST CASE: 

O(n3) 

5x1020
 5x1019

 5x1018
 5x1017

 

Google PageRank: ‘the 

probability that a random surfer 

can be found on page i  

T(n,m)=O(n+m) 5x1011 

(5x1013) 

assuming 100 

iterations 

5x1010 

(5x1012) 

assuming 

100 iterations 

5x109 

(5x1011) 

assuming 

100 iterations 

5x108 

(5x1013) 

assuming 

100 iterations 
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Creating, Sanitizing and Camouflaging Toxic Debt.  The Great Recession  of 2008 (aka 

‘financial crisis’) has been conceptualized as a classic ‘market for lemons’ problem [Akerlof, 

1981] compounded by the computational complexity of detecting defective products in large 

batches [ Arora et al, 2010]. DeMarzo [2005] shows how a collection of mortgages held by a 

bank with borrowers whose risk of default is broadly and independently distributed across 

borrowers and falling into different risk classes can be tranched and re-assembled into a 

collection of securities that lower risk for their buyer by spreading it across the risk classes 

into which mortgages had been previously assembled by the bank (who is the lender for the 

mortgage and also the seller of the CDO security).  

Because the bank sells many  CDO’s (N), each of which is based on tranches from 

many mortgages (M)  drawn from many different risk classes (L), it can use its superior 

knowledge of risk class profiles and the added degree of freedom afforded by the mix-and-

assemble process by which it creates CDO’s to over-represent mortgages drawn from certain 

(higher) risk classes (usually the ones it would like to convert into cash as soon as possible – 

the ‘toxic’ ones) and realize a gain (over the fair market value of the CDO) by selling all of 

the CDO’s at the same price. This gain can be understood as a ‘computational’ one: a buyer 

whom is aware of the seller’s lemon camouflage strategy would have to inspect the graph  

(Figure 9) of CDO’s and mortgages (grouped into risk classes) and identify and examine its 

densest subgraphs (collections of nodes that are linked the maximal number of links) in order to 

determine the degree to which over-representation of mortgages from any one of K risk 

classes can skew the distribution of returns in any one of N CDO’s.   

Sizing the problem of finding the densest sub-graph(s) of a network is the key to 

realizing the ‘computation gain’ of camouflaging lemons. Goldberg’s algorithm [Goldberg, 

1984] does so at a computational cost of O(nm) – multiplicative in the size (nodes n and 

edges m) of the entire network, and therefore not easily computable for large networks 

(hundreds of thousands or millions of nodes). If a buyer is (a) aware of the possibility of the 

‘complexity camouflage’ of lemons and (b) in the possession of Goldberg’s algorithm for 

detecting dense subgraphs linking mortgages to CDO’s based on them, then she may still be 

computationally challenged (or unable) to detect them. If the seller knows this, then he might 
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be able to get away with skewing the distribution of returns on some CDO’s without 

affecting the market price of the CDO bundle.  

 

Figure 9. Illustrating the graph structure of constructing N CDO securities from a collection of M 
mortgages that have been grouped into L risk classes.  

 

However, a buyer that is equipped with a more efficient algorithm for detecting the 

densest subgraph(s) of a network (such as the greedy algorithm-based approach of [Charikar, 

2000], which has a complexity of O(n+m) for producing a reliable estimate) then she may be 

able to check on the degree to which the seller has planted lemons and camouflaged them 

using his knowledge of the computational complexity of detecting them. Finally, if a buyer 

knows  that the seller is using a specific  approximation scheme for detecting dense subgraphs 

of mortgages and CDO’s, then she might look for lemon planting strategies (kinds of 

subgraphs) that the approximation scheme specifically used by the buyer’s lemon sniffer may 

not be able to detect with the requisite reliability and in the time normally allotted. 

Once again, a computational abstraction layer contributes a set of problem definition 

tools – aimed at formulating problems relating to the detection, measurement and 
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optimization of highly important network structures (such as sub-graphs and cliques: Table 4) – 

similar to that for defining and sharpening problems of detecting, measuring and 

purposefully changing network position. – in a way that highlights the versatility of graph searches 

more generally in the definition of strategy problems. 

 

Loosely worded problem 

(‘challenge’) 

Tighter formulation Definition as a Network Search 
Problem 

How do we increase our 
presence and influence using 
Web communities that 
discuss our products? 

Identify the HUBS of users 
that participate in discussion 
forums about the company’s 
products in the Web and 
seek to influence these users 
by shaping their dialogue 
and letting them persuade 
one another. 

Find the DENSEST SUBNETWORKS of 
users and discussants in Web forums and 
discussion circles within 2 weeks (nodes are 
individuals, edges are co-presence on discussion 
foruym), communications targeted to their current 
linguistic practices within 2 additional weeks. 

How do we increase the 
collaborative capability of our 
R&D groups? 

Identify the size and 
distribution of the most 
densely knit social circles 
among researchers and 
increase the size of these 
circles. 

Find the distribution of K-CLIQUES (fully 
connected subnetworks of the 
communication network (nodes are 
researchers, directed edges are pairwise 
communications, edge weights are 
communication frequency) of researchers) 
within 1 week, re-design workspaces to 
increase the maximum and average clique 
size by a factor of 1.5 over a month. 

How do we decrease the cost 
structure of our value-linked 
activity chain? 

Identify the relevant 
structures in the network of 
value-linked activities and 
seek lower cost replacements 
for the most prominent 
activity units. 

Find the MINIMUM VERTEX COVER  
of the network of value-linked activities 
(nodes are individual activities, directed 
edges are value links that capture the degree 
to which value created by activity J is 
dependent on value created by activity K) 
within a month, identify lower-cost 
substitutes for these activities within 
another month. 

  

Table 4. Table 3. Using network structure and topology searches as problem definition and shaping 
tools for common business problems. 

