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Emil N. Siriwardane†

Abstract

Using proprietary credit default swap (CDS) data, I investigate how capital shocks at pro-
tection sellers impact pricing in the CDS market. Seller capital shocks — measured as CDS
portfolio margin payments — account for 12 percent of the time-series variation in weekly
spread changes, a significant amount given that standard credit factors account for 18 percent
during my sample. In addition, seller shocks possess information for spreads that is indepen-
dent of institution-wide measures of constraints. These findings imply a high degree of market
segmentation, and suggest that frictions within specialized financial institutions prevent capital
from flowing into the market at shorter horizons.
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1 Introduction

A core assumption in neoclassical asset pricing theories is that capital can always flow friction-
lessly to investment opportunities. Yet for many asset classes there are barriers to capital entry
because investment requires specialized knowledge and technology, or capital itself may be scarce
due to agency problems. For instance, financial institutions that participate in derivatives markets
must have access to a steady source of funding, employ traders that have the requisite knowledge
to properly evaluate risk, and possess the infrastructure to execute and process trades.

Even within these financial institutions, internal capital market frictions can play a considerable
role in impeding the flow of investment resources in the short run. Many financial institutions are
active in a number of different asset classes, but trading desks within these institutions often focus
on a specific market or a specific firm. In turn, specialized trading desks are allocated a pool of
capital to finance trading activity, but this capital is not easily replenished on short notice due to,
for instance, agency problems within the firm (He and Xiong (2013)).

In the presence of these capital market frictions, asset prices may behave quite differently than
what neoclassical theory would predict, at least at high frequencies. Instead of price dynamics de-
pending solely on exposure to fundamental risk factors, price movements can also reflect changes
in the capital position of a small subset of trading desks in the market.

The spirit of this idea is at the heart of theories of limits to arbitrage (Shleifer and Vishny
(1997); Kyle and Xiong (2001)), slow moving capital (Duffie (2010)), and financial intermediary-
based asset pricing (He and Krishnamurthy (2013)). In these models, exogenous shocks to the
capital positions of active market participants cause movements in asset prices, with the usual in-
tuition being that less capital means higher risk premiums and lower prices. However, establishing
a causal relationship between capital and asset prices is difficult to do empirically because we gen-
erally do not observe the identities of market participants and their portfolio positions. Moreover,
without granular data, it is difficult to know the degree to which markets are segmented. In the ab-
sence of such data, much of the existing work in the field has linked high-level measures of capital,
like intermediary leverage, to asset price dynamics (Adrian et al. (2014); He et al. (2017)).1

In this paper, I take steps to overcome these hurdles using a proprietary dataset of nearly one
billion credit default swap (CDS) positions that covers the entire U.S. market from 2010 to 2016.2

1Other examples include Froot and O’Connell (1999), Mitchell, Pedersen, and Pulvino (2007), Coval and Stafford
(2007), Acharya et al. (2015), and Chen, Joslin, and Ni (Forthcoming).

2In a CDS contract, the buyer of insurance pays a premium to a seller for protection against an underlying firm’s
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I start by showing that net buyers and net sellers of CDS protection are both highly concentrated,
with sellers more concentrated than buyers. The top five sellers, who comprise only 0.1 percent of
all CDS traders, account for nearly 65 percent of all net selling. This feature of the CDS market
makes it an attractive venue to study capital market frictions because investment capital is more
likely to face barriers to entry — and therefore impact asset prices — when asset markets are
dominated by a small subset of financial institutions.

The ideal way to tease out the causal impact of capital shocks on spreads is as follows: consider
two firms, A and B, who are identical in terms of their underlying default risk and their exposure
to systematic risk factors. Suppose for instance that firm A’s CDS sellers are hit with a capital
shock from an unrelated part of their portfolio, but firm B’s sellers are not. It follows that any
subsequent movement in firm A’s spreads relative to B’s must come from the negative capital
shock. Furthermore, because firm A and firm B have equal exposure to systematic risk factors, the
fact that firm A’s spreads move at all is also an indication of segmentation. In an integrated market,
spreads should not respond to shocks that are specific to firm A’s sellers (Gabaix et al. (2007)).

My analysis is designed to approximate this ideal experiment in the data. In particular, I study
how the CDS spread of a firm responds when that firm’s default insurance sellers or buyers suffer
capital losses. I compute seller (or buyer) capital shocks based on changes in the value of their
CDS portfolio, which for institutional reasons also correspond to CDS portfolio margin payments
(Duffie et al. (2015)). Importantly, my capital shock variables derive from positions taken on
unrelated firms. Thus, it is unlikely that losses reflect changes in fundamental default risk factors
that are not already absorbed by the various fixed-effects and controls in my regression tests.

I find that when a firm’s sellers experience a one billion dollar capital loss (roughly 1.5 standard
deviations), the level of CDS spreads rises by 2.7 percent per week. This elasticity is economically
large, as the standard deviation of weekly spread movements is 5.2 percent for the average firm
in my sample. Seller capital shocks also explain 12 percent of weekly spread variation, a large
amount given that standard credit factors account for 18 percent during my sample. Intuitively,
capital losses raise the effective risk aversion of sellers, so they require a higher premium for pro-
viding protection. As mentioned, these results also imply that the CDS market is at least partially
segmented at the firm level. Consequently, in the short run, one can view the CDS market for a
particular firm as a standalone market whose risk pricing is not integrated with that of other firms.

Next, I show that seller capital shocks posses information for spreads that is independent of

(or reference entity’s) corporate default. The buyer and seller in the trade are often called counterparties.
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institutional-level measures of capital constraints, like financial leverage. Rather, capital shocks
that are specific to the CDS desks of sellers are important for explaining weekly changes in spreads.
This finding suggests that protection sellers act as if they are more risk averse following losses, re-
gardless of whether their institution is well-capitalized. Thus, frictions within a financial institution
play an important role in preventing capital from flowing into the CDS market at shorter horizons.

Given enough time though, one would expect capital to eventually enter the CDS market and
undo any pricing effects stemming from losses. Indeed, this is a signature prediction of most
theories of slow moving capital (e.g. Duffie and Strulovici (2012)). Accordingly, I document that
the impact of seller losses on CDS spreads dissipates rapidly, completely reverting after about 9
weeks. It is not surprising that the pricing effects die out quickly because segmentation at the firm
level is a rather extreme form of capital market segmentation; hence, one would not expect it to
persist for long periods.

