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Abstract
Many markets, including the markets for IPOs and debt issuances, are syndicated,

in that a bidder who wins a contract will often invite competitors to join a syndicate
that will fulfill the contract. We model syndicated markets as a repeated extensive form
game and show that standard intuitions from industrial organization can be reversed:
Collusion may become easier as market concentration falls, and market entry may in
fact facilitate collusion. In particular, price collusion can be sustained by a strategy in
which firms refuse to join the syndicate of any firm that deviates from the collusive price,
thereby raising total production costs. Our results can thus rationalize the apparently
contradictory empirical facts that the market for IPO underwriting exhibits seemingly
collusive pricing despite its low level of market concentration.

JEL Classification: D43, L13, G24, L4
Keywords: Collusion, Antitrust, IPO underwriting, Syndication, Repeated games

∗The authors thank Kenneth Ayotte, Lauren Cohen, Lin William Cong, Glenn Ellison, Drew Fudenberg,
Joshua Gans, Shengwu Li, Leslie Marx, Will Rafey, Ehud I. Ronn, Yossi Spiegel, Juuso Toikka, Alex White,
Lucy White, Alex Wolitzsky, Mindy Zhang and seminar participants at CMU-Pitt-Penn State Finance
Conference, the FSU Suntrust Finance Beach Conference, the Southern California Private Equity Conference,
and the Fall 2017 Meeting of the Finance Theory Group, INFORMS 2017, and the 7th Annual Law and
Economic Theory Conferences, as well as at Carnegie Mellon, Georgia State University, Harvard University,
MIT, Rice University, Texas A&M, University of Amsterdam, the University of Calgary, the University
of Texas at Austin, and the University of Western Ontario for helpful comments. Kominers gratefully
acknowledges the support of the National Science Foundation (grants CCF-1216095, SciSIP-1535813, and
SES-1459912), the Harvard Milton Fund, and the Ng Fund of the Harvard Center of Mathematical Sciences
and Applications. Much of this work was conducted while Kominers was a Junior Fellow at the Harvard
Society of Fellows. Lowery gratefully acknowledges the hospitality of the Tepper School of Business at
Carnegie Mellon University, which hosted him during parts of this research. Any comments or suggestions
are welcome and may be emailed to richard.lowery@mccombs.utexas.edurichard.lowery@mccombs.utexas.edu.

1

mailto:richard.lowery@mccombs.utexas.edu


1 Introduction

The fees that investment banks collect for initial public offerings (IPOs) strongly suggest

collusive behavior, with investment banks apparently coordinating on fees of 7% of issuance

proceeds for moderately sized IPOs (Chen and RitterChen and Ritter, 20002000). At the same time, the number

of investment banks running moderately sized IPOs is quite large, and there appears to be a

nontrivial amount of entry and exit in the market (HansenHansen, 20012001); this presents a puzzle, as

standard industrial organization intuitions would therefore suggest that pricing should be

competitive.

One possible explanation lies in the structure of the IPO underwriting market. The

market for running IPOs is syndicated; once the bid to run an IPO is accepted, the winning

investment bank must then organize a syndicate to complete the IPO. In this paper, we

show that syndication can explain how collusion may be maintained in the presence of many

small firms. We show that the presence of syndication can reverse the standard intuition

regarding the effect of market concentration: below a certain level of concentration, the scope

for collusion in a syndicated market increases as concentration declines. Because syndication

follows the pricing stage, colluding firms can punish a firm that undercuts the collusive price

by refusing to participate in that firm’s syndicate. This type of in-period punishment is not

available in non-syndicated markets. Moreover, these in-period punishments become more

powerful as a market becomes less concentrated; when the market is comprised of many small

firms, joint production lowers production costs dramatically.

Figure 11 shows the behavior of IPO spreads over the last forty years.11 In the late 1970s,

spreads for IPOs tended to be quite high, exceeding 7%. In the early 1980s, spreads for IPOs

with proceeds in excess of $20 million began to fall below 7%. However, over the course of

the late 1980s, and particularly through the 1990s, spreads for IPOs with proceeds between

$20 and $100 million became increasingly clustered at 7%. This clustering continues in the
1The spread on an IPO is the difference between the price that the underwriters pay for the issuer’s stock

and the price that investors pay, expressed as a percentage of the price investors pay.
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Figure 1: This animation shows the relationship between IPO proceeds and spreads over
time for IPOs with proceeds less of than $100 million. Proceeds (in millions of dollars) are
plotted on the horizontal axis and spreads (i.e., the percentage of the proceeds that goes to
the underwriters) are plotted on the vertical axis. The movie shows a rolling twelve-month
window of data. Over time, spreads become increasingly concentrated at exactly 7%. Click
anywhere on the figure to start the animation. A description of the data used for this figure
can be found in Appendix AA.

2000s. Notably, the IPO market largely ceased to operate following the 2007-2008 financial

crisis, and very few IPOs took place; nevertheless, those that did still paid the 7% spread.22

Yet, as first documented by HansenHansen (20012001), the market for IPOs since the 1990s appears

“competitive,” in the sense that many firms were active in the market; indeed, the largest four

firms together only make up between 40% and 50% of the market in this period, as depicted

in Figure 22.

We model a market with syndication as a repeated extensive form game: In each period,

firms compete on price for the opportunity to complete a single project and, upon being

selected, the chosen firm may invite additional firms to join in the production process.

Recruiting additional firms is valuable because production costs are convex in the amount
2The 7% spread has recently attracted the attention of Commissioner Robert J. Jackson Jr. of the Securities

and Exchange Commission who, noting that “middle-market entrepreneurs still have to pay 7% of what
they’ve created to access our public markets,” has become concerned that this “IPO tax” has discouraged
firms from going public (JacksonJackson, 20182018).
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Figure 2: The Herfindahl-Hirschman index (HHI) of, and the market share of the
largest four firms in, the market for IPOs. The U.S. Department of Justice de-
fines an industry with an HHI of less than .15 to be an “unconcentrated market”
(Department of Justice and Federal Trade CommissionDepartment of Justice and Federal Trade Commission, 20102010, p. 19). A description of the
data used for this figure can be found in Appendix AA.

of production done by a single firm. Each invited firm then decides whether to join the

syndicate. The project is then completed by the syndicate members, payoffs are realized, and

play proceeds to the next period.

We show that, in markets with syndication, less concentrated markets may have prices

that are farther from the marginal cost of production. In particular, the highest price that can

be sustained under equilibrium play is a U-shaped function of market concentration: When

markets are very concentrated, collusion can be sustained as in many standard industrial

organization models: after a firm undercuts on price, all firms revert to a “competitive”

equilibrium in which firms earn no profits in every subsequent period.33 However, when

many small firms are present, collusion can be sustained by in-period punishments: after a

firm undercuts on price, other firms can punish the undercutting firm in the same period
3See, for instance, TiroleTirole (19881988).
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by refusing to join its syndicate. Of course, such behavior by other firms must itself be

incentive compatible. Thus, firms that reject offers of syndication from a firm that undercut

on price must be rewarded in future periods. Moreover, firms that turn down more attractive

syndication offers receive greater rewards in subsequent periods.

In repeated normal form games, punishments can be enforced using the simple penal

codes of AbreuAbreu (19861986), under which only one punishment strategy is needed for each player,

regardless of the timing or nature of the deviation. However, as noted by Mailath et al.Mailath et al.

(20162016), in the analysis of repeated extensive form games it is necessary to consider more

complex responses to deviations.44,55 In particular, in our setting, it is key that firms punish a

price undercutter in-period by refusing the undercutter’s offers of syndication; to do this,

we must construct strategies that simultaneously punish a firm that undercuts on price and

reward firms which refuse to join a price undercutter’s syndicate.66,77

4It is not sufficient to consider the repeated version of the reduced normal form game, as the equilibria of
that game will not necessarily correspond to subgame-perfect equilibria of the original repeated extensive
form game.

5Nocke and WhiteNocke and White (20072007) were the first to use the theory of repeated extensive form games to study
collusion, showing that vertical mergers can facilitate collusion under certain circumstances. Byford and GansByford and Gans
(20142014) consider collusion via market segmentation by considering a repeated extensive form game with market
segment entry decisions followed by production decisions; they, however, restrict attention to a class of
equilibria in which agents’ decisions regarding production can not depend on past play, eliminating the
extensive-form considerations which are central to our work here. See also the work of Atakan and EkmekciAtakan and Ekmekci
(20112011), who consider how reputation may be built in a repeated extensive form game with initial uncertainty
about one player’s type.

6To our knowledge, we are the first to model syndication, i.e., subcontracting, in a repeated extensive
form game. There is, however, a large literature on horizontal subcontracting in the context of one-shot
interactions, starting with the work of Kamien et al.Kamien et al. (19891989); see also the work by, among others, SpiegelSpiegel
(19931993) and Shy and StenbackaShy and Stenbacka (20032003).

7Brock and ScheinkmanBrock and Scheinkman (19851985) consider an unrelated model of Bertrand competition with capacity
constraints. In their model, the stage game is a normal form game in which firms announce prices, with the
lowest-priced firm making sales to the limit of its capacity before the next-lowest-priced firm makes sales,
and so on. The highest sustainable price may be non-monotonic in the number of firms, as adding a firm
makes the stage-game Nash equilibrium outcome less profitable for all firms (in addition to the usual effect
that adding a firm reduces the profits to each colluding firm by dividing the profits of collusion among one
more participant). (Note that Brock and ScheinkmanBrock and Scheinkman (19851985) restrict their analysis to punishment strategies
that are stage-game Nash equilibria, which are not necessarily optimal.)

The Brock and ScheinkmanBrock and Scheinkman (19851985) model is fundamentally different from ours: In their model, firms only
interact in one step, in which they compete, while in ours firms also collaborate through a second, post-pricing
step via the syndication process. Due to the syndication process in our model, there always exists a zero-profit
(subgame perfect) Nash reversion equilibrium of the stage game; thus, the fundamental driver of their result
that the highest sustainable price can be non-monotonic in industry concentration is not present in our model.
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Our baseline model considers the case of symmetric firms; we extend our results to markets

with heterogeneous firms. As in the case with symmetric firms, firms can collude even when

the market is very fragmented; indeed, heterogeneity itself can increase firms’ ability to

collude. Moreover, the entry of small firms enhances the scope for collusion in markets with

syndication, again counter to standard results in the theory of industrial organization.88

Whether spreads on IPOs are set in a competitive or collusive manner has been debated

in the finance literature since Chen and RitterChen and Ritter (20002000) first documented the clustering of

IPO spreads at 7%. Abrahamson et al.Abrahamson et al. (20112011) documented that the spreads for IPOs are

significantly higher in the United States than in Europe, and cited this as evidence that pricing

in the U.S. underwriting market is collusive; Lyandres et al.Lyandres et al. (20162016) also provide empirical

results consistent with implicit collusion. Kang and LoweryKang and Lowery (20142014) presented and estimated

a formal model of why collusion would lead to the observed clustering on spreads, using

insights on collusive behavior from Athey et al.Athey et al. (20042004);99 moreover, while spreads are constant

up to a threshold of approximately $100 million, they decline for the largest IPOs in a manner

consistent with the model of Rotemberg and SalonerRotemberg and Saloner (19861986). By contrast, HansenHansen (20012001)

claims that the clustering of IPO spreads is likely to be the result of efficient contracting,

documenting the apparent relative ease of entry and lack of concentration in the market.1010

Our work helps reconcile the apparently conflicting evidence: we show that collusion in

IPO markets is possible despite—and in fact may be facilitated by—low levels of market

concentration.

