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1 Introduction

Demand estimation is a cornerstone of quantitative marketing and empirical IO, and the basis for

optimal price setting and many other applications. However, online markets pose several challenges

for demand estimation. One challenge is that the number of products is usually very large, espe-

cially relative to the number of observed product characteristics. This feature of online markets

reduces the flexibility of substitution patterns that can be estimated from the data. Moreover, it

raises the computational burden of common estimation methods, such as those with random coef-

ficients. Another challenge is that purchases are typically sparse, making precise estimation of the

parameters that determine substitution patterns difficult. A final challenge is that in online mar-

kets, the researcher may not observe many important drivers of demand, such as product rankings

and recommendations.

This paper proposes a new demand model that is simple to estimate and allows for flexible

substitution patterns even in markets with large numbers of products and sparse purchases. Our

approach leverages data on consumer search (i.e., browsing) behavior. These data directly reveal

which products a consumer had in her consideration set, and so provide an additional source of

information on substitution patterns. Moreover, search data are typically much more abundant

than purchase data. For example, in our empirical application, the average product is searched 36

times more frequently than it is purchased.

Our approach has three main advantages. The first advantage is computational. We apply

our demand model to a setting with almost 600 products, and find it is roughly 75 times faster

to estimate than a full-information model that allows for random coefficients on product charac-

teristics.1 A second advantage is fit. Specifically, we find our demand model fits the data better

than the full-information model. In our approach, products that are frequently included together in

consideration sets are allowed to have higher cross-elasticities (everything else equal). Intuitively,

in a setting with many products, “revealed similarity” through co-occurrence in consideration sets

may better capture substitution patterns than can a limited number of product characteristics.

Another advantage of our approach is that it imposes less structure than most other models. For

example, in contrast to structural models of consumer search, we do not need to make assumptions

about information sets, search protocol, and so forth.

In more detail, we jointly model consideration-set formation and product choice in the following

way. We begin by showing that any model of consideration and choice can be decomposed into (i)

a probability distribution over consideration sets, and (ii) choice probabilities conditional on each

consideration set. We then make two key modeling choices in order to implement this decomposition

empirically. First, we do not “unpack” the consideration process and model how consideration sets

are formed. Instead, we treat consideration-set probabilities as objects to be estimated, and we

model the influence of price on consideration in a reduced-form way. Second, we allow conditional

preferences to vary across consideration sets in a way that is informed by models of consumer

1We did not attempt to estimate a structural search model using consumer-level search and purchase data, because
it would be too computationally burdensome given the number of products.
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Figure 1: Illustrative Search Patterns.

search and consideration-set formation. We then estimate consideration-set probabilities and the

parameters of the conditional distributions of preferences. Our modeling framework nests several

common approaches in the literature on consumer search and consideration-set formation, and

can be seen as an approximation to others. Our approach allows us to conduct price-related

counterfactuals such as the estimation of elasticities and optimal prices.2

The main idea behind our approach is that search data are informative about substitution

patterns. Figure 1 illustrates this via a simple example with 10 products, denoted by A, . . . , J .

Assume focal product A is either searched together with products B, C, D, and E in the top row

(illustrated by the solid rectangle) or product F (illustrated by the dashed rectangle). However,

product A is never searched together with any other product. Therefore, in the special case in which

price affects conditional choice but not consideration,3 a price increase for any product outside of

the set of co-searched products (products G, H, I, J) will not affect demand for A, whereas price

changes for products B, C, D, E, and F will. Patterns such as the ones illustrated in Figure 1

could be driven by similarity in product characteristics. For instance, the top and bottom rows

could denote respectively high and low quality, and each column could represent a different color.

Alternatively, the rows and columns could represent similarity with regards to a characteristic such

as product design that is typically unobserved to the researcher or proximity on the webpage. A

major advantage of our approach is that the groupings of substitute products are directly observed

in the data and do not need to be inferred indirectly from consumers’ purchases. Defining the

relevant set of characteristics that might drive the substitutability of products is unnecessary. This

feature of our modeling approach is particularly valuable in online markets where the number of

products is large relative to the number of observable characteristics, and where other drivers of

substitution patterns, such as similarity in design or proximity on a webpage, are either hard to

quantify or are simply not observed by the researcher.

We illustrate the power of our approach using search and purchase data from an online retailer

2As we discuss later, we cannot do certain other counterfactuals. For example, because we do not assume a
particular model of search, we cannot analyze changes in the search process such as a decrease in search costs.

3In our full model, price affects both conditional choice and consideration, and hence substitution patterns are
more complex than those outlined here.
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selling home-improvement products. We focus on one product category that contains almost 600

items. Our data cover a three-month period and consist of roughly 455,000 product searches and

13,000 purchases by 186,000 users. Apart from search and purchase data, we also obtained data

on prices and other (time-invariant) product characteristics. Using our estimates, we solve for the

entire cross-price elasticity matrix and then compute optimal prices. We find that optimal prices

are, on average, 23% lower than current prices and revenue would increase by 7.1% when switching

to the optimal price vector.4

We also show our approach outperforms a full-information, characteristics-based random-coefficient

demand model in terms of (out-of-sample) model fit. Specifically, the average likelihood for a leave-

one-week-out holdout sample is higher for our proposed model than for a full-information model

with random coefficients on all characteristics that the firm collects and uses to establish product

similarity (nine characteristics). In fact, adding random coefficients does not lead to an improve-

ment in fit relative to a simple logit model without random coefficients. However, our approach

based on search data does yield an improvement in fit. We also show that similarity in observed

characteristics does not predict very well which products are searched together. Search data there-

fore capture relevant aspects of substitutability that are missed by the product characteristics

recorded by the company. In addition to giving superior fit, our preferred specification is also 75

times faster to estimate than the full-information random-coefficient demand model.

Related literature. Our paper relates to several distinct streams of literature. First, it relates

to a literature that employs descriptive methods to uncover and visualize substitution patterns

among products. Netzer, Feldman, Goldenberg, and Fresko (2012) use the co-occurrence of products

mentioned in online discussion forums, whereas Lee and Bradlow (2011) use customer reviews and

the products they mention. The two papers in this realm that are closest to our approach are

Ringel and Skiera (2016) and Kim, Albuquerque, and Bronnenberg (2011), which use online search

data to analyze competitive market structure and product substitution. However, neither of these

papers estimates an elasticity matrix, due to the absence of information on prices and purchases.

Instead, these papers provide a visualization of closeness in product space (a “perceptual map”) with

an implicit understanding (but no formal derivation) that this visualization informs substitution

patterns and hence demand elasticities.5 Our approach leverages co-occurrence data similarly to

these descriptive papers, but it embeds this information into a model of demand and uses it to

derive an elasticity matrix.6

Our paper is also related to models of consideration-set formation and consumer search. Broadly

speaking, one can think of consideration-set models as containing two separate stages, consideration

and choice, whereas search models are based on a unified utility-maximization framework that

4As we discuss later, the firm’s objective function was to maximize revenue rather than profit.
5Kim, Albuquerque, and Bronnenberg (2011) clearly articulate the implied relationship of the perceptual map to

substitution patterns (see p.14): “the map can be used to shed some light on substitution patterns. Local subsets
of products on the map can be interpreted as stereotypical products or consideration sets that are searched together
and, presumably, compete more intensely.”

6A related application is by Li, Netessine, and Koulayev (2018), who use search data to compute instrumental
variables that are used to estimate the relationship between different firms’ pricing decisions.
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underpins both search and purchase decisions. The first stage in a consideration model is typically

either characterized as a more passive stage in which consumers become aware of products due

to external factors such as advertising or product displays (Bronnenberg and Vanhonacker (1996),

Mehta, Rajiv, and Srinivasan (2003), Pancras (2010)), or can be understood as a reduced-form

approximation of a structural search model. To organize the literature and the relation of different

papers to our approach, we categorize papers into those that conceptualize choice into two separate

stages versus those that adopt a unified optimization framework to jointly describe search and

choice.

