
ar
X

iv
:1

81
2.

06
64

7v
3 

 [
m

at
h.

O
C

] 
 3

 M
ar

 2
02

0

Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Interpretable Matrix Completion: A Discrete
Optimization Approach

Dimitris Bertsimas
Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139,

dbertsim@mit.edu

Michael Lingzhi Li
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, mlli@mit.edu

We consider the problem of matrix completion on an n×m matrix. We introduce the problem of Inter-

pretable Matrix Completion that aims to provide meaningful insights for the low-rank matrix using side

information. We show that the problem can be reformulated as a binary convex optimization problem. We

design OptComplete, based on a novel concept of stochastic cutting planes to enable efficient scaling of the

algorithm up to matrices of sizes n= 106 and m= 106. We report experiments on both synthetic and real-

world datasets that show that OptComplete has favorable scaling behavior and accuracy when compared

with state-of-the-art methods for other types of matrix completion, while providing insight on the factors

that affect the matrix.
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1. Introduction

Low-rank matrix completion has attracted much attention after the successful application in

the Netflix Competition. It is now widely utilized in far-reaching areas such as computer vision

(Candes and Plan (2010)), signal processing (Ji et al. (2010)), and control theory (Boyd et al.

(1994)) to generate a completed matrix from partially observed entries.
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The classical low-rank matrix completion problem considers the following problem: Given a

matrix A∈Rn×m with entries only partially known (denote Ω⊂ {1, . . . , n}×{1, . . . ,m} as the set of

known entries), we aim to recover a matrix X ∈Rn×m of rank k that minimizes a certain distance

metric between X and A on the known entries of A:

min
X

1

nm

∑

(i,j)∈Ω

‖Xij −Aij‖ subject to Rank(X) = k,

where we normalized the objective so that it is O(1). The rank k constraint onX can be equivalently

formulated as the existence of two matrices U ∈Rn×k, V ∈Rm×k such that X =UV T . Therefore,

the problem can be restated as:

min
U

min
V

1

nm

∑

(i,j)∈Ω

‖Xij −Aij‖ subject to X =UV T . (1)

In many applications for matrix completion, it is customary for each row of the data to represent

an individual and each column a product or an item of interest, and Aij being the response data

of individual i on item j. Therefore, the matrices U and V are commonly interpreted as the “user

matrix” and “product matrix” respectively.

Let us denote each row of U as ui and each column as ui (similarly for V ). Then, ui (vi)

represents a “latent feature” for users (products), and in total there are k latent features for users

(products). The goal of matrix completion is thus to discover such latent features of the users and

the products, so that the dot product of such features on user i and product j, Xij =ui ·vj, is the

intended response of user i on product j.

While this interpretation is intuitive, it does not offer insight on what the latent features of users

and products mean. Inductive Matrix Completion, first considered in Dhillon et al. (2013), aims to

rectify such problem by asserting that each of the k latent features is a linear combination of p > k

known features. We focus on the one-sided information case, where only one of the user/product

matrix is subject to such constraint. This case is more relevant as features related to users are

often fragmented and increasingly constrained by data privacy regulations, while features about
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products are easy to obtain. We would also have a short discussion later on why the two-sided

information case is not interesting under the context of this paper.

Without loss of generality, we would assume the information is on the product matrix and denote

the known feature matrix with p features as B ∈ R
m×p. As an example, if the items are movies,

then bj represents feature j for a movie (actors, budget, running time, etc), and each product

feature vj needs to be linear combination of such features. Mathematically, this translates to the

constraint:

V =BS

where S ∈Rp×k. Therefore, the inductive version of the problem in (1) can be written as:

min
U

min
S

1

nm

∑

(i,j)∈Ω

‖Xij −Aij‖ subject to X =USTBT . (2)

Although the inductive version of the problem adds more interpretability to the product latent

features, they are still far from fully interpretable. For example, if we take the items to be movies,

and features to be running time, budget, box office, and number of top 100 actors, then the

generated features could look like:

5.6× running time− 0.00067× budget+12×# of Top 100 actors,

0.25× box office− 5×# of Top 100 actors.

These features, although a linear combination of interpretable features, are not very interpretable

itself due to the involvement of multiple factors with different units. Therefore, it cannot signifi-

cantly help decision makers to understand “what is important” about the product. Furthermore,

the appearance of the same factor in multiple features with different signs (as shown above) further

complicates any attempt at understanding the result.

Therefore, we argue that instead of supposing the k features are linear combinations of the p

known features, we should assume that the k features are selected from the p known features. This
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formulation alleviates the two previous problems mentioned: it guarantees the latent features to

be interpretable (as long as the original features are), and it prevents any duplicating features

in the selected k latent features. We denote this Interpretable Matrix Completion. We use the

term interpretable, as opposed to inductive, to highlight that our approach, like sparse linear

regression, gives actionable insights on what are the important features of matrix A. We note

that Interpretable Matrix Completion is considerably harder than inductive or the classical matrix

completion problem as it is a discrete problem and selecting k out of p factors is exponential in

complexity.

In this paper, we show that the Interpretable Matrix Completion problem can be written as a

mixed integer convex optimization problem. Inspired by Bertsimas and van Parys (2020) for sparse

linear regression, we reformulate the interpretable matrix completion problem as a binary convex

optimization problem. Then we introduce a new algorithm OptComplete, based on stochastic cut-

ting planes, to enable scalability for matrices of sizes on the order of (n,m) = (106,106). In addition,

we provide empirical evidence on both synthetic and real-world data that OptComplete is able to

match or exceed current state-of-the-art methods for inductive and general matrix completion on

both speed and accuracy, despite OptComplete solving a more difficult problem.

Specifically, our contributions in this paper are as follows:

1. We introduce the interpretable matrix completion problem, and reformulate it as a binary

convex optimization problem that can be solved using cutting planes methods.

2. We propose a new novel approach to cutting planes by introducing stochastic cutting planes.

We prove that the new algorithm converges to an optimal solution of the interpretable matrix

completion problem with exponentially vanishing failure probability.

3. We present computational results on both synthetic and real datasets that show that the

algorithm matches or outperforms current state-of-the-art methods in terms of both scalability and

accuracy.
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The structure of the paper is as follows. In Section 2, we introduce the binary convex reformula-

tion of the low-rank interpretable matrix completion problem, and how it can be solved through a

cutting plane algorithm, which we denote CutPlanes. In Section 3, we introduce OptComplete, a

stochastic cutting planes method designed to scale the CutPlanes algorithm in Section 2, and show

that it recovers the optimal solution of CutPlanes with exponentially vanishing failure probability.

In Section 4, we report on computational experiments with synthetic data that compare Opt-

Complete to Inductive Matrix Completion (IMC) introduced in Natarajan and Dhillon (2014) and

SoftImpute-ALS (SIALS) by Hastie et al. (2015), two state-of-the-art matrix completion algorithms

for inductive and general completion. We also compare OptComplete to CutPlanes to demon-

strate the 20x to 60x speedup of the stochastic algorithm. In Section 5, we report computational

experiments on the Netflix Prize dataset. In Section 6 we provide our conclusions.

Literature

Matrix completion has been applied successfully to many tasks, including recommender sys-

tems Koren et al. (2009), social network analysis Chiang et al. (2014) and clustering Chen et al.

(2014b). After Candès and Tao (2010) proved a theoretical guarantee for the retrieval of the

exact matrix under the nuclear norm convex relaxation, a lot of methods have focused on the

nuclear norm problem (see Mazumder et al. (2010), Beck and Teboulle (2009), Jain et al. (2010),

and Tanner and Wei (2013) for examples). Alternative methods include alternating projections by

Recht and Ré (2013) and Grassmann manifold optimization by Keshavan et al. (2009). There has

also been work where the uniform distributional assumptions required by the theoretical guarantees

are violated, such as Negahban and Wainwright (2012) and Chen et al. (2014a).

Interest in inductive matrix completion intensified after Xu et al. (2013) showed that given

predictive side information, one only needs O(logn) samples to retrieve the full matrix.