To better understand the mechanism driving these results, I investigate how the quantity of
protection sold responds to capital shocks. Using individual position data, I show that incumbent
sellers do not adjust their portfolios by a meaningful amount in response to losses – they sim-
ply become reluctant to take on more positions after they are initially hit with a negative capital
shock. Moreover, after incumbent sellers experience a negative shock and spreads rise, there is
no evidence that new sellers enter the market to offer more competitive prices. Instead, as internal
capital market frictions at incumbent sellers’ institutions thaw in the weeks following a capital loss,
sellers regain their risk appetite and decrease their reservation price for providing protection.3

It also seems reasonable to wonder whether the link between seller capital and spreads depends
on the composition of active financial institutions in the market at a given point in time. Indeed,
a notable trend in the data is that the since the 2008 financial crisis, asset managers (e.g. hedge
funds) have steadily replaced dealers as the largest net sellers of CDS protection. Motivated by this
trend, I also test whether capital losses impact spreads differently depending on whether dealers
or asset managers have a large market share. I find that losses at asset managers have a stronger
impact on spreads than losses at dealers, suggesting that capital market frictions are larger for asset
managers than dealers.

One limitation of my analysis is that I do not observe market players’ holding of underlying
bonds. This is primarily an issue for net buyers of credit protection, who typically use CDS to

3I use CDS spreads from Markit, who provides a composite spread based on both transactions and quotes. Thus, a
supply shift does not necessarily imply a price change from Markit. I discuss this issue in detail in Section 3.5.
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hedge an underlying corporate bond portfolio. Thus, losses at the CDS desk for net buyers may
be offset by gains in their corporate bond portfolio. Consistent with this view, I find little evidence
of a relationship between credit spreads and my measure of buyer capital shocks. Hedging is less
likely to be an issue for large net sellers, as directly hedging a sold CDS position requires costly
shorting of the underlying bond (Asquith et al. (2013)). Moreover, if sellers were hedged, one
would not expect shocks based only on their CDS portfolio to explain spreads.

Finally, to reinforce the causal link between capital and pricing, I use the 2011 Japanese
tsunami to study how an exogenous shock to seller risk bearing capacity affected CDS spreads
on U.S. firms. To trace out the impact of the tsunami, I exploit the fact that U.S. counterparties had
large and heterogenous CDS exposures to Japanese firms prior to the tsunami. I then compare U.S.
firms whose sellers had large Japanese CDS exposures to firms whose sellers had low exposure.
In the week after the tsunami, CDS spreads rose 2.5 percent for firms whose protection sellers had
high exposure to Japan, relative to firms whose sellers had low exposure. I also find no evidence
of buyers transmitting the shock of the tsunami to U.S. firms.

The remainder of the paper is as follows. Section 2 summarizes my primary data sources and
presents some facts about the CDS market that motivate why it is a good place to explore how
limited capital impacts asset prices. Section 3 establishes how seller capital losses impact CDS
pricing, the degree of segmentation in the market, and the role that internal capital market frictions
play in preventing capital from flowing into the CDS market. In Section 4, I discuss the plausibility
and robustness of my central conclusions. Section 5 explores whether the link between capital and
pricing depends on the type of active institution in the market. Section 5 also contains a case study
of how the 2011 Japanese tsunami was transmitted to U.S. CDS markets by protection sellers, as
well as some suggestive analysis linking CDS and bond markets. Finally, Section 6 concludes.

2 Data and Motivating Facts

2.1 Data Description

The main source of data for this study was provided to the U.S. Treasury’s Office of Finance
Research (OFR) by the Depository Trust and Clearing Corporation (DTCC).4 The data is part of

4Schachar (2012), Chen et al. (2011), Boyarchenko et al. (2017), and Oehmke and Zawadowski (2017) also use
versions of the DTCC data
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the DTCC’s Trade Information Warehouse (TIW) and covers both CDS transactions and positions.
Transactions represent flows in CDS, and positions represent stocks. The DTCC uses its own
algorithms to convert transactions to open positions before reporting both to the OFR.

For both transactions and positions, I observe full information on the counterparties in the trade,
the pricing terms, the swap type, the notional amount, the initiation date, and so forth. The DTCC
provides the OFR with data on any transaction or position that meets one of two conditions: (i) the
underlying firm covered by the swap is based in the U.S. or (ii) at least one of the counterparties
in the swap is registered in the U.S. In addition, the DTCC CDS data includes all North American
index swap transactions and positions (i.e. the index family is “CDX.NA.”). Taken together, this
data effectively covers the entire CDS market for all U.S. firms, which is the portion of the market
that I analyze in this study.5 The data begins in 2010 and is updated continuously on a weekly
basis. I work primarily with the positional data and truncate my analysis in October 2016. The
DTCC’s positional dataset contains over 57 million index positions and nearly 760 million single
name positions. To save space, all details regarding data construction and processing are provided
in a separate online appendix.

I also merge the DTCC data with a number of data sources. The main focus of this study
is to understand weekly movements in CDS spread, which I obtain from Markit. Markit CDS
spreads represent a composite spread that is computed using quotes and transaction information
from 30 major market participants. I specifically use 5-year CDS spreads with a modified restruc-
turing (MR) clause, written on senior unsecured debt, and denominated in USD. To account for
changes in fundamental risk, I use data from Moody’s expected default frequency (EDF) database.
Moody’s EDF is a standard database of expected firm default probabilities that is derived from
structural models of credit risk (Merton (1974)). The EDF database also contains information on
firm-level equity valuations and ratings information from S&P. In some of my subsequent analysis,
I examine how the leverage of market participants interacts with CDS spreads. I define leverage
as the book value of debt divided by the market value of equity, both of which I obtain from
CRSP/COMPUSTAT. Table 1 contains some basic summary statistics of this data.