There also is a related debate over whether the pricing of the IPO securities themselves is

collusive. IPO shares generally gain about 15% on their first day of public trading, suggesting

that issuers are “leaving money on the table” (Loughran and RitterLoughran and Ritter, 20042004). Some authors ar-

gue that underpricing is a means for underwriters to extract rents from issuers—likely a feature
8Both RosenthalRosenthal (19801980) and Chen and RiordanChen and Riordan (20082008) also consider models in which entry can increase

prices; however, entry can increase prices in their settings for very different reasons than those examined here.
9Kang and LoweryKang and Lowery’s work also helps to explain why, under collusion, spreads may not change with IPO

size or changes over time in the cost of performing an IPO.
10TorstilaTorstila (20032003) documents the clustering of spreads at lower levels in countries other than the United

States, arguing that this provides evidence that clustering does not imply collusive behavior.
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of an uncompetitive market (Biais et al.Biais et al., 20022002; Cliff and DenisCliff and Denis, 20042004; Loughran and RitterLoughran and Ritter,

20042004; Liu and RitterLiu and Ritter, 20112011; Kang and LoweryKang and Lowery, 20142014). On the other hand, other authors argue

that issuers may desire underpricing, and thus underpricing can occur even when underwriters

compete aggressively (RockRock, 19861986; Allen and FaulhaberAllen and Faulhaber, 19891989; Benveniste and SpindtBenveniste and Spindt, 19891989;

ChemmanurChemmanur, 19931993; Brennan and FranksBrennan and Franks, 19971997; Stoughton and ZechnerStoughton and Zechner, 19981998; Lowry and ShuLowry and Shu,

20022002; Smart and ZutterSmart and Zutter, 20032003). While our work does not address the issue of underpricing

directly, it does show that underwriters could collude in the market for IPOs, even though—or

even because—the market is highly fragmented.

Finally, while we motivate our model via the market for IPO underwriting services, our

results have wider ramifications. Many other financial markets are syndicated, including

the markets for debt, reinsurance, and private equity. Syndication through horizontal

subcontracting is also common in other industries, including construction, transportation,

communications, and military procurement.1111 Moreover, antitrust authorities have noted that

collusive behavior seems to be more common in industries in which horizontal subcontracting

is prominent; this experience has led them to heighten scrutiny of these industries.1212 Our

model thus has implications for understanding pricing behavior and firms’ ability to collude

in a number of different industries.

The remainder of the paper is organized as follows: Section 22 introduces our model of a

market with syndicated production. Section 33 characterizes the highest price sustainable via

collusion in such markets. Section 44 considers how the highest price sustainable via collusion

depends on market conditions. Section 55 extends the model to allow for contracting over

production shares. Section 66 explores the effect of firm heterogeneity and market entry on

the highest sustainable price. Section 77 concludes.
11For a discussion of industries where horizontal subcontracting is important, see SpiegelSpiegel (19931993),

Aronstein et al.Aronstein et al. (19981998), Gil and MarionGil and Marion (20122012), and MarionMarion (20152015).
12See the US Antitrust Guidelines for Collaboration among Competitors (Federal Trade CommissionFederal Trade Commission, 20002000)

and the Department of Justice primer on “Price Fixing, Bid Rigging, and Market Allocation Schemes:
What They Are and What to Look For” (Department of JusticeDepartment of Justice, 20152015), as well as the EU Guidelines on
the Applicability of Article 101 of the Treaty on the Functioning of the European Union to Horizontal
Co-operation Agreements (European CommissionEuropean Commission, 20112011).
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2 Model

We introduce a model of price competition in markets with syndication. There is a finite set

of long-lived identical firms F and an infinite sequence of short-lived identical buyers {bt}t∈N;

we let ϕ ≡ 1
|F | be the market concentration. Time is discrete and infinite; firms discount the

future at the rate δ ∈ (0, 1).

Each firm f is endowed with a production technology with a cost function c(s,m), where

s is the quantity of production done by firm f and m is the mass of the productive capacity

controlled by firm f . We assume that the cost function is strictly increasing and strictly

convex in the production done by the firm and strictly decreasing and strictly convex in

the productive capacity of the firm. We also assume that a firm which does not engage in

production incurs no costs, i.e., c(0,m) = 0 for all m, and that production becomes arbitrarily

costly as the productive capacity of the firm goes to 0, i.e., limm→0 c(s,m) ≥ ∞ for all s > 0.

Finally, we assume that the cost function is homogeneous of degree one.1313

We let the total productive capacity in the economy be given by k > 0; in this section, we

assume that the total productive capacity is evenly divided among the firms, so that the cost

of producing s for any one firm is c(s, ϕk).

In each period t, the firms and the buyer bt play the following extensive-form stage game:

Step 1: Each firm f ∈ F simultaneously makes a price offer pft ∈ [0,∞). All offers to the

buyer are immediately and publicly observed.1414

Step 2: The buyer accepts at most one offer; the buyer’s action is immediately and publicly
13This last assumption is stronger than is generally necessary for our analysis but it greatly simplifies our

presentation here. It is enough for our results that, as we proportionately increase the production required
and the productive capacity, the cost function increases at a slower rate, i.e., ∂

2c(s,sm)
∂s2 ≤ 0 for all s,m > 0; in

the homogeneous case, this expression holds with equality. Economically, this implies that larger firms are
weakly more efficient, in the sense that one firm with productive capacity sm can complete a production
share s at a (weakly) lower cost than multiple firms with combined productive capacity sm.

14Our analysis would be unchanged if we instead assumed that only the winning bid and bidder was publicly
observed, as the strategies we construct to support the highest sustainable price given in Theorem 11 do not
depend on the bids of the non-winning bidders. Moreover, if firms have access to a public randomization
device, it is not necessary for our analysis that the winning bid be observable.
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observed. If no offer is accepted, the stage game ends.

Step 3: If the offer from some firm is accepted, then that firm becomes the syndicate leader,

`. Firm ` then simultaneously offers each non-leader firm g ∈ F r {`} a fee wgt . These

offers are immediately and publicly observed.1515

Step 4: Each firm g ∈ F r {`} either accepts or rejects the fee wgt from `. We call the set of

firms that accept `’s offer, along with the firm `, the syndicate Gt. At the end of the

period, all agents observe the syndicate.1616

The buyer bt has a fixed value of v > c(1, 1) for the finished product.1717 Thus, the payoff

to the buyer bt is v − pft if he accepts the price offer from firm f and 0 if he does not accept

any offer.

If the buyer bt does not accept any offer, then each firm f ∈ F obtains a payoff of 0.

If firm ` becomes the syndicate leader, i.e., the buyer bt accepts the offer of firm `, then

production is performed efficiently ex post by the members of `’s syndicate, and so each

member of the syndicate performs an equal share of production.1818 Thus, the stage game

payoffs for the firms after a successful offer to the buyer from firm ` are as follows:

1. The payoff for ` is p`t − c
(

1
|Gt| , ϕk

)
−∑g∈Gtr{`}w

g
t , i.e., the price paid by the buyer less

the cost of `’s production less the fees paid to other firms.

2. The payoff for g ∈ Gt r {`} is wgt − c
(

1
|Gt| , ϕk

)
, i.e., the fee paid to g less the cost of

g’s production.

3. The payoff for h ∈ F rGt is 0.
15In Section 55, we consider the case where an offer specifies not only a fee but also the share of production

done by the firm.
16Consequently, all agents know which syndication offers were accepted.
17We assume that v > c(1, 1) to avoid the trivial case where no trade is efficient.
18In Section 55, we consider a “complete contracting” version of the model in which a syndicate offer specifies

a firm’s production share as well as its fee.
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The IPO Industry Interpretation of the Model

Our setup closely reflects the IPO process: After a would-be issuer decides to have an IPO,

underwriting firms compete in a “bake-off” to be the lead manager,1919 or syndicate leader, for

the IPO, in a process analogous to the bidding in Steps 1 and 2 of our game. The winning

spread for a given IPO is publicly observable and is easily available including, for example, in

the commonly used Securities Data Company (SDC) database.

After being selected, the lead underwriter recruits other banks—many or all of which may

have competed for the IPO—to help place the IPO shares, represented in Steps 3 and 4 of our

game.2020 Each underwriter—both the lead underwriter and other syndicate members—“places”

shares with important investors with which it has an ongoing relationship.2121 The placement

process is the motivation for how we model the costs of production; each underwriter’s “book”

of investors corresponds to that firm’s productive capacity in our model. As investors are

risk-averse and want diversified portfolios, it is more costly for an underwriter to place a

large number of shares of one issuer with its set of important investors than for a large set

of underwriters to distribute those shares among all of their investors; this motivates our

assumption that costs are convex in the amount of production performed. Similarly, a well-

functioning syndicate, operating with access to the investor books of all of its members, would

be expected to have the same ability to place shares with investors as a single firm operating

with the same combined book of business. This circumstance motivates our assumption that

the cost function is homogeneous of degree 1.2222 Since total productive capacity corresponds

to the set of institutional investors, we model total productive capacity as unchanging with
19In some cases, large IPOs may in fact have multiple lead managers who may be selected at the bake-off

stage.
20The SDC database documents 4,576 U.S. IPOs conducted between 1970 and 2014 in which the issuer

sold between $20 and $100 million worth of stock. Of these, 4,438—97%—were syndicated.
21Syndicate membership is also registered publicly and may be found in the SDC database; the syndicate

may also be listed on the IPO “tombstone” used to advertise and commemorate the IPO.
22To more completely capture our institutional setting, we could extend the model to include a single

time-0 “investor recruitment stage” in which firms compete to form links with institutional investors. It is
straightforward to show that the extended game has an equilibrium which produces symmetric, collusive link
formation and delivers the same price and the same profits as the equilibrium (of the original game) that
provides the highest sustainable price given in Theorem 11.
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market structure. However, in Section 6.36.3, we consider the possibility of entry by a new

investment bank that brings new productive capacity to the market.

3 Optimal Collusion

We now characterize the highest price sustainable via collusion in markets with syndication.

A price p is sustainable if there exists a subgame perfect Nash equilibrium in which, along

the equilibrium path, the buyer accepts a price offer of p in every period.

When the market is very concentrated, i.e., there are a small number of firms, any price

(less than or equal to v) can be sustained by “grim trigger” strategies in which deviations from

the collusive price are punished in subsequent periods by play in which every firm obtains

0 profits. This type of equilibrium is standard in the analysis of markets with Bertrand

competition; in such markets, however, once there are enough firms in the market, no price

above the cost of production can be sustained.

In markets with syndication, as in Bertrand competition markets, grim trigger strategies

lose their bite as the number of firms in the market grows. However, unlike in the standard

Bertrand competition model, markets with syndication admit a second method of maintaining

collusion: if a firm becomes a price deviator—i.e., if a firm bids lower than the price mandated

by the collusive equilibrium—other firms can punish that firm “in period” by refusing offers

of syndication. This raises the cost of production for that firm, as it must now complete

the project on its own instead of engaging in (more efficient) syndicated production. To

incentivize firms to not join the price deviator’s syndicate, we need to promise them rewards in

future periods; reverting to “perfect competition” after a price deviation does not accomplish

this goal, as all firms would earn 0 profits in all future periods. For this reason, reverting

to “perfect competition” in periods after a price deviation is not the best continuation plan

to sustain collusion. Instead, an optimal continuation plan should simultaneously reward

firms for refusing offers of syndication while punishing the price deviator. In particular, the

11



higher the price deviator’s syndication offer to a firm g, the higher the continuation payoff

needed to induce g to reject the offer of syndication; “the reward should fit the temptation”

(Mailath et al.Mailath et al., 20162016). It is also important to punish a firm if it accepts an offer of syndication

from the deviating firm: to do this, we do revert to perfect competition if any firm accepts a

price deviator’s offer of syndication. This punishes both the initial deviator and any firm

which joins the syndicate as harshly as possible; these strategies make recruiting a syndicate

sufficiently costly that lone production is a more attractive option than recruiting a syndicate.