Thus, most of this work (see Xu et al. (2013), Jain and Dhillon (2013), Farhat et al. (2013),
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Natarajan and Dhillon (2014)) have focused on the case in which the side information is assumed

to be perfectly predictive so that the theoretical bound of O(logn) sample complexity Xu et al.

(2013) can be achieved. Chiang et al. (2015) explored the case in which the side information is cor-

rupted with noise, while Shah et al. (2017) and Si et al. (2016) incorporated nonlinear combination

of factors into the side information. Surprisingly, as pointed out by a recent article Nazarov et al.

(2018), there is a considerable lack of effort to introduce sparsity/interpretability into inductive

matrix completion, with Lu et al. (2016), Soni et al. (2016) and Nazarov et al. (2018) being among

the only works that attempt to do so. Our work differs from the previous attempts in that previous

attempts mainly focus on choosing latent features which are sparse linear combinations of the given

features. In contrast interpretable matrix completion is aimed to select exactly k features from the

known features.

2. Interpretable Matrix Completion

In this section, we present the mathematical formulation of Interpretable Matrix Completion and

how it can be reformulated as a binary convex problem that is based on Bertsimas and van Parys

(2020). We show how this naturally leads to a cutting plane algorithm, and discuss its computa-

tional complexity. We also discuss the two-sided information case, and how that reduces to the

sparse regression problem.

2.1. Binary Convex Reformulation of Interpretable Matrix Completion

The (one-sided) interpretable matrix completion problem can be written as a mixed binary opti-

mization problem:

min
U

min
s∈S

p
k

1

nm

∑

(i,j)∈Ω

‖Xij −Aij‖ subject to X =USBT ,

where S =Diag{s1, . . . , sp} ∈Rp×p and:

Sp
k =

{

s= (s1, . . . , sp)
T ∈ {0,1}p :

p
∑

i=1

si = k

}

.
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We note that given that
∑p

i=1 si = k, the rank of matrix X is indeed k. We further note that the

coefficients of S can be taken to be binary without loss of generality, since if they are not and

S =Diag(1/d1, . . . ,1/dp), then by applying the transformation:

U →UD S→SD−1 (3)

for D=Diag(d1, . . . , dp), results in an equivalent problem with the coefficients of S being binary.

For this paper, we consider the squared norm, and for robustness purposes (see

Bertsimas and van Parys (2020) and Bertsimas and Copenhaver (2018)), we add a Tikhonov regu-

larization term to the original problem. Specifically, the (one-sided) interpretable matrix completion

problem with regularization we address is

min
U

min
s∈S

p

k

1

nm





∑

(i,j)∈Ω

(Xij −Aij)
2 +

1

γ
‖U‖22



 subject to X =USBT . (4)

In this section, we show how that problem (4) can be reformulated as a binary convex optimization

problem, and can be solved to optimality using a cutting plane algorithm. The main theorem and

proof is presented below:

Theorem 1 Problem (4) can be reformulated as a binary convex optimization problem:

min
s∈S

p
k

c(s) =
1

nm

n
∑

i=1

ai

(

Im + γWi

(

p
∑

j=1

sjKj

)

Wi

)−1

aT
i ,

where W1, . . . ,Wn ∈Rm×m are diagonal matrices:

(Wi)jj =



















1, (i, j)∈Ω,

0, (i, j) 6∈Ω,

ai =Wiai, i= 1 . . . , n, where ai ∈ R
1×m is the ith row of A with unknown entries taken to be 0,

and Kj = bj(bj)T ∈Rm×m, j = 1, . . . , p with bj ∈Rm×1 the jth column of B.

Proof: With the diagonal matrices Wi defined above, we can rewrite the sum in (4) over known

entries of A,
∑

(i,j)∈Ω(Xij −Aij)
2, as a sum over the rows of A:

n
∑

i=1

‖(xi−ai)Wi‖22,
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where xi ∈ R
1×m is the ith row of X. Using X =USBT , then xi = uiSB

T where ui ∈ R
1×m is

the ith row of U . Moreover,

‖U‖22 =
n
∑

i=1

‖ui‖22.

Then, Problem (4) becomes:

min
s∈S

p
k

min
U

1

nm

(

n
∑

i=1

(

‖(uiSB
T −ai)Wi‖22 +

1

γ
‖ui‖22

)

)

.

We then notice that within the sum
∑n

i=1 each row of U can be optimized separately, leading to:

min
s∈S

p

k

1

nm

(

n
∑

i=1

min
ui

(

‖(uiSB
T −ai)Wi‖22 +

1

γ
‖ui‖22

)

)

. (5)

The inner optimization problem min
ui

‖(uiSB
T − ai)Wi‖22 +

1

γ
‖ui‖22 can be solved in closed

form given S, as it is a weighted linear regression problem with Tiknorov regularization, see

Bertsimas and van Parys (2020). The closed form solution is:

min
ui

‖(uiSB
T −ai)Wi‖22 +

1

γ
‖ui‖22 = ai(Im + γWiBSBTWi)

−1aT
i . (6)

So Problem (5) can be simplified to:

min
s∈S

p
k

1

nm

(

n
∑

i=1

ai(Im+ γWiBSBTWi)
−1aT

i

)

.

Finally, we notice that

BSBT =

p
∑

j=1

sjb
j(bj)T =

p
∑

j=1

sjKj,

and we obtain the required expression. Since Kj are positive semi-definite, and the inverse of

positive semi-definite matrices is a convex function, the entire function is convex in s. �

With Theorem 1, our original problem can now be restated as:

min
s∈S

p
k

c(s)=
1

nm

n
∑

i=1

ai

(

Im + γWi

(

p
∑

j=1

sjKj

)

Wi

)−1

aT
i . (7)

This can be solved utilizing the cutting plane algorithm first introduced by Duran and Grossmann

(1986), summarized as Algorithm 1.
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Algorithm 1 Cutting-plane algorithm for matrix completion with side information.

1: procedure CUTPLANES(A,B) # masked matrix A, and feature matrix B

2: t← 1

3: s1←warm start # Heuristic Warm Start

4: η← 0 # Initialize feasible solution variable

5: while ηt < c(st) do # While the current solution is not optimal

6: st+1, ηt+1← argmin
s∈S

p

k
,η>0

η s.t. η≥ c(si)+∇c(si)
T (s− si) ∀i∈ [t]

7: t← t+1

8: end while

9: s← st

10: i← 1

11: for i < n do # Fill each row xi of final output matrix X

12: xi←Bs((Bs)TWiB
s)−1(Bs)TaT

i # Bs is submatrix of B with s columns

13: end for

14: return X # Return the filled matrix X

15: end procedure

The cutting plane algorithm, at iteration t, adds a linear approximation of c(s) at the current

feasible solution st to the set of constraints:

η≥ c(st)+∇c(st)
T (s− st), (8)

and we solve the mixed-integer linear programming problem:

min
s∈S

p

k
,η≥0

η

η ≥ c(st)+∇c(st)
T (s− st), i∈ [t]

to obtain st+1, ηt+1. We see that ηt+1 is exactly the minimum value of the current approximation

of c(s), ct(s), defined below:

ηt+1 =min
s

max
i∈[t]

c(st)+∇x(st)
T (s− st) =min

s
ct(s).
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Since c(s) is convex, the piecewise linear approximation ct(s) is an outer approximation (ct(s)<=

c(s) ∀s), so ηt ≤ c(st) ∀t. As the algorithm progresses, the set of linear approximations form an

increasingly better approximation of c(s), and ηt increases with t. The algorithm terminates once

ηt does not further increase, as it implies the linear approximation shares the same minimum value

as the true function c(s), which is the desired value.

Once the optimal solution s∗ is reached, we can obtain the optimal U using the closed form solu-

tion in (6) and recover X. In the next section, we discuss how this algorithm can be implemented

in the context of c(s) in (7) and derive its computational complexity.

2.2. Implementation and Computational Complexity of CutPlanes

The computational complexity of the cutting plane comes from calculating c(s) and its derivative

∇c(s). We first introduce the notations αi(s)∈R and γi(s)∈Rm×1.