The Treatment of Index Swaps As shown in Appendix A.1, nearly half of the credit risk transfer
in the CDS market happen through index swaps. Thus, to fully understand a counterparty’s true

5Throughout this paper, I refer to the underlying company whose default is covered by a CDS contract as the “firm”
or “underlying firm”. A common terminology used in the CDS market is also the “underlying reference entity”.
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risk exposures it is important to account for positions in both index and single name swap positions.
For example, suppose a trader sells $100 of notional on an index swap that contains 100 different
firms, each with equal weight in the index. Like a single name swap, if one of the firms defaults,
the trader must pay out up to $1 = $100⇥(1/100) in notional to the buyer of the index swap,
depending on the recovery rate of the underlying firm’s bonds. After this payment, there are 99
firms remaining in the index. Writing $100 in protection via an index is therefore equivalent to
writing 100 different single name swaps, each worth $1 in notional. In turn, when considering
the amount of credit risk exposure to a single firm, I disaggregate index swaps into their single
name equivalents and then net them against any true single name exposures. The full dataset of
true single name exposures and index-implied single name exposures contains nearly 4.4 billion
positions. The Online Appendix contains full details of this procedure.

2.2 Concentration in the CDS Market

Investment capital is more likely to face barriers to entry — and therefore impact asset prices —
when asset markets are concentrated and dominated by a small subset of financial institutions. I
now document that CDS markets fit this description, making them a natural place to explore asset
pricing theories based on capital market frictions (e.g. Shleifer and Vishny (1997) and Duffie and
Strulovici (2012)). In particular, I show that a handful of sellers provide the bulk of the credit
insurance in this market. Buyers of protection are also concentrated, though less so than sellers.

To establish these facts, I will repeatedly use the following notation. f defines the underlying
firm on which a credit default swap is written and c represents a counterparty. NSc,f,t denotes
the net amount of protection sold by c on firm f as of date t.6 Positive values of NSc,f,t indicate
c is a net seller of f , and negative values indicate c is a net buyer. For instance, if trader c sells
$100 of protection on firm f in one trade, and buys $25 protection on f in a different trade, then
NSc,f,t = $75. Again, I account for indirect exposures through index swaps and direct exposures
through single name swaps when computing NSc,f,t. Lastly, Ct is the set of counterparties with
open positions on date t, and Ft is the set of firms covered by open CDS contracts as of date t.

With this notation in mind, I define counterparty c’s share of net selling on firm f as follows:

MSc,f,t := NSc,f,t ⇥ (NOf,t)
�1 (1)

6I define c at the institution level. This is reasonable when a majority of CDS trading at an institution happens at
one desk, as often is the case. For simplicity, I also collapse the maturity of positions when defining NSc,f,t.
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where NOf,t is the net notional outstanding for firm f at time t, computed by summing NSc,f,t

across all of the net sellers of firm f . MSc,f,t measures counterparty c’s share of net selling in firm
f . For example, MSc,f,t = 20% means that c is responsible for 20% of the total net protection sold
on f . Conversely, MSc,f,t = �20%, means c accounts for 20% of the total net bought on f .

Next, to compute an aggregate market share measure for each counterparty, I take a size-
weighted average of c’s shares across all firms:

MSc,t :=

X

f2Ft

!ft ⇥MSc,f,t (2)

where !f,t := NOf,t/
P

NOf,t is based on the size of f ’s CDS market. In computing MSc,t, I
use a size-weighted instead of an equal-weighted average to offset the influence of firms with very
small CDS markets, as these firm usually have only one net buyer and one net seller.

MSc,t is a parsimonious measure of the importance of c as a seller (or buyer) for the overall
CDS market. If c is consistently a seller of protection on firms with the largest CDS markets, then
MSc,t will be large and positive. If instead a counterparty offsets net positions across firms (i.e.
sells in one name, and buys in another), then its aggregate share will tend towards zero.

In turn, I define the top five aggregate sellers at each point in time as the traders with the largest
MSc,t. The top five buyers are the five counterparties with the most negative MSc,t. Figure 1 plots
the total share of the top five sellers and buyers, respectively, through time. In the plot I report
buyer market shares as a positive number because my definition otherwise assigns them negative
shares.

Net sellers of CDS are highly concentrated, and generally have been more so than buyers.
By my measure of market share, the top five sellers accounted for 75 percent of all protection
sold in 2010. To put this into context, there are around 1700 counterparties in the market, so 75
percent of all selling was in the hands of less than 0.1 percent of potential counterparties. Sellers
have become less concentrated over time, with their aggregate share falling to around 50 percent
by 2016. Buyer concentration has stayed relatively stable through time, with the top five buyers
accounting for about half of aggregate net buying.

While the CDS market is certainly concentrated, it may still be the case that the identities of
the largest buyers and sellers change rapidly through time. For instance, a dealer concerned with
inventory management may be a large net buyer today, but would quickly reduce its position in
the future. In Appendix A.2 I find evidence contrary to this type of story, instead showing that the
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market is persistently dominated by the same set of net buyers and sellers. This structure makes
the CDS market a natural place to test asset pricing theories of limited investment capital.

At this juncture, it is also reasonable to ask whether one can draw broad conclusions about
asset price formation from a specialized market like CDS. In Appendix A.1, I document that the
U.S. CDS market is large in terms of the amount of net notional credit risk transferred, with a
conservative lower bound of around $1 trillion. Moreover, CDS markets played an important role
in 2008 financial crisis, perhaps most famously with the government intervention into AIG. Finally,
the barriers to entry in the CDS market are similar to those in many large derivatives markets, such
as interest rate swaps.7 Thus, the forces governing price dynamics in the CDS market are likely to
apply to other important markets as well.

3 Capital and Spreads

3.1 Empirical Approach

3.1.1 A Simple Asset Pricing Framework

Before turning to the link between capital and spreads, I start by developing a simple framework
that will be useful for organizing my interpretation of the paper’s main results. Consider a reduced-
form model of credit (Duffie and Singleton (1999)), where defaults for firm f are captured by a
hazard rate process, ⇤P

f,t. Under some simplifying assumptions, it well-known that CDS spreads
can be written as:8

CDSf,t = ⇤
Q
f,t ⇥ 

P
f,t

where ⇤Q
f,t is the firm’s risk-neutral hazard rate at time t and P

f,t is the physical loss-given-default.
Firm f ’s risk premium, defined as ⇧f,t := ⇤

Q
f,t/⇤

P
f,t, is the compensation required by the market

for bearing each unit of default risk. These identities imply that log-changes in spreads can be
written as:

�cdsf,t = ��
P
f,t +� 

P
f,t +�⇡f,t

7I discuss some key barriers to entry into the CDS market in the Online Appendix.
8One must assume that the term-structure of default risk is flat in each period. To simplify the exposition, I also

assume that risk-neutral and physical loss-given-defaults are equal, though this is not necessary for my basic argument.
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where cdsf,t := log(CDSf,t) and lower case Greek letters denote logs, e.g. � = log(⇤). For illus-
tration, I express the default risk premium portion of spreads as a linear function of K systematic
factor exposures and an idiosyncratic component:

⇡f,t =
KX

k=1

�f,k✓k,t + ⌫f,t

where �f,k is firm f ’s exposure to systematic risk factor k and ✓k,t is that factor’s price of risk. I
define sf,t ⌘

P
k �f,k✓k,t to be the total risk premium for f that comes from exposure to systematic

risk factors. ⌫f,t is what I refer to as the firm-specific or idiosyncratic component of firm f ’s risk
premium. Note that this formulation also allows for factor prices of risk (✓’s) to differ across firms.
In this case, any deviations of a firm’s factor price of risk from the cross-sectional average are
simply absorbed into ⌫f,t. In this generalized setup, spread changes can come from movements in
fundamental default risk, systematic risk premiums, or firm-specific risk premiums:

�cdsf,t = ��
P
f,t +� 

P
f,t +

�⇡f,tz }| {
�sf,t +�⌫f,t (3)

When markets are well-integrated, the only risks that earn a premium are those that cannot be
diversified away. For example, in the classic CAPM, ⇡f,t = sf,t is determined by f ’s exposure
to the aggregate wealth portfolio and the price of risk for each unit of exposure. Furthermore, if
markets are well-integrated, two firms that are exposed to the same set of aggregate risks (e.g. their
�f,k’s are the same) should also have the same default risk premium (⇡f,t). The integrated markets
view therefore predicts that ⌫f,t = 0.9 In contrast, when markets are segmented, ⌫f,t can differ
from zero because the same set of aggregate risks may be priced differently across segments or
there may be segment-specific risk premiums (Gabaix et al. (2007)).

The primary contribution of this paper is to provide empirical evidence that CDS markets are
indeed segmented at the firm level, at least in the short run. In the data, movements in firm-specific
risk premiums play a meaningful role in determining CDS spread dynamics overall. As with any
asset pricing test of this kind, one major challenge I face is disentangling shocks to default risk
premiums ⇡f,t from shocks to fundamentals (�Pf,t and  P

f,t). When pinning down segmentation,

9Asset pricing models based on household consumption (Campbell and Cochrane (1999)) or intermediary wealth
(He and Krishnamurthy (2013)) both restrict ⌫f,t = 0, though differ in the systematic risk factors that are priced.
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a second hurdle is separating shocks to the systematic component of default risk premiums sf,t
from shocks to the firm-specific component of risk premiums ⌫f,t. My empirical approach centers
around these identification challenges, and my regressions are designed with these issues in mind.

Conditional on overcoming the identification challenge, the pertinent economic question is
what drives shocks to ⌫f,t. Standard asset pricing intuition suggests ⌫f,t is determined by the
stochastic discount factor (SDF) of firm f ’s marginal pricers. Motivated by this intuition, I first
identify the marginal pricers and then construct various measures that proxy for changes in their
SDF. For the remainder of the paper, I refer to changes in a trader’s SDF interchangeably with
changes in effective risk aversion or risk appetite.

3.1.2 Measuring changes in risk appetite with margin payments

I use capital shocks — measured as CDS portfolio margin payments — as my proxy for changes
in the risk appetite of traders. This approach stems from the idea that traders have less of a risk
appetite when they’ve suffered negative capital shocks (e.g. He and Krishnamurthy (2013)). For-
mally, at each date t, I define the capital shocks of buyers and sellers of firm f ’s CDS as follows:

SCf,t :=

X

c2Sf,t�1

�V CDS
c,t

BCf,t :=

X

c2Bf,t�1

�V CDS
c,t (4)

where Sf,t�1

is the set of f ’s net protection sellers at time t� 1, and Bf,t�1

are f ’s net buyers.
�V CDS

c,t is the weekly change in counterparty c’s CDS portfolio value, computed using the
ISDA Standard Pricing Model. Because of post-crisis collateralization rules, �V CDS

c,t measures
the net amount of variation margin payments made by c to its counterparties over the course of the
week.10 These margin payments are fully collateralized, paid daily, and draw on the desk’s liquid
capital buffer (e.g. Duffie, Scheicher, and Vuillemey (2015)). Thus, �V CDS

c,t seems like a natural
measure of capital shocks at the CDS desk of each counterparty. For example, if�V CDS

c,t = �$100,
then counterparty c will have paid $100 in variation margin payments over the week.

SCf,t adds up the net variation margin payments made by f ’s protection sellers, so I treat it
10According to standard ISDA protocol, variation margin payments between two counterparties must be paid daily.

According to ICE Clearing, cleared positions may have larger or more frequent margin payments depending on market
conditions like volatility. See the following link. Continuous variation margins were uncommon before the crisis.
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as the total capital shock for f ’s sellers. BCf,t does the same thing for f ’s buyers. For reasons
discussed below, I exclude positions written on firms in f ’s industry when computing both SCf,t

and BCf,t. Importantly, whether these capital shock variables are good proxies for changes in risk
aversion depends on the extent to which buyers and sellers hedge. For instance, if each dollar of
variation margin paid by sellers on their CDS portfolio is offset by an incoming margin payment
from their hedge portfolio, then there is no actual capital drain for the CDS desk. I argue why it is
unlikely that sellers are hedged in Section 4.1, after presenting my baseline results.

Table 2 reports basic summary statistics for SCf,t and BCf,t. For net sellers, the average capital
shock at the CDS desk is basically centered around zero, but has a weekly standard deviation of
around $675 mm dollars. There are also weeks of extreme gains and losses, with the minimum
shock equal to around -$6.2 billion and the maximum of $4.3 billion. Capital shocks at the CDS
desks of buyers display a similar, albeit slightly more muted pattern. The standard deviation of
BCf,t is around $455 million, with a minimum of -$5.8 billion and a maximum of $4.1 billion. I
discuss the magnitude of these shocks in more detail in Section 4.2.

3.2 Capital Shocks and CDS Spreads

3.2.1 Workhorse Regression and Identification

To link CDS spread movements to capital shocks, I use the following workhorse regression:

�cdsf,t = af + ai,t +�cdsf,t�1

+ �
0

1

�Zf,t + ⇣sSCf,t + ⇣bBCf,t + "f,t (5)

where cdsf,t where is the logarithm of the 5-year CDS spread of firm f at time t. To allow for
autocorrelation in spread movements, the regression also includes the lagged log-change in f ’s
CDS spread.11 af and ai,t are firm and industry-by-time fixed effects, respectively. I use Markit’s
own definition of industries to construct ai,t.