Designing Complex Products and Services. ‘Graph searches’ constitute suggestive but tight 

generative models for business problems requiring the fast search for nodes and structures 

of potentially very large networks, which are increasingly prevalent in ‘Big Data’ 
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environments [Moldoveanu, 2015]. However, using network searches as abstraction layers is 

also useful to the process of problem definition in situations that are not themselves 

immediately suggestive of a network representation. For example, the problem of designing 

or modifying a strategically important new product or service can be represented as a 

problem well known to computer scientists – the Knapsack Problem (Figure 10): a hiker 

going on a long and arduous trek has more tools, utensils and other items than she can pack 

in the only knapsack she knows she can take along. The knapsack has a finite volume – as 

does each candidate item. Additionally, each item has a certain value to the hiker, which she 

knows or can estimate. Her challenge is to find the combination of items that will give her 

the maximum value, subject to fitting inside the volume of the knapsack – hence the name 

of the problem. 
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Figure 10. A Graphical Representation of the Knapsack Problem, wherein the volume of each item is 
represented as a unit cost c, and the total volume of the knapsack is represented as a total cost constraint C*.  

 

 The solution search space for the problem comprises all of the possible combinations of 

items that could ‘pack’ the full knapsack. Solving the problem by exhaustive enumeration 

and evaluation of the possible solutions entails packing the knapsack with all possible 

combinations of items (of which there are 2N-1 if there are N items), evaluating the total 

estimated value of each combination, ranking all feasible (volume-fitting) combinations 

according to their total values, and selecting the combination of items that has the maximum 

total value.  
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 Seen as the problem of packing a knapsack, the problem seems unnecessarily 

formalistic and complicated (people pack knapsacks all of the time without worrying about 

enumerating a solution search space that increases exponentially in the number of items). 

However, seen as a component of a computational abstraction layer for business problem 

solving, the problem is a model for a number of problems that show up in business– such as 

that of optimizing the set of features F of a new product, where each feature has a cost and 

is expected to add a particular value to the product, subject to an overall cost constraint on 

the new product, with the aim of maximizing the value of overall product (which may be 

additive, sub-additive, or super-additive in the values of the individual features). If the 

number of features is large, their costs and marginal values added are not easy to calculate 

and the overall value of the product can only be estimated once a full set of features and the 

relationships between them has been specified, then the growth in the complexity of the 

product design process as a function of the number of features becomes highly relevant.  

 Versatility and portability to different scenarios are highly useful components of a good 

abstraction layer. Computer scientists routinely use one problem as a model for a different problem,  

which allows them to export from the solution of one problem to the solution of a different 

problem [Sedgewick and Wayne, 2014; Knuth, 2011]. One way to export insights from one 

problem to another is to consider changes of variables that will map problems one into the 

other – and together onto the canonical problem one has already dealt with. In the case of the 

Knapsack Problem, re-labeling the network so  the nodes become value-added activities in 

an industry that can be constituted into more or less advantageous value-linked activity 

networks allows us to frame the problem of the de novo design of platform-based businesses 

(Uber, AirBnB, Dropbox, Salesforce.com) as problems of finding the optimal set of value-

linked activities that should be integrated within the same organization [Novak and 

Wernerfeldt, 2002]. In the case of Uber, they  include writing off depreciation of personal 

vehicles and additional disposable income (drivers), predictable scheduling and billing, ease 

of access and ubiquitous accessibility and secure, auditable, trackable payment (riders), traffic 
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decongestion and alleviation of parking lot overload (municipalities), scalability and marginal 

profitability on a per transaction basis (shareholders) – each with an associated cost of 

provisioning (designing, supporting, securing the platform; recruiting and certifying drivers, 

etc) and an expected total value. Designing Uber can be modeled as solving a Knapsack 

Problem where the “knapsack” is the value-linked activity network of the business and the 

individual components are valuable activity sets that can be integrated on the same platform. 

Seen in this form, the abstract-form Knapsack problem can be ‘exported’ to the design of 

new businesses eg: (a secure, Blockchain based platform for tracking educational degrees, 

courses, certifications, student loans, employer recommendations, job performance, skills; 

or, a secure enterprise-level recruitment platform that allows seamless interaction between 

employers and candidates on the basis of written documents (CV’s), candidate introduction 

videos (‘video CV’s), interview transcripts, credentials and certificates, etc.)  

 Using canonical problems to encode frequently recurring business problems offers up 

possibilities for defining and shaping predicaments messy and peppered with idiosyncratic 

details down to searchable solution spaces and systematic search procedures optimally suited 

to their enumeration and evaluation. The well-known VERTEX COVER problem, for 

instance, can be used to sharply and precisely model: 
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Figure 11. Schematic description of the VERTEX COVER PROBLEM, enjoining the problem solver to 
find the set of nodes that collectively touch ALL of the edges of a graph. 

 The problem of identifying the ‘key information agents’ in a large organizations – 

those whose communications reach all members (nodes are people, edges are 

communications in a particular medium); 

 The problem of identifying the ‘critical set’ of components of a product – those 

whose functionality affects the functionality of all of the other components (nodes 

are components, edges are causal contributions of the functionality of one 

component to that of another); 

 The problem of identifying the ‘minimal trust core’ of a large group of users of a 

product or service – the group of people whose communications are followed and 

valued by other users (nodes are Web users, edges are ‘followed and liked by’ links 

whose followership and ‘like’ scores are above a certain threshold. 

“The Intractables”. Several of the ‘canonical’ problems we have seen – such as the Knapsack 

and Vertex Cover problems – exhibit a level of complexity that grows very quickly with the 

size of the problem. Computational science made a massive stride in its practical and 
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theoretical reach with the introduction of a sharp definition of ‘very quickly’ that allows 

computational scientists to sort problems in advance of solving them. This distinction is 

based on the difference in the growth of polynomial functions and super-polynomial 

functions (for instance, exponential functions). The set of problems whose solution 

complexity T(n) grows more quickly than any polynomial function T(n)>P(n), where P is any 

polynomial function of n – has a structure to it [Cook, 1960]: many of the problems that fall 

in that class are solvable in only probabilistically in polynomial time (or, they can be solved 

in  non-deterministic polynomial time) and any candidate solution to them can be verified 

within polynomial time.  