αi(s) =
1

m
aiγi(s) =

1

m
ai





(

Im + γWi

(

p
∑

j=1

sjKj

)

Wi

)−1

aT
i



 , i= 1, . . . , n. (9)

Then, the function c(s) in (7) can be expressed as

c(s) =
1

n

n
∑

i=1

αi(s) =
1

n

n
∑

i=1

aiγi(s)

m
. (10)

To calculate the derivative ∇c(s), it is easier to utilize the expression in Theorem 1 and then utilize

the chain rule. After some manipulations, we obtain

∇c(s)= 1

n

n
∑

i=1

−γ (BTWiγi(s))
2

m
. (11)

Therefore, we would focus on calculating γi(s). First, by the Matrix Inversion Lemma (Woodbury

(1949)) we have

γi(s) =

(

Im + γWi

(

p
∑

j=1

sjKj

)

Wi

)−1

aT
i

=

(

Im−V

(

Ik

γ
+V TWiV

)−1

V T

)

aT
i

=

(

aT
i −V

(

Ik

γ
+V TWiV

)−1

V TaT
i

)

, (12)
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where V ∈ R
m×k is the feature matrix formed by the k columns of B such that sj = 1, and we

have suppressed the dependency of V on s for notation ease. Note that in order to compute γi(s)

using Eq. (9) we need to invert an m×m matrix, while from Eq. (12) we need to invert a k× k

matrix Ik
γ
+V TWiV , which only requires O(k3) calculations. Furthermore, note that calculating

aia
T
i only requires |Ωi| multiplications where Ωi is the number of known entries in row i of A as

we do not need to multiply on the unknown entries. Similarly, we can compute V TaT
i in |Ωi|k

multiplications, and V TWiV in |Ωi|k2 multiplications.

Therefore, we can compute γi(s) in floating point complexity of O(|Ωi|k2 + k3). Then to cal-

culate aiγi(s) in (10) and −γ (BTWiγi(s))
2
(11) only requires O(|Ωi|) and O(|Ωi|p) calculations

respectively. Thus, the total complexity of generating a full cutting plane is:

n
∑

i=1

O(|Ωi|p+ |Ωi|k2 + k3) =O(|Ω|(p+ k2)+nk3). (13)

2.3. Two-sided Information Case

In this section, we briefly discuss the matrix completion problem under the two-sided information

case, and how it reduces to the problem of sparse linear regression. The two sided interpretable

matrix completion problem with Tikhonov regularization can be stated as follows:

min
L

1

nm





∑

(i,j)∈Ω

(Xij −Aij)
2 +

1

γ
‖L‖22



 subject to X =ULBT ‖L‖0 = k, (14)

where U ∈ R
n×p1 is a known matrix of p1 features of each row, B ∈ R

m×p2 is a known matrix of

p2 features of each column, and L∈Rp1×p2 is a sparse matrix that has k nonzero entries, ensuring

that Rank(X)≤ k. We note that in Eq. (14) we restrict the support of matrix L to be k, rather

than forcing the entries of L to be binary. This is because unlike in the one-sided case, both U

and B are known, so we cannot apply the scaling transformation in (3).

We denote by ui ∈Rn×1 the ith column of U and bj ∈Rm×1 the jth column of B. We introduce

the matrices Wi as in Theorem 1. Using X =ULB, we can write

Xij =

p1
∑

q=1

p2
∑

ℓ=1

Lq,ℓD
q,ℓ
ij ,
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where Dq,ℓ
ij = (uq(bℓ)T )ij is the (i, j)th entry of the matrix formed by multiplying qth column of U

with ℓth column of B. Then, Problem (14) becomes:

min
L

1

nm





∑

(i,j)∈Ω

(

p1
∑

q=1

p2
∑

ℓ=1

Lq,ℓD
q,ℓ
ij −Aij

)2

+
1

γ
‖L‖22



 subject to ‖L‖0 = k. (15)

As everyD matrix is known, this becomes a sparse regression problem where there are p1p2 features

to choose from (the D matrices), there are |Ω| samples (the A matrix), the sparsity requirement

is k, the regression coefficients are L, and we have Tikhonov regularization. Vectorizing D, L, and

A reduces the problem back to the familiar form of sparse linear regression, that can be solved by

the algorithm developed in Bertsimas and van Parys (2020) at scale.

3. OptComplete: The Stochastic Cutting Plane Speedup

In this section, we introduce OptComplete, a stochastic version of the cutting plane algorithm

introduced in Section 2. We present theoretical results to show that the stochastic algorithm recov-

ers the true optimal solution of the original algorithm with high probability without distributional

assumptions. We also include a discussion on the dependence of such probability with various

factors and its favorable theoretical computational complexity.

3.1. Introduction of OptComplete

In the previous section, we showed that through careful evaluation, we can calculate a full cutting

plane in O(|Ω|(p+ k2) + nk3) calculations. However, in very high dimensions where |Ω|, n,m are

extremely large, the cost of generating the full cutting plane is still prohibitive. Thus, we consider

generating approximations of the cutting plane that would enable the algorithm to scale for high

values for n and m. Specifically, consider the cutting plane function in (10), reproduced below:

c(s) =
1

n

n
∑

i=1

αi(s),

where:

αi(s) =
1

m

(

aia
T
i −aiV

(

Ik

γ
+V TWiV

)−1

V TaT
i

)

.
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We approximate the inner term αi(s) by choosing 1 ≤ f < m samples from {1, . . . ,m} without

replacement, with the set denoted F . Then we formulate the submatrix VF with such selected rows,

and similarly with aFi. Then we calculate the approximation:

αi(s)≈αF
i (s) =

1

f

(

aFia
T
Fi−aFiVF

(

Ik

γ
+V T

F WiVF

)−1

V T
F aT

Fi

)

.

Then we choose 1≤ g < n samples from {1, . . . , n} without replacement, with the set denoted G.

We can then calculate an approximation of c(s) using the approximated αF
i (s):

c(s)≈ c̃FG(s) =
1

r

∑

i∈G

αF
i (s),

where the set F is chosen independently for every row i∈G. Then the derivative of c̃FG(s) is:

∇c̃FG(s) =
1

r

∑

i∈G

(BTWiγ
F
i (s))

2

f
.

Using such approximations, we can derive a stochastic cutting-plane algorithm, which we call

OptComplete presented as Algorithm 2.

For this algorithm to work, we need the approximation c̃FG(s) and its derivative to be close to the

nominal values. Furthermore, the approximated cutting planes should not cutoff the true solution.

In the next section, we show that OptComplete enjoys such properties with high probability. In

Section 3.3, we discuss how to select the size of f and g.

3.2. Main Theoretical Results

We would first show that the inner approximation is close to the true term with high probability:

Theorem 2 Let A be a partially known matrix, B a known feature matrix, and Wi as defined in

Theorem 1. Let F be a random sample of size f from the set {1, . . . ,m}, chosen without replacement.

With probability at least 1− ǫ, we have

|αi(s)−αF
i (s)| ≤

√

Mk log(k
ǫ
)

f
, ∀i∈ {1, . . . ,m}, ∀s∈ Sp

k ,

∥

∥

∥

∥

(BTWiγi(s))
2

m
− (BTWiγ

F
i (s))

2

f

∥

∥

∥

∥

2

≤

√

M ′(p+ k) log(k
ǫ
)

f
, ∀i∈ {1, . . . ,m}, ∀s∈ Sp

k ,

where M,M ′ are absolute constants.
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Algorithm 2 Stochastic Cutting-plane algorithm for matrix completion with side information.

