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Abstract

I analyze a rare disasters economy that yields a measure of the risk neutral probability
of a macroeconomic disaster, p§

t . A large panel of options data provides strong evidence
that p§

t is the single factor driving option-implied jump risk measures in the cross section
of firms. This is a core assumption of the rare disasters paradigm. A number of empirical
patterns further support the interpretation of p§

t as the risk-neutral likelihood of a disaster.
First, standard forecasting regressions reveal that increases in p§

t lead to economic down-
turns. Second, disaster risk is priced in the cross section of U.S. equity returns. A zero-cost
equity portfolio with exposure to disasters earns risk-adjusted returns of 7.6% per year. Fi-
nally, a calibrated version of the model reasonably matches the: (i) sensitivity of the aggre-
gate stock market to changes in the likelihood of a disaster and (ii) loss rates of disaster risky
stocks during the 2008 financial crisis.
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1 Introduction

A longstanding puzzle in macroeconomics and financial economics is that consumption growth

is not volatile enough to justify why the aggregate stock market earns large returns in excess of

riskless bonds. In response, Rietz (1988) and Barro (2006) argue that the economy is subject to

rare “disasters” such as wars and depressions; in turn, the risk premium on stocks is not sur-

prising because stocks are highly exposed to these rare events.

While this argument is simple, the empirical assessment of these models has proved more

controversial. Barro and Ursua (2008) use personal consumption data to estimate the average

likelihood and severity of a crisis, finding evidence that supports the original Rietz (1988) and

Barro (2006) claim. Nakamura et al. (2013) show that rare disasters can explain stock market

performance even if disasters unfold over a number of years and are followed by economic

recoveries. On the other hand, many argue that rare disaster models are not supported by equity

or options data (Julliard and Ghosh (2012), Backus, Chernov, and Martin (2011)), and that more

generally, the probability of a disaster may not even be identifiable (Chen et al. (2015)).

A critical assumption made by all of the aforementioned research is that the frequency of

disasters is time-invariant. However, Gabaix (2012) and Seo and Wachter (2015) show theo-

retically that much of the empirical debate can be resolved by allowing the likelihood and/or

severity of a disaster to be time varying. Gabaix (2012) also demonstrates that variable disasters

can explain a host of other asset pricing patterns like the volatility of price-dividend ratios and

return predictability. Nonetheless, there is not a great deal of evidence on whether disasters are

indeed time-varying, as this variation is notoriously difficult to estimate. Moreover, the ability

to detect time-series variation in the likelihood of a disaster is important because this yields

additional ways to evaluate the models outside of matching unconditional average returns.

In this paper, I develop a novel approach to measure time-series variation in the Arrow-
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Debreu state price of a disaster, or the so-called “risk-neutral” probability of a disaster. Instead

of using aggregate stock price or macroeconomic data as in much of the previous work, my

strategy takes advantage of information contained in the cross section of option and equity

returns. I focus on the risk-neutral probability of a disaster because option data contains in-

formation on the risk-neutral process that cannot be translated to realized likelihoods without

making stronger assumptions on preferences.1 This is not particularly limiting given that it is

the risk-neutral likelihood of a disaster that dictates future economic outcomes (e.g. investment

decisions or asset returns).

The high-level logic of my approach is as follows. The core assumption of rare disaster mod-

els is that all assets in the economy are exposed to an aggregate jump-risk factor. If this is the

case, then time-series variation in the tails of individual asset returns should be driven by this

single factor, even though cross-sectionally some assets are more exposed to the tail event than

others. I formalize this logic in the context of a standard rare disasters model, which delivers

a straightforward way to use stock option prices to diagnose the factor structure of asset tails.

Options are a natural asset class for this problem because they are a forward-looking measure

of firm performance and do not require realizations of disasters to occur. Another advantage of

my approach is that I use a non-parametric measure of jump risk in options. This lets me test

for the presence of a time-varying disaster process without imposing any a priori structure on

the data.

Consistent with the basic premise of the model, a single factor captures 50% of the time-

series variation in a large panel of option-implied jump measures. Using the model, I inter-

pret this factor as measuring temporal variation in the risk-neutral probability of a disaster, p§
t .

Qualitatively, p§
t evolves as expected, peaking during tumultuous times like the 2003 Iraq War

1i.e. I estimate time-series variation of the (scaled) Arrow-Debreu security that only pays off in the disaster state,
not the actual likelihood of this state.
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and the 2008 U.S. financial crisis. As posited in the literature, p§
t is clearly time-varying and

persistent, with an AR(1) coefficient of nearly 0.91 for monthly data. Importantly, I do not pin

down the mean of p§
t , but its time-series variation is still valuable because rare disaster models

contain many predictions based only on the time-series properties of disaster risk.

For instance, Gourio (2012) and Kilic and Wachter (2015) build general equilibrium mod-

els where an exogenous increase in the likelihood of a disaster leads to endogenous declines in

macroeconomic activity, even without the realization of a disaster. Consistent with these mod-

els, from April 1996 to April 2015, an increase in p§
t forecasts significant reductions in employ-

ment, industrial production, total capacity utilization, and manufacturing activity. Moreover,

the predictive power of p§
t outperforms standard financial market indicators like the shape of

the Treasury yield curve, the real federal funds rate, and aggregate stock market performance.

The rare disasters paradigm also makes a strong prediction for how time-series variation

in the probability of disaster relates to the cross-sectional performance of stocks. Intuitively,

stocks that rise in value as disasters become more likely are valuable hedges against macroeco-

nomic crises. As a result, these stocks earn low risk premiums relative to stocks that fall in value

as disasters become more imminent. Still, the operational assumption behind this intuition is

that one can empirically measure the comovement of stocks with the probability of a disaster.

This is another reason why my estimate of p§
t is so useful.

To test the model’s prediction that disaster risky stocks require a premium, I implement a

simple real-time trading strategy. Specifically, I sort stocks into portfolios based on how much

they comove with changes in p§
t . As implied by the model, I find that disaster risky stocks —

those that lose value as p§
t increases — outperform low disaster risk stocks by nearly 7.6% per

year, even after accounting for exposure to standard risk factors. In other words, disaster risk

appears to be priced in the cross section of U.S. equities, and the premium for bearing disaster
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risk is about 7.6% annually.

In the final part of the paper, I make stronger assumptions about the mean frequency and

severity of disasters, as well as preferences. This allows me to quantitatively compare a cali-

brated version of the model to aggregate stock market movements and the cross section of eq-

uity returns. For example, I ask the model how much the stock market should move in response

to changes in p§
t . Empirically, I find that when p§

t increases, the market declines by an amount

that is quantitatively matched by the calibrated model. This finding is also in line with Barro

(2009), who shows that disaster models with Epstein-Zin-Weil preferences require an elasticity

of substitution greater than one in order for the aggregate stock market to decline as disasters

become more likely.

In a similar fashion, the calibrated model also yields predictions for how much disaster risky

stocks must fall in a crisis in order to justify their large returns. I then compare this to how much

these stocks actually fall during the 2008 U.S. financial crisis. Along this dimension, the data

also matches the model reasonably well. In the model, disaster risky stocks must fall by 57% in

a disaster to warrant their high average returns. During the crisis, these same stocks lose about

51% of their value, though many of these stocks benefited from the unprecedented intervention

of the government into U.S. capital markets.

Literature Review

The first major contribution of this paper is to estimate time-series variation in the risk-neutral

probability of a disaster, and the primary asset class that I use is the options market. As men-

tioned earlier, much of the existing research begins from the assumption that the disaster ar-

rival rate is i.i.d. Backus, Chernov, and Martin (2011) use option prices on the S&P 500 to esti-

mate a structural model under this i.i.d assumption. Their findings show that options markets
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imply that disasters happen much more frequently (yet with less severity) than suggested by

consumption data (Barro (2006) or Barro and Ursua (2008)). However, Seo and Wachter (2015)

note that with persistent and time-varying disasters, parameters from consumption data on

disasters can actually generate realistic option prices.2 Thus, drawing conclusions about rare

disasters from option prices depends heavily on model specification, particularly on the time-

varying nature of disasters.

To circumvent any misspecification issues, my estimate of time-series variation in the prob-

ability of disaster is non-parametric and uses options on a large cross section of firms; at the

firm level, my jump risk measure applies to very general return processes and is not necessarily

linked to a disaster model. This is useful because it allows me to first characterize the option-

implied tails of many different firms, and then check whether the data is consistent with the

disaster model. In turn, the fact that this cross section of jump-risk measures is driven by a com-

mon and time-varying factor is in strong agreement with, among others, Barro (2006), Gabaix

(2012), and Seo and Wachter (2015).

The second major contribution of this paper is to provide evidence in favor of the rare disas-

ters paradigm using the cross section of U.S. equity returns. Much of the literature has focused

on whether disasters can rationalize the returns of the aggregate stock market, though it is im-

portant to ask whether these models can also explain the cross section of stock returns. Gao and

Song (2015) find evidence that jump risk is priced across a wide range of asset classes, though

their focus is on broad market indices instead individual stocks. My finding that disaster risk is

priced in the cross section of U.S. equities is also consistent with Cremers, Halling, and Wein-

2The intuition of their findings is as follows: when disasters are time-varying, movements in the probability of
the disaster lead to movements in price-dividend ratios. This generates volatile price-dividend ratios, even if the
disaster never occurs. Without this mechanism, the volatility of price-dividend ratios in normal times appears too
low relative to the volatility of consumption growth in normal times. In turn, models without time-varying disaster
risk will generate large pricing errors for options with strikes that are near the current spot price (at-the-money).
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baum (2015), however their focus is on high-frequency (i.e. daily) jumps, not macroeconomic

disasters.3 Perhaps the closest companion to this paper is Farhi, Fraiberger, Gabaix, Ranciere,

and Verdelhan (2014), who study how disasters impact foreign exchange markets. These au-

thors use a version of the rare disaster model to link currency option premiums to carry trade

premiums. Importantly, I too map my empirical findings to a standard rare disasters model.

This provides me an additional way to evaluate the rare disaster model because I can compare

the cross-sectional pricing results with the predictions of a calibrated version of the model.

Along this dimension, the rare disaster model also holds up reasonably well to the data.

2 Theoretical Motivation

In this section, I first present a non-parametric measure of jump risk that can be constructed

using observed option prices on any given firm. I then use a standard model of time-varying

disasters to map this jump-risk measure to model quantities. Through this process, it is easy

to see that rare disaster models impose a tight restriction on how jump-risk measures should

comove across firms. This restriction then forms the basis of my empirical work in Section 3.

2.1 A Non-Parametric Measure of Jump Risk

As mentioned, my estimate of time-series variation in the probability of a disaster is non-parametric.

To develop this idea further, I need to first introduce the concept of the risk-neutral probabil-

ity measure and the physical probability measure. The physical probability measure describes

different states of the world according to their actual likelihood of occurring. The risk-neutral

3Other evidence of tail risk being priced in the cross section of equities can be found in Kelly and Jiang (2014),
who rely on extreme value theory to learn about the tails of asset prices from realized stock returns (not options).
Bollerslev, Todorov, and Xu (2015) also use options to relate jump risk to stock returns. They use S&P 500 options
to parametrize option-implied tails and find that their estimated jump risk premia forecast future stock returns.
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measure instead weights states of nature according to marginal utility in those states. Naturally,

states in which marginal utility is high (i.e. recession states) have a higher risk-neutral likeli-

hood than a physical likelihood. In fact, risk-neutral probabilities are just Arrow-Debreu state

prices, appropriately normalized so that they correspond to a probability measure. In any equi-

librium model, the mapping between risk-neutral and actual probability measures is therefore

determined entirely by the pricing kernel implied by the model.

Without imposing a specific asset pricing model, suppose that equilibrium stock returns for

firm i evolve according to the following stochastic differential equation under the risk-neutral

measure:
dP§

i t

P§
i t

=µ§
i t d t +æ§

i t dW §
i t + (F§

i t °1)d J§i t (1)

where Pi t is the stock price of firm i at time t . Here, I am using the § superscript to make clear

that we are examining returns under the risk-neutral probability measure. According to this

reduced-form specification, risk-neutral returns are subject to two-shocks. The first is a dif-

fusive Brownian motion shock, dW §
i t , where the risk-neutral volatility æ§

i t of the total diffusive

portion of returns is left unspecified.

The second is a “jump” shock, captured by the process d J§i t . d J§i t takes a value of 1 if a jump

occurs over the next instant, and 0 if not. The risk-neutral Poisson arrival rate of jumps is time

varying, firm specific, and denoted by p§
i t . Hence, a jump happens over a small time interval,

d t , with a risk-neutral probability of p§
i t d t . When a jump does occur, the size of the jump is

governed by the stochastic variable F§
i t . For instance, if F§

i t = 0.9, then the stock price will drop

by 10% when a jump occurs. In addition, I assume that F§
i t and p§

i t are independent, and that

the risk-neutral distribution of F§
i t is time-invariant. Later, I discuss the importance of these

assumptions when interpreting my empirical findings.

The risk-neutral return process in Equation (1) is intentionally quite general, and therefore
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nests the equilibrium outcome of many different asset pricing models.4 Importantly, different

asset pricing models will lead to different restrictions on the shock processes, dW §
i t and d J§i t .

I am specifically interested in what rare disaster models imply about the process d J§i t , both

theoretically and empirically.

In this general case though, recent developments in option pricing theory suggest a way to

use observed option prices to learn something about p§
i t . In particular, Du and Kapadia (2013)

develop a measure of jump risk that can be inferred from option prices, which I denote byDi t (ø)

for “disaster risk”. Di t (ø) is the value of a simple portfolio of call and put options on firm i and

formed on date t . It consists of options written across many different strike prices, all with

maturity of ø. The exact details of this measure can be found in Appendix C.

To develop some intuition now, consider the popular VIX index. The VIX is the price of a

portfolio of call and put options written on the S&P 500. In the absence of jumps, the value of

the VIX (squared) is the expected risk-neutral variance of the S&P 500 over the next month, or

≠i t (ø) := E§t

h´ t+ø
t

°

æ§
i s

¢2 d s
i

for i = S&P 500 and ø = 30 days. However, when risk-neutral re-

turns are subject to jumps, the VIX is a biased estimate of≠i t (ø).5 The reason is that jumps cre-

ate additional return volatility, as squared returns can come from continuous diffusive move-

ments or discontinuous jumps. As pointed out by Du and Kapadia (2013), it is possible to design

an alternative option portfolio — one whose value is Di t (ø) — that isolates the bias in the VIX

that is induced by jumps. In turn, Di t (ø) captures the “extra” variation that jumps create for

risk-neutral returns. In Appendix C, I also use a stylized example to deepen the intuition of why

Di t is able to isolate jumps.

More specifically, Carr and Wu (2009) and Du and Kapadia (2013) show that when risk-

4The only restriction is the standard no-arbitrage requirement that the discounted risk-neutral stock price is a
martingale. This implies that µi t = r f t °p§

i tEt [Fi t °1], where r f t is the instantaneous riskless rate.
5This point has been made by, among many others, Martin (2013) and Carr and Wu (2009).
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neutral returns evolve according to Equation (1), Di t (ø) captures the following notion of firm

i ’s jump risk from time t to t +ø:

Di t (ø) = ™i £p§
i t (ø)

With some abuse of notation, I use p§
i t (ø) := E§t

h´ t+ø
t p§

i sd s
i

to denote the risk-neutral expected

likelihood of a jump from t to t +ø. ™i is a firm-specific constant that depends on the distribu-

tion of Fi t . The exact expression for™i is given in Equation (47) of Appendix C.6.6

In my empirical work, I will use observed option prices to form a Di t (ø) measure for a very

large panel of firms. It should be clear by now that this measure is non-parametric in the sense

that its construction and interpretation are not anchored to any specific asset pricing model.

My next task is to map Di t (ø) to a standard model of time-varying disasters. This will generate

a key testable prediction for how Di t (ø) measures should comove across firms.

2.2 Mapping to a Rare Disasters Model

I now solve a continuous time generalization of the endowment economy in Gabaix (2012). In

the main text, I present only the basic ingredients of the model and the important equilibrium

outcomes. The full details of the model can be found in Appendix A. The purpose of this exercise

is to develop intuition for how the Di t (ø) measures from the previous section should behave

under the null of the model.
6To be clear, Di t captures any expected discontinuities in the risk-neutral return process, though it is not pos-

sible to infer the size of the discontinuity (jump) from Di t alone. An alternative notion of disaster risk could be to
look at risk-neutral probabilities implied by deep out-of-the-money put options. The advantage of this approach
is that one could say something about the size of the expected disaster, yet the disadvantage is that it requires
one to observe deep enough out-of-the-money puts. In rare disaster models, the extreme negative tail risk of the
economy is almost always modeled as a pure jump, in which case the two measures should coincide.

10



2.2.1 Model Primitives

Aggregate Consumption To start, the aggregate endowment evolves as follows:

dCt

Ct°
= gC d t +æC dWC t + (Bt °1)d Jt

where WC t is a standard Brownian motion and Jt is a jump process that represents macroeco-

nomic disasters. d Jt takes a value of one if a disaster occurs and zero otherwise. The Poisson

arrival rate of disasters is time varying and denoted by pt . Hence, a disaster happens over a

small time interval, d t , with a probability pt d t . The variable Bt > 0 captures the magnitude of

a consumption disaster when it occurs. For example, a value of Bt = 0.8 means that when a dis-

aster occurs, aggregate consumption drops by 20%. I further assume that the intensity process

describing disaster arrivals, pt , is independent of the magnitude of a disaster, Bt . The Brown-

ian motion WC t is independent of Jt and Bt , which means that in the absence of disasters (i.e.

normal times) consumption growth is i.i.d log-normal with a volatility of æC .