Knapsack

Satisfiability
(Cook, 1976)

3 SAT

Partition Vertex cover

Clique
Hamiltonian 

circuit

transforms to transforms to

transforms to transforms to

transforms to

transforms to

Figure 12 : The Class of  Intractable (NP-hard) problems, showing analytic reductions among different 
common problems that are irreducibly complicated to solve. 

 The rapid growth of computational science across fields as disparate as molecular 

genetics, linguistics, legal analysis, actuarial science and high frequency trading can be traced 

to the construction of a family of NP-hard problems that are structurally equivalent to one 

another [Karp, 1972] (see Figure 12). This network of canonical problems that are known to be 
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intractable by analytical reduction one to the other allow one to size up the complexity of a 

problem before attempting to solve it (simply by showing it to be analytically reducible to 

another NP hard problem) and to device strategies for simplifying the problem by trading 

off either the probability of finding its optimal solution or the accuracy of the solution itself. 

Several of the problems we have considered – optimally re-allocating decision rights (SAT), 

constructing a new product with an optimal set of features, drawing the boundaries of the 

firm around the maximum ‘core’ of value linked activities (KNAPSACK), and identifying the 

most significant networks of informers and contributors in an organization or market 

(VERTEX COVER) - fall  into the NP family, which allows strategists to see how their 

difficulty scales as the number of their variables (features, activities, informers) grows.  

 As ‘strategy problems’ are increasingly ‘big data’ problems comprising very large 

numbers of variables and data points, it becomes critically important to examine the size of 

the problems that ‘big data’ generates [Moldoveanu, 2015]. It is not just the number of 

variables, the heterogeneity of the databases and formats in which the values of the variables 

are stored and the ways in which data can be combined and  re-combined to generate 

predictions that matters, but also the rate at which the difficulty of classification and 

prediction problems based on the data grows with the size of the data set. A precise 

formulation of ‘learning algorithms’ (‘probably approximately correct’ learning [Valiant, 

1984]) stresses the requirement that the difficulty of any learning routine or algorithm not 

exhibit an exponential blow-up as a function of the number of instances required for 

learning the concept. A computational abstraction layer that allows for explicit problem sizing 

is equally important to those who are trying to solve both optimization problems (building the 

optimal product or architecting the optimal team authority structure) and prediction problems 

(building risk classes for mortgage defaults on the basis of millions of data points relating to 

the borrowing behavior of users in different ethnic, cultural and demographic classes). (The 

distinction is somewhat contrived: Prediction problems in the machine learning literature are 

formulated in terms of the minimization of a ‘cost function’ (or the extremization of an 

objective function) that represents the distance between observed, recorded and registered 
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data and data that is generated by a predictive model of the process that generates it, whose 

parameters evolve as a function of the success of previous predictions.) 

Kinds of Problems: A Tree Structured Picture of a Computational Abstraction Layer. It may be useful 

to summarize work we have done so far on generating a computation abstraction layer that 

supplies microfoundations for business problem solving in the form of a classification tree 

(Figure 13 below) that helps strategists distinguish between: 

 well-defined and ill-defined problems (presence of measurable current and desired 

conditions, an objective function and a variable space that can be used to synthesize 

a space of possible solutions); 

 well-structured and ill structured problems (independence of the implementation of a 

solution search procedure from changes in the solution search space itself); 

 tractable versus intractable problems (super-polynomial (eg: exponential blow-up) 

increase in the number of operations estimated to be required to solve the problem 

as a function of the number of variables in the problem); 

 difficult and simple problems (the degree to which the difficulty of the problem 

stresses and stretches the resources of the organization). 
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Problems

Well 

Defined

Ill Defined

(No well defined 

current, desired 

state, search space)

Well 

Structured

Ill Structured (wicked)

(Search space defined 

but changes as a 

function of  search 

process

Easy 

(Linear or 

constant)

Hard 

(nonlinear)

Tractable

(P hard)

Intractable 

(NP hard/complete)

 

Figure 13. A ‘Classifier’ for Strategic Problems, showing the basic distinctions that we have drawn in the 
paper thus far. 

 

4. What is the best way to solve this problem? Algorithmic micro-foundations for 
problem solving processes.  

 A computational abstraction layer for business problem supplies the problem solver 

not only with ways of defining, structuring and sizing problems, but also with a repertoire of 

canonical problem solving techniques in the form of procedures for searching solution spaces that 

are either provably optimal for certain kinds of problems and solution spaces, or can be 

adaptively optimized to the problem the strategist is trying to solve. Making some further  

relevant distinctions is what allows us to cut business problem solving at the joints using the 

right concepts from computational science, as follows: 

Types of Search: Deterministic and Probabilistic.  Computer scientists distinguish between 

deterministic and probabilistic searches of solution spaces. If we consider the problem of 
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evaluating the set (of all subsets) of 100 different possible value-linked features, each of 

which can be specified into a final product, we see that searching exhaustively, in a 

deterministic fashion (each step determined by the preceding one), will often be infeasible 

under time and resource constraints. Many algorithms computer scientists use when faced 

with such problems use the planned introduction of randomness (‘flip a coin or a sequence of l 

coins after move k to decide what move k+1 should be) that can help to make the search 

process faster at the cost of sacrificing certainty about achieving the optimal solution.  Instead 

of obsessing over each possible combination, one can start with random subsets of features, 

and, after verifying they satisfy a total cost constraint, evaluate the total value of the product 

that comprises them; then seek alternatives by making small substitutions (take out one 

feature, add a lower cost feature from the set of features not yet included, and re-evaluate the 

value function of the entire product.)  