In terms of Equation (3), my goal is to test whether capital shocks induce movements in the
firm-specific default risk premium (⌫f,t). Again, this should only occur if CDS markets are seg-
mented at the firm level. The ideal way to test this empirically would be to study two firms A and
B that have the same fundamentals (�PA,t = �PB,t and  P

A,t =  P
B,t). In addition, A and B should

11In regression (5), standard estimation techniques are potentially inconsistent due to the Nickell (1981) bias. I have
experimented with various dynamic panel data corrections (e.g. Arellano and Bond (1991)) and obtain nearly identical
results. The reason is that T is large enough in my setting to effectively nullify the Nickell (1981) bias.
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be equally exposed to systematic risk factors, so that the systematic component of their default
risk premiums are equal (sA,t = sB,t). Now suppose firm A’s sellers experience a negative capital
shock, but firm B’s do not. In this case, Equation (3) implies that any movement in A’s spreads
relative to B’s must arise because the seller capital shock caused a change in A’s firm-specific risk
premium ⌫A,t. Presumably this shift occurs because firm A’s sellers became more risk averse.

Regression (5) allows me to approximate this ideal experiment in the data. The firm-specific
variables Zf,t control for fundamentals (�Pf,t and  P

f,t), as does the industry-by-time fixed effect
ai,t. The vector of firm-level controls Zf,t contains the log of Moody’s 5-year expected default
frequency (EDF) and Markit’s expected loss-given-default (LGD). In addition, Zf,t contains a
measure of market depth from Markit and f ’s contemporaneous equity return. In some versions
of regression (5), I also include information on firm f that comes from the options market (e.g.
implied volatility). The firm fixed-effect af absorbs any time invariant firm characteristics. As
mentioned above, I exclude positions on firms in f ’s industry when computing my capital shock
measures, which is another way to allay concerns that they proxy for changes in fundamentals.

Furthermore, the industry-by-time fixed effect ai,t in the regression means I am effectively
comparing the spread changes of firms within the same industry. Firms in the same industry are
more likely to have similar exposure to systematic risk factors, and hence have a similar default
risk premium for exposure to these factors. In some cases, I extend this logic by comparing firms
in the same industry and rating class at each point in time. Moreover, to the extent that firms within
an industry have differential exposure to systematic risk factors, these differences should also be
naturally captured by each firm’s own equity and option prices (contained in Zf,t).

3.2.2 Baseline Results

Table 3 contains the results of regression (5). Column 1 provides the first piece of evidence relating
seller capital shocks to CDS spreads. In both economical and statistical terms, my proxy for
changes in seller risk appetite is an important determinant of spread movements. A $1 billion
capital loss to net sellers results in an increase of 2.7 percent in the level of f ’s CDS spread. To
put this in perspective, the standard deviation of spread movements in my sample is 5.2 percent
and the standard deviation of SCf,t is about $675 million. Intuitively, when sellers experience a
negative capital shock, their effective risk aversion increases and they require a higher premium
for selling protection. This is one of the headline results of the paper, and much of the subsequent
analysis confirms the strength of this finding.
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Column 2 of Table 3 shows that the point estimate on SCf,t is robust to including each firm’s
option-implied CDS spread and at-the-money (ATM) volatility.12 The specification in column 3
controls for observable macroeconomic variables that might also drive spreads, such as changes in
the VIX. I chose these controls based on theoretical models of credit risk and previous research on
the determinants of credit spread variation (e.g. Collin-Dufresne et al. (2001)), with details found
in Appendix B.2. In this case, the point estimate on seller capital is reduced slightly in absolute
value, which is unsurprising because seller capital shocks are themselves likely to be driven by
macroeconomic factors. The coefficient on SCf,t is comparable when I include both option-based
and macroeconomic controls in Column 4.

Seller capital shocks account for a large amount of spread variation. As shown in Table 2 of
the Online Appendix, firm-level variables explain about 10 percent of spread variation on their
own. Column 1 of Table 3 shows that this R2 increases to 22 percent when including buyer and
seller capital shocks, and I’ve verified that the incremental R2 of 12 percent comes mainly from
the inclusion of seller capital shocks. For additional context, Table 2 in the Online Appendix
also shows that firm-level and macroeconomic variables together explain only 18 percent of spread
variation. Hence, seller capital shocks rival standard credit risk factors in terms of their explanatory
power for spreads.

Columns 5-8 represent my most fundamental evidence that seller capital shocks do indeed
cause CDS spread movements. Column 5 removes macroeconomic controls from the regression
and replaces them with an industry-by-time fixed effect, thereby absorbing any common factors
that impact firms in the same industry. The point estimate of -2.04 on seller capital shocks does
shrink slightly towards zero, but remains statistically significant. Column 6 adds option-implied
CDS spreads and ATM volatilities to the regression, with little change. I also obtain similar results
in columns 7 and 8, where I use a rating-industry-time fixed effect instead of an industry-by-time
fixed effect. This fixed effect is particularly useful for isolating the causal impact of seller shocks
on spreads because two firms in the same industry and rating class likely have similar systematic
risk exposures. Throughout all of these specifications, the impact of buyer capital shocks on CDS
spread dynamics appears to be negligible.

Based on these results, what would one have to believe to reject the idea that seller capital
shocks cause spread movements? Consider the example of Ford. The exclusion restriction for
the regression would fail if SCf,t – which reflects only positions written on firms outside of the

12I compute an option-implied CDS spread for firm f based on Carr and Wu (2011). See Appendix B.1 for details.
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auto-industry — captures some omitted factor that drives Ford’s CDS spread, but in a way that is:
(i) not common to the auto-industry, as ruled out by the industry-by-time fixed effect; not captured
by Ford’s own (ii) equity return or (iii) option prices.13 This alternative seems unlikely in my view.

The fact that regression (5) is tightly identified is the key to my interpretation throughout the
paper. As discussed in Section 3.2.1, absent identification issues, any impact of SCf,t on spreads
has to work through the firm-specific risk premium channel. Textbook asset pricing dictates that
this risk premium is determined by risk appetite of the marginal trader(s) in CDS. Thus, because
⇣s 6= 0, it is natural to conclude that SCf,t correlates with changes in the risk appetite of CDS
sellers. Relying on identification in this way imposes a useful form of economic discipline when
thinking about the validity of my capital variable — any debate ultimately centers on whether
SCf,t picks up on firm fundamentals or systematic risk exposures (after including other controls).