Preferences I assume the representative agent has recursive preferences as in Epstein and

Zin (1989) and Duffie and Epstein (1992). The main advantage of recursive preferences is the

ability to decouple the agent’s elasticity of intertemporal substitution, √, from risk aversion, ∞.

In a discrete time setting, Epstein and Zin (1989) show that the representative agent’s stochastic

discount factor can be expressed as:

Mt+ø
Mt

= e° Ω
¬ø

µ

Ct+ø
Ct

∂° 1
¬√

R1/¬°1
C ,t+ø

where ¬ = (1°1/√)/(1°∞) and RC ,t+ø is the gross return of a claim to aggregate consumption

between t and t +ø. Here, Ω captures the rate of time preference of the agent. When solving the
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model, I obtain the stochastic discount factor by taking the continuous time limit of the discrete

time stochastic discount factor, i.e. as ø& 0.

Setup for Individual Stocks A generic stock i is defined as a claim to a stream of dividends

(Di t )t∏0, where dividends grow according to:

dDi t

Di t°
= gi D d t +d N D

i t + (Fi t °1)d Jt

The dividend growth shock N D
i t is a martingale so that Et

£

d N D
i t

§

= 0 and is independent of the

disaster event. The higher moments of N D
i t are left unspecified for now. In equilibrium, only

the first moment of d N D
i t will be important for determining the level of asset prices. In normal

times, dividends grow at an expected rate of gi D , but if there is a disaster, the stock dividend

experiences an additional shock, Fi t . Fi t > 0 captures how much dividends recover during a

disaster. For instance, if Fi t = 0.9, then dividends drop by 10% when a disaster arrives. Firms

with high values of Fi t therefore perform better during a crisis. The important thing to note

at this juncture is that, inside of the model, firm dividend growth and aggregate consumption

growth are both exposed to the same aggregate “jump” process, Jt . This is the sense in which

disasters are macroeconomic — they impact all firms in the economy at the same time.

In order to compute equilibrium stock prices, we must put more structure on the arrival rate

of disasters (pt ), the recovery rate of disasters at the macroeconomic level (Bt ), and the dividend

recovery rate during a disaster (Fi t ). One way to accomplish this is to model the dynamics of

pt , Bt , and Fi t separately. Wachter (2013) is one example of this approach, as she models pt as

a Cox, Ingersoll, and Ross (1985) process. Alternatively, Gabaix (2012) models the dynamics of

pt , Bt , and Fi t jointly, which I adopt in continuous time here. I do so through a variable called

resilience, Hi t , which summarizes how a firm is expected to perform if a disaster occurs over the
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next instant, d t . I define stock i ’s resilience exactly as in Equation (31) in Appendix C; however,

in Appendix C I also show that a very good approximation that is more useful for understanding

the underlying economics in the model is:

Hi t = ptEt°
£

B°∞
t

°

Fi t + (¬°1)Bt
¢

°¬
§

+
æ2

C

2
∞(1+∞)

It is easy to see that firms that are expected to perform well in a disaster (i.e. firms whose div-

idends recover a lot) have high values of Fi t , and thus are high resilience stocks. For ease of

notation, I drop the limit notation of Et° and replace it by Et , except when it is necessary to

distinguish the two.

Resilience itself is modeled as a linearity generating (LG) process as in Gabaix (2009). Linear-

ity generating processes behave, in an approximate sense, like an AR(1) process. The distinction

between an LG process and an AR(1) process is subtle; however, LG processes are useful in eco-

nomics because they deliver linear expressions for equilibrium price-dividend ratios without

needing log-linearizations.7 As is common in macroeconomics, I further decompose resilience

into a long-run mean, Hi§, and deviations from that mean, Ĥi t :

Hi t = Hi§+ Ĥi t

In turn, firm i ’s resilience (deviations from mean) evolves according to the following stochastic

7Wachter (2013) and Seo and Wachter (2015) are examples of rare disasters models that uses log-linearizations.
Indeed, in order to ensure model tractability, these authors adopt an IES of 1.
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differential equation:

d Ĥi t = °¡H ,i Ĥi t d t ° Ĥ 2
i t d t +d N H

i t

º °¡H ,i Ĥi t d t +d N H
i t

where N H
i t is a martingale. It is easy to now see the relationship between an AR(1) process and

an LG process. The term °¡H ,i Ĥi t d t would be present in the continuous time analogue of an

AR(1) process, and so ¡H ,i determines the speed of mean reversion for the resiliency process.

It is sensible that resilience should behave similarly to an AR(1) process — if a firm has high

resilience today, it is likely that resilience tomorrow is also high. The “extra” term, °Ĥ 2
i t d t , is

unique to the LG class, and in practice is quite small because Ĥi t captures deviations from the

mean of resilience.8 With the primitives of the model specified, I now turn to analyzing the

equilibrium of this economy.

2.2.2 Equilibrium

In Appendices A and C, I derive the following equilibrium quantities: (i) the riskfree rate r f t ; (ii)

the wealth-consumption ratio; (iv) the price-dividend ratio of a claim to an arbitrary stock; (v)

equilibrium returns under the physical measure, and (vi) equilibrium returns under the risk-

neutral measure. For much of my empirical work, I will focus on the equilibrium returns of

an arbitrary stock i under the risk-neutral measure. In the model, risk-neutral returns take a

8As noted in Gabaix (2009), there are restrictions on the variance of the noise process d N H
i t that ensure prices

remain positive. In Appendix C.3, I provide one example of a process that satisfies the restrictions and is also
internally consistent with the rest of the model.
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simple form:

dP§
i t

P§
i t

= r f t d t +æi t dW §
i t °ptEt

£

B°∞
t (Fi t °1)

§

d t + (Fi t °1)d J§t

where W §
i t is a Brownian motion under the risk-neutral measure and æi t is defined in Equation

(35). d J§t is the disaster process under the risk-neutral measure and it arrives at a risk-neutral

rate of p§
t := ptEt

£

B°∞
t

§

. It is useful at this point to compare p§
t to pt . When disasters are bad

for the economy (Et [Bt ] < 1), then the risk-neutral likelihood of a crisis is higher than the actual

likelihood, i.e. p§
t > pt . This occurs because the risk-averse agent prices assets as if disasters

are more likely than they actually are in nature.

Armed with risk-neutral equilibrium returns, it is also straightforward to work out that the

jump-risk measure Di t (ø) from Section 2.1 maps to the following quantity inside of the model:

Di t (ø) =™i £p§
t (ø) (2)

where p§
t (ø) := E§t

h´ t+ø
t psB°∞

s d s
i

is the risk-neutral expected probability of a disaster from

time t to t + ø. Again, the exact expression for ™i is given in Equation (47) of Appendix C.6

and it depends on the higher moments of Fi t . In deriving the mapping between the model and

Di t (ø), the working assumption that I have made is that the distribution of disasters Fi t is time-

invariant and independent of the size of the aggregate recovery rate, Bt . These assumptions

are made for the sake of parsimony, and I discuss how they impact the interpretation of my re-

sults in Section 3.2. Often times, I will drop the argument ø and simply write p§
t ; in this case,

the reader can assume that ø = 30 days, which corresponds to the horizon that I study in my

empirical analysis.

The important takeaway at this juncture is that at each time t , rare disasters models imply
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that all cross-sectional variation in Di t (ø) is driven by variation in ™i . This holds true only

because p§
t (ø) is common to all firms in the economy. Indeed, we saw in Section 2.1 that when

each firm has its idiosyncratic probability of a jump p§
i t (ø), cross-sectional variation in Di t (ø)

was instead driven by variation in both™i and p§
i t (ø). In other words, the rare disasters model

restricts the risk-neutral probability of a jump to be the same across all firms, p§
i t (ø) = p§

t (ø).

Econometrically, this means that under the rare disasters hypothesis, a panel ofDi t (ø) should

obey a latent factor structure that is linear in a single factor. To see this more forcefully, suppose

that my estimate ofDi t (ø) is denoted by bDi t (ø). Further suppose that the trueDi t (ø) is measured

with some idiosyncratic measurement error, ei t , such that:

bDi t (ø) = Di t (ø)+ei t

= ™i £p§
t (ø)+ei t (3)

The idiosyncratic measurement error can be interpreted as pure noise in the option prices

or as unmodeled idiosyncratic jump risk.9 Because we do not observe™i or p§
t (ø), Equation (3)

is a latent factor model. As is well-known in latent factor analysis, the loadings (™i ) and the fac-

tor (p§
t (ø)) are not separably identifiable. Thus, we can estimate time-series variation in p§

t (ø).

Nonetheless, this procedure cannot pin down the mean of p§
t (ø), though it would certainly be

useful to do so given that the academic debate about these models has centered around how

often (and severe) disasters actually happen. Still, the critical assumption underlying the entire

class of rare disaster models is that p§
t (ø) is common to all firms, and this easily testable hypoth-

esis forms the basis for the empirical work in this paper.10 Finally, to avoid notional confusion,

9For instance, consider a case where each firm is exposed to a systematic jump risk factor and an idiosyncratic
jump risk factor. In this case, it is possible to show that Di t (ø) will be linear in both jump-risk factors. In turn, the
idiosyncratic jump risk factor will just be absorbed into the noise term ei t .

10For the entire class of rare disaster models, the pricing kernel is subject to large and rare jumps, corresponding
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I will henceforth not distinguish between Di t (ø) and bDi t (ø); however, implicit in my remaining

analysis is the latent factor structure and measurement errors that are defined in Equation (3).

3 An Estimate of the Risk-Neutral Probability of Disaster

In this section, I build measures of Di t (ø) using a large cross section of option prices, thereby

allowing me to test the model’s central prediction that Di t (ø) should be governed by a single

factor. This procedure also provides me a way to extract an estimate of the risk-neutral proba-

bility of a disaster, p§
t . Finally, in the latter part of the section I explore the predictions of general

equilibrium models of disasters by relating p§
t to future economic activity.

3.1 Construction and Data Description

As alluded to earlier, each jump risk measure Di t (ø) is really just a portfolio of call and put

options written on firm i , as of date t . Thus, to construct each Di t (ø) measure, I proceed in

two steps: (i) collect option prices (across strike prices) of maturity ø on date t ; (ii) combine call

and puts of different strikes according to the portfolio weights in Du and Kapadia (2013). Di t (ø)

is simply the resulting price of the portfolio. The exact weights take a fairly complex form, and

explicit formulas can be found in Appendix B.1.

The data used to construct the panel ofDi t (ø) comes from OptionMetrics. For each firm and

each date, I collect only out-of-the-money (OTM) options that meet the following criteria: (i)

open interest is strictly positive, (ii) best offer minus best bid is strictly positive, (iii) best bid is

strictly positive, (iv) no special settlement; (iv) the maturity of the option is greater than 7 days;

to large increases in marginal utility. If this is the case, then risk-neutral returns for all firms in the economy will
be exposed to a common jump process. Thus, the arguments in this section are not necessarily tied to this specific
disaster risk model.
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and (vi) implied volatility is not missing. This screening procedure requires me to merge raw

option prices with underlying security information, which I obtain from OptionMetrics as well.

The construction of my final measure proceeds in a two steps. I first compute a Di t (ø)

according to Equation (20) for each available option maturity on date t . Next, I compute a

Di t (ø= 30 days) by linearly interpolating between theDi t (ø) for maturities that straddle 30 days.

For the remainder of the paper and with some abuse of notation, I use Di t to denote the 30-day

implied measure. A complete description of this procedure can be found in Appendix B.

The end result is a panel of Di t (ø = 30 days) for 6,762,860 firm-day pairs. For each firm, I

also construct a monthly measure by averaging within each month. For example, if the current

month is January 1997, then the monthly measure of Di t effectively represents the risk-neutral

expected jump risk of firm i during February 1997. When aggregating to a monthly measure, I

require that each firm has at least 70% of its daily observations available for that month.

3.2 Results

I begin my empirical analysis by conducting principal component analysis on the panel ofDi t . I

analyze the monthly Di t because it allows me to study a larger cross section of firms, and it also

smooths daily measurement noise. To be included in the analysis, a firm must have its entire

time-series available for the period January 1996 to May 2015, leaving 242 firms in total.11

Figure 1 indicates that there is a strong one-factor structure driving time-series variation in

Di t across firms. The first principal component is dominant, explaining nearly 50% of the vari-

ation across Di t . The remaining principal components are much weaker. The second principal

11Specifically, a firm must have at least 70% of its daily observation in a month to be included. Principal compo-
nent analysis is conducted on the correlation matrix of monthly Di t . This analysis applies to the set of firms with
at least 80% of its monthly observations. To generate the time-series of the factor, I fill missing data in with mean
values. The results are not sensitive to these choices.
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component captures a little over 10% of variation and the third component accounts for less

than 5%. The factor structure inherent in Di t is consistent with the model’s core assumption of

a single disaster event driving asset prices for all firms in the economy. I therefore interpret the

first extracted principal component as p§
t . Appendix B.6 contains a more detailed mapping of

the extracted factor to model quantities.

Figure 2 displays the time-series of the risk-neutral probability of disaster. It is clear that

p§
t is very persistent (monthly AR(1) coefficient of 0.91), which is what we would expect if it

reflects the likelihood of macroeconomic crises. It also seems reasonable to view p§
t as the

probability of disaster based on its evolution through time, as its peaks correspond to some

well-known crisis episodes. For instance, p§
t spikes after the terrorist attack on the United States

in September 2001. Similarly, it rises in July 2002 in response to WorldCom filing for bankruptcy

(at the time this was the largest corporate insolvency ever), increased turmoil in the Gaza Strip,

and an earthquake in Germany.

The focal point of rare disasters models is large drops in aggregate consumption, and wars

are often cited as an example of these deep recessions. Consistent with this notion, a prolonged

period of high disaster probability occurs at the onset of the U.S.-Iraq War. Moreover, the tech-

nology bubble that burst at the end of the 1990s does not seem to have the same effect on

disaster likelihood as the war, indicating that recessions don’t drive all movements in this time

series.

The period from 2002 to 2007 corresponds to a relatively low value for p§
t , with disaster risk

rising at the beginning of the U.S. financial crisis in August 2007. The massive increase in p§
t in

October 2008 followed the bankruptcy of Lehman Brothers in September 2008 and a series of

global stock market crashes at the end of October 2008. The maximum for the sample occurred

in November 2008, the same month that the U.S. government injected $40 billion into AIG, a
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proposal to bailout U.S. automakers failed in the U.S. Senate, and the government injected $20

billion into Citigroup. Overall, the six largest months for p§
t occur during the pinnacle of the

U.S. financial crisis from October 2008 to March 2009.

There is another spike in May 2010 following the so-called “flash crash” and the spread of the

European debt crisis as Spain, Portugal, and Greece all saw their economic conditions worsen

significantly. The last major rise in disaster probability occurs in August 2011, when there were

concerns about the European sovereign debt crisis worsening, as well as worries over a potential

downgrade of the creditworthiness of U.S. debt.

In Table 1, I compute the correlation of p§
t with other popular financial market indicators,

both in levels and first differences. Unsurprisingly, periods of high p§
t coincide with low prices,

as evidenced by the -23% correlation in levels (-50% in first differences) with the price-dividend

ratio of the S&P 500. In addition, p§
t appears to be modestly correlated with the TED spread

(50% in levels, 35% in first differences), indicating that a rise in the risk-neutral probability of

a disaster occurs when financial market liquidity dries up.12 Finally, changes in p§
t display a

modest negative correlation with innovations to financial intermediary leverage (Adrian et al.

(2014)), suggesting that financial firms deleverage as disaster risk increases. In sum, the evo-

lution of p§
t and its correlation with other financial market variables are consistent with the

interpretation that p§
t measures variation in the risk-neutral probability of a disaster.

Alternative Interpretation I have interpreted the common factor driving movements inDi t as

measuring changes in the risk-neutral probability of a disaster, p§
t . An equally plausible inter-

pretation is that I’m picking up common movements in the severity of disasters, and I certainly

12Unsurprisingly, p§
t is highly correlated with disaster risk DSP X of the S&P 500 index (88% in levels, 69% in first

differences). However, a closer inspection of the two series reveals the advantage of estimating p§
t using principal

component analysis instead of directly using DSP X ; the mean-to-variance ratio of p§
t is about 0.79 whereas the

same ratio forDSP X is 0.53. Insofar as this metric captures the signal-to-noise ratio of a series, then p§
t is measured

with 50% more precision than DSP X .
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can’t rule this out, nor do I really need to. To see why, consider the most general case where

aggregate disaster probability (pt ) and recovery (Bt ) are time-varying, and so is the distribution

of firm-level disaster recovery (Fi t ). Without any loss of generality, we can assume that™i t — a

function of the distribution of Fi t — can be decomposed into a common component, ™t , and

an idiosyncratic component, ªi t . In this case it is easy to show that the jump-risk measure Di t

corresponds to:

Di t = p§
t ™t +p§

t ªi t

which implies that there should be one very strong factor driving Di t , and potentially a weaker

second factor, depending on the variability of ªi t . Because the data broadly supports this gen-

eral case, my focus is on the first extracted factor. The larger point here is that the factor struc-

ture of theDi t tells us something about common time-series variation in the probability and/or

severity of a jump across all firms. Rare disaster models make strong predictions for what this

common variation should look like, and this is really what I’m taking advantage of in this paper.