The literature on consideration sets typically assumes some variables affect consideration-set

formation but not choice.7 For instance, Goeree (2008) assumes consideration is driven by adver-

tising, which does not enter the consumer’s utility in the purchase stage. Andrews and Srinivasan

(1995), Bronnenberg and Vanhonacker (1996), and Mehta, Rajiv, and Srinivasan (2003) assume

product displays and feature advertising affect consideration but not utility. In general, consid-

eration is modeled as a function of observable product characteristics (Andrews and Srinivasan

(1995), Bronnenberg and Vanhonacker (1996), Goeree (2008), Barroso and Llobet (2012), Gaynor,

Propper, and Seiler (2016)). For example, high-quality products being considered together can be

captured by allowing for quality (possibly interacted with demographics) to affect the considera-

tion probability. Therefore, observed characteristics are what determine how often products are

considered together and hence whether they are close substitutes. Despite a different functional

form, substitution patterns ultimately trace back to observable characteristics as in the case of

perfect-information demand models.

Models of consumer search (e.g., Kim, Albuquerque, and Bronnenberg (2010), De Los Santos,

Hortacsu, and Wildenbeest (2012), Honka (2014), Chen and Yao (2016), and Ursu (2018))8 instead

present a unified framework of consumers’ utility maximization that rationalizes observed search

and purchase patterns. Typically, these models are computationally burdensome and are therefore

estimated for markets with a relatively small number of products. Furthermore, in search models,

both search and choice are driven by the specified utility function. Typically utility is defined in

characteristic space and hence, similar to consideration set models, cross-elasticities are determined

by the observable characteristics that enter utility.

We view our approach as combining the strengths of the descriptive approaches outlined above

and structural models of search. Similar to the descriptive papers, we let information on co-

occurrence in search inform substitution patterns directly without the need to rationalize co-

occurrence through similarity in characteristics. By embedding the search information into a model

of consideration and choice, we are able to combine it with information on purchases and price vari-

ation, which allows us to estimate the elasticity matrix. At the same time, relative to the above

7Several recent papers analyze identification in consideration-set models without exclusion restrictions. Abaluck
and Adams (2016) base identification of consideration sets on asymmetries in cross-derivatives. Kawaguchi, Uetake,
and Watanabe (2016) use variation in product availability to identify consideration sets. Crawford, Griffith, and Iaria
(2018) show how to estimate preferences when unobserved consideration sets need to be integrated out.

8Other papers within the broader literature of consumer search include Seiler (2013), Koulayev (2014), Honka and
Chintagunta (2016), Pires (2016), and Haviv (2016).
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papers, our approach allows us to remain agnostic about the process that drives search or consider-

ation. Furthermore, we are able to set up estimation such that the computational burden is much

lower than in a typical structural search model, thus allowing us to estimate the model for a setting

with several hundred products.

Finally, our paper is related to an emerging literature on flexible large-scale demand estimation

that is based on purchase data and does not make use of additional data sources such as information

on consumer search behavior. Smith, Rossi, and Allenby (2016) use a Bayesian approach to flexibly

estimate market partitions using supermarket scanner data. Chiong and Shum (forthcoming) use

sparse random projection to reduce the dimensionality of the estimation problem. Ruiz, Athey,

and Blei (2017) estimate a sequential probabilistic model of basket demand.

The remainder of the paper is structured as follows. Section 2 outlines our approach to esti-

mating demand and discusses how it relates to alternative approaches. Section 3 describes the data

and provides descriptive statistics. Section 4 applies the model to data from an online retailer.

Section 5 reports elasticity estimates and optimal prices. Section 6 concludes.

2 Model Framework

We first provide a general framework that nests any model of consumer search or consideration-

set formation. This framework decomposes the choice process into two objects: (i) a probability

distribution over consideration sets, and (ii) choice probabilities conditional on a consumer having

selected into a particular consideration set. We then introduce our estimation strategy, which seeks

to directly estimate these two objects from the data. Finally, we compare our approach with others

from the literature.

2.1 A General Model of Consideration and Choice

Consider a setting with J differentiated products, whose prices are given by the vector p and

whose characteristics are given by the matrix X. An outside option exists that we label as good 0.

A consumer’s preferences and search-related parameters (e.g., search costs) are summarized by a

vector θ whose distribution is Fθ(θ).
9

A consideration set s is a subset of the J + 1 products from which a consumer makes her

final choice. We can write down the following discrete probability distribution (conditional on

characteristics) over consideration sets:

Pr(s|p,X) =

�
1(s|p,X, θ)dFθ(θ), (1)

where 1(s|p,X, θ) is an indicator function that equals 1 if the consumer picks consideration set s.

This function will differ depending on the assumptions made regarding the process of consideration-

9The type vector θ fully describes the consumer; that is, it includes preferences over product characteristics,
realizations of product-level taste shocks, and so forth. Hence, choices conditional on θ are deterministic.
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set formation and/or search. For the moment, we simply assume 1(s|p,X, θ) represents some

function that maps types θ and product characteristics (p,X) to consideration sets.

We can also derive choice probabilities conditional on selecting a particular consideration set

s. To do so, let u0 denote the utility associated with the outside option, let uj be the utility (net

of price) from buying product j ∈ s, and let Fθ|s(θ|s,p,X) be the distribution of θ conditional

on choosing set s.10 The conditional probability that a consumer with consideration set s buys

product j ∈ s can then be written as

Pr(j|s,p,X) =

�
1(uj(p,X, θ) ≥ uk(p,X, θ) ∀k ∈ s)dFθ|s(θ|s,p,X) , (2)

where 1(.) is an indicator function that takes the value of 1 when good j offers the highest utility.

We also write Pr(j|s,p,X) = 0 for any product j /∈ s.
Demand for product j is then obtained by summing the conditional demands in (2) over all

consideration sets weighted by the probability distribution (1):

Dj (p,X) =
∑
s∈S

Pr(s|p,X)× Pr(j|s,p,X) , (3)

where S denotes the set of all consideration sets. Using this expression, we can write the elasticity

of demand for product j with respect to the price pk of product k as

ηj,k =
pk ×

∑
s∈S

(
Pr(s|p,X)× ∂ Pr(j|s,p,X)

∂pk

)
Dj (p,X)︸ ︷︷ ︸

Within-set substitution

+
pk ×

∑
s∈S

(
∂ Pr(s|p,X)

∂pk
× Pr(j|s,p,X)

)
Dj (p,X)︸ ︷︷ ︸ .

Between-set substitution

(4)

The first term describes substitution patterns among consumers who do not change their consid-

eration set in response to a change in pk. Substitution through this channel can only arise for

consumers who jointly consider products j and k. The second term describes substitution patterns

caused by consumers responding to the change in pk by changing the set of products they consider.

The general demand expression in (3) nests several common approaches to demand estima-

tion. First, perfect-information demand models correspond to the special case in which each con-

sumer selects into the consideration set that contains every product. Second, as we discuss below,

consideration-set models often assume price does not affect consideration, and that preferences are

independent of which consideration set was chosen. This set of assumptions corresponds to the

special case in which Pr(s|p,X) = Pr(s|X) and Fθ|s(θ|s,p,X)=Fθ(θ), and hence no between-set

substitution occurs. Third, because our general framework permits Fθ|s to vary arbitrarily across

consideration sets, it allows for any link between consideration and choice. As such, it is consistent

with any model of consumer search as well as other ways of forming consideration sets, such as

choice heuristics. We return to the comparison of our model to alternative approaches in section

10The distribution is conditioned on (p,X) because (p,X) may affect which consumers select into a given set. For
example, if the price of a product in a given set decreases, more price-sensitive consumers might select that set.