In many respects, the point estimates reported in Table 3 are also lower bound on the effect of
seller capital shocks on prices. For the purpose of identification, SCf,t excludes shocks coming
from positions written on firms in f ’s industry. Moreover, SCf,t will not reflect any leverage
embedded in sellers’ positions. Leverage would only serve to amplify the impact that seller capital
shocks have on spreads. Finally, any effect of counterparty risk on pricing would mitigate the extent
to which spreads rise in response to seller losses.14 To see why, notice that buyers of protection
would view undercapitalized sellers as risky counterparties. Consequently, after a negative capital
shock to sellers, one would expect any counterparty risk effects to lower spreads, not raise them.

The final thing to note from this exercise is that, relative to seller capital shocks, buyer capital
appears to play much less of a role in explaining weekly CDS spread movements. In almost all
specifications, the coefficient on buyer capital shocks is statistically insignificant and is generally
very small in economic magnitude. Thus, like in the market for catastrophe insurance (Froot and
O’Connell (1999)), local demand shocks for CDS insurance are less important than local supply
shocks for understanding CDS price movements over this time period and at a weekly frequency.

3.3 Internal Capital Market Frictions

The evidence thus far suggests that capital shocks at the CDS desks of firm f ’s protection sellers
induce movements spreads by changing firm f ’s firm-specific risk premium (⌫f,t in Equation (3)).

13I implicitly assume that Ford’s CDS spread does not drive SCf,t or BCf,t. This seems fair because: (i) both reflect
only positions outside of the auto-industry and (ii) the position in Ford is negligible relative to the whole portfolio.

14As argued by Arora et al. (2012), the impact of counterparty risk on CDS pricing is likely to be quite small.
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Part of my explanation for this fact is that capital shocks at protection sellers directly cause a shift
in their risk appetite. Of course, changes in the risk appetite of sellers can originate from a number
of sources. Consequently, even if the exclusion restriction holds, the regression (5) can’t discern
whether capital shocks specific to the CDS desk truly cause changes in risk appetite or whether
they just correlate with some other source. It certainly seems reasonable that changes in the risk
bearing capacity of a seller’s overall institution — which could correlate with capital shocks at the
CDS desk — might also influence the risk appetite of CDS traders. I make empirical progress on
this tension by augmenting my workhorse regression as follows:

�cdsf,t = af +ai,t+�cdsf,t�1

+�
0

1

�Zf,t+ ⇣sSCf,t+ ⇣bBCf,t+✓sISCf,t+✓bIBCf,t+"f,t (6)

where ISCf,t is the average change across f ’s sellers in one of three variables: (i) leverage, mea-
sured as the ratio of market equity to debt; (ii) CDS spreads; or (iii) SRISK. SRISK is an estimate of
the amount of capital that a financial institution would need to raise in order to function normally
in the event of a financial crisis (Brownlees and Engle (2017)).15 ISC stands for “institutional
seller capital” because it is measured at the institution level, as opposed to the CDS desk. IBCf,t

is the same variable, except for buyers of firm f ’s protection.
ISC and ISB provide an alternative way to measure changes in the risk appetite of CDS

traders.16 Thus, if shocks at the CDS desk of sellers are not truly causing changes in their effective
risk aversion, but merely correlate with changes in institution-wide risk aversion, then ISC should
drive out SC in the regression. In all of these tests, I restrict my attention to firms for whom
dealers are responsible for a majority of protection sold. I do so because institution-wide measures
of capital are only available for dealers.

Table 4 presents estimates of equation (6). As a baseline, Column 1 runs the regression exclud-
ing any institution-wide measures of capital for the full sample for firms. Column 2 runs this same
regression, but only for firms with a majority of sellers that are dealers. Already, we see that the
coefficient on seller capital drops in magnitude, indicating that CDS-derived capital shocks impact
spreads less when sellers are dealers. I discuss the interpretation of this fact below.

Column 3 contains the analysis when using leverage to measure shocks to institutional capital.
Consistent with the intuition in He, Kelly, and Manela (2017), sellers require a high premium for

15Table 2 and Table A3 in the Online Appendix provide summary statistics for these variables.
16He and Krishnamurthy (2013) provide a theoretical foundation for why changes in net worth (e.g. leverage) are a

good proxy for changes to a financial firm’s effective risk aversion.
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selling protection when they are more levered. While the point estimate is measured precisely, the
magnitude of the effect is not overwhelming. A one standard deviation increase in seller lever-
age leads to a 0.8 percent increase CDS spreads. Importantly, the impact of desk-level shocks
is unchanged when including institution-wide leverage. The coefficient on SCf,t in Column 3 is
comparable to Column 2, and remains statistically significant at conventional levels. In terms of
relative importance, a negative desk-specific capital shock has twice the impact that an institution-
wide shock has on spreads.17 The broader takeaway here is that institution-wide and CDS-derived
capital shocks both appear to impact spreads in a complimentary way. Again, my identifying
assumption is that this link occurs through the firm-specific risk premium in Equation (3).

In contrast, my proxy for desk-specific buyer shocks continues to have no statistically mean-
ingful impact on spreads. Interestingly, there is a positive and statistically significant relationship
between changes in buyers’ leverage and CDS spreads. While certainly not definitive proof, this
finding is consistent with buyers using CDS to partially hedge corporate bond positions. When
buyers are more constrained at an institution level, their hedging motive increases and they bid
up CDS spreads. However, the magnitude of the effect is quite small: a one standard deviation
increase in buyer leverage coincides with only a 0.35 percent increase in CDS spreads.

Column 4 runs the regression using CDS spreads to compute ISC and IBC. The point es-
timate on SCf,t is not driven out by the inclusion of seller CDS spreads. As before, the point
estimate on BCf,t continues to show no statistically relevant information for CDS spread changes.
Column 5 of the table shows the same regression when using changes in SRISK to compute ISC

and IBC, with a similar pattern emerging. For all regressions in Columns 3-5, the point esti-
mates on SCf,t also compare favorably to the one in Column 2. In sum, my CDS-derived capital
shock for sellers (SCf,t) possesses robust and independent explanatory power for firm f ’s spread
movements. Because I control for institution-wide capital, these findings are highly suggestive that
shocks specific to the CDS desk have a causal impact on the effective risk aversion of protection
sellers, which ultimately leads to movements in CDS spreads.