Unlike grim trigger strategies, syndicate punishment strategies become more powerful as

the market becomes less concentrated, as the cost of completing the project alone becomes

increasingly expensive. Consequently, the preceding observations imply that, in general,

the highest sustainable price is not monotone in market concentration: At high levels of

market concentration, firms can collude at the monopoly price, as in the standard Bertrand

competition model. When market concentration is sufficiently low, syndicate punishments

again enable firms to collude at the monopoly price. However, at intermediate levels of market

concentration, there are no subgame-perfect Nash equilibrium strategies which sustain the

monopoly price.

We now formally derive the highest sustainable price.

Theorem 1. For δ ≥ 1
2 , the highest sustainable price, p?, is given by2323

p? =


v ϕ ∈ [1− δ, 1]

min
{

(1−δ)c(1,ϕk)−ϕc(1,k)
1−δ−ϕ , v

}
ϕ ∈ (0, 1− δ).

Moreover, p? is quasiconvex in ϕ and limϕ→0 p
? = v.2424

Figure 33 plots the highest sustainable price p? as a function of ϕ. We call an equilibrium

in which, along the equilibrium path, the buyer accepts an offer of the highest sustainable
23Our result also obtains for some discount factors less than 1

2 , but assuming that δ ≥ 1
2 greatly simplifies

our presentation here.
24We could also consider non-stationary equilibria, i.e., equilibria in which the prices offered to the buyers

varies with time. However, in any such equilibrium, the offered price will never be above p?.
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4 , and the maximum price that the buyer is willing to pay is
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concentration levels, but as market concentration goes to 0 the highest sustainable price
reaches the buyer’s value v. The cost of efficient production (i.e., when the syndicate includes
all firms) is 1 for all market concentrations ϕ.

price p? and firms engage in efficient joint production an optimal collusion equilibrium. In

an optimal collusion equilibrium, the combined per-period profits for all firms are given by

p? − c(1, 1). An optimal collusion equilibrium maximizes industry profits; the buyer accepts

the highest sustainable price, and efficient joint production ensures that costs are as low as

possible.

In the rest of this section, we show that the p? defined in Theorem 11 can be sustained as

a subgame-perfect Nash equilibrium of the game defined in Section 22 and, moreover, p? is

the highest sustainable price. For ease of exposition, we set k = 1 throughout the rest of this

section.

3.1 Bertrand Reversion Nash Equilibrium

We first describe the Bertrand reversion Nash equilibrium of the stage game, i.e., the subgame-

perfect equilibrium in which all firms make zero profits and the buyer obtains the good
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at the lowest possible cost of production. In this equilibrium, each firm f offers a price

pft = c(1, 1), which is exactly the cost of producing the good under full participation in the

syndicate. The buyer then chooses each firm as syndicate leader with equal probability. The

syndicate leader then offers each non-leader firm g a fee wgt = c(ϕ, ϕ) equal to g’s cost of

production (assuming all syndication offers are accepted). Each firm g ∈ F r{f} accepts this

offer. Under this behavior, each firm in the syndicate other than f then incurs production

costs of c(ϕ, ϕ) and thus breaks even. Moreover, the syndicate leader also breaks even as

he obtains c(1, 1) = |F |c(ϕ, ϕ) from the buyer, he incurs production costs of c(ϕ, ϕ), and he

pays (|F | − 1)c(ϕ, ϕ) in total to the syndicate, leaving him with exactly 0 in profit.2525

If any firm makes an offer other than c(1, 1) to the buyer, the buyer chooses the lowest

offer.2626 Firms’ responses to syndication offers do not depend on the set of offers made

to the buyer. If the syndicate leader offers a fee of c(ϕ, ϕ) to each other firm, then each

other firm accepts this offer. If the syndicate leader offers a fee other than c(ϕ, ϕ) to

any firm, then within-period continuation play can follow any profile of actions for the

other firms g 6= f that constitutes a Nash equilibrium of the within-period continuation

game.2727 Note, however, that regardless of the equilibrium play after a fee other than

c(ϕ, ϕ) has been offered to some firm, the syndicate leader f ’s profits are no greater than

pf − c(ϕ, ϕ) − (|F | − 1)c(ϕ, ϕ) ≤ c(1, 1) − |F |c(ϕ, ϕ) = 0. This follows as no offer greater

than c(1, 1) will be accepted by the buyer, and no firm will accept a syndication offer of less

than c(ϕ, ϕ), which is its minimal cost of production as a member of a syndicate. Thus, the

syndicate leader will not wish to deviate from the strategy prescribed above. Given his play,

other firms will not wish to deviate from their prescribed strategies either.

Our first result shows that the Bertrand reversion Nash equilibrium strategies just

described in fact constitute a subgame-perfect Nash equilibrium of the stage game in which

each firm obtains its lowest individually rational payoff.
25Recall that c(·, ·) is homogeneous of degree one.
26If there are multiple lowest offers, the buyer chooses each with equal probability.
27Note that there may be multiple such Nash equilibria, as whether a syndication offer is profitable for an

agent may depend on whether other agents accept their syndication offers.
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Proposition 1. There exists a subgame-perfect Nash equilibrium of the stage game, i.e., the

Bertrand reversion Nash equilibrium, in which each firm obtains a payoff of 0, its lowest

individually rational payoff.

In the analysis of repeated normal form games, reverting to the stage game equilibrium

described in Proposition 11 would be sufficient to punish any off-equilibrium behavior. That is,

the Bertrand reversion Nash equilibrium can be used to implement the simple penal codes of

AbreuAbreu (19861986). However, as noted by Mailath et al.Mailath et al. (20162016), simple penal codes are insufficient

to characterize the set of equilibrium payoffs in repeated extensive form games. Nevertheless,

as we will show, the Bertrand reversion equilibrium is a key component in constructing the

equilibrium that supports the highest sustainable price.

3.2 Maintaining Collusion with Grim Trigger Strategies When the

Market Is Concentrated

We first show that the monopoly price v is sustainable when firms are patient and the

number of firms is sufficiently small. Moreover, under these conditions, collusion can be

sustained via “grim trigger” strategies: after a deviation in either step of the stage game,

play in all subsequent periods reverts to the Bertrand reversion Nash equilibrium described

in Section 3.13.1.

Proposition 2. If the discount factor is sufficiently high, i.e., δ ≥ 1− ϕ, then there exists a

subgame-perfect Nash equilibrium in which every firm offers the monopoly price, i.e., pft = v

for any v ≥ c(1, 1), for all f ∈ F and for all t.

To prove Proposition 22, we construct an equilibrium in which, in every period, each firm

bids the monopoly price v; the short-lived buyer then accepts one such offer (choosing each

offer with equal probability). If the offer from firm ` is accepted, ` offers a fee wgt = c(ϕ, ϕ)

to each other firm g ∈ F r {`}; each other firm g then accepts and joins the syndicate.
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If a firm offers a lower price in the first step, i.e., becomes a price deviator, the buyer

chooses this lower offer. Then, the price deviator makes a syndication offer to every other

firm; every other firm accepts the offer of syndication if the price deviator offers c(ϕ, ϕ) to

each firm.2828 However, in every subsequent period following such a deviation, play reverts

to the Bertrand reversion Nash equilibrium described in Section 3.13.1. Finally, if any firm

chooses to not accept an offer of syndication with fee c(ϕ, ϕ), play also reverts to the Bertrand

reversion Nash equilibrium. Thus, in each period, the syndicate leader has profits of

v − c(ϕ, ϕ)− (|F | − 1)c(ϕ, ϕ) = v − |F |ϕc(1, 1) = v − c(1, 1)

and each other member of the syndicate has profits of

c(ϕ, ϕ)− c(ϕ, ϕ) = 0.

Given this proposed equilibrium structure, in which the syndicate leader offers every other

firm a syndication fee of c(ϕ, ϕ), it is clear that it is a best response for each firm to accept

its offer of syndication, as accepting leads to (weakly) higher profits than rejecting. It is also

clear that the buyer in each period is acting optimally. Thus, to ascertain whether this is an

equilibrium, we need only check whether each firm is willing to offer the monopoly price in

the first step, or would rather offer an infinitesimally lower price to the buyer and have its

offer accepted with certainty. The expected discounted value of the current payoff and all

future payoffs from following the equilibrium strategies is

∞∑
t=0

δtϕ(v − c(1, 1)) = ϕ

1− δ (v − c(1, 1)).

This expression is greater than v − c(1, 1) so long as ϕ > 1 − δ. Meanwhile, the expected
28If the syndicate leader offers a fee other than c(ϕ,ϕ) to any firm, then within-period continuation play can

follow any profile of actions for the other firms g 6= ` that constitutes a Nash equilibrium of the within-period
continuation game.
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discounted value of all future payoffs from offering an infinitesimally lower price is

v − c(1, 1).

Proposition 22 is the analogue in our setting to the familiar result that, in models of

Bertrand competition, collusion at any price can be maintained by grim trigger strategies

when the industry is sufficiently concentrated. However, in the standard model of Bertrand

competition, collusion cannot be maintained at any price when δ < 1−ϕ; in the next section,

we show that this is not true in our setting.

3.3 Maintaining Collusion with Syndicate Punishments

In this section, we first provide an intuitive description of an equilibrium which sustains the

price p? defined in Theorem 11. We then give a formal construction of the strategy profile,

and show that the strategy profile constitutes a subgame-perfect Nash equilibrium. Finally,

we show that no subgame-perfect Nash equilibrium can sustain a price higher than p?.

The key idea is to construct strategies that exploit syndicate boycotting to enforce higher

prices. Play begins in the cooperation phase, in which each firm offers the same price p? and

a firm, upon having its offer accepted, engages in efficient syndication. Play continues in the

cooperation phase so long as no one deviates. If some firm deviates in the first step—i.e.,

offers a lower price to the buyer in order to guarantee that it wins the bid—we call such a

firm a price deviator. Because of the efficiency gains from syndicated production, the price

deviator will wish to induce the non-leading firms to join its syndicate, and thus will be willing

to offer each firm a fee above its cost of production as an inducement. By the same token, if

the non-leading firms refuse to join the price deviator’s coalition, that will raise the deviator’s

cost of production. This has the effect of punishing the price deviator in-period, which

discourages firms from deviating on price in the first place. Thus, the optimal collusion plan

will promise future-period rewards to non-leading firms that reject above-cost syndication
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offers from the price deviator. For this reason, Bertrand reversion after a price deviation is not

necessarily the best continuation plan to sustain collusion. Moreover, to make rejecting the

price deviator’s syndication offer as attractive as possible, it is also important to punish a firm

if it joins a price deviator’s syndicate. To do so, we do use Bertrand reversion, as it punishes

both the initial deviator and any firm that joins the syndicate as harshly as possible. Thus,

whenever any firm deviates by accepting a price deviator’s syndication offer—or rejecting a

non-price deviator’s equilibrium syndication offer—play enters the Bertrand reversion phase,

in which firms play the Bertrand reversion Nash equilibrium each period.