6

 Electronic copy available at: https://ssrn.com/abstract=3214812 



2.3, and argue our empirical implementation of (3) either nests or approximates these different

approaches.

2.2 Empirical implementation

We now describe in detail how we propose to estimate this general model. Instead of trying to re-

cover the underlying distribution of consumer types θ, our approach directly estimates consideration-

set probabilities Pr(s|p,X) and the conditional distribution of preferences Fθ|s(θ|s,p,X). We pa-

rameterize both objects in a way that is informed by models of consideration-set formation and

search. This approach allows us to estimate elasticities and to conduct counterfactuals that alter

prices (e.g., evaluating profits at a counterfactual price vector) without making assumptions on

the process by which consumers search or form consideration sets. The main disadvantage of our

approach is that we cannot implement counterfactuals that require knowledge of the search or

consideration process and the unconditional distribution of preferences, such as changes in search

technology or the evaluation of consumer welfare.

2.2.1 Consideration-Set Formation

We model the probability of consideration set s occurring in period t at a given price vector as

Pr(s|p,X) =
exp(χs + γpricest)∑

s′∈S exp(χs′ + γprices′t)
, (5)

where χs denotes a set-specific fixed effect, pricest is the average price of the consideration set in

that time period, and γ is a parameter to be estimated. One can loosely interpret χs + γpricest

(plus an iid extreme-value shock) as the “utility” of choosing consideration set s. This formulation

allows us to sidestep the task of modeling the process by which specific products are combined in

consumers’ consideration sets. Hence, one should think of this set-level choice model as a reduced-

form model for an underlying product-level search process that (i) captures joint-search patterns

in the data via consideration-set-specific fixed effects χs, and (ii) allows prices to influence the

likelihood of different sets occurring. In the special case in which γ = 0 such that price does

not affect consideration, the predicted probability of a given consideration set occurring is just its

frequency in the data.

We do not explicitly model how consideration-set probabilities depend on characteristics X,

but take the estimated probabilities to be valid at the current realization of characteristics in the

data. We thus have in mind a setting where non-price factors that drive consideration, such as

product characteristics or webpage layout, do not vary during the sample period. (Therefore,

characteristics that drive joint-search patterns are co-linear with the set fixed effects.) We assume

the set of possible consideration sets S is given by those observed in the data, and hence the

summation in the denominator of equation (5) is over those sets.11

11Thus, a potential limitation of our approach is that it places zero weight on consideration sets that do not appear
in the data. However, we show later that in our application, most pairs of products are considered together at least
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2.2.2 Conditional Choice

We assume a consumer i with a given consideration set obtains the following utilities:

uij = ūij + εij = δj + αipricejt +X ′jβi + εij (6)

ui0 = εi0,

which comprise of a deterministic component ūij (normalized to zero for the outside option) and

an iid extreme-value taste shock εij . The deterministic component associated with buying product

j depends on an intercept term δj , the product’s price pricejt in period t, and a vector of product

characteristics Xj .
12

In principle, one could estimate the conditional distribution of consumer types flexibly for each

consideration set. However, in most applications (including ours), not all consideration sets are

observed frequently enough to do this. We therefore take a more parsimonious approach, but still

allow (αi, βi) to vary across consumers via their choice of consideration set. In particular, we assume

the coefficient βki on the kth characteristic Xkj is given by

βki = β̄k + β̃kX̃ki, (7)

where X̃ki is the average value of that characteristic across all products in consumer i’s consid-

eration set, normalized such that it lies between 0 and 1.13 Hence, β̄k denotes the preference

for characteristic k among consumers with the lowest average value of that characteristic in their

consideration set, and β̃k captures differences in conditional preferences for characteristic k as a

function of X̃ki. Heterogeneity in the price coefficient αi is modeled similarly.

This approach captures the idea that consumers with a strong preference for a specific char-

acteristic are more likely to include products with that characteristic in their consideration set,

and so we expect β̃k > 0. It allows us to approximate a type of dependence that is natural in a

search model (see discussion in the next section), but has the advantage that we can estimate the

nature of the dependence from the data rather than imposing it through assumptions on the search

process. Notice that for simplicity, we are modeling coefficients as a deterministic function of the

average value of the relevant characteristic in a given consideration set, rather than allowing for a

distribution of preferences that varies across consideration sets.

once during the sample period, ensuring that substitution effects for most pairs of products are not set to zero.
12We omit the time-subscript t from utility, because each consumer is observed in only one time period.
13We first compute a simple average of the characteristic within the set X̄ki. We then normalize the variable as

follows: X̃ki =
[
X̄ki −min

(
X̄ki

)]
/
[
max

(
X̄ki

)
−min

(
X̄ki

)]
, where the min and max operators are taken over all

consideration sets in the data.
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2.3 Comparison to Other Approaches

We now briefly compare our approach with search and consideration models that are commonly

used in the literature, and also draw a parallel to demand models based on choice heuristics.

2.3.1 Consideration-Set Models

In a typical consideration-set model, the consideration set probabilities are

Pr(s|p,X) =

� ∏
j∈s

Pr(search j|X1j , Zi, γ)dFZ(Zi) , (8)

where Zi are consumer characteristics with distribution function FZ , and γ is a vector of parameters

to be estimated. Furthermore, X1j are product characteristics that influence consumers’ awareness

of the product such as advertising (Goeree (2008), Barroso and Llobet (2012)) or whether it is

prominently displayed within a store (Bronnenberg and Vanhonacker (1996), Swait and Erdem

(2007)). Price is assumed not to influence consideration, and the probability of a given set occurring

is simply obtained by multiplying the relevant product-level consideration probabilities. Meanwhile,

conditional utilities are typically defined as in our earlier equation (6), that is,

uij = δj + αipricejt +X ′2jβi + εij , (9)

where X2j is another set of product characteristics that do not overlap with those in X1j . Impor-

tantly, the characteristics X1j are assumed to be uncorrelated with consumers’ preferences over

price and X2j . This assumption implies the distribution of the preference parameters (αi, βi) is the

same across all consideration sets.

Our approach nests the above model but is more flexible because we allow price to affect con-

sideration, and because we allow conditional utilities to vary with consideration sets. Moreover,

because we estimate Pr(s|p,X) using a (modified) frequency estimator, we avoid making assump-

tions on the nature of the process by which consideration sets are formed. Crucially, we do not

impose that product-level inclusion probabilities are independent of each other. We believe relaxing

this assumption is important because conditional viewing probabilities are unlikely to be indepen-

dent in online settings due to recommendations of similar products (“consumers who viewed this

product also viewed ...”). Other elements of webpage layout, such as product rankings, are also

likely to influence consideration sets and so should be part of X1j in equation (8), and yet are hard

to measure and are rarely recorded. Our approach sidesteps the need to estimate the influence of

such variables by directly estimating consideration-set probabilities.

2.3.2 Consumer Search Models

In a typical search model, both search and choice are driven by an underlying (characteristics-

based) utility function similar to the one in equation (6). Consumers search either sequentially or

9
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simultaneously, and may know the realizations of some subset of characteristics prior to search.

In most search models, selection into different consideration sets will depend on consumer pref-

erences. For example, if consumers tend to search products with similar price levels, a search model

will rationalize this behavior through heterogeneity in preferences over price. Such heterogeneity

would induce high (low) price sensitivity consumers to search sets of products with low (high)

prices. However, if two products do not share any observable characteristics, a search model will

not be able to rationalize that the pair of products might be frequently searched together. Our

approach, by contrast, directly estimates consideration-set probabilities and can therefore capture

co-search patterns that are not driven by similarity in observed characteristics.