Kinds of Search: Global and Local. Similarly, in situations in which the sheer size of the solution 

search space daunts the resource base of the problem solving organization, one can restrict 

the search to lie in the neighborhood of a solution that is already known to work, but, which 

we suspect, can be improved. Instead of searching globally, then, computer scientists seek 

meaningful local neighborhoods within a solution search space, wherein to search for a good 

enough solution. (Superficially, this looks like Simon’s first cut at articulating ‘satisficing’ 

[Simon, 1947], but it adds a useful refinement: the solution search space is restricted to a 

local neighborhood that can be chosen to maximize the chances a good enough solution will 

be found there.) A strategic problem solver seeking a reallocation of decision rights to her 

team may choose to search in the neighborhood of either the current allocation of decision 

rights (by adding or removing single decision rights from single agents and simulating or 

emulating or experimenting to find likely consequences), or may choose to start in the 

neighborhood of an allocation of decision rights found (by best practice mapping and 

transfer machines like strategic consultancies) to be successful in the industry in which the 

firm operates – or across other relevant industries. 
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Modes of Search: Serial and Parallel.  Parallelizable hardware architectures have enabled 

computer scientists to make searching for solutions to difficult problems faster  and thereby 

cheaper by parallelizing the search process. Searching for a name in a database can be made 

faster by splitting up the database into N non-overlapping sub-databases and having each of 

N processors search each of the smaller data bases.  In general, problems with large solution 

search spaces are not immediately or self-evidently parallelizable: ordering a 1015-long list of 

bit strings in order ascending in the numbers they specify cannot be done simply by splitting 

up the list into 105 lists of 1010strings and ordering each – as the costs of then merging the 

lists in an order preserving way can cancel out the benefits of parallelizing the search. 

Business problems with large solution search spaces may be more easily parallelizable 

(splitting up decision right allocations according to the types of decisions that they relate to) 

or less so (splitting up a Web influence network into sub-networks in order to evaluate the 

hub of maximally influential agents). 

 What is particularly useful about these distinctions in business problem shaping and 

solving is the ability to combine and concatenate them into a set of meta-algorithms for solving 

difficult problems, as follows: 

Meta-Algorithmics of Search: Strategic Ingenuity and Intelligent Adaptations to Complexity.   

Divide and Conquer (DC). Algorithms designers often divide up larger problems into 

smaller sub-problems, whose individual solutions can then be aggregated into the solution to 

the entire problem (Figure 14). It involves (a) partitioning the problem search space into 

smaller search spaces that can be more easily searched, and (b) piecing together the separate 

solutions to the smaller problems to form (possibly sub-optimal, but still superior) solutions 

to the larger, intractable, problem. The set of all possible subsets of a set of features of a 

product can be divided up into subsets-of-subsets of features that can be searched 

independently by several different individuals or teams working in parallel, provided that the 

value of the product is strictly additive in the values of the features. 
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Figure 14. Illustrating the Basic Intuition Behind the ‘Divide and Conquer’ Heuristic. 

There is no guarantee the concatenation or integration of solutions to smaller sub-

problems will in general be an optimal solution to the bigger problem: Breaking up the 

problem of evaluating the set of all possible decision right allocations to each of N 

individuals on a team over decisions arising from K different classes of problems will not 

generate an efficiently separable solution process if the efficiency of allocating certain kinds of 

decision rights to some people (initiation rights) depends on the allocation of other kinds of 

decision rights to other people (ratification rights). However, one may still be able to divide 

up the problem of evaluating decision right allocations to certain classes of people 

(ratification rights to executives; implementation rights to employees) and more efficiently 

evaluate all allocations of other decision rights between executives and employees with 

respect to their efficiency. 
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The use of a divide and conquer heuristic is not limited to problems that can be 

tightly formulated in graph-theoretic language.  One can divide up the problem of ‘getting 

people together for a meeting’ (desired conditions: they will all show up, at time t and 

location S, informed and ready to engage in task T) by dividing up the task of inviting them 

and motivating the meeting to K different convenors (who trust and copy one another on 

emails). Each operation in the overall task can be defined ostensively (‘getting people of this 

hierarchical rank to answer this  kind of email’) – even if a precise algorithmic model for 

‘answering this type of email’ is not available or not derivable – which allows us to quantify 

the marginal and average cost of such operations in different environments, as a  function of 

the number of operations involved in the successful completion of a task.  Similarly,  the 

problem of designing a strategy for the containment of a large information leak from the organization can 

be divided up into a series of sub-problems (identifying the source of the leak, gathering 

evidence for the act of leaking, sequestering access to information from the source) which 

can be divided up among problem solvers specializing in the tasks relating to solving each 

sub-problem.  

Local  Neighborhood Search (LNS). Algorithm designers  deploy local searches around best-

guess solutions to solve problems that are clearly intractable if pursued on a brute force 

basis. The Traveling Salesman Problem (TSP) –  finding the minimum distance path connecting 

N locations – has a solution search space (all N! fully connected circuits) that is super-

exponential (and thus super-polynomial) in size.    The dramatic reduction in the time 

complexity of TSP highlighted in Figure 12 above was accomplished by a procedure for 

searching the N!- size  search space of the TSP using a local search meta-algorithm named 

after its inventors, Lin and Kernighan [Lin and Kernighan, 1973]. The procedure involves 

selecting an ‘almost-complete’ tour of the cities (a ‘delta path’) which includes all of the cities 

exactly once, except for the last one, measuring the total distance of the delta-path that had 

been generated, making switches among the edges included in the delta path and edges that 

are ‘available’ but not included, comparing the total distance of the modified circuit with its 

last version, and retaining the more efficient path. One key to the (exponential) speed-up 

achieved by this heuristic is the way in which edges are exchanged, which is (usually) 2 (eg: 1-
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3&3-2 replaced with 1-2&2-3) at a time - entailing a search space of N(N-3)/2. The algorithm 

allows for the exclusion ‘by inspection’ of many inferior paths: for instance, in the 4663 city 

TSP one can exclude combinations such as(Toronto (Central Canada) Kelowna (Western Canada)-

London (Central Canada) without ‘evaluation’. 