As we will also see, the distinction between a common time-varying probability versus severity

of a disaster is not particularly important for my remaining empirical findings.

3.3 p§
t and Future Economic Activity

If movements in p§
t are in fact capturing macroeconomic disaster risk, then it is natural to ex-

pect p§
t to relate to broader macroeconomic activity. Indeed, Gourio (2012) builds a general

equilibrium model where disasters impact both total factor productivity (TFP) and the aggre-

gate capital stock. A key insight of this model is that an increase in disaster likelihood — not

necessarily a realization of a disaster — can itself have a profound impact on the macroecon-

omy. For instance, when the likelihood of a disaster increases, firms reduce investment because
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physical capital becomes riskier. In addition, an imminent disaster reduces the return on sav-

ings, meaning unemployment increases because work today is less attractive. Kilic and Wachter

(2015) also build a model where disaster risk increases unemployment by lowering job-creation

incentives. Like in Gourio (2012), future unemployment responds to disaster risk itself without

needing an actual shock to labor productivity.

To empirically test whether an increase in the probability of a disaster leads to contractions

in economic activity, I conduct simple forecasting regressions of the following form:

Yt+1 = c +
X4

i=1∞i Yt+1°i +¡
0
Xt +Øp§

t +ut+1

where Yt+1 is a measure of economic activity and Xt is a vector of competing forecasting vari-

ables. The macroeconomic activity measures that I use are as follows: the (i) change in the un-

employment rate; (ii) percentage change in the Industrial Production Index; (iii) change in total

industry capacity utilization; and (iv) percentage change in the ISM Manufacturing Invento-

ries Index.13 Following Gilchrist and Zakrajsek (2012), I use standard financial market variables

as my competing forecasting variables. Specifically, Xt includes the real federal funds rate, the

term spread from U.S. treasury yields (10-year minus 3-month constant maturity yield), and the

excess return of the CRSP-value weighted index.14

The forecasting regression results in column (1) of Panels A-D in Table 2 indicate that p§
t is

statistically a highly significant predictor of future economic conditions. Also consistent with

theory, an increase in p§
t forecasts an economically meaningful decline in activity. For instance,

a one standard deviation increase in p§
t translates to an increase in unemployment of 0.065

13The unemployment rate comes from the Bureau of Labor Statistics (series id = LNS14000000). The industrial
production index (series id = INDPRO), total capacity utilization (series id = TCU), ISM Manufacturing: Inventories
Index (series id = NAPMII) were obtained from the St. Louis Federal Reserve FRED database.

14The real federal funds rate is computed as the average monthly effective federal funds rate within month t ,
minus the growth rate of the PCE price index between months t °1 and t °13.
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percentage points (e.g. an increase from 5.8% unemployment to 5.865%). The U.S. labor force

is roughly 160 million people, so this translates to about 100,000 lost jobs per month. Moreover,

panels B-D in Table 2 suggest that investment does indeed fall as disasters become more likely.

A rise in p§
t leads to fairly large drops in total capacity utilization, industrial production, and the

manufacturing inventories index.

The results in column (1) of Panels A-D in Table 2 also indicate that, in the short-run, the

macroeconomy almost always responds more movements in p§
t relative to other popular finan-

cial market indicators. For instance, a one standard deviation increase in p§
t lowers industrial

production by 0.16% per month. This may not appear to be a particularly large response, yet

industrial production responds even less to the term spread, the real federal funds rate, and the

return on the aggregate stock market. Overall then, the forecasting exercise demonstrates that

p§
t contains important information about future economic downturns — information that is

also not contained in standard financial market indicators.

Additional Robustness It is natural to wonder whether these forecasting results are driven a

single data point, namely the 2008 financial crisis. To explore this idea further, I rerun the fore-

casting regressions, but exclude the NBER recession years from the crisis (December 2007 to

June 2009). Column (3) of Panels A-D in Table 2 indicates that the forecasting results generally

go through when excluding the crisis. The results are somewhat weaker though, as evidenced

by the lower forecasting R2. Nonetheless, when forecasting on future unemployment, indus-

trial production, and total capacity utilization, the magnitude and significance of the point es-

timates on p§
t are also fairly robust to excluding the crisis.

To further highlight the unique informational content of p§
t , in Column (2) of Panels A-D

in Table 2, I also include the VIX index in the forecasting regressions. Column (4) repeats the
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forecasting regressions with the VIX, but excludes the crisis period. The VIX is a natural bench-

mark in this setting because it also derives from option prices. Indeed, p§
t is 85% correlated

with the VIX in levels and 63% in first differences. However, this is not really that surprising; as

shown by Du and Kapadia (2013) and Martin (2013), the VIX is a biased estimate of risk-neutral

volatility, and the bias comes precisely from the jump component of risk-neutral returns.15 Put

differently, the VIX contains information on both disasters and normal-times volatility, whereas

p§
t measures only time-varying disaster risk.

In a majority of cases, the inclusion of the VIX does not drive out the forecasting ability of

p§
t . In all specifications, both with and without the crisis, the point estimate on p§

t is basically

unchanged when including the VIX. Moreover, in five out of eight cases, p§
t remains statistically

significant at a 10% confidence level. The latter finding is somewhat surprising, given that one

would expect the standard errors in the regression to rise because the VIX and p§
t are highly

correlated. Moreover, the VIX has economically small point estimates in nearly all specifica-

tions. In total, it therefore seems reasonable — and consistent with rare disaster models — to

conclude that p§
t is a unique and robust forecaster of future economic activity.

4 Disaster Risk and The Cross Section of Equity Returns

Thus far, much of the empirical analysis has centered around the model’s predictions for the

factor structure in option-implied jump measures and the estimation of p§
t , a single measure of

aggregate disaster risk. Still, the model makes strong predictions for the cross section of equity

returns as well. The easiest way to see this is from Theorem 2 in Appendix A, which states that

the expected excess returnµi t °r f t for an arbitrary stock i is decreasing in the expected amount

15In fact, theDi t measure constructed earlier takes advantage of this bias to isolate jump risk from option prices.
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that it recovers during a crisis, Fi :

µi t ° r f t = ptEt
£

B°∞
t (1°Fi t )

§

This result makes intuitive sense because if a firm is expected to recover a lot during a crisis

(high Fi t ), it should command a low risk premium. To this end, if given an estimate of Et [Fi t ]

at each point in time, one could sort stocks based on Et [Fi t ].16 In turn, the model predicts that

stocks with high values of Et [Fi t ] should earn low average returns, and vice versa. The following

proposition provides a simple way to operationalize this using basic OLS regressions and my

estimated p§
t .

Proposition 1. Within the model, consider an OLS regression of realized returns for firm i , r i
t , on

changes in the risk-neutral probability of disaster:

r i
t = a +Øi¢p§

t +ei
t

Assume Bt and Fi t are independent and that expectations of these variables are constant over

small increments. Then Øi is increasing in Et [Fi t ], i.e. @Øi /@Et [Fi t ] > 0. This is true even if the

true mean of p§
t is unknown. Thus, firms with higher Øi should earn lower average returns.

Proof. See Appendix C.7.

The intuition of Proposition 1 is straightforward: stocks that move in tandem with p§
t (posi-

tiveØi firms) are valuable hedges against disasters. These stocks do not command high risk pre-

miums. Furthermore, even when the mean of p§
t is not known — the case for the p§

t estimated

in the previous section — the relative rankings based on Øi do not change. This is because the

16Clearly, this assumes that Bt and Fi t are independent.
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dispersion in Øi at each point in time is unaffected by the mean of p§
t .17 Henceforth, I call Øi a

firm’s “disaster-Ø” in order to distinguish it from the standard CAPM Ø.

It is also important to recognize that disaster-Ø’s are a good way to detect priced disaster

risk in more general settings. For instance, one could easily add idiosyncratic jumps to the

firm dividend process in the model. It is straightforward to workout that the model-implied

Di will be additive in the aggregate risk-neutral jump process, p§
t , and the idiosyncratic jump

process for each firm. In this case, Di will continue to obey a single-factor structure, with the

single factor still representing p§
t .18 Thus, disaster-Ø’s will still pick up on the priced disaster

component of each firm’s equity.

4.0.1 Empirical Implementation

In lieu of Proposition 1, I apply the following procedure. For each firm, I compute a weekly Di

by taking within-week averages of that firm’s daily Di . At the end of each month m, I extract the

first principal component of the previous year’s estimates of weekly Di . I call this my estimate

of p§
t for month m. Next, I regress firm i ’s weekly equity returns on ¢p§

t using data over the

previous year. This delivers an estimate of firm i ’s disaster-Ø. Finally, at the end of month m, I

sort equities into quintiles based on their estimated Øi . I hold these equal-weighted portfolios

for one month, then repeat the entire procedure. The sample of stocks that I examine comes

from CRSP. I consider only common stocks (CRSP SHRCD 10 or 11) that are listed on the NYSE,

NYSE Amex, or NASDAQ. To avoid penny stocks, I also exclude stocks with a share price of less

than $1 at the time of portfolio formation.

There are two aspects of this approach that are worth noting. First, the trading strategy is

fully implementable in real-time: p§
t and the Øi ’s are all estimated using only data that was

17i.e. Scaling p§
t by a positive constant c simply scales all Øi by c. It does not change relative rankings.

18i.e. the idiosyncratic jump will be absorbed into the noise term in the Equation (3).
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available at the end of month m. To further ensure tradability, I measure disaster-Ø’s on the

last business day of each month, but I form the portfolios at the end of the next business day.19

Second, I am able to discern which stocks are disaster risky, even if these stocks do not have

traded options. This is very useful because it allows me to examine the pricing implications of

the disaster model for a much broader set of equities.

To give an example of my empirical strategy, suppose I am standing at the end of January

1997. I first construct a weekly p§
t series using option data from January 1996-January 1997.

Next, for each firm in my CRSP sample, I regress weekly returns from January 1996 to January

1997 on ¢p§
t to get Øi . I then put firms with the largest Øi ’s into one portfolio, and so forth. I

form the portfolios on the first day in February 1997, hold them until the end of the month, and

then repeat the procedure.

Finally, following Frazzini and Pedersen (2014), I use a simple approach to estimating each

Øi :

Ø̂i =
Ω(r i

t ,¢p§
t )£æ(r i

t )

æ(¢p§
t )

whereæ(x) is the estimated volatility of series x, and Ω(y, x) is the estimated correlation between

x and y . A more detailed description of how I create these equity portfolios can also be found

in Appendix B.

4.1 Results

Table 3 provides summary statistics for the portfolios formed based on disaster risk. As ex-

pected, the raw average excess return is monotonically increasing in disaster risk. High disaster

risk stocks (portfolio 5) earn 12.26% in annualized excess returns whereas low disaster risk firms

19This means the market values used for value-weighting are as of the beginning of the following month. Simi-
larly, realized returns are computed from the first of the month to the end of the month.
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earn only 5.08%. Row 4 of Table 3 also suggests that disaster risky stocks tend to be smaller, with

an average market capitalization of about $1.47 billion.

The defining feature of disaster risky stocks is their sensitivity to movements in p§
t . As is

evident from the fifth row of Table 3, disaster risky stocks display a negative contemporaneous

relationship with changes in p§
t , whereas low disaster risk stocks have positive comovement

with p§
t . The dispersion in estimate disaster-Ø’s across quintiles is also quite strong, ranging

from 14 to -12. Later in Section 4.2, I use a calibrated version of the model to interpret these

estimated Ø’s further.

Table 4 displays the risk-adjusted returns for each portfolio, which are computed using ex-

posure to the three Fama-French factors and a standard momentum portfolio.20 Four-factor

alphas increase monotonically when moving from low disaster risk to high disaster risk. A port-

folio that is long disaster risky stocks and short low disaster risk stocks earns 7.56% in annual-

ized alpha (t-statistic of 2.35). Though the point estimate on the alpha for low disaster-Ø stocks

is measured imprecisely, the negative sign indicates that investors are actually willing to pay a

premium for firms that hedge their exposure to macroeconomic disasters.

Interestingly, the CAPM-Ø is relatively flat when moving from low to high disaster risk (row

3 of Table 4), suggesting that disaster-Ø contains information that is not captured by simple ex-

posure to the aggregate stock market. This finding is consistent with Gabaix (2012)’s argument

that CAPM-Ø may poorly measure disaster exposure due to a lack of realizations in the data.

This observation also highlights the usefulness of deriving disaster-Ø based on exposure to an

option-based measure, p§
t : one does not necessarily require a disaster to be realized in order to

measure disaster risk.

Rows 5 through 10 summarize the exposure of the disaster-sorted portfolios to the Fama-

20All risk factors were obtained from Ken French’s website.
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French size and value factors, as well as the standard momentum factor. Because there is not a

great deal of dispersion in the loadings on the Fama-French size factor, the long-short portfolio

(5-1) has only a slightly negative exposure to size. In a similar vein, the exposure of the 5-1

portfolio to momentum is nearly zero. On the other hand, it appears that disaster risky stocks

have some relation to value. The loadings on the value factor generally increase when moving

from low to high disaster risk. Nonetheless, the magnitudes of the loadings are not particularly

high, as the 5-1 portfolio has a value-Ø of only about 0.5. Thus, exposure to standard risk factors

does not seem to explain the dispersion of excess returns generated by differential disaster risk.

The last row of Table 4 presents the test that the alphas of portfolios 1-5 are jointly zero. As

indicated by a p-value of 1.3%, the null hypothesis of this test is strongly rejected. In summary,

these results suggest that disaster risk is priced in the cross section of U.S. equities. Consistent

with the model, disaster risky stocks require high excess returns and the premium for bearing

disaster risk appears to be around 7.6% per year.

Robustness

Tables 5 - 7 present various robustness tests of the claim that disaster risk is priced in the cross

section of equities. Table 5 constructs value-weighted, as opposed to equal-weighted, portfolios

based on disaster-Ø. The patterns are generally the same as the equal-weighted portfolios, with

the long-short portfolio earning an even higher alpha of 11.8% (t-statistic of 3.11). Like with

the equal-weighted case, the 5-1 portfolio does not have large loadings on the market, size, or

momentum portfolios. There still appears to be a relation between disaster risk and value in-

vesting. However, this relationship is not enough to explain the dispersion in alphas generated

by differential loading on disaster risk. The joint test that all portfolio alphas are equal to zero

is also strongly rejected.

29



In Tables 6 and 7 display the results of the portfolio sorts (both equal and value-weighted)

when disaster-Ø is computed using daily data, as opposed to weekly data.21 The results are only

slightly weaker, but there is a natural explanation for this. The estimate for p§
t is much noisier at

a daily level and stocks with thin trading have no daily price changes. The combination of these

two issues adds measurement error to the estimation of disaster-Ø’s, thereby creating much less

dispersion because disaster-Ø’s shrink towards zero. Nonetheless, from the first row of Tables 6

and 7, it is still the case that high disaster risk stocks earn higher risk-adjusted returns than low

disaster risk stocks. Moreover, when forming portfolios on a value-weighted basis, the 5-1 earns

a four-factor alpha of about 10% and this alpha is significantly different from zero in a statistical

sense. The joint test that all of the alphas are zero is also rejected at a 1% confidence level when

value-weighting.

4.2 Two Calibration Exercises

4.2.1 How Big Should Disaster-Ø’s Be?

For a calibrated version of the model, how sensitive should returns be to changes in p§
t ? To

simplify the calibration, I assume that Bt and Fi t are constants. Further, I assume that pt is

constant within each month. Together, these two assumptions deliver a simple expression for

the model-implied disaster-Øi .

Corollary 1. Suppose Bt and Fi t are constant, and pt is constant within each month. Consider

the regression:

ri t = ai +Øi¢p§
t +ei t

21To compute a daily disaster-Ø I estimate: ri t = ai +
P2

k=0Øi k¢p§
t°k + ei t , at a daily frequency. As is common in

the literature, the lags account for asynchronous trading. The disaster-Ø for firm i is then
P2

k=0Øi k . The regression
uses the previous quarter’s worth of data.
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where p§
t is the estimated risk-neutral disaster likelihood in Equation (21). Then Øi is a function

of model primitives:

Øi =
B°∞ °

Fi + (¬°1)B
¢

°¬
B°∞ °

±i +¡H ,i
¢

£™

where™ corresponds to the average™i = 2£
©

1+ ln(Fi )+ [ln(Fi )]2 /2°Fi
™

in the economy.

Proof. See Appendix C.8

Based on Corollary 1, I conduct a calibration exercise. Most of the parameters are close to

Barro (2006) and Gabaix (2012). For instance, I set B = 0.60, corresponding to a 40% drop in

consumption during a disaster. Similarly, I compute ™ by using the average F across firms. I

set F = B = 0.6, indicating that the aggregate stock market falls 40% in a crisis. This number

is roughly consistent with the recent experience during the 2008 U.S. financial crisis.22 I use

a modest risk-aversion of ∞ = 4, which in the previously mentioned studies is large enough

to match the unconditional average equity risk premium. Finally, I assume the intertemporal

elasticity of consumption (IES) is equal to 2, which produces ¬=°1/6).