A subtle implication of these results is that the risk appetite of the CDS desk — the relevant
one for understanding spreads — does not necessarily coincide with risk appetite of the entire in-
stitution. Similar to the story in Mitchell, Pedersen, and Pulvino (2007), losses at the CDS desk
become important when internal capital market frictions at sellers prevent immediate recapitaliza-
tion of the CDS desk or division. Along this dimension, the fact that SCf,t has a smaller impact on

17This follows from combining the point estimates in Column 3 with the summary statistics in Table 2.
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spreads when dealers sell protection supports the view that dealers are more diversified internally
than non-dealers. In turn, CDS-desk shocks matter less for traders’ risk appetite. While I do not
have data that allows me to directly test for internal capital market frictions, the preceding results
are at least consistent with this interpretation. The existence of similar frictions inside of financial
institutions has also been recently documented by Murfin (2012). He finds strong causal evidence
that lenders tighten covenants on borrowers after suffering defaults on their loan portfolio, even if
the lender’s broader institution is well-capitalized.

To be clear, this is not to say that institution-wide capital does not impact the effective risk
aversion of CDS sellers. If changes in institution-wide capital (e.g. leverage) are correlated across
sellers, then this variation will be at least partially absorbed by the industry-by-time fixed effect
(and other controls) in regression (6). Indeed, in a univariate regression of spread changes on
changes in seller leverage, the point estimate on leverage equals 0.84 — almost three times the co-
efficient in Column 3 — and is highly significant (t-stat = 9.08).18 I further explore the interaction
between desk-specific and firm-wide constraints in Section 2.4 of the Online Appendix, showing
that the response of spreads to seller losses is exacerbated when sellers have high overall leverage.

3.4 Segmentation

3.4.1 Placebo Tests

As outlined in Section 3.1.1, in an integrated market, spreads should not respond to shocks that are
specific to firm f ’s sellers (Gabaix et al. (2007)). The results from Section 3.2.2 therefore imply
that CDS markets are segmented at the firm level, at least at a weekly frequency. To bolster this
interpretation, I run the following regression:

RetEquity
f,t = af + ai,t + ⌘sSCf,t + ⌘bBCf,t + "f,t (7)

where RetEquity
f,t is the equity return of firm f . Under my assertion that SCf,t measures changes in

the risk appetite of CDS protection sellers, ⌘s should equal zero in this regression for two reasons.
For one, equity markets are likely to be better integrated across firms. In terms of the asset pricing
equation (3), this means that there is no firm-specific risk premium (⌫f,t) because only systematic

18Murfin (2012) also finds that overall bank capital leads lenders to tighten covenants, but in a way that is indepen-
dent of lenders losses on their loan book. Furthermore, the prediction that leverage should impact pricing is consistent
with the theory of He and Krishnamurthy (2013) and the empirical findings of He, Kelly, and Manela (2017).
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risk exposures earn a premium in the cross section. Second, if SC is really proxying for shocks to
the risk appetite of CDS traders, there is no reason to expect these shocks to impact equity pricing.

Table 5 contains the results of regression (7). As expected, Column 1 shows that seller (and
buyer) capital shocks possess no explanatory power for equity returns. Column 2 runs the regres-
sion using CDS spread changes that are implied by options markets (Carr and Wu (2011)). Once
again, SCf,t is not significant in the regression. These placebo tests lend credence to the argument
that SCf,t measures changes in the risk aversion of traders who are marginal pricers in the market
for firm f ’s CDS. A shock to these trader’s risk aversion induces movements in a firm f ’s spread
because its CDS market is not perfectly integrated with other firms.

Taken together, my empirical findings support the theoretical model of He and Xiong (2013),
who study the optimal incentive contract for delegated investment managers. In their model, seg-
mentation can endogenously arise at a granular level because it is optimal for financial institutions
(the principal) to implement a narrow investment mandate for their traders (the agent) when agency
frictions make it difficult to discern luck from skill. According to their model, a narrow mandate —
which can be interpreted as specializing on a small subset of firms or assets — is especially useful
when traders have access to outside investments like CDS that have large negative skewness.

3.4.2 Is Every Firm’s CDS Market Segmented?

The preceding analysis confirms that the CDS market for the average firm is segmented from
other firms. However, one might not expect such segmentation to occur for firms that comprise
a credit index. Arbitragers in the CDS market commonly exploit the relative pricing of an index
against the basket of its constituents, meaning that firms in the most actively traded credit indices
are often traded in tandem. We therefore would expect their collective CDS markets to be more
integrated. Column 3 of Table 5 confirms this intuition by running regression (5) on the set of
firms who are in the on-the-run CDX Investment Grade Index, by far the most actively traded
index in the market. For this subset of firms, seller capital shocks no longer impact spreads in a
statistically or economically meaningful way. Section 2.5 of the Online Appendix also contains
several additional tests confirming the robustness of this analysis. Moreover, the within-group R2

of 63% in this regression is much higher than its full-sample counterpart of 38% (Column 5 in
Table 3). The fact that aggregate factors explain more of the price variation for this subset of firms
implies that their CDS markets more closely resemble a frictionless paradigm.
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3.4.3 Horizon Dependence

The primary economic mechanism linking seller capital to CDS pricing derives from asset pricing
theories with segmentation and limited investment capital. A signature prediction of these theories
is that, given time, capital is able to flow into a segmented market and thus any pricing effects
stemming from capital shocks should disappear over longer horizons. To evaluate this prediction,
I run the following regression for various horizons h:

log

✓
CDSf,t+h�1

CDSf,t�1

◆
= af + �

0

1

�Zf,t(h) + �
0

2

�Xt(h)� ⇣s(h)⇥ SCf,t + ⇣b(h)⇥ BCf,t

where �Zf,t(h) = Zf,t+h�1

� Zf,t�1

and �Xt(h) = Xt+h�1

�Xt�1

. Note that the sign of ⇣s(h)
in the above regression means that it measures the effect of seller capital losses on CDS spreads
from t� 1 to t + h� 1. The regressions from the previous subsections were run for h = 1. If the
effect of seller losses on CDS pricing decays with time, then ⇣s(h) should tend towards zero as h
increases. Furthermore, the regression is run without industry-by-time fixed effects because I want
to trace out the time-series effect of a capital shock today on future spreads.