Problem: 
“Find minimum-length 
tour connecting Canada’s 
4663 cities”

Solution:

 

Figure 15. A TSP Problem Search Space for Canada’s 4663 Cities and Solution to the Problem Using Lin 

Kernighan Local Search Heuristic. 

While the TSP can itself serve as a canonical problem model for problems of 

strategic significance (‘find the optimal influence path within a network of consumers’) the uses 

of local neighborhood searches as a way of simplifying business problems is highly exportable. 

One can constrain the search for a new allocation of decision rights to members of a large 

team by searching in the neighborhoods of current allocations (making small changes an 
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simulating or experimenting with their consequences) or in the neighborhood of allocations 

that have been shown to work in cross sectional studies supplying correlative evidence, or 

longitudinal studies supplying plausible causal evidence for their value. 

Branch and Bound (BB) techniques partition the solution search space via a tree whose 

nodes represent decisions among different families of a solutions. Calculating bounds on the 

performance of a solution that arises from different branches of the tree, and deleting from 

the search space branches likely to result in a sub-optimal solution. The key feature of a 

good tree structure for BB methods is that it is ‘quickly prunable’: estimates of performance 

bounds for different branches are calculated in advance, to lower the chances that an 

optimum be ‘missed’ by the resulting search. For the TSP problem a BB-suitable tree search 

can be built on the basis of whether or not a path contains a particular segment connecting two cities. 

The first node of the tree creates two ‘buckets’ of possible routes: one containing routes 

containing AB and one containing routes that do not. Subsequent nodes of the tree (there 

will be N(N-1)/2 nodes for an N city tree in total) provide finer-grained partitioning of the 

space of possible paths. The key to reducing the time complexity of the search is a tight 

characterization of the best/worst case performance that one can expect from any given sub-

tree: Each fork of the tree cuts the number of search operations required by 50 per cent. BB 

methods can be used to quickly narrow the search space of ‘big’ problems of strategic 

choice. The computation and selection of the optimal Nash Equilibrium in a game – or of 

the Nash Equilibrium that has a minimum payoff to one player of at least P – is and 

intractable (NP-hard) problem [Austrin, Braverman and Chlamtak, 2011].  In a simultaneous 

move oligopolistic competition game with 4 competitors, each of whom has 6 strategies at 

her disposal, the search space for combinations of strategies has 1296 distinct outcomes (64). 

A BB method can quickly narrow this space by 50% by eliminating combinations of 

strategies that include a ‘low cost’ product or service offering on the basis of examining the 

worst case scenario (a price war) that is likely to be triggered by this choice. Each step of 

eliminating combinations of strategies that contain an undesired component will trigger a 

similar contraction of the search space. In the case of optimizing the design of a new 

product by choosing among features that have additive costs and values subject to a total 
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cost constraint and with the objective of maximizing value, one can ‘parse’ the overall 

solution set by creating a tree whose branches explore the subsets of features containing 

(x1=1) or not containing (x1=1) any particular feature, and bounding – along the length of 

each subtree – the overall value of the resulting achievable subset.  

 

 

Figure 16. The basic ‘decomposition of independent subspaces of solution search space’ principle of 

the branch-and-bound approach.  

Randomization need not be blind. The general set of approaches that pass under the 

name of intelligent randomization provides a way of probing a large solution search space and 

intensifying the search in the neighborhood of promising (but randomly generated) 

solutions. A problem-generating model (a generative model) that yields to intelligently 

randomized solution search procedures in the well-known NK model of (co)-evolutionary 

dynamics introduced in [Kauffman and Levin, 1987]. N genes – whose phenotypic 

expression is dependent on afferent contributions from at least K other genes – can generate 
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highly complex (many local optima) fitness landscapes (payoffs to the phenotype) as a 

function of the specific informational content of the genes.  The resulting NK model has 

been used [Levinthal and Warglien, 1997; Ghemawat and Levinthal, 2008] to examine the 

dependence of a firm’s performance on the structure and topology of its activity sets – or K-

wise coupled and interdependent interdependent ‘policies’. To a firm that aims to 

strategically tailor the set of activities it pursues, the problem of choosing the set that 

optimizes its performance (‘fitness’) was shown [Kauffman and Weinberger, 1989; 

Weinberger, 1991] to be computationally equivalent to the well-known intractable (NP-hard) 

k-SAT problem for k>1.1  . The NK strategic decision problem (‘Is there a fitness function 

of the N activities, each mutually coupled to k others with value greater than V?’) maps into 

the kSAT problem (‘Is there a set of variables whose aggregate satisfiability score is at least 

V when plugged into a set of M k-variable formulas?’) trivially for M=N, and with padding 

of the search space for M>N and M<N [Weinberger, 1996]. Rivkin [2000] argued the 

intractability of the NK problem (derived from the intractability of the kSAT problem for 

k>1) can make complex strategies (characterized by the design of value chains comprising  

many linked activities) difficult to imitate. But the complexity of solving the kSAT problem 

yields to searches of the solution space  based on randomly permuting both the sets of initial 

variables and the assignment of truth values to variables within a formula [Schoening, 2002; 

Brueggermann and Kern, 2004; Ghosh and Misra, 2009]. These approaches achieve a worst-

case complexity of solving the 3SAT problem of (1.d)N (where d is a natural number 

following the decimal point) instead of 2N, which, even for very large values of N can 

produce a massive decrease in the complexity of the 3SAT problem (Table 3): a factor of 

1020 reduction in the complexity of solving the 3SAT problem for N=100 is achieved by a 

random walk based algorithm. 

  

                                                        
1 The problem takes as an input a set of N variables and a set of M Boolean expressions containing up to k 
variables AND, OR, and NOT, and asks for an assignment of the N variables to the M  expressions that will 
make these expressions true (i.e. will ‘satisfy’ them, hence the name of the problem) 
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N 
Exhaustive Search 
Complexity 2N, Total 
Number of Operations. 

Random Walk Based Search 
Complexity 1.334N, Total Number 
of Operations. 