1: procedure OptComplete(A,B) # masked matrix A, and feature matrix B

2: t← 1

3: s1← random initialization

4: η← 0 # Initialize feasible solution variable

5: while ηt < c(st) do # While the current solution is not optimal

6: G←|g|-sized random sample of {1, . . . , n} with replacement

7: for i∈G do # Generate F for each row in random sample

8: Fi← |f |-sized random sample of {1, . . . ,m} with replacement

9: end for

10: st+1, ηt+1← argmin
s∈S

p

k
,η>0

η s.t. η≥ c̃FG(si)+∇c̃FG(si)
T (s− si) ∀i∈ [t]

11: t← t+1

12: end while

13: s← st

14: i← 1

15: for i < n do # Fill each row xi of final output matrix X

16: xi←Bs((Bs)TWiB
s)−1(Bs)TaT

i # Bs is submatrix of B with s columns

17: end for

18: return X # Return the filled matrix X

19: end procedure

We see that, without assumptions on the data, the inner approximation for both the value and

the derivative follows a bound with O
(√

(p+k)

f

)

terms with very high probability. Furthermore,

inverting the statements give that, for all i∈ {1, . . . ,m} and all s ∈ Sp
k :

P
(

|αi(s)−αF
i (s)| ≥ δ

)

≤ k exp

(

− fδ2

Mk

)

,

P

(∥

∥

∥

∥

(BTWiγi(s))
2

m
− (BTWiγ

F
i (s))

2

f

∥

∥

∥

∥

2

≥ δ

)

≤ k exp

(

− fδ2

M ′(p+ k)

)

.
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So the failure probability drops off exponentially with increasing bound δ, reflecting a Gaussian

tail structure for αi(s) and BTWiγ
F
i (s). The proof is contained in Appendix A.

Using this result, we are able to prove a tight deviation bound for the approximated cost function

cFG(s) and ∇cFG(s):

Theorem 3 Let A be a partially known matrix, B a known feature matrix, and Wi as defined in

Theorem 1. Let G be a random sample of size g from {1, . . . , n} chosen without replacement. Then

for each i∈G, we let Fi be a random sample of size f from the set {1, . . . ,m}, all chosen without

replacement. We have, with probability at least 1− ǫ:

|c̃FG(s)− c(s)| ≤

√

Ak log
(

k

ǫ

)

g
, ∀s∈ Sp

k ,

‖∇c̃FG(s)−∇c(s)‖2≤

√

B(p+ k) log
(

k

ǫ

)

g
, ∀s∈ Sp

k ,

where A,B are absolute constants.

Similar to the inner approximations, cFG(s) and ∇cFG(s) has Gaussian tails. Furthermore, the scaling

here only depends on g and not f : This shows that the error of the inner approximation is dominated

by the outer sampling of the rows G. The proof is contained in Appendix B.

Then, using this result, we are able to prove our main result for OptComplete. We would first

introduce a new definition:

Definition 1 The convexity parameter a of the cost function c(s) is defined as the largest

positive number for which the the following statement is true:

c(s)≥ c(s0)+∇c(s0)
T (s− s0)+

a2

2
(s− s0)

T (s− s0) ∀s,s0 ∈ Sp
k ∀i (16)

We have the following proposition which shows that unless the cost function is degenerate (i.e.

different sets of k features doesn’t change the solution), we always have a positive convexity param-

eter:

Proposition 1 Assume that there does not exist s1,s0 ∈ Sp
k such that c(s1) = c(s0). Then a> 0.
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The proof is contained in Appendix C. Now, we state our main theorem for OptComplete.

Theorem 4 For the matrix completion problem (4), let B ∈ R
m×p be a known feature matrix,

A ∈ R
n×m a matrix with entries partially known, and OptComplete as defined in Algorithm 2.

Assume that Problem (4) is feasible. Then, OptComplete terminates in a finite number of steps

C, and finds an optimal solution of (4) with probability at least 1− kC exp
(

− Da4g

(p+k)

)

where D is

an absolute constant independent of C,f, g, k, p, and a is the convexity parameter of the functions

α̃s
i (s).

The proof is contained in Appendix D. This theorem shows that as long as the original problem is

feasible, OptComplete is able to find the optimal solution of the original binary convex problem with

exponentially vanishing failure probability that scales as O
(

exp
(

−g

(p+k)

))

. The theorem requires

no assumptions on the data, and thus applies generally. We again note that the bound does not

depend on f and only on g: we would discuss how this would inform our selection of the size of f

and g in the next section.

3.3. Sampling Size and Computational Complexity

To select an appropriate f and g, we first note that Candès and Tao (2010) showed that to complete

a square N ×N matrix of rank k, we need at least O(kN logN) elements. Assume an average

known rate of α= |Ω|

mn
in the original matrix A, the expected number of known elements under a

sampling of f and g is αfg. Using N2 =mn, we need that:

αfg≥ c · k
√
nm log(

√
nm) (17)

for some constant c. Theorem 4 showed that the bound on failure probability scales with

O
(

exp
(

−g

(p+k)

))

, and thus we cannot have g too small. Using (13), the complexity of the cutting

plane with f and g samples are:

O(αfg(p+ k2)+ gk3). (18)
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Therefore, if we fix the expected known elements (αfg) constant, it is more advantageous to select

a smaller g, as g scales with k3. Thus, we set:

f =min

(

ck
√
mn log(

√
mn)

αmin(g0, n)
,m

)

, g=min(g0, n), (19)

Experimentally, we found g0 = 100, c = 1 to generate good results (the results were similar for

1
2
≤ c≤ 2). Therefore, by (18), the approximated cutting plane has a computational complexity of:

O
(

k
√
mn log(

√
mn)(p+ k2)

)

. (20)

This scales in a square root fashion in n and m, rather than linearly in n and m for the full

cutting plane. This allows OptComplete to enjoy a considerable speedup compared to CutPlanes,

as demonstrated in Section 4.

4. Synthetic Data Experiments

We assume that the matrix A=UV +E, where U ∈R
n×k, V ∈R

k×m, and E is an error matrix

with individual elements sampled from N(0,0.01). We sample the elements of U and V from

a uniform distribution of [0,1], and then randomly select a fraction µ = 1 − α to be missing.

We formulate the feature matrix B by combining V ∈ R
k×m with a confounding matrix Z ∈

R
(p−k)×m that contains unnecessary factors sampled similarly from the Uniform [0,1] distribution.

We run OptComplete on a server with 16 CPU cores, using Gurobi 8.1.0. For each combination

(m,n,p, k,µ), we ran 10 tests and report the median value for every statistic.

We report the following statistics with s∗ being the ground-truth factor vector, and s the esti-

mated factor vector.

• n,m - the dimensions of A.

• p - the number of features in the feature matrix.

• k - the true number of features.

• µ - The fraction of missing entries in A.

• T - the total time taken for the algorithm.
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• MAPE - the Mean Absolute Percentage Error (MAPE) for the retrieved matrix Â:

MAPE=
1

|S|
∑

(i,j)∈S

|Âij −Aij |
|Aij |

,

where S =Ωc is the set of missing data in A.

Since the concept of Interpretable Matrix Completion is new, there is a lack of directly comparable

algorithms in the literature. Thus, in lieu, we compare OptComplete to state-of-the-art solvers for

Inductive Matrix Completion and general matrix completion, which are:

• IMC by Natarajan and Dhillon (2014) - This algorithm is a well-accepted benchmark for

testing Inductive Matrix Completion algorithms.

• SoftImpute-ALS (SIALS) by Hastie et al. (2015) - This is widely recognized as a state-of-the-

art matrix completion method without feature information. It has among the best scaling behavior

across all classes of matrix completion algorithms as it utilizes fast alternating least squares to

achieve scalability.

We use the best existing implementations of IMC (Matlab 2018b) and SIALS (R 3.4.4, package

softImpute) with parallelization on the same server.

We further compare our algorithm to CutPlanes, the original cutting plane algorithm developed

in Section 2. It is known that for general mixed-integer convex problems, the cutting plane algorithm

has the best overall performance (see e.g. Lubin et al. (2016) for details), and thus CutPlanes

represent a good baseline of comparison for OptComplete.

We randomly selected 20% of those elements masked to serve as a validation set. The regulariza-

tion parameter γ of OptComplete, the rank parameter of IMC and the penalization parameter λ of

IMC and SIALS are selected using the validation set. The results are separated into sections below.