Furthermore, selection based on characteristics will lead consumers who have a strong preference

for a specific characteristic to select a consideration set containing products with high values of

this characteristic. However, the exact way in which Pr(s|p,X) varies with preference parameters

will depend, for example, on what is assumed about the search protocol and what consumers

know before engaging in search.14 Our approach captures these kinds of dependencies by allowing

preference parameters of consumers who consider a particular consideration set to depend on the

characteristics of the selected consideration set rather than imposing the nature of selection via

assumptions about the search process.

2.3.3 Choice-Heuristics Models

Choice-heuristics models are rule-based strategies that help consumers simplify decisions and reduce

cognitive effort. They may be particularly relevant in online settings where assortments are large.

In many of these models, consumers use a two-stage decision process, where in the first stage they

use simple non-compensatory rules to narrow down the set of options, and then in the second stage

they use a compensatory mechanism to make a final choice.15

Our approach nests the special case in which price is not used for screening products in the first

stage and the two stages are independent (which is then similar to consideration-set models). Our

approach also approximates the general case, which is similar to a search model in the sense that

at the first stage, consumers will tend to select into consideration sets containing products with

characteristics that they value highly. As already discussed, our approach captures this dependence

without needing to take a stand on the particular heuristic being used.

2.3.4 Benefits of Our Approach

As discussed above, consideration-set models typically assume (i) price does not affect consideration,

and (ii) the distribution of preferences does not differ across consideration sets. On the other hand,

in search and choice-heuristics models, those assumptions do not always hold. Our approach nests

14Honka and Chintagunta (2016) show that in the context of search over price, the distribution of prices in a given
consideration set differs under sequential and simultaneous search.

15See Aribarg, Otter, Zantedeschi, Allenby, Bentley, Curry, Dotson, Henderson, Honka, Kohli, Jedidi, Seiler, and
Wang (2017) for a recent summary of the literature.
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consideration-set models and provides an approximation to structural models of search and choice

heuristics. In both cases, we believe our approach has some important advantages.

One benefit of our approach is that it does not “unpack” the consideration process, and in-

stead estimates it directly from the data. Therefore, relative to the models outlined above, our

approach avoids imposing strong (and often untested) assumptions on what consumers know or

on their search/consideration process.16 Avoiding such assumptions is particularly advantageous

in online markets, where consumers face a large number of choices and may differ substantially

in what information they have and how they use it to evaluate products. An approach like ours,

which approximates the underlying search or consideration process, could dominate an incorrectly

specified model.

Another benefit of our approach is that it flexibly allows factors that are not observed by the

researcher to influence substitution patterns. One example would be the layout of a webpage,

which is likely to greatly influence which products are searched together (either by displaying

certain products together, or by recommending products similar to those already viewed by the

consumer). To our knowledge, search and consideration models would typically not capture such

drivers of pair-specific search.17 Furthermore, in online markets, the number of products is large

relative to the number of product characteristics that are observed, and the researcher might not

observe relevant characteristics that drive substitution between products. These features of the data

make using random-coefficient models to flexibly capture substitution patterns difficult. Because

our approach directly estimates the distribution of consideration sets from the data, it allows these

unobserved factors to influence estimated elasticities.

A final benefit of our approach is computational. Structural search models are typically very

computationally burdensome, and thus are usually estimated for small numbers of products. Given

the current methods of estimation, we think scaling a structural model of search to a large assort-

ment size of several hundreds of products is computationally infeasible. As we demonstrate later,

our demand model is considerably simpler to estimate.

3 Data and Descriptive Statistics

We estimate the model using data from an online retailer that sells home-improvement products

(hardwood flooring, tiles, etc.). We focus on a single product category, which is one of the largest

sold by the retailer and contains 576 products during our sample period. We observe the entire

history of consumers’ search and purchase behavior during a 13-week period from April 20, 2016, to

July 16, 2016. The final data set contains 454,977 searches and 12,626 purchases (basket additions)

by 185,963 distinct users. A consumer is considered to have searched a product if she accessed the

product description page. We treat basket additions as the choice outcome in the demand model,

16With regards to search protocol, De Los Santos, Hortacsu, and Wildenbeest (2012) and Honka and Chintagunta
(2016) test whether search is sequential or simultaneous. To the best of our knowledge, other assumptions (e.g.,
whether search is over price or a “match value”) have not been tested in the literature.

17Because utility is often defined at the product level, factors that guide a consumer from one product to another
(e.g., recommendations) are hard to include, because they are specific to pairs of products.
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Purchase probability 6.8%

Average # of Searches 2.45

Percentage
Number of 1 56.41
Searches 2 17.66

3 8.74
4 5.17
5 3.34
6 2.13
7 1.52
8 1.11
9 0.80
≥10 3.12

List of Product Price
Characteristics Deal Dummy (Price Decrease that is Highlighted on the Webpage)

Ratings (Customer Reviews): 1-5 Scale
Number of Customer Reviews
Brand
3 Discrete Characteristics (Anonymized)
3 Continuous Characteristics (Anonymized)

Table 1: Descriptive Statistics.

because the retailer did not store purchase information in a way that was easily accessible to us.

(Basket additions were, however, tracked as part of the browsing data.) We assume the rate of

conversion from basket additions to purchases does not vary across products and is unaffected by

price. Under this assumption the conversion rate simply scales up demand, and hence has no effect

on estimated elasticities or optimal prices. Table 1 provides some descriptive statistics. Roughly

6.8% of all search sessions in this category end in a “purchase.” On average, a search session

contains 2.45 products.

We also have some information about each of the products. Each product belongs to one of 27

different brands. In addition to observing weekly prices, we also observe whether a product is “on

deal,” that is, is on sale in a given week and is highlighted as such on the website. We also have

data on the number of reviews posted about a product, as well as their score on a scale from 1 to

5. Although these ratings could vary over time, given our short sample period, there is minimal

variation. Finally, the retailer also provided us with six additional product characteristics that we

are not allowed to disclose. Three of them are discrete and three are continuous. They measure

physical characteristics of the products and are therefore time invariant.

In Table 2, we document search and purchase patterns at the product level and describe the

distribution of consideration sets that occur in the data. The first two columns report the average

number of purchases and searches separately for the top 100, 200, and so on products in the
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Product-pair Co-search Patterns
Average Average Average Median

Number of Number of Number of Number of Number of Share of
Purchases Searches Product Pairs Searches Searches Zeros

Top 100 products 102 3142 4,950 93 39 0.26%
Top 200 products 58 1902 19,900 38 13 3.17%
Top 300 products 40 1378 44,850 22 6 8.69%
Top 400 products 31 1083 79,800 14 4 16.10%
Top 500 products 25 894 124,750 10 2 23.66%
All products (576) 22 789 165,600 8 2 28.44%

Table 2: Purchase, Search and Joint-Consideration.

assortment by market share. As mentioned earlier, we find that, consistently across the assortment,

products are searched significantly more frequently than they are purchased. The ratio of searches

to purchases is roughly 36 to 1.

We also document that for large parts of the assortment, most pairs of products are searched

together (possibly with other products) relatively frequently. For example, for the top 100 products,

we observe almost all pairs of products (out of (100 ∗ 99)/2 = 4950 possible pairs) being searched

together by at least some consumers with an average (median) number of joint searches of 93 (39)

across all product pairs. Even when including 300 products (more than half of the assortment),

the share of pairs not being searched together is below 10%.