1 2 1.3334 

2 4 1.7796 

3 8 2.3707 

4 16 3.1611 

10 1,048 17.7666 

20  1,048,576 315.6523 

100 1.27 x 1030 3.16 x 109 

Table 3: Comparison of Computational Complexity of Solving 3SAT Problem Using Deterministic 
Exhaustive Search (Column 2) Versus a Set of Rapid Random Walks (Column 3) As a Function of the 
Number of Variables (Column 1). 

Stochastic Hill Climbing. Randomized algorithms can be both local and adaptive 

[Hromkovic, 2003]. The difficulty of searching the solution spaces of most hard problems 

arises from the vast number of ‘local minima’ that some procedures (‘local hill climbing 

based on gradient ascent’) can get trapped into. Knowing this, algorithm designers have 

sought ways of ‘getting out’ of local optima [Sedgewick, 2011]. One way to do so is to 

randomly ‘jump around’ a solution search space and vary the rate and size of the jumps, 

using simple decision rules such as: ‘search deterministically and locally in gradient-

maximizing small jumps when hitting a promising solution’ and ‘jump far away when the 

gradient levels off’.  

Such stochastic hill climbing methods (SHC) [Michalewicz and Fogel, 2004] ease 

limited search processes from the constraints of local optima by probabilistically causing the 

searcher to ‘jump’ to different regions of the search space and thus to perform large 

numbers of bounded local searches. SHC approaches to the problem of the  optimal 

allocations of N decision rights to M agents (generate the entire search space, encode 
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neighboring solutions (small differences in decision right allocations among people) in a 

consistent fashion, execute a probabilistic version of local neighborhood search in the 

vicinity of the allocation of decision rights the next jump lands on), of finding the core (or, 

vertex cover) of an influence network (generate all possible subsets of nodes, explore their 

connectedness in the network) can be used to significantly reduce the time required to find 

optimal solutions. The success of the approach depends on the distribution of optima in the 

solution search space: we can expect a ‘rugged landscape’ of many sharp peaks separated by 

large troughs in the first case (changing one decision right given to one person can make a 

very large difference) and a smoother landscape in the second. 

Physically inspired algorithms [Xing and Gao, 2014] can take the form of intelligent 

randomization, in a form intuitive for non-computational scientists.  Simulated annealing 

algorithms are based on the cycle of liquefying and cooling a metal or plastic in various forms, 

allowing the heating process (‘going to a high entropy state’) to generate the ‘random search 

step’ required to explore a potentially very large solution search space (all possible forms the 

cooled metal can take). Simulated annealing algorithms specify various temperature gradients of 

the search process: temperature denotes ‘mean kinetic energy’ of a state of particles 

assembled in a macro-state (e.g. liquid), and the temperature of a search process increases with the 

probability that the process will jump away from the local search it is currently performing 

within a certain time window.  

The method can be applied by strategists without a specific model of the 

computational problem being solved. As one CEO anecdotally shared,  he regularly runs 

meetings aimed at deliberating on and selecting organization-wide policies by first allowing 

the meeting to proceed without guidance or intervention from him, observing the process 

and guessing at the likely solution the group will converge, and then either encouraging the 

group to converge on the solution that seems to organically emerge or ‘blowing up’ the 

process  - by making comments that undermine the credibility of the process itself, 

introducing information he knows not be known to others – depending on how globally 

attractive he believes the solution the group is about to converge on to be. This is a case of 
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algorithmic insight being applied to a problem solving process without a specific model of 

the process itself: many algorithmic processes can yield to ‘simulated annealing’ approaches.  

Biologically inspired algorithms can be used to synthesize useful heuristics and problem 

space search strategies in business, again, intuitively and often without the need for a precise 

computational model that encodes the problem at hand. Genetic (or, evolutionary) algorithms 

(GA) [Goldberg, 1989] combine the insight that randomization can produce (probabilistic) 

speedup of search with a structured approach to the solution generation process inspired 

from evolutionary biology [Baeck, 1996]. Using the basic operators of variation, selection, 

recombination and retention applied to populations of ‘parent’ solutions or components of 

solutions that can be concatenated or otherwise recombined, genetic programmers create 

algorithmic frameworks for solving complicated problems by the intelligent recombination 

and selection of randomly produced guesses at pieces of a solution. Primitive, random 

candidate solutions or ‘partial solutions’ (eg.: delta paths in a Lin Kernighan representation 

of TSP) are perturbed (‘mutation’) and combined (‘sexual reproduction’) to produce new 

candidate solutions that are then selected on the basis of the quality of the solution they 

encode [Fogel, 1995]. Mutation rate, selection pressure (‘temperature’ of the process) and 

recombination intensity (binary, N-ary) are parameters under the control of the problem 

solver. Exponential speedup of convergence to the shortest route was reported for the TSP 

[Wang, Zhang and Li, 2007] based on the parallelization of the randomization operator 

across members of a population of candidate solutions (‘mutation’, ‘recombination’) and the 

iterative application of the selection operator at the level of the entire population. 

As we saw with simulated annealing, evolutionary algorithms offer the strategist a 

way of conceiving and structuring exploratory activity even when a precise encoding of the 

solution search space onto the space of ‘genetic material’ on which evolutionary operators 

do their work is not specified. For instance, organizational decision processes can be viewed 

as selection mechanisms, carried out over alternative policies, investments, technologies, or 

humans (hiring/firing/promotion). An analysis of selection mechanism described by 

evolutionary programmers [eg Baeck, 1996] – such as tournament selection, Boltzmann 
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selection, roulette wheel selection, ranking based selection that is either ‘soft’ or ‘hard’ 

depending on the reversibility and corrigibility of the decision made– can be used as 

templates for alternative selection processes embodied in the organization, and as templates 

to experiment with alternative selection mechanisms that maximize organizational objective 

functions. Alternative or auxiliary goals and objectives can also be specified and embedded 

in the design of the selection (or recombination) procedure. They can include the ‘diversity 

loss’ in the offspring population associated with certain kinds of selection rules, the 

convergence rate of any selection scheme to the optimal solution allowed by the information 

embodied in the parent populations, and the ‘sheer novelty’ generated by a suitably designed 

mutation and selection process [Lehman and Stanley, 2010].  