The first five sections modify one single variable out of n,m,p, k,µ to investigate OptComplete’s

scalability, where the leftmost column indicates the variable modified. The last section compares

the four algorithms scalability for a variety of parameters that reflect more realistic scenarios.
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n m p k µ%
OptComplete CutPlanes IMC SIALS

T MAPE T MAPE T MAPE T MAPE

µ

100 100 15 5 20% 1.7s 0.1% 6.0s 0.1% 0.03s 0.01% 0.02s 0.3%

100 100 15 5 50% 0.9s 0.02% 4.5s 0.02% 0.07s 0.5% 0.03s 0.9%

100 100 15 5 80% 0.6s 0.03% 2.5s 0.03% 0.09s 1.3% 0.06s 5.6%

100 100 15 5 95% 0.2s 0.04% 1.2s 0.04% 0.12s 12.1% 0.12s 7.4%

n

100 100 15 5 50% 0.9s 0.02% 4.5s 0.02% 0.07s 0.5% 0.03s 0.9%

103 100 15 5 50% 3.1s 0.01% 72.5s 0.01% 0.6s 0.4% 0.1s 0.2%

104 100 15 5 50% 9.5s 0.004% 957s 0.004% 4.5s 0.3% 6.5s 0.5%

105 100 15 5 50% 18.0s 0.003% 10856s 0.003% 32.7s 0.1% 38s 3.0%

m

100 100 15 5 50% 0.9s 0.02% 4.5s 0.02% 0.07s 0.5% 0.03s 0.9%

100 103 15 5 50% 0.7s 0.01% 18.6s 0.01% 0.8s 0.3% 0.1s 0.5%

100 104 15 5 50% 1.2s 0.004% 68.5s 0.004% 6.2s 0.2% 0.8s 0.3%

100 105 15 5 50% 3.0s 0.002% 259s 0.002% 56.2s 0.1% 12.7s 0.8%

p

100 100 15 5 50% 0.9s 0.02% 4.5s 0.02% 0.07s 0.5% 0.03s 0.9%

100 100 50 5 50% 2.0s 0.02% 18.0s 0.02% 0.3s 0.6% 0.03s 0.9%

100 100 200 5 50% 12.1s 0.02% 95.9s 0.02% 1.9s 0.8% 0.03s 0.9%

100 100 103 5 50% 90.3s 0.02% 680s 0.02% 10.4s 1.0% 0.03s 0.9%

k

100 100 50 5 50% 2.0s 0.02% 18.0s 0.02% 0.3s 0.5% 0.03s 0.9%

100 100 50 10 50% 20.7s 0.06% 130s 0.06% 0.20s 1.2% 0.1s 0.8%

100 100 50 20 50% 240s 0.07% 1584s 0.07% 0.35s 2.1% 0.21s 1.0%

100 100 50 30 50% 980s 0.09% 8461s 0.09% 0.5s 3.3% 0.43s 2.8%

100 100 15 5 95% 0.2s 0.04% 1.2s 0.04% 0.12s 12.1% 0.12s 7.4%

103 103 50 5 95% 1.4s 0.006% 3.5s 0.006% 4.6s 4.7% 2.8s 12.5%

104 103 100 5 95% 5.7s 0.002% 35.2s 0.002% 18s 2.5% 20.7s 12.6%

105 103 200 10 95% 52s 0.001% 1520s 0.001% 295s 1.7% 420s 4.6%

105 104 200 10 95% 98s 0.001% 5769s 0.001% 1750s 0.5% 4042s 4.1%

106 104 200 10 95% 480s 0.001% N/A N/A 13750s 0.3% 25094s 2.5%

106 105 200 10 95% 680s 0.001% N/A N/A N/A N/A N/A N/A

106 106 200 10 95% 1415s 0.001% N/A N/A N/A N/A N/A N/A

Table 1 Comparison of OptComplete, IMC and SIALS on synthetic data. N/A means the algorithm did not

complete running in 20 hours, corresponding to 72000 seconds.

Overall, we see that OptComplete achieves near-exact retrieval on all datasets evaluated, and

successfully recovers the factors in the ground truth. The solutions (and its error) also matches

with that of CutPlanes, the standard cutting plane algorithm. The non-zero MAPE is due to the

random noise added resulting in slightly perturbed coefficients.
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For the realistic and large data sizes in the last panel, we see that OptComplete not only achieves

near-exact retrieval, it does so while requiring considerably less time than IMC and SIALS at the

same time. For m,n on the scale of n= 106 and m= 104, OptComplete is over 20 times faster than

IMC and over 40 times faster than SIALS. At the scale of n= 106 and m= 105, IMC and SIALS

did not finish running within 20 hours, while OptComplete completed in just under 12 minutes. We

also see that OptComplete achieves very significant speedups compared to the standard cutting

plane algorithm - up to 60x at the scale of n= 105 and m= 104.

We analyze the scaling of OptComplete as a function of:

1. µ - The algorithm is able to retrieve the exact factors used even with 95% of missing data.

Furthermore, the running time decreased with increasing missing entries, consistent with the fact

that is computational complexity scales with |Ω|.

2. n - The algorithm has good scalability in n, reflecting its O(
√
n log(n)) type complexity. This

allows the algorithm to support matrices with n in the 106 range. Its scaling behavior is superior

to both IMC and SIALS.

3. m - The algorithm scales exceptionally well in m. We observe that empirically the algorithm

runtime seems to grow much slower than the theoretical O(
√
m log(m)) dependence. A closer

examination reveals that as m increases, the number of cutting planes generated by Gurobi is

decreasing. Qualitatively, this can be explained by a larger m giving the algorithm more signal to

find which k features are the correct ones out of the p ones. We note that such behavior is also

exhibited by CutPlanes, as it roughly scales as O(
√
m) rather than the O(m) as expected. We see

that IMC and SIALS scales as O(m).

4. p - The algorithm scales relatively well in p, which reflects the performance of the Gurobi

solver. We empirically observe that Gurobi is generating roughly O(1)−O(p) cutting planes. Thus,

as each cutting plane is O(p), we expect O(p)−O(p2) dependence, as is observed here. We note

that OptComplete achieves similar scaling behavior as IMC in p. Note here the SIALS algorithm

does not utilize feature information and thus a change in p does not affect the algorithm’s run

speed.
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5. k - The algorithm does not scale very well in k. We empirically observe that Gurobi solver

is roughly generating O(k) cutting planes and each cutting plane has cubic dependence on k. It

appears that SIALS and IMC almost have a linear scaling behavior. However, in most applications,

such as recommendation systems or low-rank retrieval, k is usually kept very low (k≤ 30), so this

is not a particular concern.

5. Real-World Experiments

In this section, we report on the performance of OptComplete on the Netflix Prize dataset

(Bennett et al. 2007). This dataset was released in a competition to predict ratings of customers

on unseen movies, given over 10 million ratings scattered across 500,000 people and 16,000 movies.

Thus, when presented in a matrix A where Aij represents the rating of individual i on movie j,

the goal is to complete the matrix A under a low-rank assumption.

The feature matrix B of OptComplete is constructed using data from the TMDB Database, and

covers 59 features that measure geography, popularity, top actors/actresses, box office, runtime,

genre and more. The full list of 59 features is contained in Appendix E.

For this experiment, we included movies where all 59 features are available, and people who had

at least 5 ratings present. This gives a matrix of 471,268 people and 14,538 movies. The slight

reduction of size from the original data is due to the lack of features for about 2,000 niche movies.

To observe the scalability of OptComplete, we created five data sets:

1. Base - A1 has dimensions 3,923× 103.

2. Small - A2 has dimensions 18,227× 323.

3. Medium - A3 has dimensions 96,601× 788.

4. Large - A4 has dimensions 471,268× 1760.

5. Full - A has dimensions 471,268× 14,538.

These sizes are constructed such that the total number of elements in A in the successive sizes are

approximately different by approximately an order of magnitude.
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For each individual matrix, we uniformly randomly withhold 20% of the ratings as a test set S,

and use the remaining 80% of ratings to impute a complete matrix Â - we perform cross-validation

on the appropriate hyperparameters. Then, we report MAPE.