Figure 3 generates a range ofØi for different values of firm recovery, Fi . All of the parameters

used in the calibration are listed along the top of the figure. As detailed in Proposition 1, Øi is

monotonically increasing in Fi . Loosely speaking, this is why sorting on Øi is equivalent to

sorting on Fi . Additionally, for reasonable values of Fi 2 [0.5,0.8], Øi ranges from about -25 to

15. The range of these model-implied disaster-Ø’s roughly matches their data counterparts, as

reported in row 5 of Table 3.

To hone the calibration further, in Table 8 I empirically estimate the disaster-Ø of the S&P

500 and find ØSP º °6.4. Under the current calibration exercise, the model implies that ØSP =
22Alternatively, one could easily incorporate uncertainty about the severity of disaster. For instance, Barro and

Jin (2011) estimate a power law distribution to the size of disasters. When the size of disasters is fat tailed, then
the average disaster size can be much smaller than 40% and still generate large risk premia. As this calibration is
largely illustrative, I use the simpler assumption of a constant disaster severity.
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°11.23 By no means is this comparison a formal test, but the model does line up reasonably well

with the data along this particular dimension. More broadly, the empirical fact that the market

falls in value as p§
t rises implies an IES greater than one. This point is also argued by, among

others, Nakamura, Steinsson, Barro, and Ursua (2013).

Assuming a constant firm recovery rate Fi t was useful in the current calibration exercise to

get a sense of average disaster-Ø’s. Still, how likely is it that Fi t is constant? The results in Table 8

also shed some light on this question. From Table 8, variation in p§
t can explain only about 25%

of the variation in aggregate stock returns. Gabaix (2012) finds a similar, albeit slightly smaller

value of 13%.24 In the context of the model, the fact that time-series variation in p§
t accounts for

a relatively small amount of return variation implies that the remaining movements are driven

by Fi t . It appears then that Fi t must vary through time, which is a one reason I estimate disaster-

Ø’s using rolling regressions when performing portfolio sorts.

4.2.2 Do Disaster Risky Stocks Fall Enough to Justify Their High Returns?

The results in this section suggest that disaster risk is a priced risk for the cross section of equity

returns. High disaster risk stocks earn high returns precisely because they are the most liable

to lose value during macroeconomic crises. To assess this statement within the model, I ask

a simple question: how much does the model imply disaster risky stocks must lose in order

to justify their returns? Then, I compare the model-implied loss rates to what we actually see

during the 2008 U.S. financial crisis, arguably classified as a macroeconomic disaster.

As a loose evaluation, I focus on the unconditional average (risk-adjusted) excess returns of

the disaster risk portfolios from earlier in the section. I infer a model-implied Fi for each portfo-

23Implicitly this means I set FSP = F = 0.6.
24The 13% comes via a regression of changes in the aggregate price-dividend ratio on changes in the real riskless

rate. The idea in that setting is that movements in the riskless rate reflect only pt .
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lio based on the equilibrium relationship µi t °r f t = pB°∞(1°Fi ). As in the previous calibration

exercise, I set the recovery of consumption during a disaster to B = 0.60 and risk-aversion ∞= 4.

Following Nakamura, Steinsson, Barro, and Ursua (2013), I also set the probability of a disas-

ter p = 0.028. For the sake of comparison, I compute the realized recovery of each portfolio as

(one minus) the minimum 12-month return over the period December 2007 to June 2009. This

period corresponds to the NBER recession that encompassed the financial crisis.

Table 9 collects the results of this exercise. The data is loosely in the line with the model,

though there are some interesting discrepancies. For portfolios 3-5, their realized recoveries

during the crisis are higher than the model-implied recovery rates. For instance, the portfolio

with the most disaster risk (portfolio 5) recovers about 49% of its value during the crisis, yet its

12.26% excess return implies that it should only recover 43% of its value. Nevertheless, there is

a natural reason why realized recovery rates may be higher than model-implied recovery rates,

at least for the more disaster risky stocks. During the financial crisis, the U.S. government con-

ducted unprecedented interventions into capital markets. In turn, government bailouts likely

put a lower bound on losses for disaster risky firms (e.g. financials), thereby inflating their re-

alized recovery rates. Nakamura, Steinsson, Barro, and Ursua (2013) also argue that realized

prices during disasters are likely to be distorted given that governments typically implement

various forms of price controls during crisis episodes.

The more puzzling discrepancy between the model and the data is for the least disaster risky

portfolio (portfolio 1). This portfolio recovered only 46% of its value whereas the model suggests

it should have recovered 76%. Still, it is likely that this difference is driven by the fact that there

is essentially one risk-factor in the model, perhaps suggesting that additional risk-factors would

better match the data. Overall though, the magnitudes of the realized recovery rates are at least

roughly consistent with those implied by the model.
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5 Conclusion

This paper provides evidence of a single factor that drives the cross section of option-implied

jump risk. I use a standard model of rare disasters to interpret this factor as the risk-neutral

probability of a disaster, p§
t . From 1996-2014, movements in p§

t correspond to well-known

crises, and also forecast declines in economic activity. In addition, I use p§
t to show that dis-

aster risk is priced in the cross section of U.S. equities: investors require a premium of 7.6% to

hold disaster risky stocks.

A benefit of my approach is that I estimate time-series variation in p§
t by starting from a

non-parametric measure of option-implied tail risk. This is useful because it makes almost

no assumptions on the data a priori, but the weakness is that I am not able to estimate the

average likelihood of a crisis. A natural next step is to apply a structural model of disasters to

the entire cross section of options. For instance, the model in Seo and Wachter (2015) applies

to the aggregate stock market, but one could easily extend it to an arbitrary cross section of

firms. Because the arrival rate of disasters is the same across firms (as shown in this paper),

the number of additional parameters that needs to be estimated is small, effectively one for

each firm. In addition, the cross section of options would add tremendous power in identifying

the parameters of the disaster arrival process itself. This approach should also become more

computationally tractable as computing power continues to increase.25

On the theoretical side, an important outstanding question is what drives time-variation

in the likelihood of a disaster in the first place? In this particular paper, I estimate the risk-

neutral likelihood of a disaster, meaning its time-series movement can be driven by changes

in the physical expectation of a disaster, changes in preferences, or both. In turn, what drives

25Santa-Clara and Yan (2010) estimate a similar model using only S&P 500 options and find the average estima-
tion time to be 2-4 hours. Using options across all strikes and all firms should make the problem more complex.
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changes to, say, the physical likelihood of a disaster in general equilibrium? A potential answer

could be found by linking the rare disasters literature to research on how financial intermediary

activity impacts capital markets and the real economy. Furthermore, I have also worked out of

a standard rational expectations framework, though it would be interesting to explore whether

changes in p§
t are driven by learning, sentiment, or other behavioral explanations.
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Figure 1: Principal Component Analysis of bDi Across Firms
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Notes: This figure displays the results of principal component analysis on the correlation matrix of firm disaster risk measures, bDi , extracted
from option prices. A monthly time-series of bDi is constructed by taking the within-month average of daily bDi for each firm i . A firm must have
at least 70% of its daily observation in a month to be included. Principal component analysis is conducted on the correlation matrix of monthly
bDi . This analysis applies to the set of firms with at least 80% of its monthly observations. The date range is from January 1996 to May 2015.
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Figure 2: Time-Series of p§
t
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Notes: This figure displays the first principal component from a panel of firm disaster risk measures, bDi , extracted from option prices. This factor
is interpreted as p§

t , the risk-neutral probability of a disaster. A monthly time-series of bDi is constructed by taking the within-month average
of daily bDi for each firm i . A firm must have at least 70% of its daily observation in a month to be included. Principal component analysis
is conducted on the correlation matrix of monthly bDi . This analysis applies to the set of firms with at least 80% of its monthly observations.
To generate the time-series of the factor, I fill missing data in as their mean. The results are not sensitive to these choices. Full details of the
procedure are contained in Appendix B.6. The date range is from January 1996 to May 2015 and the frequency is monthly.
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Figure 3: Calibrated Disaster-Ø
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Notes: This figure displays the model-implied disaster-Ø’s as a function of firm recovery in a disaster, Fi . Small values of Fi indicate firm i
experiences large losses in a disaster. Large and positive values of Øi indicate that firm i ’s equity returns exhibit positive comovement with
changes in the risk-neutral likelihood of a disaster risk. Disaster-Ø’s are computed according to the expression in Corollary 1. The parameter
values that generate the Øi are listed along the top of the figure.
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Table 1: Correlation Analysis of p§
t

Panel A: Correlation Analysis of Levels

p§
t DSP X Pt /Et V RPt T EDt V I Xt

p§
t 1.00 0.88 -0.23 0.29 0.50 0.85

DSP X 1.00 -0.24 0.40 0.56 0.84
Pt /Et 1.00 -0.01 0.13 -0.11
V RPt 1.00 0.30 0.51
T EDt 1.00 0.50
V I Xt 1.00

Panel B: Correlation Analysis of First Differences

p§
t DSP X Pt /Et V RPt T EDt V I Xt LEVt

p§
t 1.00 0.69 -0.49 -0.11 0.35 0.63 -0.26

DSP X 1.00 -0.51 0.19 0.39 0.79 -0.26
Pt /Et 1.00 -0.15 -0.26 -0.75 0.11
V RPt 1.00 0.26 0.29 0.42
T EDt 1.00 0.42 -0.12
V I Xt 1.00 -0.14
LEVt 1.00

Notes: This table displays the correlation between p§
t and various other financial market variables. The top panel displays correlations in

levels, and the bottom panel displays correlations in first differences. DSP X is the disaster-risk measure defined in Equation (20), computed
for the S&P 500. Pt /Et is the cyclically adjusted price-earnings ratio (CAPE) for the S&P 500, obtained from Robert Shiller’s website. When first
differencing Pt /Et , I use log-differences. V RPt is the variance risk premium, obtained from Hao Zhou’s website (series EVRP). T EDt is the
TED spread and V I Xt is the VIX volatility index. LEVt is the leverage factor of Adrian et al. (2014). In the top panel, LEVt is excluded because
it represents innovations to intermediary leverage. In addition, LEVt is computed quarterly through 2009Q4, so all correlations with this series
are computed by first averaging monthly measures within each quarter, then first differencing. All other data is monthly and spans January
1996 to May 2015.
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Table 2: The Likelihood of a Disaster and Future Economic Activity

Panel A:¢Unemploymentt+1

Financial Indicator Full Sample Excluding Crisis

(1) (2) (3) (4)

Term Spreadt -0.004 -0.000 -0.001 0.000

(-0.27) (-0.02) (-0.07) (0.00)

Real FFRt 0.008 0.012 0.017 0.018

(0.58) (0.74) (1.01) (1.12)

Stock Market Returnt -0.017 -0.019 -0.012 -0.014

(-1.87) (-2.11) (-1.19) (-1.33)

p§
t 0.065 0.079 0.056 0.081

(5.04) (4.07) (2.02) (2.53)

VIXt -0.017 -0.018

(-0.86) (-0.87)

Adjusted R2 26.0 25.9 5.7 5.6

Panel C:¢Total Capacity Utilizationt+1

Financial Indicator Full Sample Excluding Crisis

(1) (2) (3) (4)

Term Spreadt 0.109 0.110 0.111 0.112

(2.53) (2.67) (2.82) (2.72)

Real FFRt 0.022 0.023 0.008 0.009

(0.73) (0.64) (0.22) (0.23)

Stock Market Returnt 0.048 0.047 0.009 0.008

(1.56) (1.55) (0.40) (0.30)

p§
t -0.114 -0.108 -0.093 -0.073

(-4.11) (-1.67) (-1.82) (-0.70)

VIXt -0.008 -0.014

(-0.15) (-0.25)

Adjusted R2 23.0 22.6 16.2 15.8

Panel B:¢ln(Industrial Production)t+1

Financial Indicator Full Sample Excluding Crisis

(1) (2) (3) (4)

Term Spreadt 0.128 0.129 0.135 0.134

(2.67) (2.45) (2.54) (2.48)

Real FFRt 0.098 0.098 0.097 0.096

(1.92) (1.85) (1.71) (1.67)

Stock Market Returnt 0.075 0.075 0.027 0.030

(1.84) (1.96) (0.84) (0.91)

p§
t -0.158 -0.156 -0.162 -0.196

(-3.80) (-1.61) (2.14) (-1.44)

VIXt -0.001 0.022

(-0.02) (0.31)

Adjusted R2 25.5 25.2 9.6 9.2

Panel D:¢ln(Manuf. Inventories)t+1

Financial Indicator Full Sample Excluding Crisis

(1) (2) (3) (4)

Term Spreadt 2.141 1.950 2.186 2.142

(3.20) (3.09) (3.50) (3.30)

Real FFRt 1.108 0.878 0.929 0.869

(2.86) (1.60) (1.67) (1.47)

Stock Market Returnt -0.050 0.077 -0.040 0.080

(-0.18) (0.21) (-0.11) (0.21)

p§
t -1.597 -2.475 -0.611 -2.081

(8.96) (-3.52) (-0.77) (-1.70)

VIXt 1.063 1.044

(1.41) (1.24)

Adjusted R2 18.6 18.9 19.8 19.9

Notes: This table reports forecasting regressions of the general form ¢Yt+1 = c + P4
i=1Øi¢Yt+1°i +

P

k ∞k Xk , where Yt+1 denotes an
indicator of economic activity at month t +1. When forecasting the growth of industrial production and the manufacturing inventories index,
Yt is the natural logarithm of each series and ¢Yt is scaled by 100. The unemployment and total capacity utilization series are expressed in
percentages. The Xk variables are as follows: RF Ft is the real federal funds rate in month t , computed as the average daily federal funds
rate within month t minus the log-difference of core PCE inflation between month t °1 and t °13. RC RSP

t is the excess return of the CRSP
value-weighted index and T St is the difference between the 10 year and 3 month constant maturity Treasury yield, both measured at the end
of month t . p§

t is the estimated likelihood of a disaster in month t . All X variables have been standardized to have mean zero and variance one.
Regressions are run at a one month frequency. The adjusted R2 statistic is reported in percentages. Standard errors are calculated according to
Newey-West (1987), with lags chosen according to the Newey-West bandwidth method and weights according to the Bartlett kernel. t-statistics
for each regression are listed in below point estimates parenthesis. The full sample ranges from April 1996 to April 2015, and the sample
excluding the crisis omits the period of December 2007 to June 2009.
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Table 3: Summary Statistics for Equal-Weighted Portfolios Sorted on Disaster Risk Betas

Low ! High Disaster Risk

1 2 3 4 5

Annualized Excess Return (%) 5.08 8.25 10.53 11.60 12.26

Annualized Volatility (%) 29.37 19.76 17.08 17.28 22.29

Annualized Sharpe Ratio 0.17 0.42 0.62 0.67 0.55

Market Cap ($bn) 2.25 4.29 4.50 3.73 1.47

Disaster Beta 13.63 4.77 1.11 -2.47 -11.52

Avg. Number of Firms 897 896 896 896 897

Notes: This table displays summary statistics for portfolios sorted on disaster risk betas. At the end of each month, eligible stocks are sorted into
5 equal-weighted portfolios according to their disaster risk beta. The betas are constructed in real-time, using weekly data over the previous
year, via the following regression: ri t = ai +Øi¢p§

t + ei t . Disaster risk is decreasing in disaster beta, so high disaster risk stocks have the
most negative disaster risk betas. Eligible stocks are defined as ordinary common shares listed on the NYSE, NYSE AMEX, or NASDAQ with a
full set of weekly returns over the previous year and a share price of at least $1. Market capitalization is reported in billions of dollars. Both
market capitalization and disaster risk betas are computed as equal-weighted averages within each quintile. Return data is monthly and spans
February 1997 to December 2014.
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Table 4: Alphas for Equal-Weighted Portfolios Sorted on Disaster Risk Betas

Low ! High Disaster Risk

1 2 3 4 5 5-1

Annualized Æ (%) -2.97 0.50 3.11 4.48 4.59 7.56

(-1.30) (0.33) (2.13) (2.80) (1.93) (2.35)

CAPM-Ø 1.09 0.89 0.79 0.78 0.88 -0.21

(14.07) (20.68) (21.71) (18.30) (15.04) (-1.93)

Size-Ø 1.03 0.65 0.56 0.55 0.82 -0.21

(19.48) (11.25) (10.93) (8.66) (12.33) (-2.52)

Value-Ø -0.26 0.23 0.38 0.37 0.23 0.49

(-1.62) (3.20) (8.30) (6.45) (2.76) (2.20)

Momentum-Ø -0.31 -0.15 -0.12 -0.16 -0.27 0.04

(-3.38) (-3.12) (-3.90) (-4.02) (-4.79) (0.31)

H0 : All Æ’s = 0 p-value = 1.28%

Notes: This table displays risk-adjusted excess returns (alphas) and risk-factor loadings for portfolios sorted on disaster risk betas. At the end
of each month, eligible stocks are sorted into 5 equal-weighted portfolios according to their disaster risk beta. The betas are constructed in
real-time, using weekly data over the previous year, via the following regression: ri t = ai +Øi¢p§

t + ei t . Disaster risk is decreasing in disaster
beta, so high disaster risk stocks have the most negative disaster risk betas. Eligible stocks are defined as ordinary common shares listed on the
NYSE, NYSE AMEX, or NASDAQ with a full set of weekly returns over the previous year and a share price of at least $1. The reported Æ is the
intercept of a time-series regression of excess portfolio returns on the Fama-French factor returns and momentum factor returns. The reported
Ø’s are the loadings on each respective factor. The Fama-French and momentum factors were obtained from Ken French’s website. Return
data is monthly and spans February 1997 to December 2014. t-statistics are listed below their respective point estimates in parenthesis and are
computed according to Newey-West (1987). The reported p-value corresponds to the joint test that all Æ1 = ... =Æ5 = 0.
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Table 5: Risk-Adjusted Returns for Value-Weighted Portfolios Sorted on Disaster Risk Betas