5. What is the best organizational architecture for solving the problem? Teams as 

multiprocessor units. 

 Software ‘runs’ on hardware. Computational designers regularly take advantage of 

hardware configurations to improve the efficiency with which algorithms solve the problems 

they were designed to solve. For shapers and solvers of business problems, studying and 

abstracting from the partitioning and porting of ‘soft’ algorithms onto ‘hard’ processors can 

offer a set of distinctions and choice points – as well as a set of normative schemata for 

allocating tasks to people from which deviations observed in practice can be systematically 

measured (which is the way what passes for purely descriptive theory is formulated in the 

‘special sciences’). A computational abstraction layer provides a unitary language system in 

which problem solving procedures are apportioned among processors and humans, enabling 

both strategic managers to speak more transparently and competently to developers and 

architects of algorithms and software, and those who primarily talk to machines to explain to 

strategic managers what they are doing and why they are doing it.  The distinctions arising 

from understanding collective problem solving as a problem that partly relates to that of 

porting software on hardware architectures highlight the dependence on the optimal 

partitioning of tasks to problem solvers on the structure of the underlying problem and 

choice of problem solution procedure, as follows: 
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Topology: Centralized and De-Centralized. Just like an algorithm developer must consider the 

degree to which a central controller is used to schedule, allocate, distribute, and evaluate the 

output of different tasks (solution to sub-problems or intermediate stages of a problem 

solving process), business problem solvers must consider the degree to which decision rights 

over various components of a problem solving task are centralized in one central person or 

distributed across different problem solvers. Just as a RISC controller manages the inputs and 

outputs of tasks across other processors, for instance, a chief architect or chief developer 

must manage the inputs and outputs to different developers, which will enable them to do 

their design jobs most efficiently. The decomposability of a problem matters to the optimal 

structure of the processor units that solve it. Attempting to solve the Traveling Salesman 

Problem by breaking up the N locations into two groups of N/2 locations, solving each 

problem independently and then concatenating the solutions to generate a candidate solution 

is not a good idea, as the combination of two optimal circuits joining N/2 locations will not 

be equivalent to the optimal TSP circuit for the N locations. If humans were carrying out the 

tasks of enumerating and evaluating the paths for k collections of N/k sub-circuits, then 

significant coordination costs would result from having to piece together the optimal path 

joining N cities, and a central processing unit would have to expend significant effort to 

mitigate these coordination costs.  On the other hand, a large strategy consultancy could 

break up the process of evaluating the allocation of M decision rights over decisions in K 

independent domains to a team of N people, there is a natural partitioning rule N=K that 

allows for partitioning the problem to K different consultants (the processors), achieving an 

order of eK reduction in the overall computational complexity of the task. And, finally, 

solving the TSP by exhaustive search may be effectively separated by decoupling the core 

tasks of enumerating all possible paths from that of evaluating the length of each path, from that 

of finding the shortest path on the list. This approach is clearly not scalable to large numbers of 

variables, but it offers the significant advantage that enumerators, evaluators and selectors can 

specialize, and lower the marginal cost of each operation, which is useful in situations where 

exhaustive search is feasible. 
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Less obviously, the choice of a solution method for a particular problem can affect 

the degree to which task centralization is beneficial. An evolutionary algorithm based 

approach to the solution of the TSP will be far more amenable to a decentralized, peer to 

peer task environment in which candidate circuits are quickly generated, and combined 

(decentralized) and then evaluated using an agreed upon selection procedure (centralized). 

Using a branch and bound approach to solve the Knapsack Problem for the set of optimal 

features of a product subject to total cost constraints can similarly be decomposed into 

parallelizable subtasks of evaluating the best and worst case scenarios that can result when 

traveling down each of the branches that include/do not include a particular branch. Solving 

for optimum strategies using backward induction similarly can proceed by de-centralizing the 

processes by which particularly interesting and important ‘sub-games of the Nash tree’ are 

evaluated.  

Coherence: Synchronous and Asynchronous.  As every real-time software developer knows, the clock 

– both its speed and the degree to which a multiprocessor architecture is synchronized to it -

is a critically important component to implementing an algorithm in silicon in a way that 

allows it to process information of certain average and worst case complexity under time 

constraints of a maximum duration. The importance of the clock is easy to understand: the 

advantage of decentralization of task performance is often the parallelization and 

multiplexing of problem solving tasks. However, for a parallelized task to be significantly 

more efficient than its serial counterpart, the processors must be synched up in order to 

produce outputs that are jointly required at the next stage of the problem solving process. 

Some tasks are more sensitive to differences in processing speed than others: a genetic 

search among possible combinations of knapsack components will require tights 

synchronization of the transitions between variation, recombination and selection steps because 

delays compound over time, whereas a branch-wise decomposition of the same problem will 

be far more tolerant to slippage of the local clocks relative to the central clock.  

Functionality: Homogeneous and Inhomogeneous. Programmers and the hardware designers that 

seek to offer them the structures on which their code will run know hardware can be 
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optimally configured to perform certain kinds of operations – such as complex 

multiplications for Fast Fourier Transform Computation, add-select-compare processors for 

Trellis decoders – and so forth. When developers must commit to a hardware architecture 

before knowing in advance the kinds of operations their code will require, they opt for 

architectures that have heterogeneous subunits specialized for different kinds of operations. By 

analogy, business problem solvers called upon to solve wide ranges of problems across an 

industry or several industries (a large strategy consultancy) can usefully heed this ‘diversity 

heuristic’ in their own problem solving team constitution practice, and even optimize the 

‘diversity gain’ they achieve for certain kinds of problems to exceed the sometimes higher 

costs of coordinating problem solvers trained in different disciplines [Moldoveanu and 

Leclerc, 2015]. A computational abstraction layer allows strategic problem solvers to  

quantify this diversity gain: Hong and Page [Hong and Page, 2011] show that a group of 

heterogeneous non-expert problem solvers outperform a group of experts on the task of 

finding a solution when the problem is complex enough that it can only be solved by 

generating and applying a set of heuristics whose value increases with its diversity. 