For comparison, we again use IMC and SIALS. We set the maximum rank of SIALS to be k -

the rank optimized for in OptComplete. The results are listed below:

n m p k µ%
OptComplete IMC SIALS

T MAPE T MAPE T MAPE

3,923 103 59 5 92.6% 6.0s 29.4% 0.6s 34.2% 0.3s 31.2%

18,227 323 59 5 94.8% 12.2s 21.8% 5.2s 29.1% 4.1s 24.1%

96,601 788 59 5 94.2% 25.5s 20.9% 38.1s 28.7% 30.4s 21.3%

471,268 1,760 59 5 93.6% 102s 18.8% 460s 24.6% 430s 19.8%

471,268 14,538 59 5 94.1% 170s 15.7% 3921s 21.5% 5300s 16.7%

Table 2 Comparison of methods on Netflix data for k= 5.

n m p k µ%
OptComplete IMC SIALS

T MAPE T MAPE T MAPE

3,923 103 59 10 92.6% 11.0s 30.4% 1.4s 36.7% 0.8s 35.8%

18,227 323 59 10 94.8% 20.3s 24.0% 12.5s 32.5% 7.0s 28.9%

96,601 788 59 10 94.2% 45.9s 22.3% 84.2s 29.6% 50.7s 22.8%

471,268 1,760 59 10 93.6% 260s 20.7% 1022s 24.8% 870s 20.7%

471,268 14,538 59 10 94.1% 380s 19.6% 8704s 23.1% 10240s 20.0%

Table 3 Comparison of methods on Netflix data for k= 10.

We can see that OptComplete outperforms both IMC and SIALS in accuracy across the datasets

under different k; furthermore in the two largest datasets OptComplete ran 10x to 20x faster than

IMC and SIALS. Here we see that an increase from k= 5 to k= 10 actually decreased out-of-sample

performance as additional factors are actually not very helpful in predictive customer tastes. The

decline for OptComplete and IMC were especially higher due to the fact that the possible factors

are fixed and thus an increase in the number of factors caused some non-predictive factors to be

included.
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For the k = 5 case, OptComplete identified the following as the top factors that influences an

individual’s rating:

• IMDB Rating

• Genre: Drama

• Released within last 10 years

• Number of Top 100 Actors

• Produced in US

These factors provide an intuitive explanation of the individual ratings of each customer in terms

of a small number of factors, while exceeding the high predictive accuracy of SIALS.

6. Conclusions

We have presented OptComplete, a scalable algorithm to retrieve a low-rank matrix in the presence

of side information. Compared with state of the art algorithms for matrix completion, OptComplete

exceeds current benchmarks on both scalability and accuracy and provides insight on the factors

that affect the ratings.
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Appendices
A. Proof of Theorem 2

We first note that since Sp
k is a finite set, we only need to prove the result for a particular s ∈ Sp

k ,

and it would apply for all s. Therefore, we would assume s is fixed below. For simplicity, we would

only demonstrate the proof for αi(s) = aiγi(s), as the one for (BWiγi(s))
2 follows in the same

exact fashion. Furthermore, since we are only focusing on one particular i ∈ {1, . . . , n}, we would

drop all i subscripts below for ease of notation. The quantities of interest are therefore:

α(s) =
1

m

(

aaT −aV

(

Ik

γ
+V TWV

)−1

V TaT

)

αF (s) =
1

f

(

aFa
T
F −aFVF

(

Ik

γ
+V T

F WVF

)−1

V T
F aT

F

)

.

First, let V =WV , and let us consider a reduced QR factorization of V =QR where Q∈Rm×k

has orthogonal columns such that QTQ = m · Ik, and Ri ∈ R
k×k. Note such definition implies

‖R‖=O(1). Then, we would rewrite the terms as follows:

α(s) =
aaT

m
− aV

m

(

Ik

mγ
+

RTQTQR

m

)−1
V TaT

m
,

αF (s) =
aFa

T
F

f
− aFVF

f

(

Ik

fγ
+

RTQT
FQFR

f

)−1
V T

F aT
F

f
.

We note that

aaT =
m
∑

i=1

a2
i , aV =

m
∑

i=1

aivi,

aFa
T
F =

∑

i∈F

a2
i , aFVF =

∑

i∈F

aivi.

Therefore, if we treat a2
1, . . . a

2
m as a finite population, then aFa

T
F is a random sample of f points

drawn without replacement from that set, and similarly for aFVF . Therefore, we can then utilize

Hoeffding’s inequality to bound the deviation of these terms, as reproduced below:

Proposition 2 (Hoeffding’s Inequality) Let X = (x1, . . . , xn) be a finite population of N points

and X1, . . . ,Xn be a random sample drawn without replacement from X. Let

a= min
1≤i≤n

xi and b= max
1≤i≤n

xi.
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Then, for all ǫ > 0, we have

P

(

∣

∣

∣

∑n

i=1Xi

n
−µ
∣

∣

∣≥ ǫ

)

≤ 2 exp

(

− 2nǫ2

(b− a)2

)

. (A1)

For a proof, see for example Boucheron et al. (2013). Then, applying Proposition 2 to afa
T
f , afVf ,

and inverting the inequality, we have

P





∣

∣

∣

∣

aFa
T
F

f
− aaT

m

∣

∣

∣

∣

≤

√

A log( 1
ǫ
)

f



≥ 1− ǫ, (A2)

P





∥

∥

∥

∥

aFVF

f
− aV

m

∥

∥

∥

∥

≤

√

Bk log(k
ǫ
)

f



≥ 1− ǫ, (A3)

where A,B are constants independent of k, f,m, ǫ.

Now we would show that RTQTQR

m
is close to

RTQT
FQFR

f
:

Lemma 1

P





∥

∥

∥

∥

RTQTQR

m
− RTQT

FQFR

f

∥

∥

∥

∥

≤

√

Ck log(k
ǫ
)

f



≥ 1− ǫ. (A4)

To prove this, we would first introduce a matrix analog of the well-known Chernoff bound, the

proof of which can be found in Tropp (2012):

Lemma 2 Let X ∈Rk×k be a finite set of positive-semidefinite matrices, and suppose that

max
X∈X

λmax(X)≤D,

where λmin/λmaxis the minimum/maximum eigenvalue function. Sample {X1, . . . ,Xℓ} uniformly at

random without replacement. Compute:

µmin := ℓ ·λmin(EX1) µmax := ℓ ·λmax(EX1).

Then,

P

{

λmin

(

∑

j

Xj

)

≤ (1− δ)µmin

}

≤ k · exp
(−δ2µmin

4D

)

, for δ ∈ [0,1),

P

{

λmax

(

∑

j

Xj

)

≤ (1+ δ)µmax

}

≤ k · exp
(−δ2µmax

4D

)

, for δ ≥ 0.
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Using this lemma, we would proceed with the proof of Lemma 1.

Proof of Lemma 1: First, we note that

QTQ=
m
∑

i=1

qT
i qi,

QT
FQF =

∑

i∈F

qT
i qi,

where qT
i qi ∈ R

k×k rank-one positive semi-definite matrices. Therefore, we can take QT
FQF as a

random sample of size f from the set X = {qT
i qi}i=1,...,m, which satisfies the conditions in Lemma

2 with D=O(k). Furthermore, with X , we observe that we have EX1 =
QTQ

m
= Ik, so we have

λmin(EX1) = λmax(EX1) = 1.

Therefore, we apply Lemma 2 to QT
FQF and obtain

P
{

λmin

(

QT
FQF

)

≤ (1− δ)f
}

≤ k · exp
(−δ2f

kD′

)

,

P
{

λmax

(

QT
FQF

)

≥ (1+ δ)f
}

≤ k · exp
(−δ2f

kD′

)

,

where we set D= kD′

4
with D′ =O(1). Some rearrangement gives:

P







λmin

(

QT
FQF

f

)

≥ 1−

√

kD′ log
(

2k
ǫ

)

f
and λmax

(

QT
FQF

f

)

≤ 1+

√

kD′ log
(

2k
ǫ

)

f







≥ 1− ǫ.