After a period in which a firm f is a price deviator, but no firm joins its syndicate, we

enter a collusive punishment phase which both punishes the price deviator and rewards those

firms that refused to join the price deviator’s syndicate. In the collusive punishment phase,

each firm offers the same price q to the buyer. The higher that q is, the higher total industry

profits will be, which permits larger rewards to firms that reject a price deviator’s syndication

offer. At the same time, behavior during such a collusive punishment phase must itself be

subgame-perfect. This imposes a constraint on how high q can be: If the price q is too high,

the price deviator or another firm will wish to price-deviate in this phase, and so the collusive

punishment phase will not be subgame-perfect.

Moreover, the continuation payoff to a firm other than the price deviator during a collusive

punishment phase may depend on the offer that was made to that firm by the price deviator.

In particular, “the reward should fit the temptation” (Mailath et al.Mailath et al., 20162016)—the larger the

fee offered to the firm by the price deviator, the greater the continuation payoff offered to

that firm to induce it to reject the offer of syndication.

Thus, to characterize the highest sustainable price, we specify a subgame-perfect Nash

equilibrium that exploits the possibility of in-period punishments. This equilibrium is

composed of three types of phases: In the cooperation phase, each firm offers p to the

short-lived buyer, who then chooses each firm with equal probability; afterwards, an efficient

syndicate is formed. If any firm f price-deviates, but no other firm joins its syndicate, then
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we enter a collusive punishment phase with continuation values ψ, in which the continuation

values are determined by the syndication offers. In a collusive punishment phase with

continuation values ψ, each firm offers a specific price q to the short-lived buyer, who then

chooses each firm with equal probability; we call q the collusive punishment price. The

winning bidder then efficiently syndicates production; in so doing, it offers each non-leading

firm g a fee equal to its assigned continuation value, ψg, plus g’s production cost, c(ϕ, ϕ).

Finally, if any firm deviates from equilibrium play with respect to accepting or rejecting offers

of syndication, play enters the Bertrand reversion phase, in which firms play the Bertrand

reversion Nash equilibrium each period.

By making future play conditional on offers of syndication, firms are incentivized to punish

price deviators in-period by refusing to join their syndicates. This then reduces the incentive

for firms to deviate on price, since each firm is aware that, if it deviates on price, it will have

to engage in lone production. Since lone production becomes costlier as the market becomes

more fragmented, reducing market concentration may make it easier to sustain collusion at a

given price.

We now give a formal construction of the strategy profile that sustains p?. The equilibrium

is constructed as follows:

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p?,

– the short-lived buyer accepts one such offer of p?, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) to every

non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.
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2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, ϕ), v},

– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕ) + ψg to

every non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-

rium.

• Under equilibrium play, play continues in the same phase. In the cooperation phase

or a collusive punishment phase, some firm f may price-deviate in the first step, in

which case the buyer accepts this offer, or deviate with respect to the prescribed set of

syndication offers. If so, future play depends on the syndication offers that are made.

Given the fees {wh}h∈Fr{f} offered by f , we say that a set H ⊆ F r {f} is internally

consistent if, for all h ∈ H, we have that wh − c
(

1
|H|+1 , ϕ

)
≥ 0; that is, a set H is

internally consistent if every firm in H weakly prefers to accept its syndication offer

(ignoring payoffs in future periods), assuming that only the firms comprising H accept

their syndication offers. Note that, trivially, the empty set is internally consistent.

Furthermore, there is a largest internally consistent set in the superset sense. This follows

from the fact that, if both H and Ĥ are internally consistent, then H ∪ Ĥ is internally

consistent. To see this, note that for all h ∈ H, we have that wh − c
(

1
|H|+1 , ϕ

)
≥ 0,

implying that wh − c
(

1
|H∪Ĥ|+1 , ϕ

)
≥ 0, as the cost function is decreasing in the

production share; similarly, for all ĥ ∈ Ĥ, we have that wĥ − c
(

1
|H∪Ĥ|+1 , ϕ

)
≥ 0, and

so H ∪ Ĥ is internally consistent by definition. Let H̃ denote the largest internally

consistent set given the fees {wh}h∈Fr{f}.
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In equilibrium, future play will depend on the surplus that can be captured by the

largest internally consistent set H̃, which is given by ∑h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

. Based

on this sum, we categorize the set of offers made by a deviating firm f into three cases:

uniformly low offers, insufficient offers, and sufficient offers. Future play in each case

is as follows:

Uniformly Low Offers: ∑h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

= 0. In this case, rejecting the syn-

dication offer is a best response for each non-leading firm, as the fee offered is

weakly less than each non-leading firm’s cost of production (given that other firms

are rejecting their syndication offers).2929 Thus, every non-leading firm rejects its

offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))
≤ δ

1−δ (q − c(1, 1)). In this case, ab-

sent dynamic rewards and punishments, some non-leading firms may be tempted

to accept their syndication offers. All non-leading firms do reject their syndication

offers and play proceeds going forward in a collusive punishment phase with

ψh =


wh−c

(
1

|H̃|+1 ,ϕ

)
∑

g∈H̃

(
wg−c

(
1

|H̃|+1 ,ϕ

))(q − c(1, 1)) h ∈ H̃

0 h ∈ F r H̃.

Sufficient Offers: ∑h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

> δ
1−δ (q − c(1, 1)). In this case, play will

enter the Bertrand reversion phase in the next period regardless of each non-leading

firm’s behavior. In period, each non-leading firm h accepts its syndication offer if

and only if the firm is in H̃. Thus, each firm accepts its syndication offer if and

only if that offer is (weakly) profitable within-period, given the actions of other

firms. This is optimal, as future profits will be 0 for every firm, regardless of its

actions, as play enters the Bertrand reversion phase.
29In fact, rejecting its syndication offer is a best response for each non-leading firm even if every (other)

firm in H̃ accepts its offer of syndication.
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Figure 4: Automaton representation of the class of equilibria we consider. Labeled nodes are
phases; unlabeled nodes are intermediate phases, which represent the branching of transitions
based on behavior in the second step of the game.

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,

we proceed to the Bertrand reversion phase.

Figure 44 provides an automaton representation of the subgame-perfect Nash equilibrium

described here.

It is immediate that the conjectured equilibrium delivers a price of p? in each period. We

now verify that the prescribed strategies constitute a subgame-perfect Nash equilibrium.

Responding to Syndication Offers

We first show that the prescribed actions regarding accepting or rejecting syndication offers

are best responses. It is immediate that, after equilibrium play in either the cooperation

phase or a collusive punishment phase, it is a best response for each non-leading firm to

accept its syndication offer.3030 It is also immediate that, in the case of uniformly low offers,
30This follows as each syndication offer provides the firm with non-negative surplus and, if the firm rejects

the syndication offer, play continues to the Bertrand reversion phase, in which the firm’s future payoffs are 0.
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it is a best response for each non-leading firm to reject its syndication offer.3131 Finally, it is

immediate that, in the case of sufficient offers, each non-leading firm plays a best response;

each non-leading firm only accepts its syndication offer if accepting provides a non-negative

payoff in this period, and play continues to the Bertrand reversion phase regardless of the

firm’s actions.

To show that, in the case of insufficient offers, it is a best response for each non-leading

firm to reject its offer of syndication.

• First, consider a firm h ∈ H̃. We first calculate the total payoff for h from accepting its

offer. This is given by

wh − c
(1

2 , ϕ
)
≤ wh − c

(
1

|H̃|+ 1
, ϕ

)
,

because play reverts to the Bertrand reversion phase if h accepts its offer, in which

case h will earn 0 future profits.3232 Meanwhile, the total payoff for h in the continuation

game from rejecting the offer is

δ

1− δψ
h = δ

1− δ

 wh − c
(

1
|H̃|+1 , ϕ

)
∑
g∈H̃

(
wg − c

(
1

|H̃|+1 , ϕ
))(q − c(1, 1))


≥ wh − c

(
1

|H̃|+ 1
, ϕ

)
,

where the inequality follows from the fact that ∑g∈H̃

(
wg − c

(
1

|H̃|+1 , ϕ
))
≤ δ

1−δ (q −

c(1, 1)), as we are in the insufficient offers case.3333

31To see this, consider two cases: If H̃ = ∅, then wh − c
( 1

2 , ϕ
)
< 0 for all h ∈ H (as otherwise {h} would

be internally consistent); thus, given that no other firm is accepting, every firm strictly prefers rejecting. If
H̃ 6= ∅, since

∑
h∈H̃

(
wh − c

(
1

|H̃|+1 , ϕ
))

= 0, we must have that wh − c
(

1
|H̃|+1 , ϕ

)
≤ 0 for all h ∈ H; thus,

given that no other firm is accepting, every firm weakly prefers rejecting.
32Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it

accepts its offer of syndication, it will be the only firm to join the syndicate and thus will have production
costs of c

( 1
2 , ϕ

)
.

33Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it
rejects its offer of syndication, play will shift to a collusive punishment phase.
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• Second, we consider a firm h ∈ F r (H̃ ∪ {f}). The total payoff for h from accepting

its offer is given by

wh − c
(1

2 , ϕ
)
≤ wh − c

(
1

|H̃ ∪ {h}|+ 1
, ϕ

)
< 0,

where the second inequality follows from the fact that H̃ is the largest internally

consistent set.3434 Meanwhile, the total the total payoff for h in the continuation game

from rejecting the offer is 0, regardless of the actions of other non-leading firms.

Thus, it is a best response for every non-leading firm to reject its syndication offer in the

insufficient offers case.

Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally as bt always chooses one of

the lowest price offers less than or equal to its reservation price v.

Deviating on Price or Syndication Offers in the Collusive Punishment Phase

We begin by verifying that, during a collusive punishment phase, no firm has an incentive

to price-deviate or, if selected as the syndicate leader, not make the prescribed syndication

offers. First, consider the payoff to a deviating firm f that is selected as syndicate leader

and then makes uniformly low or insufficient offers. No other firm will join f ’s syndicate,

and f will receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is

at most q − c(1, ϕ) ≤ c(1, ϕ)− c(1, ϕ) = 0 as q = min{v, c(1, ϕ)}. Moreover, firm f ’s profits

in every future period will be 0. Therefore, firm f ’s total profits from making uniformly

low or insufficient offers are at most 0. On the other hand, firm f enjoys a continuation

value ψf ≥ 0 by not deviating; consequently, it is not profitable for f to deviate and make
34Note that, since the equilibrium calls for each firm to reject its offer of syndication, h expects that, if it

accepts its offer of syndication, it will be the only firm to join the syndicate and thus will have production
costs of c

( 1
2 , ϕ

)
.
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uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during a collusive punishment phase. Note that sufficient offers

require that the price deviator provide the firms in H̃ with dynamic compensation totaling

at least δ
1−δ (q − c(1, 1)) above their costs of production (assuming that, as the equilibrium

specifies, all the firms in H̃ accept and all the firms not in H̃ reject). Thus, the in-period

payoff to the deviating firm f is at most

q︸︷︷︸
Price

− (|H̃|+ 1)c
(

1
|H̃|+ 1

, ϕ

)
︸ ︷︷ ︸

Total cost of production
when firms in H̃ participate

− δ

1− δ (q − c(1, 1))︸ ︷︷ ︸
Dynamic compensation
required by firms in H̃

≤ q − c(1, 1)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, 1))

=
(

1− δ

1− δ

)
(q − c(1, 1))

≤ 0,

where the last inequality follows as δ ≥ 1
2 . In future periods, play reverts to the Bertrand

reversion Nash equilibrium, and so firm f ’s future payoffs will be 0. Thus, f ’s total payoff

from deviating is less than or equal to 0. By contrast, if firm f continues with equilibrium

play, it receives a non-negative payoff. Thus, not deviating is a best response for firm f .

Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no firm has an incentive to price-deviate

or, if selected as the syndicate leader, not make the prescribed syndication offers. First,

consider the payoff to a deviating firm f that is selected as syndicate leader and then makes

uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive a

payment of at most p? from the buyer. Thus, firm f ’s profit in-period is at most p? − c(1, ϕ).

Moreover, firm f ’s profits in every future period will be 0. Therefore, firm f ’s total profits

from making uniformly low or insufficient offers are at most p? − c(1, ϕ). On the other hand,

firm f enjoys profits each period of ϕ(p? − c(1, 1)) by not deviating. Consequently, it is not
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profitable for f to deviate and make uniformly low or insufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, ϕ),

which holds as p? ≤ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ by construction.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during the cooperation phase. Recall that sufficient offers require

that the price deviator provide the firms in H̃ with dynamic compensation totaling at least
δ

1−δ (q − c(1, 1)) above their costs of production. Thus, the in-period payoff to the deviating

firm f is at most

p?︸︷︷︸
Price

− c(1, 1)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, 1))︸ ︷︷ ︸
Dynamic compensation

to other firms

. (1)

In future periods, play reverts to the Bertrand reversion Nash equilibrium, and so firm f ’s

future payoffs will be 0. Thus, f ’s total payoff from deviating is less than or equal to that

given by (11). By contrast, if firm f continues with equilibrium play, firm f enjoys profits

each period of ϕ(p? − c(1, 1)). Consequently, it is not profitable for f to deviate and make

sufficient offers so long as

1
1− δϕ(p? − c(1, 1)) ≥ p? − c(1, 1)− δ

1− δ (q − c(1, 1)),

which reduces to

p? ≤ (1− δ)c(1, 1) + δ(q − c(1, 1))− ϕc(1, 1)
1− δ − ϕ .

There are now two cases to consider, depending on q = min{c(1, ϕ), v}: In the first case,

q = c(1, ϕ). Thus, as p? = min{ (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ , v} ≤ (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ , it is not profitable for
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f to deviate by making sufficient offers so long as

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ ≤ (1− δ)c(1, 1) + δ(c(1, ϕ)− c(1, 1))− ϕc(1, 1)

1− δ − ϕ

(1− δ)c(1, ϕ) ≤ (1− δ)c(1, 1) + δ(c(1, ϕ)− c(1, 1))

(2δ − 1)c(1, 1) ≤ (2δ − 1)c(1, ϕ),

which holds since δ ≥ 1
2 and c(1, 1) < c(1, ϕ).

In the second case, q = v, which implies that p? = v.3535 Thus, it is not profitable for f to

deviate by making sufficient offers so long as

v ≤ (1− δ)c(1, 1) + δ(v − c(1, 1))− ϕc(1, 1)
1− δ − ϕ

(1− δ − ϕ)v ≤ δv + (1− 2δ − ϕ)c(1, 1)

(2δ + ϕ− 1)c(1, 1) ≤ (2δ + ϕ− 1)v.

This holds since δ ≥ 1
2 , ϕ > 0, and v ≥ c(1, 1).

Thus, for δ ≥ 1
2 , p

? can be sustained.

Maximality of p?

It now remains to show that no price higher than p? can be sustained. There are two cases

to consider, depending on whether p? = v or p? = (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ : In the former case, no

price greater than p? = v can be sustained as no buyer will accept an offer higher than v.

In the latter case, suppose there existed an equilibrium in which the buyer accepted an

offer of p > p? each period. We show that at least one firm is not playing a best response: The

total industry profits generated each period are at most p− c(1, 1), and so the total expected

industry profits are at most 1
1−δ (p− c(1, 1)). Thus, there must exist at least one firm f with

35Note that when 1 − δ − ϕ > 0, we may calculate that p? ≥ q, as (1−δ)c(1,ϕ)−ϕc(1,1)
1−δ−ϕ − c(1, ϕ) =

ϕ(c(1,ϕ)−c(1,1))
1−δ−ϕ > 0, and so min{ (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ , v} −min{c(1, ϕ), v} ≥ 0.

27



total expected profits of at most 1
1−δϕ(p− c(1, 1)). If firm f deviated by offering a price of

p− ε and engaging in lone production, f ’s in-period profits approach p− c(1, ϕ) as ε→ 0.

No matter the behavior of other firms in subsequent play, f can guarantee itself non-negative

profits in each subsequent period.3636 Therefore, firm f has profits of deviating of at least

p− c(1, ϕ) > 1
1−δϕ(p− c(1, 1)), its profits from not deviating, as p > p? = (1−δ)c(1,ϕ)−ϕc(1,1)

1−δ−ϕ .

Behavior of p?

We now show that p? is quasiconvex. In the region where p? is less than v, we have that the

second derivative of p? with respect to ϕ is given by

∂2p?

∂ϕ2 =
(1− δ)∂

2c(1,ϕ)
∂ϕ2

1− δ − ϕ + 2
1− δ − ϕ

(1− δ)
(
c(1, ϕ)− c(1, 1) + (1− δ − ϕ)∂c(1,ϕ)

∂ϕ

)
(1− δ − ϕ)2︸ ︷︷ ︸

∂p?

∂ϕ

,

which is positive at any critical point of p?: The first term is positive as the cost function is

convex in its second argument and the second term must be 0 at any critical point. Thus, p?

is quasiconvex over the region where p? < v. It is then immediate that p? is quasiconvex over

its entire domain as it is the minimum of a quasiconvex function and a constant.

Finally, given that, for ϕ < 1− δ,

p? = min
{

(1− δ)c(1, ϕ)− ϕc(1, 1)
1− δ − ϕ , v

}

it is immediate that limϕ→0 p
? = v as limϕ→0 c(1, ϕ) =∞ by assumption.

4 Prices, Profits, and Capacity

We now consider the question of how the highest sustainable price and industry profits in an

optimal collusion equilibrium vary as a function of the productive capacity k. In standard
36For example, f could offer a price of c(1, ϕ) and, if chosen by the buyer, offer a syndication fee of 0 to all

other firms and, if not chosen, reject all syndication offers.
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industrial organization models, industry profits are increasing in the productive efficiency

of firms. However, in our setting, this is not necessarily the case: for a large class of cost

functions, industry profits in an optimal collusion equilibrium are strictly decreasing in the

productive capacity k.

Proposition 3. If c(s, ϕ) − c(s, 1) is convex in s for all ϕ ∈ (0, 1 − δ),3737 then the highest

sustainable price p? and industry profits in an optimal collusion equilibrium are decreasing in

productive capacity k.

Increasing the productive capacity affects the highest sustainable price, p?, through two

channels: First, it lowers the cost of efficient joint production, making collusion more profitable.

Second, it also lowers the cost of lone production, making price deviation and lone production

more profitable. Since the sustainability of collusion depends on the relative profitability of

these two options—recall from our derivation of p? in Section 3.33.3 that p? is chosen so that

price-deviating and then engaging in lone production is unprofitable—increasing capacity

could potentially make collusion easier or harder to sustain. When the difference between the

cost of lone production (c(s, ϕ)) and the cost of efficient joint production (c(s, 1)) is increasing

and convex in the quantity produced s, the second effect dominates. This makes collusion

harder to sustain and thus the highest sustainable price falls with productive capacity.

Intuitively, one might expect that increasing the productive capacity k would enhance

industry profits in an optimal collusion equilibrium, as it lowers the cost of production c(1, k).

However, as described above, when the difference between the cost of lone production (c(s, ϕ))

and the cost of efficient joint production (c(s, 1)) is increasing and convex in the quantity

produced s, the highest sustainable price p? falls as productive capacity increases. Moreover,

as productive capacity increases, the highest sustainable price (and thus industry revenues)

drops faster than the cost of efficient production. Thus, industry profits decline as productive

capacity increases.
37For instance, all cost functions of the form c(s,m) = s

(
s
m

)α, where α > 0, satisfy this condition.

29



5 Contracting over Production Shares

We now consider a model in which each syndication offer to a non-leading firm g specifies not

only the fee that g will receive but also the share of production that g will complete. Under

this form of contracting, in Step 3 of the extensive form stage game, the syndicate leader `

offers each other firm g a contract (sgt , wgt ). If g accepts this syndication offer, it will receive a

fee of wgt from ` (as before) and will produce a production share sgt . The stage game payoffs

in this case (where, as before, the set of firms who accept the offer of syndication is denoted

by Gt) are given by

1. The payoff for ` is p`t − c
(
1−∑g∈Gtr{`} s

g
t , ϕk

)
−∑g∈Gtr{`}w

g
t , i.e., the price paid by

the buyer less both the cost of `’s production and the fees paid to other firms.

2. The payoff for g ∈ Gt r {`} is wgt − c(sgt , ϕk), i.e., the fee paid to g less the cost of g’s

production.

3. The payoff for h ∈ F rGt is 0.

Surprisingly, the highest sustainable price in this game is the same as in the case described

in Theorem 11, in which firms are unable to contract over production shares.

Theorem 2. If syndication offers specify both production shares and fees, then for δ ≥ 1
2 , the

highest sustainable price is given by p?, as defined in Theorem 11; moreover, p? is quasiconvex

in ϕ and limϕ→0 p
? = v.

We give a full proof of Theorem 22 in Appendix B.3B.3. To prove that p? is sustainable

when syndication offers specify production shares, we construct an equilibrium that sustains

p?; this equilibrium is very similar to the one constructed in Section 33. In particular, the

equilibrium has the same set of phases and the circumstances under which play transitions

from one phase to another are comparable.
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The sustainability of collusion depends on the relative profitability for each firm of

colluding versus price-deviating and then engaging in lone production. Recall from our

derivation of p? in Section 3.33.3 that p? is chosen so that price-deviating and then engaging in

lone production is unprofitable. Because price-deviating and then engaging in lone production

does not involve multi-firm syndicates, changing the contracting structure between syndicate

leaders and non-leading firms does not affect p? directly.

Changing the contracting structure does make recruiting syndicate members after a price

deviation easier. Thus, one might worry that collusion might not be sustainable because

a different type of deviation would become attractive: price-deviating and then building

a syndicate. However, so long as δ ≥ 1
2 , it is still more costly for a price deviator to

make sufficient offers (and thus recruit a syndicate) than to engage in lone production; see

Appendix B.3B.3 for details.

6 Heterogeneous Firms

We now extend the model of Section 55 to consider the case in which firms’ productive

capacities differ.3838 Thus, for each f ∈ F , let κf be the productive capacity controlled by firm

f . It will be helpful to define κmax as the largest share of productive capacity controlled by

a single firm, i.e., κmax ≡ maxf∈F{κf}. Moreover, the total productive capacity is given by

k = ∑
f∈F κ

f .