Low ! High Disaster Risk

1 2 3 4 5 5-1

Annualized Æ (%) -8.89 -3.39 -0.02 0.84 2.89 11.78

(-3.73) (-2.07) (-0.02) (0.58) (1.35) (3.11)

CAPM-Ø 1.27 0.97 0.82 0.81 1.01 -0.26

(10.58) (19.36) (29.09) (21.45) (14.49) (-1.51)

Size-Ø 0.20 -0.08 0.00 -0.06 0.13 -0.06

(2.34) (-1.26) (0.09) (-1.21) (2.11) (-0.54)

Value-Ø -0.40 -0.03 0.13 0.24 0.30 0.70

(-1.67) (-0.33) (3.77) (3.37) (2.04) (1.86)

Momentum-Ø -0.22 0.01 -0.03 -0.04 -0.09 0.14

(-2.22) (0.24) (-0.94) (-0.80) (-1.08) (0.78)

H0 : All Æ’s = 0 p-value = 0.53%

Notes: This table displays risk-adjusted excess returns (alphas) and risk-factor loadings for portfolios sorted on disaster risk betas. At the end
of each month, eligible stocks are sorted into 5 value-weighted portfolios according to their disaster risk beta. The betas are constructed in
real-time, using weekly data over the previous year, via the following regression: ri t = ai +Øi¢p§

t + ei t . Disaster risk is decreasing in disaster
beta, so high disaster risk stocks have the most negative disaster risk betas. Eligible stocks are defined as ordinary common shares listed on
the NYSE, NYSE AMEX, or NASDAQ with a full set of daily returns over the previous quarter and a share price of at least $1. The reported Æ
is the intercept of a time-series regression of excess portfolio returns on the Fama-French factor returns and momentum factor returns. The
reported Ø’s are the loadings on each respective factor. The Fama-French and momentum factors were obtained from Ken French’s website.
Return data is monthly and spans February 1997 to December 2014. t-statistics are listed below their respective point estimates in parenthesis
and are computed according to Newey-West (1987). The reported p-value corresponds to the joint test that all Æ1 = ... =Æ5 = 0.
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Table 6: Alphas for Equal-Weighted Portfolios Sorted on Disaster Risk (Daily) Betas

Low ! High Disaster Risk

1 2 3 4 5 5-1

Annualized Æ (%) -2.79 0.79 2.44 3.20 3.36 6.16

(-1.23) (0.52) (1.74) (2.01) (1.55) (2.03)

CAPM-Ø 1.19 0.96 0.82 0.74 0.78 -0.41

(15.02) (21.51) (18.85) (19.20) (20.99) (-4.51)

Size-Ø 1.11 0.75 0.57 0.53 0.69 -0.42

(19.07) (15.32) (11.48) (9.60) (8.52) (-4.11)

Value-Ø -0.27 0.21 0.33 0.35 0.14 0.41

(-1.56) (3.14) (6.73) (6.64) (1.99) (2.00)

Momentum-Ø -0.31 -0.15 -0.13 -0.13 -0.28 0.04

(-3.16) (-3.49) (-3.89) (-3.36) (-6.27) (0.34)

H0 : All Æ’s = 0 p-value = 17.4%

Notes: This table displays risk-adjusted excess returns (alphas) and risk-factor loadings for portfolios sorted on disaster risk betas. At the end of
each month, eligible stocks are sorted into 5 equal-weighted portfolios according to their disaster risk beta. The beta for firm i is constructed
in real-time, using daily data over the previous quarter, via the following regression: ri t = ai +

P2
k=0Øi k¢p§

t°k +ei t . The disaster-Ø for firm i is

then
P2

k=0Øi k . Disaster risk is decreasing in disaster beta, so high disaster risk stocks have the most negative disaster risk betas. Eligible stocks
are defined as ordinary common shares listed on the NYSE, NYSE AMEX, or NASDAQ with a full set of daily returns over the previous quarter
and a share price of at least $1. The reported Æ is the intercept of a time-series regression of excess portfolio returns on the Fama-French factor
returns and momentum factor returns. The reported Ø’s are the loadings on each respective factor. The Fama-French and momentum factors
were obtained from Ken French’s website. Return data is monthly and spans February 1997 to December 2014. t-statistics are listed below their
respective point estimates in parenthesis and are computed according to Newey-West (1987). The reported p-value corresponds to the joint
test that all Æ1 = ... =Æ5 = 0.
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Table 7: Alphas for Value-Weighted Portfolios Sorted on Disaster Risk (Daily) Betas

Low ! High Disaster Risk

1 2 3 4 5 5-1

Annualized Æ (%) -7.00 -3.14 -2.51 -0.36 3.03 10.03

(-3.13) (-2.07) (-1.69) (-0.22) (1.52) (3.40)

CAPM-Ø 1.33 1.02 0.89 0.77 0.81 -0.52

(13.98) (19.35) (21.97) (21.07) (16.02) (-4.08)

Size-Ø 0.45 0.08 -0.05 -0.11 -0.03 -0.48

(6.05) (1.58) (-1.03) (-3.21) (-0.45) (-4.32)

Value-Ø -0.41 -0.03 0.18 0.20 0.21 0.62

(-2.13) (-0.60) (4.94) (2.91) (2.08) (2.17)

Momentum-Ø -0.14 -0.00 0.01 0.02 -0.11 0.03

(-1.32) (-0.01) (0.70) (0.35) (-1.58) (0.18)

H0 : All Æ’s = 0 p-value = 0.75%

Notes: This table displays risk-adjusted excess returns (alphas) and risk-factor loadings for portfolios sorted on disaster risk betas. At the end of
each month, eligible stocks are sorted into 5 value-weighted portfolios according to their disaster risk beta. The beta for firm i is constructed
in real-time, using daily data over the previous quarter, via the following regression: ri t = ai +

P2
k=0Øi k¢p§

t°k +ei t . The disaster-Ø for firm i is

then
P2

k=0Øi k . Disaster risk is decreasing in disaster beta, so high disaster risk stocks have the most negative disaster risk betas. Eligible stocks
are defined as ordinary common shares listed on the NYSE, NYSE AMEX, or NASDAQ with a full set of daily returns over the previous year and
a share price greater than $1. The reported Æ is the intercept of a time-series regression of excess portfolio returns on the Fama-French factor
returns and momentum factor returns. The reported Ø’s are the loadings on each respective factor. The Fama-French and momentum factors
were obtained from Ken French’s website. Return data is monthly and spans February 1997 to December 2014. t-statistics are listed below their
respective point estimates in parenthesis and are computed according to Newey-West (1987). The reported p-value corresponds to the joint
test that all Æ1 = ... =Æ5 = 0.
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Table 8: The Impact of Changes in Disaster Likelihood on the S&P 500

Dependent Variable:
(1) (2)
rt ¢ log(C APE)t

¢p§
t -6.37 -6.14

(-7.91)** (-7.62)**
Constant 0.005 0.0003

(1.71)* (0.10)
R2 25.2% 23.6%
N 232 232

Notes: The table reports results from regressions of the form yt = c+Ø¢p§
t for two different dependent variables. In column (1), yt corresponds

to the realized return of the S&P 500. In column (2), yt is the growth rate of the cyclically adjusted price-earnings ratio (CAPE) for the S&P
500. All regressions are run at a one month frequency spanning the period of February 1996 to May 2015. The price and CAPE data was
obtained from Robert Shiller’s website. Standard errors are calculated according to Newey-West (1987), with lags chosen according to the
Newey-West bandwidth method and weights according to the Bartlett kernel. t-statistics for each regression are listed in parenthesis. **, *
indicates coefficient is statistically different than zero at the 5 percent and 10 percent confidence level, respectively.
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Table 9: Model-Implied vs. Realized Recovery Rates for Disaster Portfolios

Portfolio Realized Recovery ( bFi ) Model-Implied Recovery (Fi )

1 0.46 0.76

2 0.55 0.62

3 0.58 0.51

4 0.58 0.46

5 0.49 0.43

Notes: This table displays model-implied versus realized recovery rates for portfolios sorted on disaster risk betas. Model-implied recovery
rates are computed according to Fi = 1°X Ri /(pB°∞), where X Ri is the average excess return for portfolio i , p is the probability of disaster, B
is the recovery rate of consumption during disasters, and ∞ is the risk-aversion parameter. Following Nakamura et al. (2013), I set p = 0.028. In
addition, I set B = 0.60, and ∞= 4. The realized recovery rates are computed as one minus the minimum 12-month cumulative return for each
portfolio over the period of December 2007 to June 2009.
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A Appendix: A Full Model of Rare Disasters

In the Section 2 of the main text, I presented the skeleton of the rare disasters model that I repeatedly
use to interpret my empirical findings. In this appendix, I present a more complete version of the model,
which is a continuous time generalization of the model in Gabaix (2012).26 To make this appendix rela-
tively self-contained, I repeat many of the primitives in the model that I outlined in Section 2 and then
proceed to compute the important equilibrium quantities.

A.1 Macroeconomic Environment

I begin with an endowment economy inhabited by an infinitely lived representative agent. The endow-
ment follows the stochastic process:27

dCt

Ct°
= gC d t +æC dWC ,t + (Bt °1)d Jt , (4)

where WC ,t is a standard Brownian motion and d Jt is a jump process that represents macroeconomic
disasters. d Jt takes a value of one if a disaster occurs and zero otherwise. The Poisson arrival rate of
disasters is time varying and denoted by pt . Hence, a disaster happens over a small time interval, d t ,
with a probability pt d t . The variable Bt > 0 captures the magnitude of a consumption disaster when it
occurs. For example, a value of Bt = 0.8 means that when a disaster occurs, aggregate consumption drops
by 20%. I further assume that the intensity process describing disaster arrivals, pt , is independent of the
magnitude of a disaster, Bt . The Brownian motion WC ,t is independent of d Jt and Bt , which means that
in the absence of disasters (i.e. normal times) consumption growth is i.i.d log-normal with a volatility of
æC .

I assume the representative agent has recursive preferences as in Epstein and Zin (1989) and Duffie
and Epstein (1992). The main advantage of recursive preferences is the ability to decouple the agent’s
elasticity of intertemporal substitution, √, from risk aversion, ∞. In a discrete time setting, Epstein and
Zin (1989) show that the representative agent’s stochastic discount factor can be expressed as:

Mt+ø
Mt

= e°
Ω
¬ ø

µ

Ct+ø
Ct

∂° 1
¬√

R1/¬°1
C ,t+ø (5)

where ¬= (1°1/√)/(1°∞) and RC ,t+ø is the gross return of a claim to aggregate consumption between t
and t +ø. Here, Ω captures the rate of time preference of the agent. When solving the model, I obtain the
stochastic discount factor by taking the continuous time limit of Equation (5), i.e. as ø& 0.

26Like Gabaix (2012), I take repeated advantage of the linearity-generating (LG) class of stochastic process pio-
neered by Gabaix (2009), which the reader should refer to for a more detailed exposition of LG processes.

27To be precise, Ct° denotes lims"t Cs .
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A.2 Setup for Stocks

A generic stock i is defined as a claim to a stream of dividends (Di t )t∏0, where dividends grow according
to:

dDi t

Di t°
= gi D d t +d N D

i t + (Fi t °1)d Jt (6)

The dividend growth shock N D
i t is a martingale so that Et

£

d N D
i t

§

= 0 and is independent of the disaster
event. The higher moments of N D

i t are left unspecified for now. As we will see shortly, only the first
moment of d N D

i t is important for determining the level of asset prices. In normal times, dividends grow
at an expected rate of gi D , but if there is a disaster, the stock dividend experiences an additional shock,
Fi t . Fi t > 0 captures how much dividends recover during a disaster. For instance, if Fi t = 0.9, then
dividends drop by 10% when a disaster arrives. Firms with high values of Fi t therefore perform better
during a crisis.

In order to compute equilibrium, we must put more structure on the arrival rate of disasters (pt ),
the recovery rate of disasters at the macroeconomic level (Bt ), and the dividend recovery rate during a
disaster (Fi t ). One way to accomplish this is to model the dynamics of pt , Bt , and Fi t separately. Wachter
(2013) is one example of this approach, as she models pt as a Cox, Ingersoll, and Ross (1985) process.
Alternatively, Gabaix (2012) models the dynamics of pt , Bt , and Fi t jointly, which I adopt in continuous
time here. I do so through a variable called resilience, Hi t , which summarizes how a firm is expected to
perform if a disaster occurs over the next instant, d t . I define stock i ’s resilience exactly as in Equation
(31) in Appendix C; however, in Appendix C I also show that a very good approximation that is more
useful for understanding the underlying economics in the model is:

Hi t = ptEt°
£

B°∞
t

°

Fi t + (¬°1)Bt
¢

°¬
§

+
æ2

C

2
∞(1+∞) (7)

It is easy to see that firms that are expected to perform well in a disaster (i.e. firms whose dividends
recover a lot) have high values of Fi t , and thus are high resilience stocks. For ease of notation, I drop the
limit notation of Et° and replace it by Et , except when it is necessary to distinguish the two.

Resilience itself is modeled as a linearity generating (LG) process as in Gabaix (2009). Linearity gen-
erating processes behave, in an approximate sense, like an AR(1) process. The distinction between an
LG process and an AR(1) process is subtle; however, LG processes are useful in economics because they
deliver linear expressions for equilibrium price-dividend ratios without needing log-linearizations. As is
common in macroeconomics, I further decompose resilience into a long-run mean, Hi§, and deviations
from that mean, Ĥi t :

Hi t = Hi§+ Ĥi t (8)

In turn, firm i ’s resilience (deviations from mean) evolves according to the following stochastic differen-
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tial equation:28

d Ĥi t = °¡H ,i Ĥi t d t ° Ĥ 2
i t d t +d N H

i t

º °¡H ,i Ĥi t d t +d N H
i t (9)

where N H
i t is a martingale. It is easy to now see the relationship between an AR(1) process and an LG pro-

cess. The term °¡H ,i Ĥi t d t would be present in the continuous time analogue of an AR(1) process, and
so ¡H ,i determines the speed of mean reversion for the resiliency process. It is sensible that resilience
should behave similarly to an AR(1) process — if a firm has high resilience today, it is likely that resilience
tomorrow is also high. The “extra” term, °Ĥ 2

i t d t , is unique to the LG class, and in practice is quite small
because Ĥi t captures deviations from the mean of resilience. As noted in Gabaix (2009), there are re-
strictions on the variance of the noise process d N H

i t that ensure prices remain positive. In Appendix C.3,
I provide one example of a process that satisfies the restrictions and is also internally consistent with the
rest of the model. With the primitives of the model now specified, I now turn to analyzing equilibrium
asset prices in this economy.

A.3 Equilibrium Stock Prices and Returns

Theorem 1 solves for equilibrium price-dividend ratios.

Theorem 1. Define ±= Ω+gC /√ and ±i = ±°gi D °Hi§ . ±i can be interpreted as a stock’s effective discount
rate. Then in equilibrium, the price-dividend ratio of stock i is:

Pi t

Di t
= 1
±i

µ

1+ Ĥi t

±i +¡H ,i

∂

(10)

Proof. The proof can be found in Appendix C.

The equilibrium price-dividend ratio given by Equation (10) has a very intuitive form. First consider
what determines the stock’s effective discount rate, ±i . All else equal, firms with a high level of average
resilience, Hi§ , have a low discount rate and therefore a higher valuation ratio. This result makes sense as
these are the firms whose dividend growth is expected to recover more during a disaster. Similarly, when
a firm’s resilience is above average (i.e. Ĥi t > 0), its valuation ratio will be above average. Since resilience
mean reverts, this generates mean-reversion in the price-dividend ratio and hence predictability in stock
prices. Naturally, a stock with a high level of resilience has a low equity premium (and a high price-
dividend ratio); thus, high valuation ratios forecast lower subsequent returns, as we see in the data.