(A5)

Now since QTQ

m
= Ik, we have

λmin

(

QTQ

m

)

= λmax

(

QTQ

m

)

= 1 (A6)

Combining equation (A6) and (A5) gives

P







∥

∥

∥

∥

QT
FQF

f
− QTQ

m

∥

∥

∥

∥

≤

√

kD′ log
(

2k
ǫ

)

f







≥ 1− ǫ. (A7)

Then, we have

P







∥

∥

∥

∥

RTQT
FQFR

f
− RTQTQR

m

∥

∥

∥

∥

≤‖R‖2
√

kD′ log
(

2k
ǫ

)

f







≥ 1− ǫ. (A8)

Taking C =D′‖R‖4 log(2) gives the required result. (Note ‖R‖=O(1) as we setup the QR decom-

position to have QTQ=O(m)). �
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With equations (A2), (A3), and (A4), we are now ready to bound α(s) and αF (s). We first

introduce another lemma from matrix perturbation theory (for proof, see e.g. Stewart (1990)).

Lemma 3 Let A,B be invertible matrices and let B =A+∆. Then, we have

‖A−1−B−1‖ ≤ ‖A−1‖‖B−1‖‖∆‖. (A9)

Then, we have

‖α(s)−αF (s)‖≤
∣

∣

∣

∣

aaT

m
− aFa

T
F

f

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

aV

m

(

Ik

mγ
+

RTQTQR

m

)−1
V TaT

m
− aFVF

f

(

Ik

fγ
+

RTQT
FQFR

f

)−1
V T

F aT
F

f

∣

∣

∣

∣

∣

.

Using (A2) and triangle inequality, we have

≤

√

A log( 1
ǫ
)

f
+

∣

∣

∣

∣

∣

(

aV

m
− aFVF

f

)(

Ik

mγ
+

RTQTQR

m

)−1
V TaT

m

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

aFVF

f

(

(

Ik

mγ
+

RTQTQR

m

)−1

−
(

Ik

fγ
+

RTQT
FQFR

f

)−1
)

V TaT

m

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

aFVF

f

(

Ik

fγ
+

RTQT
FQFR

f

)−1(
V TaT

m
− V T

F aT
F

f

)

∣

∣

∣

∣

∣

.

Using (A3) and Lemma 3, we have

≤

√

A log( 1
ǫ
)

f
+

√

B′k log(k
ǫ
)

f

+D′

∣

∣

∣

∣

aFVF

f

(

Ik

mγ
− Ik

fγ
+

RTQTQR

m
− RTQT

FQFR

f

)

V TaT

m

∣

∣

∣

∣

+

√

B′′k log(k
ǫ
)

f
,

for some O(1) constant D′. Note that ‖ Ik
mγ
− Ik

fγ
‖ ≤ M

f
, so using (A4), we obtain

P





∥

∥

∥

∥

Ik

mγ
− Ik

fγ
+

RTQTQR

m
− RTQT

FQFR

f

∥

∥

∥

∥

≤

√

C ′k log(k
ǫ
)

f



≥ 1− ǫ, (A10)

for some new O(1) constant C ′. Then, using (A10), we have

≤

√

A log( 1
ǫ
)

f
+

√

B′k log(k
ǫ
)

f
+

√

C ′′k log(k
ǫ
)

f
+

√

B′′k log(k
ǫ
)

f
.
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Since k ≥ 1, we have

≤

√

Mk log(k
ǫ
)

f
,

For some O(1) constant M with probability at least 1− 4ǫ. Therefore, taking ǫ′ = ǫ
4
and absorbing

the extra constant into M gives the requires result.
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B. Proof of Theorem 3

We first prove a Hoeffding-type bound as follows

Proposition 3 Let X1, . . . ,Xn be independent (but not necessarily identically distributed) random

variables which satisfy

P (|Xi− ai| ≥ t)≤ exp

(−t2
σ2
i

)

.

Then, we have

P

(∣

∣

∣

∣

∑n

i=1Xi− ai

n

∣

∣

∣

∣

≥ t

)

≤ 4 exp

(

− n2t2

4
∑n

i=1 σ
2
i

)

. (A11)

We note that such statement differs from Hoeffding’s inequality as we do not require E[Xi] = ai.

The proof is as follows.

Proof of Proposition 3: We first introduce a lemma known as Chernoff’s bounding method

(proven in Chernoff (1952)):

Lemma 4 Let Z be a random variable on R. Then for all t > 0, we have

P(Z ≥ t)≤ inf
s>0

[e−stMZ(s)],

where MZ(s) is the moment generating function of Z.

Let Yi =Xi− ai. Then, we have

P

(

n
∑

i=1

Yi ≥ t

)

≤min
s>0

e−st

n
∏

i=1

E
[

esYi
]

. (A12)

We aim to bound E [esYi ], subject to P(|Yi| ≥ t) ≤ exp
(

−t2

σ2

i

)

. Since est is an increasing function

of t, E [esYi ] is maximized when P(Yi ≥ t) = exp
(

−t2

σ2

i

)

, which results in a probability distribution

function of fYi
(y) = 2 t

σ2

i

exp
(

−t2

σ2

i

)

for Yi. Then, we have

E
[

esYi
]

≤
∫ ∞

0

2
t

σ2
i

exp

(

st− t2

σ2
i

)

dt

=

∫ ∞

0

2
t

σ2
i

exp

(

−
(

t

σi

− sσi

2

)2

+
s2σ2

i

4

)

dt

=2exp

(

s2σ2
i

4

)
∫ ∞

0

t exp

(

−
(

t− sσi

2

)2
)

dt

= exp

(

s2σ2
i

4

)(

exp

(

−s2σ2
i

4

)

+
√
π
sσi

2

(

erf
(sσi

2

)

+1
)

)
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where erf is the standard error function. As the error function is upper bounded by 1, the last

expression is less than or equal to:

≤ 1+
√
πsσi exp

(

s2σ2
i

4

)

≤ 2 exp
(

s2σ2
i

)

.

We then substitute this result into (A12) and obtain

P

(

n
∑

i=1

Yi ≥ t

)

≤min
s>0

2 exp

(

−st+ s2
n
∑

i=1

σ2
i

)

Note that this is minimized at s= t

2
√∑n

i=1
σ2

i

, so we have

≤ 2 exp

(

− t2

4
∑n

i=1 σ
2
i

)

.

Therefore,

P

(∑n

i=1 Yi

n
≥ t

)

≤ 2 exp

(

− n2t2

4
∑n

i=1 σ
2
i

)

.

By applying the previous derivation to −Y1, . . . ,−Yn, we obtain

P

(∑n

i=1 Yi

n
≤−t

)

≤ 2 exp

(

− n2t2

4
∑n

i=1 σ
2
i

)

.

Combining the two results completes the proof. �

Using Proposition 3, we bound the difference between c̃FG(st) and c(st). We have

|c̃FG(st)− c(st)|=
∣

∣

∣

∣

∣

1

n

n
∑

i=1

αi(s)−
1

g

∑

i∈G

αF
i (s)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n

n
∑

i=1

αi(s)−
1

g

∑

i∈G

αi(s)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

g

∑

i∈G

αi(s)−
1

g

∑

i∈G

αF
i (s)

∣

∣

∣

∣

∣

.

The first term can be seen as the tail bound for a random sample of size g chosen without replace-

ment from the finite set {αi(s)}i=1,...,n. Thus, we can apply Hoeffding’s theorem in Proposition 2,

and obtain that with probability at least 1− ǫ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

αi(s)−
1

g

∑

i∈G

αi(s)

∣

∣

∣

∣

∣

≤

√

M log
(

1
ǫ

)

g
. (A13)

Substituting (A13) into the expression above shows that with probability at least 1− ǫ we have:

≤

√

M log
(

1
ǫ

)

g
+

∣

∣

∣

∣

∣

1

g

∑

i∈G

αi(s)−
1

g

∑

i∈G

αF
i (s)

∣

∣

∣

∣

∣

.
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Note that, for any fixed set G, for i, j ∈G with i 6= j, we have that αF
i (s) and αF

j (s) are independent

(as we construct F separately for every i). Furthermore, Theorem 2 can be inverted to read

P
(

|αi(s)−αF
i (s)| ≥ t

)

≤ exp

(

− ft2

Mk log(k)

)

.