3.1 Price Variation

Prices in our data vary both across products (at a given point in time) and over time (for a given

product). Time-series variation in prices is driven either by temporary deals or by changes in the

regular price implemented by the retailer’s data-analytics team. Deals tend to be accompanied by

other changes such as more salient display (a colored price tag alerting the consumer to the deal)

and more prominent placement on the webpage. As a result, consumers’ reaction to deals is likely

to be attributable not just to the price change, but also to other elements that change alongside

it. We therefore control for deal status and estimate the impact of price on consideration and

conditional choice entirely from within-product changes in regular price. We later hold deal status

constant when computing price elasticities, and use those elasticities to solve for optimal regular

prices.

We have ample within-product price variation. During our 13-week sample, the average product

changes price 1.2 times. Many products (300) change price at least once, and among these products,

the magnitude of the average price change is equal to 10.8% of the average product price over the

13 weeks. Most products (453) are never “on deal.” Conditional on having deal status at least

once, the median product has it for three out of the 13 weeks.

We treat regular price changes as exogenous. Based on conversations with the company, this
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(1) (2) (3) (4) (5) (6)
Dependent Variable # Joint Joint Log # Joint Joint Log

Searches Search # Joint Searches Search # Joint
Ratio Searches Ratio Searches

Mean 7.96 0.42 1.22 7.96 0.42 1.22
S.D. 41.93 1.17 1.14 41.93 1.17 1.14

Same Brand 19.534*** 0.809*** 0.834***
(0.364) (0.010) (0.009)

Price Difference -1.922*** -0.046*** -0.213***
(0.106) (0.003) (0.003)

Same Char. 1 13.667*** 1.047*** 0.749***
(Discrete) (0.854) (0.023) (0.022)
Same Char. 2 2.881*** 0.070*** 0.097***
(Discrete) (0.239) (0.007) (0.006)
Same Char. 3 2.675*** 0.190*** 0.045***
(Discrete) (0.275) (0.007) (0.007)
Diff. Char. 4 -1.336*** -0.115*** -0.110***
(Continuous) (0.105) (0.003) (0.003)
Diff. Char. 5 --1.678*** -0.064*** -0.110***
(Continuous) (0.103) (0.003) (0.003)
Diff. Char. 6 -1.890*** -0.020*** -0.108***
(Continuous) (0.107) (0.003) (0.003)

Similarity Score 6.587*** 0.321*** 0.249***
(0.102) (0.003) (0.003)

Products 576 576 576 576 576 576
Observations 165,600 165,600 165,600 165,600 165,600 165,600
R-squared 0.036 0.083 0.161 0.025 0.075 0.048

Table 3: Determinants of Co-search of Product Pairs. The joint-search ratio is defined
as [# Searches (j,j’)]/[# Searches (j)×# Searches (j’)]. Characteristics 1-3 are discrete variables.
Regressors are defined as a dummy equal to 1 if the characteristic has the same value for both prod-
ucts. Characteristics 4-6 are continuous. Regressors are defined as the absolute difference between
characteristics. All continuous variables (price difference and characteristics 4-6) are standardized.

assumption is reasonable because most price changes were part of an attempt to induce price

variation in order to understand how responsive demand is to such changes. Of course, some price

changes could be triggered by changes in demand that the firm is trying to adapt to. However,

within the short time frame of our data (13 weeks), we think that large changes in product-level

demand are unlikely.

14

 Electronic copy available at: https://ssrn.com/abstract=3214812 



3.2 Browsing Data and Product Characteristics

Next, we examine the relationship between the search data and product characteristics. First, we

show that similarity in characteristics helps predict the likelihood of two products appearing in the

same consideration set. Hence, the search data allow us to capture product similarity that is driven

by observed characteristics. Second, however, we find that a large part of the variation in search

patterns remains unexplained by flexible measures of similarity in observed characteristics.

In more detail, we measure the closeness of products in characteristic space by using price, brand

identity, and the six physical characteristics that we mentioned earlier. For all discrete variables,

we define a dummy that is equal to 1 if the variable takes the same value for both products j and

j′. (For example, one of the regressors is a dummy that takes the value of 1 if two products belong

to the same brand.) For all continuous variables, we compute the absolute value of the difference

between the two products, and then to facilitate comparisons, we normalize it by the variable’s

standard deviation.

In column (1) of Table 3, we regress the number of times a pair of products (j, j′) was searched

together during the entire sample period on the measures of product closeness that we just described.

All characteristics have a significant impact and the coefficients have the expected sign. Sharing

the same discrete characteristic increases joint search, whereas a larger difference in any continuous

characteristic lowers joint search. Moreover, some coefficients are relatively large in magnitude,

for example, belonging to the same brand increases the number of joint searches by roughly half a

standard deviation. However, importantly, the r-squared is only equal to 0.036, and therefore most

of the variation in search patterns is not explained by closeness in characteristic space.

The remaining columns of Table 3 probe the robustness of this result. In column (2), the

dependent variable is ∑
i 1((j, j′) ∈ si)

(
∑

i 1(j ∈ si))× (
∑

i 1(j′ ∈ si))
, (10)

where, for example, 1(j ∈ si) takes the value of 1 if product j is contained in consumer i’s consid-

eration set. In other words, the dependent variable is the number of consumers who searched (j, j′)

together, divided by the product of the number of consumers who searched j and j’, respectively.

This metric adjusts for the fact that products that are searched more often will automatically have

higher joint search with any other product. In column (3), we use a logarithmic transformation of

the number of joint searches as the dependent variable.18 The r-squared is higher in both specifica-

tions but still low in absolute value. In columns (4) to (6), we run the same set of regressions but

use as the regressor a similarity score that is computed by the firm and is based on the character-

istics we have already used. Again, the predictive power of these regressions is relatively low. In

unreported regressions, we also probe robustness to removing outliers and including higher-order

terms of all covariates, and find the results do not change qualitatively.

In summary, these regressions suggest much of the variation in search patterns cannot be ex-

plained by observed characteristics. Therefore, an important advantage of our approach is that we

18Before taking the logarithm, we add 1 to the number of joint searches.
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directly use information on joint-search patterns and leverage them to estimate cross-elasticities.

We note the patterns described above do not establish that the search data (and our way of using

this data) allow us to obtain better estimates of substitution patterns. We return to this point in

section 4.2.1 when we assess the fit of our model against a characteristics-based (full-information)

random-coefficient model.

4 Estimation and Results

We outlined the general structure of the demand model in section 2. We briefly re-cap the relevant

equations here and describe a few modifications that are required to adapt the model to our

empirical setting.

With regards to consideration-set formation, we slightly modify equation (5) from earlier to

include deal status. We assume the probability of consumer i choosing set s is given by

Pr(s|p,X) =
exp(χs + γ1pricest + γ2dealst)∑

s′∈S exp(χs′ + γ1prices′t + γ2deals′t)
, (11)

where pricest and dealst denote, respectively, the average price and the fraction of “on deal”

products in consideration set s. The parameters to be estimated are γ1 and γ2 as well as a vector

of set fixed effects.

With regards to conditional choice, we also slightly modify equation (6) from earlier to include

deal status. We assume a consumer’s utility function takes the form

uij = ūij + εij = δj + α1ipricejt + α2idealjt +X ′jβi + εij (12)

ui0 = εi0,

where pricejt is product j’s price, and dealjt is a dummy variable that equals 1 if product j is “on

deal.” Following our earlier discussion, we assume the coefficients on the kth product characteristic,

price, and deal are given by, respectively,

βki = β̄k + β̃kX̃ki, (13)

α1i = ᾱ1 + α̃price1 p̃ricei + α̃deal1 d̃eali,

α2i = ᾱ2 + α̃price2 p̃ricei + α̃deal2 d̃eali,

where X̃ki, p̃ricei, and d̃eali are the (normalized) average values of characteristic k, price, and deal

status across all products in consumer i’s consideration set. Because the price level and deal status

are both price-related variables, we allow the coefficients on those two variables to depend on both

the average price and average deal status in consumer i’s consideration set.