7.Discussion.  Intelligent Artificiality as a Computational Abstraction Layer for 

Strategic Problem Solving. 

We are now in possession of a computational abstraction layer for business problem 

solving. Its expressive power is at least equivalent to that supplied by microeconomic theory 

- which has been the predominant net exporter of conceptual frameworks for business 

problem solving for the past fifty years. The language of marginal, average and sunk cost 

analysis, marginal value comparisons and marginal rates of substitution, strategic 

complements and substitutes,  ‘comparative’ and ‘competitive’ advantage of various kinds, 

equilibria of both the Arrow-Debreu and Nash variety, temporal discounting and 

intertemporal substitutions, and so forth – can now be complemented, and, where inferior as 

a prescriptive and ascriptive tool, replaced, by elements of a computational abstraction layer 

comprising the following operators: 
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 DEFINITION – the definition of problems via the specification of a set of current 

and desired conditions, time and resource constraints, and a space of independent, 

dependent and control variables whose cross or tensor products can be used to specify 

solution search spaces; 

 STRUCTURATION – the shaping, filtering or transformation of a problem such 

that the process of defining the problem, communicating the definition of the problem to 

others who need to be involved in solving it, observing and measuring current conditions, 

and designing methods of measurement for the desired conditions does not change or 

modify the values or nature of the variables in question and the structure of the solution 

search space; 

 SIZING- the process of evaluating the time and resources required to solve a 

problem before attempting to solve it; 

 ENUMERATION – the process of specifying, individually or synthetically, the set 

of solutions that satisfy the constraints of the problem; 

 EVALUATION – the process of evaluating candidate solutions with respect to their 

desirability; 

 RECURSION – the process of iteratively narrowing the solution search space 

through procedures aimed at synthesizing intermediate or along the way solutions, whose 

performance vis a vis desired conditions increases with each iteration, and which allow the 

problem solver access to a better approximation to a solution with each iteration; 

 ELIMINATION – the elimination of dominated or inferior candidate solutions with 

a view to narrowing the solution search space of the problem; 

 RANDOMIZATION – the implementation of operations in a solution search 

procedure that are probabilistically and not deterministically linked to the current state of the 

problem-solving process; 
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 LOCALIZATION – the purposive narrowing of the search to a sub-space of the 

solution search space, with a view to simplifying the search; 

 PARALLELIZATION – the process of allocating different tasks in a problem 

solving process to different problem solvers, who can work in parallel and thereby reduce 

the total time required to attain an acceptable solution; 

 CENTRALIZATION – the process of vesting decision rights over the allocation of 

tasks and subtasks to different problem solvers as a part of the problem solving process; 

 SYNCHRONIZATION – the process of aligning and coordinating the ‘clocks’ of 

different problem solvers working on the same problem to as to minimize the losses 

resulting from coordination failures; 

 DIVERSIFICATION – the process of purposefully introducing heterogeneity in the 

core skills and capabilities of problem solvers, to take advantage of the diversity gain accruing 

to the application of a variety of different heuristics to solving a very complicated problem, 

or for the purpose of maximizing the ‘insurance value’ of the problem solving team when it 

is designed to confront a wide variety of heterogeneous problems. 

 We conclude with a discussion of the measurement of problem solving performance. 

Unlike economists, who focus primarily on allocational efficiency as a measure of process 

performance and focus their efforts on observable outcomes, usually compared cross-

sectionally at the industry level, when they derive measures of comparative or competitive 

advantage, computational scientists focus on the trade-offs  between and among  the accuracy, 

reliability and speed that a particular kind of processor implementing a certain kind of algorithm operating 

over and information set of a given size and dimensionality that a given problem solving process 

(comprising silicon CPU’s and memory, algorithms, and data sources) can achieve in the 

best, worst and average case scenarios expected.  
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a=Accuracy of solution

B
(a,s,p)

A
(a,s,p)

P=Probability of Convergence

S = Speed of convergence
Competitive Advantage:                  ≥            , a,s,pA

(a,s,p) 
B

(a,s,p)Figure 17. Hyperplanes of trade-offs for quantifying the performance of a problem solving process, comprising 
the accuracy of the solution generated by the process, the probability of converging to a solution of that 
accuracy, and the speed (inverse of implementation time) with which a solution of a particular accuracy can be 
reached with a particular reliability. 

 This three-dimensional measure of problem solving performance allows for the 

contextualization of the measurement of the prowess of a team, group, organization or value 

linked activity chain that transcends organizational boundaries to solve the specific problems 

it confronts by being specific to the structure and definition of the underlying problem. But 

it allows for the transfer of learning about problem solving across different problems of the 

same structure, and therefore within firms, across firms and across industries. It unpacks the 

black box of ‘process’ that economic models focused on measuring the efficiency of 

processes by reference to inputs and outputs alone leaves opaque by being specific about the 

individual operators and operations of problem solving, and about the link between the problem 

structure, problem solving policy and resulting performance.  
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The three-dimensional approach to the quantification and measurement of problem 

solving performance contributes an alternative definition of comparative advantage of a firm 

over another, and, where the firms are operating in a contested market domain – of their 

respective competitive advantages. In Figure 17, firm A dominates Firm B along all 

dimensions of problem solving prowess – speed, accuracy and reliability – in solving 

problems of a particular structure. This unpacks comparative advantage in ways that 

illuminate and point to improvement paths: by focusing on reducing the costs of the basic 

organizational operations that comprise ‘everyday problem solving’, or by altering the 

topology and coordination mechanisms of parallel problem solving groups; which is what an 

abstraction layer that does not merely ‘represent’ or ‘describe’ experience and practice - but 

also reveals guideposts to and levers for changing them - should do. 
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