Therefore, αF
i (s) satisfies the conditions of Proposition 3 with Xi = αF

i (s) and parameters σ2
i =

Mk log(k)

f
, ai = αi(s). Then, applying Proposition 3 to the second term, we have

≤

√

M log
(

1
ǫ

)

g
+

√

M ′k log(k
ǫ
)

fg
,

with probability 1− 2ǫ. As k, f ≥ 1, a loose bound is therefore

≤

√

M ′′k log
(

k
ǫ

)

g
,

with probability 1− 2ǫ. Therefore, taking ǫ′ = 2ǫ and A=M ′′ log(2) we have

P



|c̃FG(st)− c(st)| ≤

√

Ak log
(

k

ǫ′

)

g



≥ 1− ǫ′. (A14)

Through a similar derivation, we have

P



‖∇c̃FG(st)−∇c(st)‖2 ≤

√

B(p+ k) log
(

k

ǫ′

)

g



≥ 1− ǫ′. (A15)
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C. Proof of Proposition 1

We would prove the contrapositive. Assume that a= 0. We would calculate the second derivative

of the cost function expression in 7. First, define Tij =
I

γ
+WiKjWi. Then our cost function can

be rewritten as:

c(s)=
1

nm

n
∑

i=1

āi

(

p
∑

j=1

sjTij

)−1

āT
i

Then the second derivative can be easily calculated as:

∂c(s)

∂sk∂sl
= 2

n
∑

i=1

āi

(

p
∑

j=1

sjTij

)−1

Tik

(

p
∑

j=1

sjTij

)−1

Til

(

p
∑

j=1

sjTij

)−1

āT
i

Thus, for any vector t∈Rp, we have:

tT
∂c(s)

∂sk∂sl
t= 2

n
∑

i=1

āi

(

p
∑

j=1

sjTij

)−1( p
∑

k=1

tkTik

)(

p
∑

j=1

sjTij

)−1( p
∑

l=1

tlTil

)(

p
∑

j=1

sjTij

)−1

āT
i

Now define vi = (
∑p

l=1 tlTil)
(

∑p

j=1 sjTij

)−1

āT
i , then our expression becomes:

tT
∂c(s)

∂sk∂sl
t= 2

n
∑

i=1

vT
i

(

p
∑

j=1

sjTij

)−1

vi

Now since a= 0, the Hessian cannot be positive definite for all s (as if it was, then a > 0). Then

there exist s0,s1 ∈ Sp
k such that for t= s0− s1, we have:

tT
∂c(s)

∂sk∂sl

∣

∣

∣

∣

s=s0

t=2
n
∑

i=1

vT
i

(

p
∑

j=1

s0jTij

)−1

vi = 0

and t Note that for any γ > 0, Tij is positive definite, so
∑p

j=1 sjTij is positive definite for any

s∈ Sp
k and all i. Therefore if a= 0, we must have vi = 0 for all i, which means that:

(

p
∑

l=1

tlTil

)(

p
∑

j=1

sjTij

)−1

āT
i = 0

for all i. Now note that we have:

c(s1) = c(s0)+∇c(s0)T t+ tT
∂c(s)

∂sk∂sl

∣

∣

∣

∣

s=s0

t+ · · ·

We have that:

∇c(s0)T t=
n
∑

i=1

(

p
∑

l=1

tlTil

)(

p
∑

j=1

sjTij

)−1

āT
i =0
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And similarly, we have tT
∂c(s)

∂sk∂sl

∣

∣

∣

∣

s=s0

t= 0 and all higher derivatives being 0.

Thus, we have:

c(s1) = c(s0)

Therefore, if we have a = 0, then we must have equality on the cost function for two feasible

solutions. Thus, if the cost function is not degenerate for feasible solutions, then a> 0.
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D. Proof of Theorem 4

In this section, we provide the proof of Theorem 4. We first note that OptComplete is a specific

implementation of the outer approximation algorithm, which Fletcher and Leyffer (1994) have

shown to always terminate in finite number of steps C. Thus, given that we assumed the problem is

feasible, for OptComplete to not return an optimal solution, it would have to cut it off during the

course of its execution. Let s∗ be an optimal solution for Problem (4). Let st be an optimal solution

at the t-th iteration of OptComplete, t∈ [C]. The cutting plane constraint for OptComplete at the

point of an optimal solution s∗ is

ηt ≥ c̃FG(st)+∇c̃FG(st)
T (s∗− st).

If c(s∗)< ηt, then s∗ will be cut off, and OptComplete will not find s∗. Applying the definition of

the convexity parameter (16) and letting ‖s∗− st‖= θt (noting that θt ≥ 1) we obtain

c(s∗)≥ c(st)+∇c(st)
T (s∗− st)+

θ2ta
2

2
. (A16)

Therefore, if

c(st)+∇c(st)
T (s∗− st)+

θ2t a
2

2
≤ c(s∗)< c̃r(st)+∇c̃r(st)

T (s∗− st),

or equivalently if

ζt := [c̃FG(st)− c(st)]+ [∇c̃FG(st)−∇c(st)]
T (s∗− st)>

θ2t a
2

2
, (A17)

then OptComplete will not find s∗. Therefore, for OptComplete to succeed, ζt should satisfy ζt ≤

θ2t a
2/2 for all t∈ [C].

Let S = the event that OptComplete succeeds in finding s∗. Then,

P(S)≥ P

(

ζt ≤
θ2t a

2

2
t∈ [C]

)

.

Since at each step of OptComplete we randomly sample r new rows and s new columns, the events

ζt ≤ θ2t a
2

2
are independent for different t∈ [C], and hence

P(S)≥
C
∏

t=1

(

1−P

(

ζt >
θ2t a

2

2

))

. (A18)
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Therefore, we focus on calculating P(ζt≥ θ2ta
2/2). Since

ζt := [c̃FG(st)− c(st)]+ [∇c̃FG(st)−∇c(st)]
T (s∗− st),

using Theorem 3, we can thus provide the following bound for deviation of ζt, for some constant

C:

P



ζt ≤ θt

√

C(p+ k) log
(

k
ǫ

)

g



≥ 1− ǫ, (A19)

where θt = ‖s∗− st‖. Then we can invert this to calculate P(ζt≥ θ2t a
2/2)

P
(

ζt ≥ θ2t a
2/2
)

≤ k exp

(

− a4g

4C(p+ k)θ2t

)

≤ k exp

(

− Da4g

(p+ k)

)

, (A20)

taking D= 1
4C

, and noting that θt ≥ 1. Then, we substitute (A20) into (A18) to obtain

P(S)≥
(

1− k exp

(

− Da4g

(p+ k)

))C

≥ 1− kC exp

(

− Da4g

(p+ k)

)

.

completing the proof.
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E. List of Features Used in the Netflix Problem

• 24 Indicator Variables for Genres: Action, Adventure, Animation, Biography, Comedy, Crime,

Documentary, Drama, Family, Fantasy, Film Noir, History, Horror, Music, Musical, Mystery,

Romance, Sci-Fi, Short, Sport, Superhero, Thriller, War, Western

• 5 Indicator Variables for Release Date: Within last 10 years, Between 10-20 years, Between

20-30 years, Between 30-40 years, Between 40-50 Years

• 6 Indicator Variables for Top Actors/Actresses defined by their Influence Score at time of

release: Top 100 Actors, Top 100 Actresses, Top 250 Actors, Top 250 Actresses, Top 1000 Actors,

Top 1000 Actresses

• IMDB Rating

• Number of Reviews

• Total Production Budget

• Total Runtime

• Total Box Office Revenue

• Indicator Variable for whether it is US produced

• 11 Indicator Variables for Month of Year Released (January removed to prevent multicollinear-

ity)

• Number of Original Music Score

• Number of Male Actors

• Number of Female Factors

• 3 Indicator Variables for Film Language: English, French, Japanese

• Constant
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