We also assume that with probability ϑ, which is independent of the utilities that a consumer

draws, a search spell breaks down and therefore leads to no purchase. An example for the type

of behavior this parameter captures is that of consumers who want to purchase in a physical
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store but use the webpage to find their preferred product. Such consumers are better classified

through search breakdown rather than the choice of the outside option, because they did find their

utility-maximizing product, and their decision not to purchase on the webpage is unrelated to

price. Empirically, the breakdown parameter helps us match the degree of substitution between

products and the outside good in a parsimonious way. To understand this, notice that when

the breakdown parameter is larger, fewer consumers respond to a price decrease on a particular

product by substituting away from the outside option. Equivalently, substitution between products

is more important than substitution away from the outside option. Intuitively, ϑ is identified by

the responsiveness of outside-option choices to movement in prices.

We allow the breakdown parameter to vary as a function of the (normalized) average price and

average deal dummy in the same way as the price and deal coefficients; hence,

ϑi = ϑ̄+ ϑ̃pricep̃ricei + ϑ̃deald̃eali. (14)

The probability that consumer i with consideration set s chooses product j ∈ s is then given by

Pr(j|s,p,X) = [1− ϑi(X̃i)]
exp[ūij(X̃i)]

1 +
∑

l∈s exp[ūil(X̃i)]
, (15)

where X̃i =
{
p̃ricei, d̃eali, X̃1i, ..., X̃Ki

}
denotes the average price, deal dummy, and product char-

acteristics in the consumer’s consideration set (and K denotes the number of characteristics that

drive selection into consideration sets). The probability of choosing the outside option is given by

Pr(0|s,p,X) = ϑi(X̃i) + [1− ϑi(X̃i)]
1

1 +
∑

l∈s exp[ūil(X̃i)]
. (16)

The set of parameters to be estimated includes product fixed effects, the parameters governing

the conditional distribution of preferences over price, deal, and other characteristics, as well as the

breakdown probability.

We estimate both the conditional-choice model and the consideration-set model by maximum

likelihood. Because the two models have no common parameters, they can be estimated separately.

In both models, we employ a contraction mapping in the spirit of Berry, Levinsohn, and Pakes

(1995) to solve for the vector of product and set fixed effects, respectively.

4.1 Estimation Results

The top panel of Table 4 reports results for the consideration-set formation process. We do not

report the large number of consideration-set fixed effects. The impact of average price and average

deal dummy both have the expected sign; that is, a consideration set becomes less likely when its

average price is higher and more likely to be chosen if more products in the set are on deal. Both

coefficients are precisely estimated.

The bottom panel of Table 4 reports results for three different specifications of the conditional-
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Panel A: Set Formation
Consideration-Set Characteristic Coeff. S.E.

Average Price -1.329 0.039
Average Deal 0.371 0.010

Set Fixed Effects Yes

Panel B: Conditional Choice
Product Model 1 Model 2 Model 3
Characteristic Heterogeneity Coeff. S.E. Coeff. S.E. Coeff. S.E.

Price -0.844 0.163 -1.187 0.192 -1.068 0.192
Deal Dummy 0.132 0.035 0.811 0.097 0.899 0.097
Breakdown 0.634 0.012 0.488 0.026 0.452 0.031

Price High Price Consideration Sets 2.074 0.324 1.687 0.338
High Deal Consideration Sets -0.107 0.122 -0.089 0.127

Deal Dummy High Price Consideration Sets -3.891 0.474 -4.189 0.473
High Deal Consideration Sets -0.355 0.114 -0.447 0.114

Breakdown High Price Consideration Sets 0.500 0.029 0.534 0.034
High Deal Consideration Sets -0.048 0.045 -0.051 0.050

Customer Rating High Rating Consideration Sets 0.126 0.032
# Reviews Large # Reviews Consideration Sets -0.071 0.035
Characteristic 2 High Char. 2 Consideration Sets -0.027 0.044
Characteristic 3 High Char. 3 Consideration Sets 0.313 0.094
Characteristic 4 High Char. 4 Consideration Sets 0.110 0.040
Characteristic 5 High Char. 5 Consideration Sets 0.061 0.059
Characteristic 6 High Char. 6 Consideration Sets 0.551 0.231

Product Fixed Effects Yes Yes Yes

Out-of-sample Likelihood -0.57535 -0.57498 -0.57533
# Observations 185,963 185,963 185,963

Table 4: Estimation Results. Characteristics 2-6 are the same anonymized characteristics used
in Table 3. Characteristic 1 is not used in the demand model. The out-of-sample likelihood is the
average (per observation) likelihood of 13 “leave-one-week-out” estimates, where 12 weeks are used
for estimation and fit is evaluated for the one week left out of estimation.

choice model. As a benchmark, we present results from a simple specification under the heading

“Model 1.” This basic model contains three parameters to be estimated: α1, α2, and ϑ as well as a
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set of product fixed effects, but does not allow for heterogeneity in the conditional distribution of

preferences as a function of the chosen consideration set. Results for the large set of fixed effects are

suppressed. We find the price and deal coefficients are precisely estimated and have the expected

sign. The breakdown probability is equal to 63.4%, and hence a large share of the 93.2% of search

spells without a purchase is due to search breaking down.

In Model 2, we add interaction terms to the price, deal, and breakdown coefficients. As expected,

we find consumers who search more expensive items are less price sensitive, and consumers who

search more “on deal” products are more price sensitive. The price-interaction term is statistically

significant, but the deal interaction is not. In terms of magnitude, a one-standard-deviation shift

in the average price in the consideration set leads to a 0.188 shift in the price coefficient.19 We

also find search spells of consumers who search cheap and on-deal products are less likely to break

down.

Model 3 also adds heterogeneity in conditional preferences for other characteristics. The char-

acteristics that we use are the average customer rating of a product and the number of reviews, as

well as five of the six anonymized product attributes that we described earlier in section 3 and that

were used in the regressions reported in Table 3. (We do not use the sixth product attribute or

brand data, because both variables take on a large set of discrete values that have no ordinal inter-

pretation.) Contrary to price related parameters, these interaction terms relate to time-invariant

characteristics, and hence no baseline effect associated with preferences over those characteristics

is included, due to co-linearity with the product fixed effects. As expected, we find most of the

coefficients are positive, and four are statistically significant. This finding is intuitive because, as

we discussed earlier, consumers who predominantly search products with a particular characteristic

are likely to value that product characteristic more. The coefficients on the price-related variables

(including the interaction terms) only change marginally compared to Model 2.

We assess out-of-sample fit by estimating each model on 12 out of 13 weeks and evaluating fit

based on the unused week. We estimate each model 13 times for each possible permutation of train-

ing and test sample and compute the average (per observation) likelihood across the 13 samples.20

The fit statistic for each model is reported at the bottom of Table 4. When comparing Models

1 and 2, we find that allowing price-related variables to differ across consideration sets improves

the model fit. Interestingly, adding further heterogeneity in preferences over other characteristics

across consideration sets (in Model 3) actually reduces fit. We hence consider Model 2 to be our

preferred specification, and elasticities and optimal prices (which we report below) are based on

this specification. We also note that despite the change in fit, elasticities and optimal prices based

on Models 2 and 3 are very similar to each other.21

19We note the price coefficient is positive for large values of the average set price. However, the share of observations
where this happens is very small (0.5%) and is due to a few outlier values of the average set price.