A natural quantity of interest that derives from the equilibrium price dividend ratio in Equation (10)
is the equilibrium return process for firm i ’s stock. This can be computed under two different probability
measures. The first is the physical measure, which corresponds to the actual distribution of return real-
izations. The second is the so-called risk-neutral measure, which weights states of nature according to
marginal utility in those states. Naturally, states in which marginal utility is high (i.e. disaster states) have

28To be precise, the following specification ignores covariance of the SDF with resilience shocks in normal times.
See Section C for the version of the model where this is not the case.
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a higher risk-neutral likelihood than a physical likelihood. Intuitively, risk-neutral probabilities are just
Arrow-Debreu state prices, appropriately normalized so that they correspond to a probability measure.
The risk-neutral likelihood will prove useful when examining the structure of option prices implied by
the disaster economy. The following proposition characterizes firm-level returns under both measures:

Theorem 2. Given the equilibrium price-dividend ratio in Equation (10), the process for dividends in
Equation (6), and the process for resilience in Equation (9), equilibrium returns for firm i evolve as follows:

dPi t

Pi t°
=µi t d t +æi t dWi t + (Fi t °1)d Jt (11)

where µi t and æi t are defined in Equation (35), and dWi t is a Brownian motion.
Next, let the superscript § denote a stochastic process under the risk-neutral measure Q. The measure

Q is defined formally by Equation (41). Then the risk-neutral return process evolves according to:

dP§
i t

P§
i t

= r f t d t +æi t dW §
i t °ptEt

£

B°∞
t (Fi t °1)

§

d t + (Fi t °1)d J§t (12)

where r f t is the risk-free short rate process given by Equation (38). The process dW §
i t is a Brownian motion

under the risk-neutral measure. d J§t is the disaster jump process under Q, and has a Q-arrival rate of
ptEt

£

B°∞
t

§

. Furthermore, the expected excess return of the firm is, to a leading order, given by:

µi t ° r f t = ptEt
£

B°∞
t (1°Fi t )

§

(13)

Proof. The proof can be found in Appendix C.3 and C.4.29

The first thing to note from Theorem 2 is the likelihood of a disaster under both probability measures.
When disasters are negative shocks to the economy (Et [Bt ] < 0), then the risk-neutral probability of a
disaster is greater than the actual likelihood of a disaster, i.e. ptEt

£

B°∞
t

§

> pt . This occurs because the
risk-averse agent prices assets as if disasters are more likely than they actually are in nature. In addition,
Theorem 2 states that the risk premium of firm i is decreasing in Fi t . Intuitively, firms that are expected
to do poorly in a disaster require higher expected returns in equilibrium. This is a testable hypothesis
that I explore in Section 4.

A.4 The Risk-Neutral Disaster Intensity

The jump component in the risk-neutral return process is itself the product of a firm specific variable,
(1°Fi t ), and an economy wide variable, d J§t . One of the primary contributions of this paper is to estimate
time-series variation in the arrival rate of d J§t using options data. My strategy in the main text uses more
sophisticated option pricing theory, however I begin with a simple example to develop the basic intuition
of my approach.

29Implicit in this proof is the assumption that the shocks d N H
i t and d N D

i t are themselves governed by Brownian
motions. Theorem 1 requires d N H

i t and d N D
i t to be mean-zero shocks, which holds true under this assumption.

See Appendix C.3 for a specific example where all of these conditions are met.

55



A Simplified Example

Consider the simplest case where the volatility of firm returnsæi , the arrival rate of disasters p, the sever-
ity of disasters B , and firm performance in a disaster Fi are all constants. In addition, suppose that we
write a call and put option on firm i with a maturity of ¢, where ¢ is a small unit of time. The following
proposition provides a simple expression for option prices in this stylized example.

Proposition 2. Suppose that æi t = æi , pt = p,Bt = B , and Fi t = Fi are all constants. For a small time
interval, ¢, define p§ ¥ pB°∞¢. Then options written on a stock with spot price Pi t , strike K , volatility æi ,
and maturity ¢ are approximately given by:

P i (Pi t ,K ) = µi £
£

p§ £P BS
i (Fi Pi t ,K )+ (1°p§)£P BS

i (Pi t ,K )
§

Ci (Pi t ,K ) = µi £
£

p§ £C BS
i (Fi Pi t ,K )+ (1°p§)£C BS

i (Pi t ,K )
§

(14)

where P BS
i (X ,K ) is the Black-Scholes value of a put option with underlying price X , strike K , volatilityæi ,

maturity ¢, and interest rate 0. µi is a firm level constant, µi = e°p§(1°Fi ).

Proof. See Appendix C.5.

Under these simplifying assumptions, the value of a put (or call) is the probability weighted average
of two components: (i) a Black-Scholes option with an initial price Fi Pi t and (ii) a Black-Scholes option
with an initial price Pi t . Intuitively, when there is no disaster, stock prices are log-normal and hence take
their usual Black-Scholes form. When there is a disaster, stock prices are still log-normal, but the initial
price is multiplied by Fi because this is the stock price after the disaster occurs. The contribution of each
component to the total put price depends on the risk-neutral likelihood of a disaster.

Now assume that the firm is expected to fall in value in a disaster so that Fi < 1. Next, consider
the following option portfolio: (i) purchase 1 unit of an out-of-the-money put option with moneyness
mPut ¥ KPut /Pi t < 1; and (ii) sell mPut units of an out-of-the-money call option with moneyness mC all =
m°1

Put ¥ KC all /Pi t > 1. For instance, if mPut = 0.9 and Pi t = 100, then the portfolio purchases one unit
of a put option at strike 90, and sell 0.9 units of a call option at strike 100£ (0.9)°1 = 111. This particular
portfolio is special because it isolates the disaster component of the put option. The argument proceeds
in two steps.

First, observe that a good approximation of the call price is Ci (Pi t ,KC all ) º µi (1° p§)C BS
i (Pi t ,K ).

The approximation is valid because the call will have virtually no value in the disaster state; the option
effectively expires out of the money since the stock price drops during a disaster. In turn, all of the call
option value comes from “normal-times” risk.

Second, it is easy to show that for KC all and KPut defined above, the following relation holds for a
Black-Scholes put and call with a zero interest rate: P BS

i (Pi t ,KPut ) = mPut £C BS
i (Pi t ,KC all ). Intuitively

in the Black-Scholes world with a zero interest rate, future risk-neutral returns are symmetric around
zero. Thus, it is possible to find a combination of the Black-Scholes put and the call that exactly offsets
in value.

These two observations imply that the value of the option portfolio isolates the disaster component
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of the put option:

P i (Pi t ,KPut )°mPut £Ci (Pi t ,KC all ) = µi p§P BS
i (Fi Pi t ,KPut )

KPut = mPut Pi t , mPut < 1

KC all = m°1
Put Pi t

In practice, this portfolio resembles what is typically called a “risk-reversal”. The call option in the port-
folio exactly offsets the value of the put that comes from normal-times risk, leaving only the disaster
component of the put option. This stylized example is designed to provide some economic intuition as
to why it is possible to use a portfolio of options to learn about the disaster states of the world. I turn now
to showing that this is possible when risk-neutral returns follow more a general process, such as the one
implied by the model in Equation (12).

The More Complex Version

To develop my full estimation strategy, first define the risk-neutral expected quadratic variation of the
log firm stock process from the period [t , t +ø] as:

QVi t (ø) ¥ EQt

2

4

t+øˆ
t

æ2
i sd s +

t+øˆ
t

0

@

ˆ

R+

ln2(v) fi (v ; t )d v

1

ApsEt
£

B°∞
s

§

d s

3

5

where fi (F ; t ) is the probability distribution function of Fi at time t . Simply put, quadratic variation
captures any expected squared price movements. This includes price movements that come from the
diffusive portion of returns (normal-times risk) and the jump portion of returns (disaster risk). Bakshi,
Kapadia, and Madan (2003) show how to use observed option prices to form an estimate of QV. The
details of this procedure are contained in Section B.1.

Of course, there are many other measures of price variability that can be estimated from option
prices. Perhaps the most popular is the so-called VIX index, which is formally defined as:

Vi t (ø) ¥ EQt

2

4

t+øˆ
t

dPi t

Pi t
° ln

µ

Pi ,t+ø
Pi t

∂

3

5 (15)

At first glance, this definition of the VIX may seem a bit obscure. Indeed, as shown by Britten-Jones and
Neuberger (2000), when the underlying return process does not have discontinuities,Vi t (ø) =QVi t (ø). It
is also easy to see from its definition that the absence of jumps implies quadratic variation — and hence

the VIX — measures EQt
h´ t+ø

t æ2
i sd s

i

. This argument underlies the usual interpretation of the VIX as a
measure of variability.

Nonetheless, it is well-known that the VIX is a biased estimate of quadratic variation when the return
process does contain jumps. In fact, Carr and Wu (2009) and Du and Kapadia (2013) show how one
can use this bias to isolate the jump component of returns. Theorem 3 collects the theory behind these
results more precisely (Section B.1 contains the empirical implementation).
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Theorem 3. LetQVi t (ø) be the quadratic variation, andVi t (ø) be defined as in Equation (15). Then, inside
the rare disasters model, the following holds true:

Di t (ø) ¥ QVi t (ø)°Vi t (ø)

= ™
°

fi (F ; t )
¢

£p§
t (ø) (16)

where™
°

fi (F ; t )
¢

is given by Equation (47) in Appendix C.6, and p§
t (ø) = EQt

h´ t+ø
t psB°∞

s d s
i

. fi (F ; t ) is the
probability distribution function of the firm jump size, Fi t , at time t . Furthermore, when Fi t is constant,
then the expression reduces to:

Di t (ø) = 2£
©

1+ ln(Fi )+ [ln(Fi )]2 /2°Fi
™

£p§
t (ø) (17)

Proof. The proof can be found in Appendix C.6.

When it is clear, I suppress the arguments Di t (ø) and denote it by Di t for notational convenience.
Similarly, I denote p§

t (ø) by p§
t and when the distribution of Fi t is time-invariant I use™i to simplify the

expression for™
°

fi (F ; t )
¢

.
Theorem 3 says that all cross-sectional variation in Di t is generated by cross-sectional heterogeneity

in the distribution of Fi t . The reason is that p§
t is common across all firms in the economy. Furthermore,

when the distribution of Fi t is time-invariant — Fi t can still be stochastic — then time-series variation
inDi t for all firms will be driven by a common factor p§

t . This last observation is the core of my empirical
strategy.
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B Appendix: Data Details and Variable Construction

This appendix provides a detailed description of how I construct all the data used in the main text.

B.1 EstimatingDi t

Equation (16) defines Di t (ø) as the difference between (risk-neutral) expected quadratic variation and
the VIX. Following Du and Kapadia (2013), I estimate both quadratic variation and the VIX using observed
option prices.30

To start, Bakshi, Kapadia, and Madan (2003) show that a good approximation of expected quadratic
variation can be formed using the observed prices of out of the money puts and calls for firm i :31

dQVi t (ø) = er f tø

ø

2

6

4

ˆ

K>Pi ,t

2(1° ln(K /Pi t ))
K 2 Ci t (Pi ,t ;K ,ø)dK

3

7

5

+er f tø

ø

2

6

4

ˆ

K<Pi ,t

2(1° ln(K /Pi t ))
K 2 P i t (Pi t ;K ,ø)dK

3

7

5

°m2
i t ,ø (18)

where Ci t (Pi t ;K ,ø) is the price of a call option written on firm i , on date t , at strike K , and with a time
to maturity of ø. P i t (Pi t ;K ,ø) defines the analogous put price. Pi t is the current spot price of the firm.
mi t ,ø is generally a small adjustment term and is defined fully in Equation (39) of Bakshi, Kapadia, and
Madan (2003). Finally r f t is the annualized risk-free rate over the life of the option. The ·̂ superscript is
used to denote empirical estimates from their theoretical counterparts.

In parallel, I use what is by now a standard formula to estimate the VIX:32

bVi t (ø) = 2er f tø

ø

2

6

4

ˆ

K>Pi ,t

1
K 2 Ci t (Pi ,t ;K ,ø)dK +

ˆ

K<Pi ,t

1
K 2 P i t (Pi t ;K ,ø)dK

3

7

5

°2er f tø

ø

£

e°r f tø
°

er f tø°1° r f tø
¢§

(19)

Finally, combining Equations (18) and (19) yields the desired estimator for Di (Pi ; t , t +ø):

bDi t (ø) = dQVi t (ø)° bVi t (ø) (20)

30There is a large options literature on estimating risk-neutral expected quadratic variance and integrated vari-
ance under a variety of return specifications. A non-exhaustive list includes Bakshi, Kapadia, and Madan (2003),
Carr and Madan (2001), Pan (2002), and Martin (2013).

31The approximation error between Equation (18) and actual quadratic variation is related to the stochasticity
of the drift of the log-return. This error goes to zero as time shrinks to zero, which is why I will consider relatively
short dated options (30 day) in my empirical work.

32The formula I present comes from Du and Kapadia (2013).
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where I am now using the ·̂ to emphasize estimates from data.
In terms of quantities within the model, the results from Du and Kapadia (2013) imply that bDi t (ø)

actually corresponds to an estimate for:33

bDi t (ø) = ™i

ø
£p§

t (ø) (21)

where I have assumed again that the distribution for Fi t is time-invariant. Note that the only difference
between Equation (21) and Equation (2) is the annualizing constant ø, which does not impact the factor
analysis.

To actually construct each firm’sDi t (ø), I proceed as follows. First, for each maturity that is available, I
compute the associated risk-free rate via linear interpolation over the zero-coupon yield curve provided
OptionMetrics. For each option maturity ø, I require at least two OTM put and two OTM call options,
which ensures some degree of symmetry when integrating over option prices.34 Next, I use numerical
integration to evaluate Equations (18) and (19), which I then combine to compute Di t (ø) from Equation
(20). This procedure is executed for each available maturity. Finally, I compute a Di t (ø = 30 days) by
linearly interpolating between the Di t (ø) for maturities that straddle 30 days.

B.2 Constructing Daily bDi t for Each Firm

In order to construct the option based measures used in the paper, I first downloaded the entire Option-
sMetrics database at a daily frequency from 1/4/1996 to 5/28/2015. I also use the underlying security
information and the risk-free rate curves from this same source.

Dividends When I consider options written on individual equity options, they are all American op-
tions. As such, there are a number of standard no-arbitrage restrictions on transaction prices that are
particular to American options. Most of these include some discounting of the dividend yield. One way
to throw out “spurious” option prices that violate these arbitrage restrictions is to use the dividend yields
provided by OptionsMetrics and then check the bounds exactly. As I argue below, in practice accounting
for the effect of dividends on the early exercise feature of options is a nonissue. All of the arguments
regarding dividend considerations apply to the index options in my sample as well.

Risk-Free Rates For a given date, I use the risk-free rate curve provided by OptionsMetrics. This has
the continuously compounded zero-coupon risk-free yield at discretely placed terms. To compute the
continuously compounded riskless rate for a given term, I use: (i) linear interpolation if the terms falls
within the range of terms provided by OptionsMetrics or (ii) I use the rate associated with nearest pro-
vided term for terms outside of the minimum or maximum term provided. For instance, if the lowest

33To be precise, this particular estimate ignores the contribution of the stochastic drift term. As shown in Du
and Kapadia (2013) the “extra” terms are largely a function of the squared expected stochastic drift. For the short
maturity options I consider in this paper, they then show via simulations that ignoring the stochasticity of the drift
is innocuous. See Section 3.4 in Du and Kapadia (2013) for more details.

34Additional option pricing filters can be found in Appendix B.
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term provided is for 15 days, I use the 15-day rate for all terms between 1-14 days. If the riskless rates on
a given date are not available, I use the most recently available set of discount rates.

B.3 First Pass Filter of the Data

I retain only options that meet all of the following criteria listed in Table 10. In addition, I list a succinct
reason for each filter, as well as examples in the literature that apply the same types of filter. The operator
PV (·) denotes the present value of its argument. Ci (t ,ø;K ) and P i (t ,ø;K ) denote the price, at time t , of
a call and put that expire at time t +ø, with strike K , respectively. The subscript i refers to firm i . Di (t ,ø)
is the dividend, if any, of the firm between date t and date t +ø. The price I use for both calls and puts is
the mid-point of the bid and the ask price. Pi t is the price of the underlying firm (or index) at time t .

A few of the filters are worth further discussion:

• Satisfying the condition that Ci (t ,ø;K ) ∏ max(0,Pi t °PV (K )°PV (Di (t ,ø))) is trivial. I only con-
sider OTM call options. For reasonable discount rates, then Pt °PV (K ) will already be negative
and the relationship is already satisfied. Subtracting out the present value of future dividends
doesn’t change this fact.

• The constraint that P i (t ,ø;K ) ∏ max(0,PV (K )+PV (Di (t ,ø))°Pi t ) is also rather harmless. For
out of the money put options, and short enough maturity puts, PV (K )°Pt º K °Pi t < 0. Unless
the dividend over the life of the option is very large, then max(0,PV (K )+PV (Di (t ,ø))°Pi t ) = 0.
In this case, discarding put options with non-zero mid-quotes is enough to satisfy the condition.
Even with a dividend payment, it is unlikely it is so large so as to affect the results materially. Thus,
I can safely ignore this restriction, particularly since my use of options is not for a directly tradable
strategy.

After eliminating options on an individual basis, I then apply one additional filter based on all options
for a firm and date. Namely, I require that there are at least two OTM put and two OTM call for each
firm. Previous research using options data, e.g. Dennis and Mayhew (2002), show that more symmetry
in terms of the number of observed calls/puts delivers better properties of implied volatility surfaces.

B.4 Building Measures of dQV and bV

In order to build my estimator of disaster risk, I need to build option-based measures of quadratic varia-
tion and integrated variance. In theory, these measures require observations over an infinite continuum
of strikes (in order to integrate over R+). In practice this is of course not feasible. Following what has
become standard practice, I adopt the same methodology that is used to construct the VIX, but I modify
it to compute other higher moment estimators that I am interested in.35

I use only observed option prices to compute the integrals in Equations (18) and (19). All integrals
are computed numerically using trapezoidal integration. For American options, Bakshi, Kapadia, and

35The exact methodology can be found at https://www.cboe.com/micro/vix/vixwhite.pdf. To incorporate differ-
ent moment estimators, I simply alter their Equation (1) to have the appropriate formula. The only modification I
make to their formula is with regard to the forward price used in formulas.
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Madan (2003) show that ignoring the early-exercise premium is innocuous for short maturity options.
Like with the construction of the CBOE’s VIX, I begin by computing my metrics for two different maturity
options. Specifically, I find the set of options that is nearest, but less than, 30 days to maturity (i.e. ø1 <
30). For these maturity options, I compute my higher moment estimators (e.g. dQVi t (ø1), etc.).