6.1 Equilibrium Characterization

We now characterize the highest sustainable price as a function of the firms’ productive

capacities, which we denote p̂?(κ; δ). To prove that p̂?(κ; δ) is sustainable, we construct an

equilibrium that sustains p̂?(κ; δ); this equilibrium is very similar to the one constructed in

Section 55.
38Here, modeling syndication contracts as specifying both a fee and a production share is natural, since

efficient production requires firms with different productive capacities to perform differing production shares.
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In our constructed equilibrium, if a firm is small enough, it is allocated no surplus in

the cooperation phase. This is because, if a firm is small enough, the highest sustainable

price will be less than that firm’s cost of production. Accordingly, it will not be profitable

for that firm to price-deviate and then engage in lone production. Therefore, no surplus is

needed to disincentivize this firm from price-deviating and then engaging in lone production.

This frees up additional surplus that can be allocated to larger firms that will be tempted to

price-deviate and then engage in lone production. We call firms that obtain positive surplus

in an equilibrium supporting the highest sustainable price p̂?(κ; δ) collusion beneficiaries and

denote the set of collusion beneficiaries as F̂ .

To prevent a collusion beneficiary f from undercutting on price and engaging in lone

production, f ’s profits from colluding must be large enough that f prefers to adhere to

the equilibrium. Consider an equilibrium that sustains the price p and let rf denote the

fraction of surplus allocated to f . In an equilibrium, f must not be tempted to engage in

lone production, so the following constraint must hold:

1
1− δ r

f (p− c(1, k)) ≥ p− c
(
1, κf

)
. (2)

Maximizing price subject to constraint (22) for each collusion beneficiary, along with the

constraints that rf ≥ 0 for all firms and that ∑f∈F r
f = 1, yields the highest sustainable

price p̂?(κ; δ), as expressed in Theorem 33.

Theorem 3. If syndication offers specify both production shares and fees, firms may have

heterogeneous production capacities, and c(1, κmax) ≤ v,3939 then the highest sustainable price
39When c(1, κmax) > v, the highest sustainable price is simply v; this corresponds to the case where

price-deviating and engaging in lone production is not profitable in-period for any firm.
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p̂?(κ; δ) is given by the p̂?(κ; δ)-maximizing solution to

p̂?(κ; δ) =


v ϕ ∈ [1− δ, 1]

min
{

(1−δ)ϕ̂(κ;δ)
∑

f∈F̂ c(1,κf)−ϕ̂(κ;δ)c(1,k)
1−δ−ϕ̂(κ;δ) , v

}
ϕ ∈ (0, 1− δ),

F̂ (κ; δ) =
{
f ∈ F : p̂?(κ; δ) ≥ c

(
1, κf

)}
,

ϕ̂(κ; δ) = 1
|F̂ (κ; δ)|

,

so long as δ ≥ δ̂(κ; δ) ≡ p̂?(κ;δ)−c(1,k)
p̂?(κ;δ)−c(1,k)+min{p̂?(κ;δ),c(1,κmax)}−c(1,k) ∈ [1

2 , 1).

We give a full proof of Theorem 33 in Appendix B.4B.4. To prove that p̂?(κ; δ) is sustainable

when firms are heterogeneous, we construct an equilibrium that sustains p̂?(κ; δ); this

equilibrium is very similar to the one constructed in Section 55. In particular, the equilibrium

has the same set of phases and the circumstances under which play transitions from one

phase to another are comparable.

In the cooperation phase of our constructed equilibrium, each firm submits a bid of

p̂?(κ; δ). However, the amount of surplus received by each firm now depends on that firm’s

productive capacity. Larger firms, i.e., firms with a larger productive capacity, receive a

greater share of surplus, as the cost of lone production is lower for a larger firm. After a

price deviation, if every non-leading firm rejects the price deviator’s offer of syndication play

enters a collusive punishment phase. The price in this collusive punishment phase is given by

min{c(1, κmax), v}. This ensures that no firm has an incentive to deviate and engage in lone

production (as the cost of lone production will be no less than the price). Finally, there is also

a Bertrand reversion phase, in which the price is the cost of efficient joint production c(1, k).

Play enters this stage whenever any firm deviates with respect to accepting or rejecting offers

of syndication.

To understand how the highest sustainable price p̂?(κ; δ) varies, note that the highest

sustainable price depends on the average cost for lone production among the collusion

beneficiaries, ϕ̂(κ; δ)∑f∈F̂ c
(
1, κf

)
. To see why this is the case, suppose the productive
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capacity of a collusion beneficiary f decreases, increasing f ’s cost of lone production; then

constraint (22) slackens, and firm f could be allocated a smaller amount of surplus and still

not be tempted to price-deviate and engage in lone production. Hence, we can reallocate

some of firm f ’s profits to other firms, thereby making collusion relatively more attractive

for these firms and thus raising the highest sustainable price. Since this is true for every

collusion beneficiary, constraint (22), which depends on each collusion beneficiary’s cost of lone

production, must hold with equality for each collusion beneficiary. Summing constraint (22)

across all the collusion beneficiaries, we can then derive the expression for the highest

sustainable price given in Theorem 33.

The restriction on the discount factor δ̂(κ; δ) ensures that undercutting on price and

recruiting a syndicate is not profitable—i.e., that the binding constraint on the highest

sustainable price remains the profits available from price-deviating followed by lone production.

The restriction on δ̂(κ; δ) is analogous to the 1
2 threshold for δ when firms are symmetric.4040

6.2 Effects of Heterogeneity

Using Theorem 33, we can now characterize the effects of a small degree of heterogeneity.

Proposition 4. If syndication offers specify both production shares and fees, κ is given by

κf = (ϕk)f∈F for some k, δ > δ̂(κ; δ), and p̂?(κ; δ) < v, then there exists an ε > 0 such that,

for every distribution of productive capacities κ̄ 6= κ such that |κ̄f − κf | < ε for all f ∈ F , we

have that

p̂?(κ̄; δ) > p̂?(κ; δ).

To provide intuition for Proposition 44, consider the example illustrated in Figure 55.

When the 12 firms are nearly homogenous, each firm is a collusion beneficiary, so that

F̂ (κ̄; δ) = F . Accordingly, by Theorem 33, the highest sustainable price is linearly increasing

in the average cost of lone production across all firms, ϕ∑f∈F c
(
1, κ̄f

)
. Moreover, since the

40The expression for δ̂ does not immediately reduce to 1
2 in the case of symmetric firms, as the expression

is derived allowing for the possibility that there is at least one firm obtaining no surplus.
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Figure 5: The highest sustainable price p̂?(κ̄; δ) as a function of the degree of heterogeneity ε.
Here, c(s,m) = s2

m
, δ = 3

4 , and there are 12 firms; half of the firms have productive capacity
1
12 + ε, and half of the firms have productive capacity 1

12 − ε.

cost of lone production by a firm is convex in that firm’s productive capacity, this sum is

increasing in the degree of heterogeneity—the larger firms’ production cost savings are smaller

than the increased costs for the smaller firms, raising the average cost of lone production.

However, when some firms are very small, their costs of lone production rise above the highest

sustainable price. Hence, these firms are no longer a threat to price-deviate and engage in lone

production, so they are allocated no surplus; they are no longer collusion beneficiaries and F

no longer equals F̂ (κ̄; δ). The six larger firms now comprise the set of collusion beneficiaries

F̂ (κ̄; δ). Thus, in Figure 55, the relevant average becomes the average cost of lone production

across the six large firms. This average is decreasing in the degree of heterogeneity in this

example, as additional heterogeneity increases each large firm’s productive capacity. Thus, as

the degree of heterogeneity increases above a certain point (ε ≈ 1
24), the highest sustainable

price is decreasing in the degree of heterogeneity.

We can also use Theorem 33 to understand the effects of mergers among firms: In our

setting, a merger can either increase or decrease the highest sustainable price, depending on

how capacity is allocated among firms pre- and post-merger. Moreover, the effect on the

merging firms’ profits is also ambiguous: it is easy to construct examples in which the merged
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entity’s profits are higher post-merger, but it is also easy to construct examples in which the

merged entity’s profits are lower post-merger.

6.3 Market Entry

We now consider the effect of entry by a small firm on the highest sustainable price. When a

firm enters the market, there are three possible effects: First, it may become easier for a price

deviator to form a syndicate, making collusion more difficult. However, when the discount

factor is high enough, a price-deviator will find forming a syndicate more costly than engaging

in lone production, so this effect does not affect the highest sustainable price. Second, the

new entrant may itself price-deviate and engage in lone production; this may make collusion

more difficult. But, for a small enough entrant, the cost of lone production is higher than

the highest sustainable price when the entrant is not present,4141 and so the entrant will not

price-deviate and engage in lone production. Third, the additional productive capacity of the

entrant reduces the cost of joint production, which makes collusion at the current price more

profitable. This last effect always has bite, and so entry by a small enough entrant raises the

highest sustainable price.

Proposition 5. If syndication offers specify both production shares and fees, δ > δ̂(κ; δ),

p̂?(κ; δ) < v, and limm→0 c(s,m) =∞ for all s > 0, then there exists an ε > 0 such that entry

by a firm f with productive capacity κf < ε will increase the highest sustainable price, i.e.,

p̂?((κ, κf ); δ) > p̂?(κ; δ).

Figure 66 depicts the highest sustainable price for a simple economy as a function of the

size of the entrant. When no entrant is present, the highest sustainable price is 15; however,

for small entrants, the highest sustainable price is (slightly) higher than 15. This happens

because an entrant of sufficiently small capacity does not have the productive capacity to
41Similarly, if entrants are unable to bid but instead can only participate in the syndicate, the highest

sustainable price will increase after entry.
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Figure 6: The highest sustainable price p̂?((κ, κf); δ) as a function of entrant size κf . Here,
c(s,m) = s2

m
, δ = 3

4 , and there are 8 incumbent firms each with productive capacity 1
8 . The

dashed line denotes the highest sustainable price without entry.

profitably undercut the collusive price and engage in lone production. Moreover, the entrant’s

capacity makes collusion more profitable for the incumbent firms, as it decreases the cost

of joint production. This makes collusion relatively more attractive to the incumbent firms,

compared to price-deviating and engaging in lone production. Thus, entry by a sufficiently

small firm will facilitate collusion as opposed to hampering it. In particular, our result here

implies that the existence of a “competitive fringe” of small firms does not necessarily hamper

the ability of larger firms to collude and sustain high prices.

However, for a sufficiently large entrant, collusion will become more difficult. An entrant

with enough productive capacity can profitably undercut the collusive price by price-deviating

and engaging in lone production; this occurs when κf becomes approximately 1
16 in Figure 66.

Thus, when the entrant has sufficient production capacity, some industry profits must be

allocated to the entrant in order to make colluding a more rewarding option for the entrant

than price-deviating and engaging in lone production. Allocating some profits to the entrant

leaves fewer industry profits for the other firms, making collusion relatively less attractive to

them. This makes collusion more difficult, reducing the highest sustainable price.
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7 Conclusion

Our results show that, in markets with syndication, classical industrial organization intuitions

are not always valid: Decreasing market concentration can raise prices, as it strengthens

firms’ ability to punish a deviator in-period by refusing offers of syndication.4242 Moreover,

entry can also raise prices; a small entrant cannot credibly threaten to disrupt the collusive

equilibrium, but does make collusion more profitable (and thus more attractive) to incumbent

firms. Thus, our analysis suggests that some standard antitrust remedies—such as breaking

up firms or facilitating entry—are of questionable use in thwarting collusion in markets with

syndication.