20We focus on the purchase likelihood. Predicted purchase probabilities are based on equation (3) and depend on
predicted consideration-set probabilities Pr(s|p,X) and predicted conditional-choice probabilities Pr(j|s,p,X) given
the relevant week-specific price vector.

21Across all products, the median (maximum) change in the optimal price (in absolute value) between Models 2
and 3 is 1.1% (3.7%). Moving from Model 1 to 2 leads to a median (maximum) change of 21.6% (30.5%).
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4.2 Comparison to Full-Information Demand Model

Next, we assess the performance of our approach relative to a more standard characteristics-based

demand model that ignores the search data.

To provide a fair comparison, we use a relatively flexible utility function for the perfect-

information model that contains a full set of product fixed effects and allows for random coefficients

on nine product characteristics (including two price-related variables). Specifically, utility is

uij = ψj + ζ1ipricejt + ζ2idealjt +X ′jλi + eij (17)

ζ1i = ζ̄1 + σ1ν1i

ζ2i = ζ̄2 + σ2ν2i

λi = λ̄+ σλνλi,

where ψj is a product fixed effect and (pricejt, dealjt, Xj) denote price, a deal dummy, and other

product characteristics. The various coefficients on price and other characteristics allow for a mean

effect and a set of variance terms (σ1, σ2, σλ) that capture unobserved heterogeneity. (ν1, ν2, νλ)

are standard normally distributed. λ̄ is not separately identified, because Xj does not vary over

time and the model includes product fixed effects. The taste shock eij is extreme-value iid.

Note we attempt to keep the general structure of utility similar to the one used in our consideration-

and-choice model.22 In both our main model and the full-information model, we have a full set of

product fixed effects, and price and deal status enter utility. Our main model leverages the search

data by estimating consideration-set probabilities and the distribution of preferences conditional

on consideration. Naturally, those aspects are not part of the full-information model. Instead, the

full-information model is enriched by allowing for random coefficients on price, deal, and a set of

product characteristics Xj . The latter are the same characteristics used in Model 3 for the purpose

of linking consideration and choice. Here, we instead allow for random coefficients on those char-

acteristics in order for similarity in those characteristics to drive substitution patterns. We also

note that we include all characteristics that are routinely coded by the retailer and that are used

internally to compute similarity scores between product pairs.23 Detailed estimation results for the

full-information model are presented in Table A1 in the appendix.

We do not attempt to estimate a structural search model of the kind estimated elsewhere in

the literature (e.g., Honka (2014), Chen and Yao (2016)). As we show below, the full-information

model is already computationally demanding due to the size of our data. A structural model of

search would be substantially more computationally involved and does not appear feasible in a

context with as many products (and consumers) as our setting.24

22We also attempted to include an equivalent term to the “breakdown parameter” in the full-information model,
but found its estimated value was close to 1. Hence, we dropped the parameter from the model specification.

23Similarity scores are used to recommend products (“consumers who viewed this product also viewed...”).
24Estimating structural search models is challenging because the joint likelihood of search and purchase decisions

has no closed form and must be simulated for every evaluation of the likelihood function. Therefore, most papers in
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Preferred Full Full Full
Specification Information Information Information

(Model 2) Model A Model B Model C
Product FEs, Full Info. Full Info.

Price & Model A Model B
Deal Coeff. + RC on Price + RC on

& Deal 7 Char.

Model Fit -0.57498 -0.57530 -0.57532 -0.57801
(Out-of-sample Likelihood)
Computational Burden 38 23 217 2,812
(Estimation Time in Minutes)

Table 5: Model Comparison: Out-of-sample Fit and Computational Burden.

4.2.1 Model Fit

To provide a benchmark against which to evaluate our main model and the full-information random-

coefficient demand model outlined above, we first estimate a simple model that does not allow for

flexibility in substitution patterns. In particular, our baseline specification is a full-information logit

model that follows the specification outlined in equation (17), but contains no random coefficients,

that is, the utility function includes product fixed effects, price, and a deal dummy. This model

suffers from the well-known restrictive nature of substitution patterns of logit models and contains

no parameters that cater specifically to flexibility in cross-price elasticities. We then add random

coefficients, first only on price and deal, and then on an additional set of seven characteristics.

To assess fit, we compute the average out-of-sample likelihood for 13 leave-one-week-out samples,

following the procedure described at the end of section 4.1. We also report the same fit statistic

for the preferred model specification (Model 2). To make predictions comparable, we focus on

predictions in terms of purchase probabilities. In the case of our consideration-and-choice model,

we derive predicted purchase probabilities based on equation (3) from predicted consideration-

set probabilities Pr(s|p,X) and predicted conditional-choice probabilities Pr(j|s,p,X) given the

relevant week-specific price vector. In other words, we do not use information on the realizations

of consideration sets in the test sample.

The main results in terms of model fit are reported in the first line of Table 5. We find our

preferred model leads to a higher out-of-sample likelihood than any of the full-information demand

models. Interestingly, adding random coefficients to the full-information model worsens out-of-

sample fit. Fit decreases slightly when adding random coefficients on price and the deal dummy,

and decreases even further when adding random coefficients on the additional seven characteristics.

As Table A1 in the appendix shows, the majority of the variance terms of the random coefficients

are not statistically significant, which is in line with the finding that adding such terms does not

improve the overall model fit.

the literature estimate them for choice sets containing a relatively small number of products.
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Mean 25th Perc. Median 75th Perc.

All Cross-Price Elasticities 0.00142 0.00018 0.00061 0.00160

Max Cross-Price Elasticities 0.080 0.070 0.085 0.092
Top 10 Cross-Price Elasticities 0.039 0.029 0.034 0.041
Top 11-20 Cross-Price Elasticities 0.018 0.015 0.018 0.020
Top 21-30 Cross-Price Elasticities 0.011 0.009 0.011 0.012

Own-Price Elasticities -2.055 -1.744 -1.988 -2.280

Table 6: Cross- and Own-Price Elasticities.

In conjunction with the descriptive patterns documented in section 3.2, the results regarding

model fit are intriguing. We documented earlier that search patterns are not well predicted by

similarity in characteristics between pairs of products. Above, we have shown that enriching a full-

information model with heterogeneous tastes for characteristics does not lead to an improvement

in model fit. However, the search data used in our main specification do provide a higher out-

of-sample fit. This finding suggests the search data capture something other than similarity in

observed characteristics, and that they are more predictive of substitution patterns than similarity

in characteristics. Elasticities and optimal prices derived from the full-information model also differ

substantially, which we expand on below.

4.2.2 Computational Considerations

Apart from providing an improvement in fit, our approach is also substantially computationally

lighter than the full-information model, due to two features of our model. First, the conditional-

choice model is computationally light because, conditional on consideration, consumers choose

from sets that contain 2.45 products on average. In the full-information model, we need to model

choice from the full set of almost 600 products. Second, our model does not involve any numerical

integration, which is required when modeling random coefficients in the full-information approach.25

Some key statistics on computational time are presented in the lower panel of Table 5. Our

preferred specification, Model 2, is about 75 times faster to estimate relative to the full-information

model with nine random coefficients.

5 Elasticities and Optimal Prices

5.1 Elasticities

Our model yields estimates of own- and cross-price elasticities for the full assortment of 576 prod-

ucts. We now present various aggregate statistics that summarize the distribution of these elastic-

ities.

25We use 5 draws per consumer when integrating out the random-coefficient terms in the full-information model.
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Figure 2: Distribution of Cross- and Own-Price Elasticities.
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In Table 6, we report summary statistics of the distribution of cross-elasticities, whereas the top

graph in Figure 2 presents a histogram of all cross-price elasticities.26 We find the average cross-

price elasticity across all product pairs is equal to 0.00142, whereas the median is equal to 0.00061.