Next, I find the set of options that is nearest, but greater than, 30 day days to maturity (i.e. ø2 > 30).
For these maturity options, I compute my higher moment estimators (e.g. dQVi t (ø2), etc.).

Finally, I compute an estimate of the “30 day” implied estimator (e.g. dQVi t
°

ø= 30 days
¢

) via linear
interpolation.36 If there is not a set of options with expiration below or above 30 days, I treat the available
estimator as the 30 day estimate. For instance, if there are only 44 day options available (but not 16 day
options), then I use the estimate coming from the 44 day options. I do not include any options whose
maturity is below 7 days. The end result is a panel of 30-day implied bDi t for 6,762,860 firm-day pairs.

B.5 Aggregating Daily bDi t to Monthly bDi t

To smooth possible measurement errors in daily option prices, I create a monthly bDi t for each firm based
on their daily measure. Specifically, for a given month and firm i , I take a within-month average of
firm i ’s daily bDi t . To be included in the analysis, I require that each firm has at least 70% of its daily
observations available for that month. This monthly panel of bDi t is what I use to conduct principal
component analysis and extract my monthly measure of p§

t , which I detail next.

B.6 Constructing an Estimate of p§
t Using the Full Dataset

The next task is to conduct principal component analysis (PCA) on the monthly panel of bDi t . To do so, I
use standard PCA analysis on the correlation matrix of bDi t . Specifically, the first principal component is
first eigenvector ∫ of the correlation matrix.

The usual extraction method for PCA is to multiply the T £ N panel of standardized bDi t by ∫. By
standardized, I mean that each firm’s bDi t is adjusted to have a mean zero and variance of one. I use a
slightly modified procedure to extract the factor. Let me first describe it, then provide the rationale for
this alternative.

I use the eigenvector ∫ to define a set of weights,!. Thus, !i for firm i is simply ∫i /
P

∫i , where ∫i is
the i th element of ∫. I then compute the factor as:

bp§
t = µD̂!

where D̂ is the N £T panel of bDi t . µ = si g n(cor r el ati on(D̂!,D̄t )). Here, D̄t is the average bDi t across all
firms at each point in time.

The rationale for this construction is to maintain the units of p§
t . This is useful when mapping a

calibrated version of the model to the data. In addition, because eigenvectors are identified up scalar,
multiplying by µ simply ensures that the extracted factor is positively (not negatively) correlated with the
average disaster risk in the economy. This is a sensible assumption. Constructing bp§

t in this way does not
materially impact the results, as the factor created from standard PCA is over 95% correlated with this

36See page 5 in the CBOE’s VIX White Paper.
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bp§
t . This is also not surprising given that I am using the “usual” principal component factor loadings to

instead create a weighted average.
In the model, this means that p§

t is just a weighted average of firm-level disaster risk (consistent with
the single factor structure of (bDi t ):

bp§
t =

X

i
!i™i p§

t

= ™p§
t

where bp§
t is the estimate from the data and p§

t is the model counterpart. It is easy to see here why taking a
weighted-average of firm-level disaster risk is appealing: the resulting estimate is p§

t times the economy
wide average™i .

B.7 Constructing a Rolling Estimate of p§
t

When forming portfolios that are exposed to disaster risk, it is important to make sure the strategies are
tradable in real-time. In turn, this requires me to compute a real-time measure of p§

t . I call this real-
time variable a rolling measure of p§

t , and at each point in time I use the previous year’s worth of data
to construct it. In addition, I construct a rolling p§

t at two frequencies: (i) weekly and (ii) daily. I use
two frequencies (and not the monthly measure described before) so that I have a reasonable about of
observations over which to estimate disaster-Ø’s.

B.7.1 Weekly Frequency

My weekly rolling estimate of p§
t derives from the daily panel of bDi t . To fix ideas, consider a particular

date (daily) t for which I want to construct a rolling measure of p§
t . I then proceed as follows:

1. Create a subsample of daily bDi t from date t to t °365.

2. Eliminate firms who have less than 95% of their daily observations over the past year.

3. For the remaining firms, take a within week-firm average to compute a weekly measure of bDi t over
the past year. Drop any firms who have a missing week (i.e. did not have at least one observation
in a given week).

4. Conduct principal component analysis on this panel of weekly bDi t . Define the rolling estimate of
p§

t using the same procedure as in Section B.6, but for this subsample.

I call this estimate p§
RW,t , where the subscript RW indicates it is constructed on a rolling basis and at a

weekly frequency.

B.7.2 Daily Frequency

My daily rolling estimate of p§
t derives from the daily panel of bDi t . To fix ideas, consider a particular date

(daily) t for which I want to construct a rolling measure of p§
t . I then proceed as follows:
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1. Create a subsample of daily bDi t from date t to t °365.

2. Eliminate firms who have less than 95% of their daily observations over the past year.

3. For the remaining firms, fill any missing data with data from the previous day. If this is not possible,
then leave the observation blank. Drop any firms who still have any missing data.

4. Conduct principal component analysis on this panel of daily bDi t . Define the rolling estimate of p§
t

using the same procedure as in Section B.6, but for this subsample.

I call this estimate p§
RD,t , where the subscript RD indicates it is constructed on a rolling basis and at a

daily frequency.

B.8 Forming Equity Portfolios Based on Disaster-Ø’s

Once I have real-time estimates of p§
RW,t and p§

RD,t , I can now compute real-time disaster-Ø’s. The
disaster-Ø’s at the end of each month are computed using either the previous year’s weekly returns or
the previous quarter’s daily returns.

B.8.1 Disaster-Ø Estimated Using Weekly Data

Suppose we are standing on date t , which is also the end of the month. The goal is to compute disaster-
Ø’s on which we can form portfolios to hold for the next month. For each firm i , I compute a disaster-Ø
from weekly data using the following expression:

Ø̂i =
Ω(r i

t ,¢p§
RW,t )£æ(r i

t )

æ(¢p§
RW,t )

where Ω(xt , yt ) is the correlation between x and y using weekly data from t to t°365. æ(x) is the volatility
of x using data over this same horizon. This procedure delivers me a real-time estimate of Ø̂i for each
firm and at the end of each month. I compute disaster-Ø’s using weekly data only for firms with a full set
of weekly returns over the previous year.

B.8.2 Disaster-Ø Estimated Using Daily Data

Suppose we are standing on date t , which is also the end of the month. The goal is to compute disaster-
Ø’s on which we can form portfolios to hold for the next month. For each firm i , I compute a disaster-Ø
from daily data using the following regression:

ri t = ai +
2

X

k=0
Øi k¢p§

RD,t°k +ei t

The regression uses daily data from the previous quarter (i.e. t to t °90). I define the disaster-Ø for each
firm and at the end of each month as the sum of the estimated regression coefficients, i.e. Øi =

P2
k=0Øi k .

I compute disaster-Ø’s using daily data only for firms with a full set of daily returns over the previous
quarter.
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B.9 Computing Weekly and Monthly Returns Using Daily CRSP Data

B.10 Weekly Returns

In order to compute disaster-Ø using weekly data, I need weekly returns for each firm. To do so, I simply
accumulate the daily returns within each week to compute a weekly return. To be considered in this
accumulation, a firm must have at least 3 observations within each week.

B.11 Monthly Returns

To track portfolio performance, I need a monthly return of each firm. CRSP provides a monthly return,
but return computations are calculated using end of month prices (i.e. the February return is the return
from the end of the previous January to the end of February). This computation would be fine if portfolios
were formed at the end of each month. However, to really ensure tradability, I estimate disaster-Ø’s at the
end of each month, but then I actually form the portfolios using these betas on the next business day.

For example, suppose we are standing in January 1997. On January 31, 1997, I use the previous year’s
worth of data to estimate disaster-Ø’s. Then, on February 3, 1997 — the first business day after January
31 — I form the portfolios. I hold these until February 28, 1997, and then repeat the procedure.

I therefore use CRSP Daily returns to compute a within-month return measure for each firm in CRSP.
To do so, I simply compound daily returns within each month. To be included in the analysis, the last
observation for a firm in a month must be within 5 days of the end of the business month. In addition,
each firm’s first observation in a month must be within 5 days of the first of the business month.
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C Appendix: Model Solution and Proofs

When presenting the model in Appendix A, I use the term “approximate” in describing expressions for
1) the stochastic discount factor, 2) price dividend ratios for the claim to aggregate consumption, and 3)
price dividend ratios for claims to an arbitrary stock. In this appendix I will be precise in describing what
is meant by approximate, and also solve the model exactly. In addition, I provide proofs of the theorems
and propositions in the main text and in Appendix A.

C.1 The Claim to Aggregate Consumption

As is by now standard, a claim to aggregate consumption pays consumption as a dividend. Denote it’s
price at time t as Pct . First, I define the resilience of this claim, HC t , as:

HC t := ptEt°
h

B 1°∞
t °1

i

°∞(1°∞)
æ2

C

2
(22)

As with an arbitrary stock, I model the resilience of the consumption claim as HC t = HC§ + ĤC t , where
HC§ is the long run mean and ĤC t is deviations from that mean. Specifically,

ĤC t = kt +
1°¬

2
v2 (kt )

with the process kt evolving as follows:

dkt =°(¡H ,C +¬kt )kt d t + (±C +¡H ,C +¬kt )
£

(¬°1)v2(kt )d t + v(kt )dWk,t
§

(23)

where Wk,t is a standard Brownian motion. v(kt ) is an arbitrary function that dictates the volatility of
kt and I require only that it goes to zero just before kt hits °¡c /¬. Note that this restriction is not much
different than those put a standard Cox, Ingersoll, and Ross (1985) process. kt is instead an LG-process
that mean reverts at a speed ¡H ,C . The extra d t terms are small in magnitude and are a modeling conve-
nience that comes with the LG class.

A Comment on the Modeling Approach and How I Use “Approximate” in the Main Text At
this juncture, it may appear confusing why I don’t simply model HC t as an LG process directly, instead
of modeling it as a function of the LG-process kt . The reason is that I eventually want to have a price-
dividend ratio for the consumption claim that is linear in an LG process. It turns out that in order for all
expressions and processes to be internally consistent, there is little freedom from a modeling perspec-
tive. Following with Campbell and Cochrane (1999) and Gabaix (2012), I reverse engineered the process
for kt and the definition of HC t to ensure internal consistency. In addition, Gabaix (2012) shows that
the volatility terms are small compared to the “leading” term in kt , meaning ĤC t ' kt , and I adopt this
argument here as well. This is the sense in which I use the phrase “approximate” in the main text. Notice
also that in the power utility case, ¬= 1, and all of the expressions in the main text become exact.
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Guess and Verify Approach I take a “guess and verify” approach to calculate the price-dividend ratio
of the unlevered consumption claim. That is, I will first conjecture an equilibrium price dividend ratio
for the aggregate consumption claim. From this conjecture, I will use the stochastic discount factor to
derive the value of the aggregate consumption claim, and thus confirm that my original conjecture is
true. Along the way, the following Lemma will prove useful:

Lemma 1. The continuous time Epstein-Duffie-Zin stochastic discount factor evolves according to:

d Mt

Mt°
=°Ω

¬
d t ° 1

¬√
· dCt

Ct°
+

£

(1+dRC ,t )1/¬°1 °1
§

Proof. The proof follows from taking the limit of Equation (5) as ø& 0.37

Next, I conjecture a linear form for the price-dividend ratio of the consumption claim.

Conjecture 1. The price-dividend ratio of the unlevered consumption claim is given by:

PC t

Ct
= 1
±C

µ

1+ ¬kt

¡H ,C +±C

∂

, ±C := ±° gC °¬HC§ (24)

where ± := Ω+ gC /√.

Let us now check the internal consistency of this conjecture. The instantaneous return to the aggre-
gate consumption claim is:

dRC ,t =
dPC ,t

PC ,t
+ Ct

PC ,t
d t

= dCt

Ct°
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d(PC ,t /Ct )
PC ,t /Ct

+ Ct

PC ,t
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¬
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+

0

@

±C

1+ ¬kt
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Ad t +±C d t

= dCt

Ct°
+±C d t + ¬dkt

±C +¡H ,C +¬kt
° ±C¬kt d t
±C +¡H ,C +¬kt

= dCt

Ct°
+

£

±C °¬kt +¬(¬°1)v2 (kt )
§

d t +¬v (kt )dWk,t (25)

where the last line comes from substituting in for dkt and canceling like terms. For now, define µkt =
£

±C °¬kt +¬(¬°1)v2 (kt )
§

. Next, substitute Equation (25) and apply Lemma 1 to compute the evolution

37For instance, using a Taylor expansion around 1:

µ

Ct+ø
Ct

∂°1/¬√

º 1° 1
¬√

µ

Ct+ø
Ct

°1
∂

+ 1
2
£ 1
¬√

µ

1
¬√

+1
∂µ

Ct+ø
Ct

°1
∂2

Then when taking continuous time limits, Ct+ø/Ct °1 converges to dCt /Ct . The second order term is necessary to
account for the standard Ito correction term that appears in stochastic calculus.
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of the stochastic discount factor outside of disasters (“no disasters”):

d Mt
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Our next task is to insert the expression derived for dRC ,t in Equation (25) into the stochastic discount
factor. To do so, we can Taylor expand the last line around zero, and as is standard in stochastic calculus,
eliminate terms of O (d t 2) and higher:
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(27)

where I eliminated terms containing dWC ,t dWk,t because I assume the two shocks are independent.
Tedious algebra shows that the term multiplying æ2

C can be dramatically simplified:

∑µ

1
¬
°1

∂µ

1
¬
°2

∂

° 2
¬√

µ

1
¬
°1

∂

+ 1
¬√

µ

1
¬√

+1
∂∏

= ∞(1+∞)
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Finally, substituting in for µkt =
£

±C °¬kt +¬(¬°1)v2 (kt )
§

and kt yields, after some simplification:

d Mt

Mt
|N D = (°±+ (¬°1)H§

C )d t

+
æ2

C

2
∞(1+∞)d t °∞æC dWC ,t

+(¬°1)
∑µ

kt +
v2(kt )

2

∂

d t ° v(kt )dWk,t

∏

(28)

where I have used the identities ±= Ω° gc /√ and ±c = ±° gc °¬H§
C .

Note that in the power utility model, ¬ = 1, which means the stochastic discount factor outside of
disasters takes its usual form (e.g. Cochrane (2005)). Further notice if there is a disaster that Mt is simply
multiplied by B°1/(¬√)+1/¬°1

t = B°∞
t , which means we can write the SDF as:

d Mt

Mt°
= d Mt

Mt
|N D +

°

B°∞
t °1

¢

d Jt (29)

We are now in a position to verify Conjecture 1 using the LG machinery. From Equation (29) and the law
of motion for consumption, I calculate:

d (MtCt )
Mt°Ct°

=
°

°±+ (¬°1)HC§
¢

d t °∞æC dWC ,t + (¬°1)
∑µ

kt +
v2(kt )
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∂

d t ° v(kt )dWk,t

∏

+
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C

2
∞(1+∞)d t + gC d t +æC dWC ,t °∞æ2

C d t +
≥

B 1°∞
t °1

¥

d Jt

Thus, the first LG moment is:
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∏
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2

∂
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2
∞(1+∞)°∞æ2

C +ptEt

h
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i
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µ
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2

∂
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µ
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2

∂

+ gC +HC§ + ĤC t

= °±+ (¬°1)
µ
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v2(kt )

2

∂

+ gC +HC§ +kt +
1°¬

2
v2 (kt )

= °±+¬HC§ + gC +¬kt

= °±C +¬kt

(30)
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Let’s compute the second LG moment:

Et

∑

d (MtCt kt )
Mt°Ct°

∏

/d t = Et

∑

d (MtCt )
MtCt

∏

/d t ·kt +Et [dkt ]/d t +
ø

d Mt

Mt
,dkt

¿

= (°±C +¬kt )kt ° (¡H ,C +¬kt )kt d t + (±C +¡H ,C +¬kt )(¬°1)v2(kt )d t

+(±C +¡H ,C +¬kt )(1°¬)v2(kt )d t

= °(±C +¡H ,C )kt

Finally, applying Theorem 4 of Gabaix (2009) yields the price-dividend of the consumption claim:

PC t

Ct
= 1
±C

µ

1+ ¬kt

¡H ,C +±C

∂

So, indeed Conjecture 1 is correct. It is also worth noting that when the IES is one (i.e. √ = 1), then the
price-dividend ratio of the consumption claim collapses to a constant of Ω°1 as in Weil (1990). Notice
also that if we shut down time-varying disaster risks, then the dividend-yield of the consumption claim
becomes:

Ct

PC t
= ±C

= Ω+
µ

1
√

°1
∂

gC ° 1
2
∞

µ

1
√

°1
∂

æ2
c °

1/√°1
∞°1

p(E
£

B 1°∞§°1)

This expression matches the derivation of Equation (13) in Barro (2009).