Our analysis also adds to the ongoing scholarly debate on whether the IPO underwriting

market is collusive and, if so, how collusion persists despite low market concentration in

the industry. Our results offer potential insight into other features of the financial industry

as well: For example, regulatory barriers routinely restrict participation in certain types of

investments to investors that meet net worth or financial sophistication requirements. One

might predict that the industry would oppose such restrictions, on the grounds that higher

capacity (i.e., more investors) reduces the total cost of production. However, our work shows

that increased capacity may reduce industry profits by making collusion more difficult. Our

analysis thus suggests that the financial sector may actively support such restrictions, as they

can facilitate collusion.

Finally, our work also highlights the importance of considering the full extensive form

of firm interactions in industrial organization settings. Many industries are characterized

by repeated, complex interactions that are best modeled as repeated extensive form games,

such as IPO underwriting, debt origination, municipal auctions followed by horizontal

subcontracting between bidders, and real estate transactions with agent selection. Further

exploring repeated extensive form games is thus crucial to understanding subtle but important
42Although here we work in a complete information environment, in ongoing work, we show that our

conclusions are largely robust to relaxing our assumption that syndication offers are public.
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strategic interactions in these, and many other, markets.
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A Data

The data on IPOs used in Figures 11 and 22 comes from the Securities Data Company (SDC)

database. Data are from 1976–2013. We make the usual exclusions, dropping real estate

investment trusts (REITs), American depositary receipts (ADRs), and unit offerings, as in the

work of Chen and RitterChen and Ritter (20002000) and Kang and LoweryKang and Lowery (20142014). For Figure 11, we additionally

drop any observation that is missing data for the “price at close of offer/1st trade” for all

IPOs from December 1985 forward. Prior to December 1985, such data are not recorded,
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while after this date, IPOs with this field missing appear to frequently be duplicate entries or

non-standard deals; this filter eliminates 1930 out of 11982 IPOs.

B Proofs

B.1 Proof of Proposition 22

We construct a subgame-perfect Nash equilibrium where every firm offers the monopoly price

as follows:

• There are two phases of equilibrium play:

1. In the cooperation phase:

– Every firm submits the same bid p = v,

– The buyer accepts the lowest price offer so long as one such offer is less than

or equal to v. If there are multiple such offers, the buyer accepts each such

offer with equal probability. If there are no such offers, the buyer rejects all

the offers.

– Every firm, if it becomes the syndicate leader, offers every other firm c(ϕ, ϕ)

to join the syndicate, and

– Every other firm accepts this offer.

2. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-

rium.

• Under equilibrium play, play continues in the same phase. If, in the cooperation phase,

any firm f deviates in the first step or deviates with respect to the prescribed set

of offers, then play proceeds to the Bertrand reversion phase. Moreover, if any firm

accepts or rejects a syndication offer contrary to the prescribed play, we proceed to the

Bertrand reversion phase.
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It is immediate that along prescribed path of play every firm offers v for all t.

It is also immediate that play in the Bertrand reversion phase is subgame-perfect, as play

is a subgame-perfect Nash equilibrium of the stage game (Proposition 11).

In the cooperation phase, an argument analogous to that used to prove Proposition 11

shows that offering c(ϕ, ϕ) to each other firm minimizes the syndicate leader’s production

costs; moreover, only by offering c(ϕ, ϕ) to each other firm can the syndicate leader possibly

obtain positive profits in the future. Thus, offering c(ϕ, ϕ) to each other firm is the optimal

action by the syndicate leader during the cooperation phase.

It is immediate that the buyer is acting optimally given the price offers.

Finally, we consider whether any firm will wish to be a price deviator. The expected

profits from the equilibrium strategy are given by

1
1− δϕ(v − c(1, 1)).

Again using an argument analogous to that used to prove Proposition 11, we have that

offering c(ϕ, ϕ) to each other firm minimizes the syndicate leader’s production costs; thus, a

price deviator’s production costs are given by c(1, 1). Moreover, as we revert to Bertrand

competition after a price deviation, profits in all future periods will be 0. Thus, the profits

from deviating on price are bounded by

v − c(1, 1).

Thus, so long as δ ≥ 1− ϕ, the strategies described here constitute a subgame-perfect Nash

equilibrium.
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B.2 Proof of Proposition 33

We first show that industry profits in the optimal collusion equilibrium are decreasing in k.

It is easy to verify that price is now given by:

p? = (1− δ)c(1, kϕ)− ϕc(1, k)
1− δ − ϕ .

Industry profits per period are thus

Π ≡ (1− δ)c(1, kϕ)− ϕc(1, k)
1− δ − ϕ − c(1, k) = 1− δ

1− δ − ϕk
(
c
(1
k
, ϕ
)
− c

(1
k
, 1
))
.

where the equality follows from the fact that the cost function is homogeneous of degree 1.

Differentiating profits with respect to k, and then multiplying by 1−δ−ϕ
1−δ gives

1− δ − ϕ
1− δ

∂Π
∂k

=
(
c
(1
k
, ϕ
)
− c

(1
k
, 1
))
− 1
k

(
cs

(1
k
, ϕ
)
− cs

(1
k
, 1
))

Letting g(x) = c(x, ϕ)− c(x, 1) and x = 1
k
, we have that

1− δ − ϕ
1− δ

∂Π
∂k

= g(x)− xg′(x)

= g(x)− g(0)− (x− 0)g′(x)

< 0,

where the second equality follows from the from the fact that c(0, y) = 0 for all y ≥ 0, and

the inequality follows from the convexity assumption of the theorem.

Since both the cost of efficient joint production and industry profits in the optimal

collusion equilibrium are decreasing in k, the highest sustainable price must be decreasing in

k.
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B.3 Proof of Theorem 22

To show that p? is the highest sustainable price, we construct an equilibrium of the following

form:4343

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p?,

– the short-lived buyer accepts one such offer of p?, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕk) to every

non-leading firm g ∈ F r {`} for agreeing to perform ϕ of production, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, ϕk), v},

– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕ, ϕk) + ψg to

every non-leading firm g ∈ F r {`} for agreeing to perform ϕ of production,

and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-

rium.4444
43It is immediate that, when ϕ ∈ [1− δ, 1], we can sustain collusion exactly as in the proof of Theorem 11.
44Here, in the Bertrand reversion Nash equilibrium, the syndicate leader offers every other firm c(ϕ,ϕk)

for agreeing to perform ϕ of the production.
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• Under equilibrium play, play continues in the same phase. In the cooperation phase

or a collusive punishment phase, some firm f may price-deviate in the first step, in

which case the buyer accepts this offer, or deviate with respect to the prescribed set of

syndication offers. If so, future play depends on the sum over the non-leading firms

of the (positive) difference between the syndication fee wg offered to each firm g and

the cost to that firm of doing sg of the project, ∑g∈Fr{f}(wg − c(sg, ϕk))+.4545 Based on

this sum, we categorize the set of offers made by a deviating firm f into three cases:

uniformly low offers, insufficient offers, and sufficient offers. Future play in each case

is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(sg, ϕk))+ = 0. In this case, rejecting the

syndication offer is a best response for each non-leading firm, as the fee offered

is weakly less than each non-leading firm’s cost of production. Thus, every firm

rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(sg, ϕ))+ ≤ δ

1−δ (c(1, ϕk)− c(1, k)). In this case,

absent dynamic rewards and punishments, some non-leading firms may be tempted

to accept their syndication offers. All non-leading firms do reject their syndication

offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(sh,ϕk))+∑

g∈Fr{f}(wg−c(sg ,ϕk))+ (c(1, ϕk)− c(1, k)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(sg, ϕk))+ > δ
1−δ (c(1, ϕk)− c(1, k)). In this case,

play enters the Bertrand reversion phase in the next period; in period, each firm h

accepts if and only if wh ≥ c(sg, ϕk).

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,

we proceed to the Bertrand reversion phase.
45Here, (x)+ ≡ max{0, x}.
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The proof that this strategy profile is a subgame-perfect Nash equilibrium and that it

attain the highest sustainable price of any subgame-perfect Nash equilibrium then follows as

in the discussion following Theorem 11.

B.4 Proof of Theorem 33

To find p̂?(κ; δ), we solve the problem

max
p,r
{p} (3)

subject to the constraints

1
1− δ r

f (p− c(1, k)) ≥ p− c
(
1, κf

)
for all f ∈ F

rf ≥ 0 for all f ∈ F∑
f∈F

rf = 1.

We transform this problem by letting πf = rf (p− c(1, k)) be the continuation value for

f from adhering to the equilibrium strategy in the cooperation phase, and so obtain the

problem

max
π

∑
f∈F

πf


subject to the constraints

1
1− δπ

f ≥
∑
g∈F

πg + c(1, k)− c
(
1, κf

)
for all f ∈ F

πf ≥ 0 for all f ∈ F .

The first constraint is the no lone deviation constraint. This is a convex optimization problem,

and moreover it is immediate that it satisfies Slater’s condition. Thus, by Theorem 7.16 of

SundaramSundaram (19961996), there exists a vector of continuation payoffs π and Lagrangian multipliers
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λ and µ that satisfy the Kuhn-Tucker conditions, i.e., for all f ∈ F ,

1 + δ

1− δλ
f −

∑
g∈F

λg + µf = 0

λf ≥ 0 and λf
 1

1− δπ
f −

∑
g∈F

πg − c(1, k) + c
(
1, κf

) = 0

µf ≥ 0 and µfπf = 0.

Let the set of firms for which λf 6= 0 be denoted F̂ (κ; δ); thus, for each f ∈ F̂ (κ; δ), we have

that
1

1− δπ
f −

∑
g∈F

πg − c(1, k) + c
(
1, κf

)
= 0.

Summing over firms in F̂ (κ; δ), we obtain

1
1− δ

∑
f∈F̂ (κ;δ)

πf =
∑

f∈F̂ (κ;δ)

∑
g∈F

πg + c(1, k)− c
(
1, κf

)
1

1− δ (p− c(1, k)) =
∑

f∈F̂ (κ;δ)

(
p− c(1, k) + c(1, k)− c

(
1, κf

))

p− c(1, k) = (1− δ)|F̂ |p−
∑

f∈F̂ (κ;δ)

c
(
1, κf

)

p =
(1− δ)ϕ̂(κ; δ)∑f∈F̂ (κ;δ) c

(
1, κf

)
− ϕ̂(κ; δ)c(1, k)

1− δ − ϕ̂(κ; δ)

where ϕ̂(κ; δ) = 1
|F̂ (κ;δ)| . Note that if λf 6= 0, then we can rewrite 1

1−δπ
f −∑g∈F π

g − c(1, k) +

c
(
1, κf

)
= 0 as 1

1−δπ
f = p− c

(
1, κf

)
; thus, F̂ (κ; δ) =

{
f ∈ F : p ≥ c

(
1, κf

)}
.

To show that p̂?(κ; δ) is the highest sustainable price, we construct an equilibrium as

follows:4646

• There are three phases of equilibrium play:

1. In the cooperation phase,

– every firm submits the same bid p = p̂?(κ; δ),
46It is immediate that, when ϕ ∈ [1− δ, 1], we can sustain collusion exactly as in the proof of Theorem 11.
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– the short-lived buyer accepts one such offer of p̂?(κ; δ), choosing each offer

with equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕg, κg) + πg

to each non-leading firm ` for agreeing to perform ϕg of production, where

ϕg ≡ κg

k
, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

2. In the collusive punishment phase with continuation values ψ,

– every firm submits the same bid q = min{c(1, κmax), p̂?(κ; δ)},

– the short-lived buyer accepts one such offer of q, choosing each offer with

equal probability,

– every firm, if it becomes the syndicate leader `, offers a fee c(ϕg, κg) + ψg to

every non-leading firm g ∈ F r {`} to join the syndicate, and

– every non-leading firm accepts the offer by the syndicate leader ` to join the

syndicate.