These numbers are small because any given product is likely to have few close substitutes, and

will therefore have relatively small cross-price elasticities with most products in the assortment. To

illustrate this pattern, we compute for each product the highest cross-price elasticity with any other

product in the assortment. We find the average (across products) maximum cross-price elasticity is

equal to 0.080, and the dispersion across products is relatively low. We also report the distribution

of the top 10, top 11-20, and top 21-30 elasticities for each product. As one might expect, these

elasticities decline relatively rapidly, again suggesting most products have a small set of important

substitutes.

To highlight the strength of using search data to estimate cross-price elasticities, we report heat

maps of cross-price elasticities for the top 40 products by market share. We report such a heat

map for our preferred specification (Model 2) and for the random-coefficient full-information model

(Model C) in Figure 3. The color coding is identical in both figures and spans a range of elasticities

from 0 (white) to ≥0.03 (dark red). One notable feature is that the random-coefficient elasticity ma-

trix displays little variation across rows for a given column, meaning a change in one product’s price

shifts demand relatively equally across all products, regardless of how (dis)similar the products are,

because the random-coefficient variance terms are small in magnitude and imprecisely estimated.

Consequently, elasticities from the random-coefficient model are almost identical to elasticities from

a simple logit model.27 By contrast, the elasticity matrix of the consideration-and-choice model

displays much more variation at the product-pair level.

We also report the distribution of own-price elasticities in Table 6 and Figure 2. The average

elasticity is equal to -2.055 and own elasticities are roughly normally distributed with a left tail of

products with higher (in absolute terms) own elasticities.

5.2 Optimal Prices

In this section, we describe how optimal prices derived from our demand estimates relate to the

retailer’s current prices. The retailer in our application sells two different types of products—

“retail” products, where the retailer sets prices, and “marketplace” products, where third-party

sellers set prices and the retailer receives a percentage of the transaction price in case of a sale.28

We solve for optimal prices for the retail products, assuming the prices of marketplace products

remain constant. Based on conversations with the company, during our sample period, it was

maximizing revenue in order to grow market share. Therefore, to facilitate a comparison with the

26We restrict the histogram to cross-price elasticities below 0.01, which corresponds roughly to the 95th percentile
of the distribution.

27Based on the standard formula, logit elasticities of demand for product j with respect to the price of product k
depend only on the price level and market share of product k. Specifically, the elasticity is given by ζ1 × pk ×Pr(k),
where ζ1 is the price coefficient (see equation (17)).

28Of the 576 products, 200 are retail products and they make up 79% of all purchases.
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Figure 3: Heat Map of Cross-Price Elasticities. Top: Model 2 (Consideration-and-
Choice Model), Bottom: Model C (Full-Information Random-Coefficient Model). A
cell represents the elasticity of row demand with respect to column price. The color range indicates
elasticities between 0 (white) to ≥0.03 (dark red).
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Figure 4: Histogram of Percentage Price Difference between Current and Optimal
Prices.

company’s prices, we solve for revenue-maximizing prices (details are available in section A of the

appendix).

To keep the identity of the retailer anonymous, we do not report current and optimized prices

directly, and instead frame our discussion in terms of percentage differences between optimal and

current prices. Figure 4 shows a histogram of percentage deviations of optimal relative to current

prices. On average, optimal prices derived from our preferred specification are lower by 23.1%. At

the 25th percentile of the distribution of price differences, the optimal price is 31.2% lower than

the current price of the specific product. At the 75th percentile, the optimal price is 6.5% lower.

For 17% of retail products, the optimal price is higher than the one that is currently charged. We

find that using the optimal price vector increases revenue by 7.1% relative to current prices.

We also compare the implied revenue from using our estimates with the full-information model.

Using the optimal prices from the full-information random-coefficients model (Model C) increases

revenues by 4.1% compared to the current price vector. Therefore, although revenue does improve

relative to current prices, the full-information prices only achieve 58% of the gain in revenue relative

to the optimal price vector implied by our model.
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6 Conclusion

We propose a new demand model that is computationally light and allows for flexible substitution

patterns. We leverage search data and use joint-search patterns as an additional source of infor-

mation about the substitutability between products. The key modeling choice is that we do not

“unpack” the consideration process, but instead treat consideration-set probabilities as objects to

be estimated. We also allow the conditional distribution of preferences to depend on characteristics

of the consideration set in a way that approximates a dependence that is common in search models.

We believe our approach is particularly useful in online markets, where the number of products is

large relative to the number of observed product characteristics, purchases are sparse, and demand

may be driven by many factors, such as page layout, that are hard to record. We apply our ap-

proach to such a setting with almost 600 products, and show it has superior fit and significantly

lower computational burden than a full-information random-coefficients model. We then use our

demand estimates to solve for optimal prices, and find them to increase revenue by 7.1% relative

to current prices.
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A First-Order Conditions for Optimal Price Setting

As explained earlier, the retailer sells both retail and marketplace products, and in the case of the

latter, it receives a percentage of the transaction price following a sale. Here, we show how to derive

first-order conditions and solve for optimal prices for the retail products while taking into account

that the firm also derives profits from marketplace products.

Assuming marketplace sellers do not respond to retail price changes, the website’s problem is

to

max
pR

Profit =
∑
j∈R

(pj −mcj)Dj(p
R, pMP ) +

∑
k∈MP

τpkDk(p
R, pMP ) , (18)

where R denotes the set of retail products and MP denotes the set of marketplace products, whereas

pR and pMP are the associated price vectors. Meanwhile, mcj and τ denote, respectively, marginal

costs and the commission rate received by the website. The first-order condition with respect to

the price of retail product l is given by

Dl +
∑
j∈R

(pj −mcj)
∂Dj

∂pl
+
∑
k∈MP

τpk
∂Dk

∂pl
= 0 . (19)

The system of first-order conditions can then be written in vector form as

−→
DR + ∆DR

−→
pR −∆DR

−−→
mcR + ∆DMP

−−→
pMP τ = 0, (20)

where
−→
DR is a JR-dimensional vector of retail product demands, and where price and marginal cost

vectors
−→
pR,
−−→
pMP , and

−−→
mcR are defined similarly. Meanwhile, ∆DR denotes a (JR × JR) matrix of

retail product derivatives, where the (a, b) element is equal to ∂Da/∂pb. Finally, ∆DMP denotes a

(JMP×JR) matrix of derivatives of marketplace demands with respect to retail prices. Rearranging

the system of equations (20), we can solve for optimal prices

−→p = −→mc− (∆DR)−1
[−→
DR + ∆DMP

−−→
pMP τ

]
. (21)

Because the firm’s objective is to maximize revenue, we set marginal costs equal to zero when

solving for optimal prices.
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B Additional Tables

Full Info. Full Info. Full Info.
Model A Model B Model C

Product FEs, Full Info. Full Info.
Price & Model A Model B

Deal Coeff. + RC on Price + RC on
& Deal 7 Char.

Coeff. S.E. Coeff. S.E. Coeff. S.E.

Price -2.413 0.140 -2.413 0.140 -2.414 0.141
Deal Dummy 0.181 0.029 0.181 0.030 0.181 0.030

SD Price 0.005 0.033 0.005 0.038
SD Deal 0.019 0.084 0.111 0.082

SD Customer rating 0.130 0.055
SD Number of Reviews 0.037 0.057
SD Char 2 0.038 0.053
SD Char 3 0.064 0.139
SD Char 4 0.030 0.059
SD Char 5 0.003 0.077
SD Char 6 0.260 0.148

Product FEs Yes Yes Yes
# Observations 185,963 185,963 185,963

Table A1: Estimation Results for Full-Information Demand Models.
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