C.2 Equilibrium Valuation of Any Arbitrary Stock

Similar to the aggregate consumption claim, define the resilience of firm i ’s stock as:

Hi t := ptEt
£

B°∞
t Fi ,t °1

§

+ (¬°1)
µ

HC t +
¬v2(kt )

2

∂

+
æ2

C

2
∞(1+∞) (31)

Further suppose that Hi t = Hi§+ Ĥi t , and the variable part of firm-level resilience follows an LG process
(repeated from the main text):

d Ĥi t +
ø

d Mt

Mt
+ dDi t

Di t
,d N H

i t

¿N D

d t =°(¡H ,i + Ĥi t )Ĥi t d t +d N H
i t (32)

where again N H
i t is a mean-zero shock to firm-level resilience and

≠

x, y
ÆN D denotes covariance of x and

y , conditional on no disasters.
Next, to compute the price-dividend ratio, we need to verify the conditions for Hi t to be used in

70



conjunction with the LG machinery. Start with the first LG moment:

d (Mt Di t )
Mt°Di t°

= (°±+ (¬°1)H§
C )d t °∞æC dWC ,t + (¬°1)

∑µ
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∂
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i t +
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,

dDi t
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+(B°∞
t+d t Fi ,t+d t °1)d Jt

Using the assumption that shocks to dividend growth in normal times, d N D
i t , are independent of all other

shocks gives us:
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∂
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∂
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2
∞(1+∞)d t +ptEt (B°∞

t+d t Fi ,t+d t °1)
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HC t +
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2

∂

+
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2
∞(1+∞)d t +ptEt (B°∞

t Fi ,t °1)

= °±+ gi D +Hi t

= °±+ gi D +Hi§ + Ĥi t

= °±i + Ĥi t

where I define ±i := ±° gi D °Hi§ . Now, the second LG moment:
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d
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Mt Di t Ĥi t
¢

Mt°Di t°

#

/d t =
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°±i + Ĥi t
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Ĥi t +
ø
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,d Ĥi t

¿

+Et
£

d Ĥi t
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=
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°±i + Ĥi t
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Finally, using Theorem 4 of Gabaix (2012), we get the equilibrium price-dividend ratio:

Pi t

Di t
= 1
±i

µ

1+ Ĥi t

±i +¡H ,i

∂

(33)

C.3 Equilibrium Returns

From Equation (33), it is straightforward to derive the equilibrium return process for the firm. Start with
the instantaneous change in the level of prices:

dPi t =
1
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dDi t +
1

±i +¡H ,i
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∏
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so ex-dividend returns are,

dPi t

Pi t
=

1
±i

h

dDi t + 1
±i+¡H ,i

°

dDi t Ĥi t +Di t d Ĥi t +
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∂
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Substituting Equation (6) and (32) into (34) yields:
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¢

+
µ

1

±i +¡H ,i + Ĥi t
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where

µi t = gi D °

0

B

@

°

¡H ,i + Ĥi t
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i t )+
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∂2

vart (d N H
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where dWi t is a standard Wiener process.
Where did the dWi t in Equation (35) come from? Recall that I only restricted N D

i t and N H
i t to be mean-

zero innovations. Importantly, this was all that was necessary to derive equilibrium price-dividend ratios
as in Equation (33). The remaining task is to engineer processes for N D

t and N H
t that are based on Wiener

processes, have mean zero increments, an also satisfy the restrictions on variance that are required for
LG processes. Here is a sketch of one way to accomplish this: set d N D

t =æD
i t dW D

i t for an arbitrary volatil-
ity process,æD

i t . Then, define d N H
i t =°aN H

i t °Æ(N H
i t °∏)dW H

i t . This is the process used by Menzly, Santos,
and Veronesi (2004). The parameter a determines the mean-reversion speed of the process and ∏ dic-
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tates the domain of the process so that N H
i t 2 [∏,1). Finally, set ∏ equal to the appropriate lower bound

as dictated by the LG restrictions.38

It is also important to recognize that dWi t is not necessarily independent of other shocks in the
model. Namely, given the definition of firm resilience, dWi t is mechanically correlated with dWkt . As
such, we can decompose dWi t as follows: dWi t = ΩdWkt +

p

1°Ω2d fWi t , where d fWi t is an independent
Brownian motion, and Ω is a correlation coefficient that is implicitly determined by the definition of
resilience (both the consumption claim and at the firm level). Putting this all together, we obtain the
following internally consistent process for firm-level returns:

dPi t

Pi t
=µi t d t +æi t

µ

ΩdWkt +
q

1°Ω2d fWi t

∂

+ (Fi t °1)d Jt (36)

C.4 Risk-Neutral Price Dynamics

I solve for the risk-neutral price dynamics of any stock in three steps: (i) solve for the equilibrium risk-
less short rate process, rt ; (ii) define the Radon Nikodym derivative from the stochastic discount factor
process; (iii) use Girsanov’s theorem for jumps to solve for risk-neutral price dynamics.

Step (i) is necessary in order to pin down the risk-neutral drift (and thus the excess risk premium)
as a function of the model’s primitives. One reference for Girsanov’s theorem for jumps can be found in
Björk, Kabanov, and Runggaldier (1997).

38Footnote 9 in Gabaix Gabaix (2012) details these restrictions based on how resilience is defined in the disaster
model.
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C.4.1 Equilibrium Short Rate Process

Let me first hone down the (dynamic) short rate rt ,
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∏
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(38)

where the approximation in the last line comes from ignoring the higher order v2(kt ) term.
Notice that if √ = 1/∞ as in the power utility case, then we get the exact expression in Barro (2009)

for time-invariant disasters and Gabaix (2012) for time-varying disasters. Furthermore, if √= 1, then the
expression matches the risk-free rate derived in Wachter (2013).

C.4.2 Defining the Radon-Nikodym Derivative

Define the process Zt as follows:

Zt := exp

0

@
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0

r f sd s

1

AMt (39)
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so that,

d Zt = exp
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It should be clear from Equation (40) that Zt is a martingale under the physical measure, P.
Next, define risk-neutral measure,Q, via its Radon-Nikodym derivative:

dQ
dP

= Zt

Z0
(41)

C.4.3 Girsanov’s Theorem to Change Measure

Girsanov’s theorem for jumps, e.g. Kabanov, and Runggaldier (1997), states that the dW §
C t ¥ dWC t +

∞æC d t and dW §
kt = dWkt +(¬°1)v(kt )d t are both Brownian motions under the new measureQ. In addi-

tion, the disaster arrival rate pt is shifted so that disasters d Jt arrive at a risk-neutral rate p§
t ¥ ptEt

£

B°∞
t

§

. Notice that when Bt < 0, p§
t > pt . Intuitively, the agent prices disasters as if they are more likely under

the risk-neutral measure. The severity of disasters at the aggregate level also changes under the risk-
neutral measure. Suppose that the probability distribution function of Bt is given by fB t (x). Under the
risk-neutral measure, Girsanov’s theorem states that Bt is distributed according to f §

B t (x), where f §
B t (x)

is defined as:

f §
B t (x) = x°∞ fB t (x)

Et
£
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It is easy to verify that f §
B t (x) is a valid distribution function. Furthermore, EQt [Bt ] = EPt

h

B 1°∞
t

i

/EPt
£

B°∞
t

§

.
With uncertainty under the risk-neutral measure appropriately defined, we can now determine the price
of a consumption claim.

Pricing the Consumption Claim:
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From Equation (25), we know that the return to the consumption claim is:
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where µC t = gC +
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±C °¬kt +¬(¬°1)v2 (kt )
§

. Under no arbitrage, we know that under the risk-neutral
measure the expected change in the consumption claim must equal the risk-free rate (i.e. EQt [dRC t ] =
r f t ):
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(42)

The expected return on the consumption claim is the sum of three components. The first, ∞æ2
C , is the

standard result from power-utility economies, and we know that æC is too small to match expected un-
levered stock market returns on its own. The second term ¬(¬° 1)v2(kt ) arises from Epstein-Zin-Weil
preferences. When the IES √ > 1, then more uncertainty in resilience (the disaster likelihood of sever-
ity) leads to a higher equity premium. This result mirrors the findings of, for instance, Bansal and Yaron
(2003). The last term reflects the additional premium required for bearing disaster risk.39

Pricing an Arbitrary Stock:

39Note that this is the expected return to the consumption claim, conditional on no disasters. This is because
EPt [dRC t ] =µC t d t+ptE

P
t [Bt °1]d t . The unconditional expected return of the consumption claim is thus given by:

EPt [dRC t ]° r f t d t = ∞æ2
C +¬(¬°1)v2(kt )+ptE

P
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(B°∞°1)(1°Bt )
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Start from the return process for an individual firm:
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No-arbitrage implies that, under the Q-measure, the discounted stock price is a Martingale. In order for
this to be true, it must be the case that:
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where the approximation comes from the fact that v(kt ) is in practice very small.40 Equation (44) is the
equilibrium risk premium for any stock.

Finally, we obtain the risk-neutral return process for the firm:
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where dW §
i t =

p

1°Ω2d fWi t +ΩdW §
kt . Here, I use the § superscript to denote the appropriate processes

under Q. The important takeaway of this exercise though is the risk-neutral jump process at the firm
level.

C.5 Proof of Proposition 2

First notice that the risk-neutral probability of a disaster over the next ¢ is 1° e°pB°∞¢ º pB°∞¢ = p§.
Under the assumption that æi t = æi , pt = p,Bt = B , and Fi t = Fi are all constants, the risk-neutral stock
price at time t +¢ is given by:

Pi ,t+¢ =
(

Pi t exp
©°

∫i °æ2
i /2

¢

¢+æu
p
¢

™

if a disaster doesn’t occur

Pi t Fi exp
©°

∫i °æ2
i /2

¢

¢+æu
p
¢

™

if a disaster occurs

40In addition, if independent innovations to firm-level recovery Fi t are a large component of firm resilience, then
Ω will also be very small.
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where ∫i = r f °pB°∞(1°Fi ) and u is a standard normal random variable under the risk-neutral measure,
u ªQ N (0,1).

Proof. Next, recall that the Black-Scholes formula (with zero interest rate) for puts computes the follow-
ing expectation:

P BS
i (S,K ) = EM

h

max
≥

0,K °Se°æ
2
i /2+æi z

p
¢
¥i

where M is an arbitrary measure such that z ªM N (0,1) is a standard normal under that measure. For
notational ease, I suppress the time to maturity ¢.

Now, in our context, the value of a put option is:

P i (Pi t ,K ) = e°r f ¢EQ [max(0,K °Pt+¢)]

= e°r f ¢
n

p§EQNo°Di sas [max(0,K °Pt+¢)]+ (1°p§)EQDi sas [max(0,K °Pt+¢)]
o

(46)

where EQNo°Di sas[·] is the expectation under the risk-neutral measure, conditional on no disaster occur-
ring. This is straightforward to compute:

E
Q
No°Di sas [max(0,K °Pt+¢)] = EQ

h

max(0,K °Pi t exp
n

°

∫i °æ2
i /2

¢

¢+æu
p
¢

oi

= e∫i¢EQ
h

max(0,K °Pi t exp
n

°

°æ2
i /2

¢

¢+æu
p
¢

oi

= e∫i¢P BS
i (Pi t ,K )

It is straightforward to repeat the same argument to compute EQDi sas [max(0,K °Pt+¢)]. Thus, Equation
(46) reduces to:

P i (Pi t ,K ) = e(∫i°r f )¢ £

p§ £P BS
i (Fi Pi t ,K )+ (1°p§)£P BS

i (Pi t ,K )
§

= e(°p§(1°Fi )) £p§ £P BS
i (Fi Pi t ,K )+ (1°p§)£P BS

i (Pi t ,K )
§

which yields the desired result. A parallel argument holds for the call option value

C.6 Proof of Theorem 3

Define g (v) = ln(v) and √(x) = 1+x +x2/2°ex . As defined in the main text, fi (F ; t ) is the density of F at
time t . Finally, define™( fi (F ; t )) as:

™
°

fi (F ; t )
¢

= 2
ˆ

R+

√
°

g (v)
¢

f (v ; t )d v (47)

The proof follows from applications of Proposition 1 of Carr and Wu (2009), and Proposition 2 of Du and
Kapadia (2013).

In the case where Fi is constant, then™ takes a very simple form:

™c (Fi ;∞) = 2
£

1+ ln(Fi t )+ [ln(Fi t )]2 /2°Fi t
§

(48)
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C.7 Proof of Proposition 1

From Proposition 2, we know that the price dividend ratio of firm i at an arbitrary time t +h is:

Pi ,t+h

Di ,t+h
= 1
±i

√

1+
Ĥi ,t+h

±i +¡H ,i

!

Computing log-returns between t +h and t is thus straightforward:

log
µ

Pi ,t+h

Pi ,t

∂

= log
µ

Di ,t+h

Di ,t

∂

+ log

√

1+
Ĥi ,t+h

±i +¡H ,i

!

° log
µ

1+
Ĥi ,t

±i +¡H ,i

∂

º log
µ

Di ,t+h

Di ,t

∂

+ 1
±i +¡H ,i

£
°

Ĥi ,t+h ° Ĥi ,t
¢

(49)

where the approximation in the second line comes from a first-order Taylor expansion around Ĥ = 0.
This is a good approximation in this case because the mean of Ĥ is by construction zero.

Next, using the definition of resilience Ĥi t , recognize that:

Ĥi ,t+h ° Ĥi ,t = pt+h £
©

Et+h,°
£

B°∞
t+h(Fi ,t+h + (¬°1)Bt+h)°¬

§™

°pt £
©

Et°
£

B°∞
t (Fi ,t + (¬°1)Bt )°¬

§™

= (pt+h °pt )
©

Et°
£

B°∞
t (Fi ,t + (¬°1)Bt )°¬

§™

= (pt+h °pt )
n

Et°
£

B°∞
t Fi ,t

§

+ (¬°1)Et°
h

B 1°∞
t

i

°¬
o

(pt+h °pt )
n

Et°
£

B°∞
t

§

Et°
£

Fi ,t
§

+ (¬°1)Et°
h

B 1°∞
t

i

°¬
o

(50)

where the second line comes from the assumption that expectations of F and B are constant over short
horizons (in this case h = 1/12), and the third line comes from the assumption that F and B are indepen-
dent.

Plugging in Equation (50) into Equation (49), we get:

log
µ

Pi ,t+h

Pi ,t

∂

= log
µ

Di ,t+h

Di ,t

∂

+ (pt+h °pt )

n

Et°
£

B°∞
t

§

Et°
£

Fi ,t
§

+ (¬°1)Et°
h

B 1°∞
t

i

°¬
o

±i +¡H ,i
| {z }

¥Ø̃i

(51)

The preceding equation is a regression of returns on dividend growth and changes in pt . The regression
coefficient Ø̃i is an increasing function of Et°

£

Fi ,t
§

since Et°
£

B°∞
t

§

> 0, ±i > 0, and ¡H ,i > 0.
In practice, the explanatory variable in the regression is p§

t+h °p§
t , as opposed to pt+h °pt . As in the

main text, I useØi to denote the regression coefficient when using the risk-neutral probability of disaster.
So how does Øi differ from Ø̃i in terms of its functional dependence on Et°

£

Fi ,t
§

? Thus, because the
mapping between pt and p§

t has nothing to do with Et°
£

Fi ,t
§

, Øi will still be increasing in Et°
£

Fi ,t
§

.
Inherently, this proof rests on the assumption that when estimate Øi , the expectations of B and F

stay constant over the estimation horizon. When I implement the procedure empirically, I use trailing
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one-year data to estimate the regression, so this assumption is likely to hold true.

C.8 Proof of Corollary 1

The proof is an extension of Equation (51). First, notice that with a constant B and F :

log
µ

Pi ,t+h

Pi ,t

∂

= log
µ

Di ,t+h

Di ,t

∂

+ (pt+h °pt )£
B°∞ °

Fi + (¬°1)B
¢

°¬
±i +¡H ,i

(52)

Next, recall that our estimate of p§
t is multiplied by a scalar ™, which represents the average ™i in the

economy. Recall from the main text that ™i = 2£ (1+ ln(Fi )+ [ln(Fi )]2 /2°Fi ). Thus, my estimate of
bp§

t =™p§
t .

Under the assumption that pt is constant within each month (ø), it follows that:

Åp§
t+h ° cp§
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°

p§
t+h °p§

t
¢

/ø

= ™B°∞
√ˆ t+h+ø

t+h
psd s °

ˆ t+ø

t
psd s

!

/ø

= ™B°∞(pt+h °pt )

,

pt+h °pt =
Åp§

t+h ° cp§
t

™B°∞
(53)

Substituting Equation (53) into (52) yields the desired result:
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= log
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©

1+ ln(FSP )+ [ln(FSP )]2 /2°FSP
™

£B°∞ °

±i +¡H ,i
¢

C.9 How Big Are the “Higher Order” Terms for Resilience?

In both the definition of firm-level resilience and the resilience of the consumption claim, the “higher
order” terms v2(kt ) appears frequently. If we can ignore this term, then the expressions for the resilience

of the consumption claim is given by Hct = kt °∞(1°∞)
æ2

C
2 . For the case of the consumption claim, this

means that the price-dividend ratio will be exactly linear in Hct (as opposed to kt , see expression (24)). In
his Online Appendix, Gabaix (2012) shows v(kt ) is proportional to the volatility of pt , which he calibrates
to æp = 0.4%. In this paper, the only difference between my definition of consumption resilience in (22)
from his same expression is a constant; thus, the analysis of the magnitude v(kt ) is the same, since this
determines the volatility of resilience. Gabaix (2012) finds that, for example, the v(kt ) terms contribute
less than 1% to quantities such as Hct and Hi t , and for the same reason, the approximations used in the
main text are a very accurate version of the fully solved model presented in this appendix.
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