3. In the Bertrand reversion phase, agents play the Bertrand reversion Nash equilib-

rium.4747

• Under equilibrium play, play continues in the same phase. In the cooperation phase

or a collusive punishment phase, some firm f may price-deviate in the first step, in

which case the buyer accepts this offer, or deviate with respect to the prescribed set of

syndication offers. If so, future play depends on the sum over the non-leading firms

of the (positive) difference between the syndication fee wg offered to each firm g and

the cost to that firm of doing sg of the project, ∑g∈Fr{f}(wg − c(sg, κg))+.4848 Based on

this sum, we categorize the set of offers made by a deviating firm f into three cases:
47Here, in the Bertrand reversion Nash equilibrium, the syndicate leader offers every other firm c(ϕg, κg)

for agreeing to perform ϕg of the production.
48Here, (x)+ ≡ max{0, x}.
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uniformly low offers, insufficient offers, and sufficient offers. Future play in each case

is as follows:

Uniformly Low Offers: ∑g∈Fr{f}(wg − c(sg, κg))+ = 0. In this case, rejecting the

syndication offer is a best response for each non-leading firm, as the fee offered

is weakly less than each non-leading firm’s cost of production. Thus, every firm

rejects the offer of syndication and play enters the Bertrand reversion phase.

Insufficient Offers: 0 < ∑
g∈Fr{f}(wg − c(sg, κg))+ ≤ δ

1−δ (q − c(1, k)). In this case, ab-

sent dynamic rewards and punishments, some non-leading firms may be tempted

to accept their syndication offers. All non-leading firms do reject their syndication

offers and play proceeds going forward in a collusive punishment phase with

ψh =


(wh−c(sh,κh))+∑

g∈Fr{f}(wg−c(sg ,κg))+ (q − c(1, k)) h 6= f

0 h = f.

Sufficient Offers: ∑g∈Fr{f}(wg − c(sg, κg))+ > δ
1−δ (q − c(1, k)). In this case, play en-

ters the Bertrand reversion phase in the next period; in period, each firm h accepts

if and only if wh ≥ c
(
sh, κh

)
.

Finally, if any firm accepts or rejects a syndication offer contrary to the prescribed play,

we proceed to the Bertrand reversion phase.

It is immediate that the conjectured equilibrium delivers a price of p̂?(κ; δ) in each period.

We now verify that the prescribed strategies constitute a subgame-perfect Nash equilibrium.

Responding to Syndication Offers

We first show that the prescribed actions regarding accepting or rejecting syndication offers

are best responses. It is immediate that, after equilibrium play in either the cooperation

phase or a collusive punishment phase, it is a best response for each non-leading firm to
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accept its syndication offer.4949 It is also immediate that, in the case of uniformly low offers,

it is a best response for each non-leading firm to reject its syndication offer.5050 Finally, it is

immediate that, in the case of sufficient offers, each non-leading firm plays a best response;

each non-leading firm only accepts its syndication offer if accepting provides a non-negative

payoff in this period, and play continues to the Bertrand reversion phase regardless of the

firm’s actions.

To show that, in the case of insufficient offers, it is a best response for each non-leading

firm to reject the offer of syndication, we calculate the total payoff for h from accepting the

offer as

wh − c
(
sh, κh

)
,

as play reverts to the Bertrand reversion phase if h accepts the offer (even if other firms

reject their syndication offers). Meanwhile, the total payoff for h in the continuation game

from rejecting the offer is

δ

1− δψ
h = δ

1− δ


(
wh − c

(
sh, κh

))+

∑
g∈Fr{f}(wg − c(ϕ, ϕ))+ (q − c(1, k))


≥ wh − c

(
sh, κh

)
,

where the inequality follows from the fact that ∑g∈Fr{f}(wg − c(sg, κg))+ ≤ δ
1−δ (q − c(1, k)),

as we are in the insufficient offers case. Thus, it is a best response for every non-leading firm

to rejects its syndication offer in the insufficient offers case.

Responding to Price Offers

It is immediate that each short-lived buyer bt is acting optimally as bt always chooses one of

the lowest price offers less than or equal to its reservation price v.
49This follows as each syndication offer provides the firm with non-negative surplus and, if the firm rejects

the syndication offer, play continues to the Bertrand reversion phase, in which the firm’s future payoffs are 0.
50This follows as each syndication offer provides the firm with non-positive surplus and play continues to

the Bertrand reversion phase regardless of the firm’s actions.
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Deviating on Price or Syndication Offers in the Collusive Punishment Phase

We begin by verifying that, during a collusive punishment phase, no firm has an incentive

to price-deviate or, if selected as the syndicate leader, not make the prescribed syndication

offers. First, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f

will receive a payment of at most q from the buyer. Thus, firm f ’s profit in-period is at most

q − c
(
1, κf

)
≤ c(1, κmax)− c

(
1, κf

)
≤ 0 as q = min{v, c(1, κmax)}. Moreover, firm f ’s profits

in every future period will be 0. Therefore, firm f ’s total profits from making uniformly

low or insufficient offers are at most 0. On the other hand, firm f enjoys a continuation

value ψf ≥ 0 by not deviating; consequently, it is not profitable for f to deviate and make

uniformly low or insufficient offers.

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during a collusive punishment phase. Recall that sufficient offers

require that the price deviator provide the non-leading firms with dynamic compensation

totaling at least δ
1−δ (q − c(1, k)) above their costs of production. Thus, the in-period payoff

to the deviating firm f is at most

q︸︷︷︸
Price

− c(1, k)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, k))︸ ︷︷ ︸
Dynamic compensation

to other firms

=
(

1− δ

1− δ

)
(q − c(1, k)) ≤ 0,

where the last inequality follows as δ ≥ 1
2 . In future periods, play reverts to the Bertrand

reversion Nash equilibrium, and so firm f ’s future payoffs will be 0. Thus, f ’s total payoff

from deviating is less than or equal to 0. By contrast, if firm f continues with equilibrium

play, it receives a non-negative payoff. Thus, not deviating is a best response for firm f .
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Deviating on Price or Syndication Offers in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no firm has an incentive to price-deviate

or, if selected as the syndicate leader, not make the prescribed syndication offers. First,

consider the payoff to a deviating firm f that is selected as syndicate leader and then makes

uniformly low or insufficient offers. No other firm will join f ’s syndicate, and f will receive

a payment of at most p̂?(κ; δ) from the buyer. Thus, firm f ’s profit in-period is at most

p̂?(κ; δ)− c
(
1, κf

)
. Moreover, firm f ’s profits in every future period will be 0. Therefore, firm

f ’s total profits from making uniformly low or insufficient offers are at most p̂?(κ; δ)−c
(
1, κf

)
.

On the other hand, firm f enjoys profits each period of rf (p̂?(κ; δ)− c(1, k)) by not deviating.

Consequently, it is not profitable for f to deviate and make uniformly low or insufficient

offers so long as
1

1− δ r
f (p̂?(κ; δ)− c(1, k)) ≥ p? − c

(
1, κf

)
;

but this constraint is satisfied by the construction of p̂?(κ; δ)—see (33).

Second, consider the payoff to a deviating firm f that is selected as syndicate leader and

then makes sufficient offers during the cooperation phase. Recall that sufficient offers require

that the price deviator provide the non-leading firms with dynamic compensation totaling

at least δ
1−δ (q − c(1, k)) above their costs of production. Thus, the in-period payoff to the

deviating firm f is at most

p?︸︷︷︸
Price

− c(1, k)︸ ︷︷ ︸
Total cost of production
when all firms participate

− δ

1− δ (q − c(1, k))︸ ︷︷ ︸
Dynamic compensation

to other firms

. (4)

In future periods, play reverts to the Bertrand reversion Nash equilibrium, and so firm f ’s

future payoffs will be 0. Thus, f ’s total payoff from deviating is less than or equal to that

given by (44). By contrast, if firm f continues with equilibrium play, firm f enjoys profits

each period of rf(p̂?(κ; δ)− c(1, 1)). Consequently, it is not profitable for f to deviate and
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make sufficient offers so long as

1
1− δϕ(p̂?(κ; δ)− c(1, 1)) ≥ p? − c(1, 1)− δ

1− δ (q − c(1, 1)).

Note that, for a small enough firm f , we could have rf = 0. Thus, we must have δ large

enough to that

0 ≥ p̂?(κ; δ)− c(1, k)− δ

1− δ (q − c(1, k)).

Thus, solving for δ, we have

δ ≥ p̂?(κ; δ)− c(1, k)
(p̂?(κ; δ)− c(1, k)) + (q − c(1, k)) ,

which will be satisfied since q = min{c(1, κmax, p̂?)}.

Thus, for δ ≥ δ̂(κ; δ), p̂?(κ; δ) can be sustained.

Maximality of p̂?(κ; δ)

It now remains to show that no price higher than p̂?(κ; δ) can be sustained. There are two

cases to consider, depending on whether p̂?(κ; δ) = v or p̂?(κ; δ) < v: In the former case, no

price greater than p̂?(κ; δ) = v can be sustained as no buyer will accept an offer higher than

v.

It is also immediate that we can not construct an equilibrium with a price higher than

p̂?(κ; δ) =
(1−δ)ϕ̂(κ;δ)

∑
f∈F̂ (κ;δ) c(1,κf)−ϕ̂(κ;δ)c(1,k)

1−δ−ϕ̂(κ;δ) , since, by construction, under any such price

some firm will have an incentive to slightly underprice and engage in lone production.

B.5 Proof of Proposition 44

First, note that F̂ (κ; δ) = F for all κ when ε is sufficiently small. Moreover, δ(κ; δ) is

continuous in κ, and so, for ε sufficiently small, we have that δ > δ(κ; δ) since δ > δ((ϕk)f∈F ; δ).
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If p̂?(κ; δ) = v, we are done, since p̂?((ϕk)f∈F ; δ) < v by assumption. Thus, when p̂?(κ; δ) < v,

we can write

p̂?(κ; δ)− p̂?((ϕk)f∈F ; δ) = (1− δ)ϕ̂(κ; δ)
∑
f∈F̂ c

(
1, κf

)
−∑f∈F̂ c(1, ϕk)

1− δ − ϕ̂(κ; δ) > 0

where the inequality follows from the strict convexity of c(s,m) with respect to m.

B.6 Proof of Proposition 55

Let ε be small enough so that c(1, ε) > v. Note that such an ε must exist, as c(1, ε)→∞ as

ε→ 0. Solving for the highest sustainable price when f is present, i.e., solving the problem

given in (33), we obtain

p̂?((κ, κf ); δ) = min

(1− δ)ϕ̂(κ; δ)∑f∈F̂ c
(
1, κf

)
− ϕ̂(κ; δ)c

(
1, k + κf

)
1− δ − ϕ̂(κ; δ) , v

.

Note that ε has been chosen to ensure that f /∈ F̂ . Thus,

p̂?((κ, κf ); δ)− p̂?(κ; δ) = min

ϕ̂(κ; δ)
c(1, k)− c

(
1, k + κf

)
1− δ − ϕ̂(κ; δ) , v − p̂?(κ; δ)

 > 0.

Finally, note that δ̂((κ, κf ); δ) ≥ δ̂(κ; δ) as p̂?((κ, κf ); δ) > p̂?(κ; δ).
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