Akin to an impulse response function, Figure 2 plots the point estimate of ⇣s(h) along with
95 percent confidence bands for various horizons h. Consistent with idea that the price impact of
seller losses reverses as capital flows into the market, ⇣s(h) declines as h increases, with a half
life of about two weeks. As illustrated by the 95 percent confidence bands in Figure 2, the pricing
effects of seller capital losses are basically undone after about 9 weeks.

It is not surprising that the pricing effects die out rather quickly because segmentation at the
firm level is an extreme form of capital market segmentation; hence, one would not expect it to
persist for long periods. Moreover, it seems reasonable that internal capital market frictions at large
financial institutions are resolved over short horizons as well. This interpretation is also consistent
with He, Kelly, and Manela (2017), who show that at a quarterly frequency, the leverage of primary
dealers explains CDS returns. Importantly, they measure capital at the holding company level,
thereby implying that at a quarterly frequency external capital market frictions are an important
component to pricing. Their findings, combined with the pattern of decay that I’ve documented,
paint a natural picture: in the short-run, price dynamics are influenced by internal capital market
frictions and segmentation at the firm level. However, external capital market frictions for financial
institutions that are active in the CDS market are more relevant for long-run price dynamics.
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3.5 Exploring the Mechanism

The evidence above shows that credit spreads rise in response to negative capital shocks at the
CDS desks of protection sellers. There are a number of reasons why this may occur. For instance,
it could be that sellers reduce the quantity of protection sold after negative capital shocks. Even
in the absence of change in the quantity sold, it could just be that sellers become more reluctant
to take on new positions, thereby increasing their reservation price for selling protection (i.e. the
quoted price at which they would sell a new position).19 In addition, I’ve documented that spreads
quickly mean revert after negative seller capital shocks. Is this because new and better-capitalized
sellers enter the market? Or do internal capital market frictions at incumbent sellers loosen, leading
to a fall in their reservation price for selling protection?

I shed light on these questions by studying whether sellers and buyers adjust their net positions
in response to capital shocks to their CDS portfolio. I do so via the following regression:

�NSc,f,t = ac,f + � ⇥ Yc,t (8)

where Yc,t is either the dollar change in counterparty c’s CDS portfolio value or the return on c’s
CDS portfolio.20 As a reminder, NSc,f,t is the net amount sold by counterparty c on firm f ’s
CDS at time t. ac,f is a counterparty-by-firm fixed effect. Regression (8) therefore quantifies how
each counterparty c adjusts its position on f in response to CDS portfolio gains or losses. Table 6
presents the results of this regression.

In Column 1 of the table, I run the regression for only the subset of the largest net sellers,
which I define as the set of counterparties in the top 10 percent of total net sold across all firms.
The positive coefficient implies that net sellers decrease their net amount sold in response to losses.
However, the estimated coefficient is very small in economic magnitude: a one-standard deviation
capital loss only leads to a 0.0014 ⇥ 203 mm/5.3 mm = 5.4% standard deviation change in the
net amount of protection sold. In column 2, using returns instead of dollar losses basically tells
the same story, with a statistically significant but economically small positive relationship between
seller positions and their CDS portfolio returns. Overall then, while the response of positions to

19Importantly, CDS spreads provided by Markit are aggregated from transactions and quotes from dealers in the
market. In addition, because this market is OTC, a quantity shift in supply or demand does not necessarily have to
accompany a price change from Markit. Quotes are typically binding in this market, so they do represent the price that
counterparties are willing to transact (Arora et al. (2012)).

20I coarsely estimate CDS portfolio returns based on FINRA’s margin requirements. See the Online Appendix.
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seller losses goes in the right direction, the small economic magnitude of the response suggests
that quantities are not particularly sensitive to capital shocks at the CDS desk.

Columns 3 and 4 of Table 6 re-run the analysis for large net buyers of protection. The point
estimates in the regression show that buyers slightly increase the amount of protection bought
following losses on their CDS portfolio. The effect is once again very small, albeit measured with
good statistical precision. From Column 3, a one standard deviation dollar capital loss leads to a
6% standard deviation increase in the amount of protection bought. A similar magnitude arises
when using returns in Column 4.

In the Online Appendix, I complement the above analysis by looking at whether new sellers
enter the market after losses occur at incumbent sellers. I also do not find much evidence to support
this hypothesis. The data thus points to the following economic mechanism relating capital and
CDS spreads: after sellers of firm f experience negative capital shocks, their reservation price for
selling protection rises as they are hesitant to take on more positions (Section 3.2). This interpre-
tation is consistent with the fact that quantities do not move in a meaningful way in response to
negative shocks. As internal capital market frictions at the sellers’ institutions thaw in the weeks
following a capital loss, sellers decrease their reservation price for providing protection, thereby
leading to the mean reversion in spreads documented in Section 3.4.3.

4 Other Considerations and Robustness

The preceding section documented a strong link between seller capital shocks and risk premiums
in the CDS market. I have asserted that this link exists because capital shocks at the CDS desks
of sellers directly impact their risk appetite. This assertion relies heavily on my regression tests
being well-identified, otherwise we would not observe subsequent spread movements. To bolster
this interpretation, I now discuss: i) whether sellers or buyers are hedged, as this would weaken the
argument that my capital measures correlate with changes in risk appetite; (ii) whether my capital
shocks are large enough to plausibly induce a change in the risk appetite of sellers; and (iii) if my
main results are robust to alternative constructions of my CDS-based capital variables.
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4.1 Hedging

Any unobserved hedging activity means that my capital shock variables SCf,t and BCf,t won’t
accurately reflect changes in the effective risk aversion of CDS traders. Suppose, for instance, that
sellers of protection are fully hedged. Then their variation margin payments are perfectly offset
by flows from their hedges. In turn, changes in the risk appetite of sellers will not be captured by
shocks to the CDS portfolio alone. However, in this case, one would not expect SCf,t to have any
explanatory for spreads in regression (5), after controlling for industry-wide and firm-level factors.
Section 3.2 shows that this story is strongly refuted by the data.

Practically speaking, it is also unlikely that the largest protection sellers are directly hedged.
For the largest sellers, the total amount of protection sold often approaches $100 billion in net
notional. A direct and complete hedge would therefore require an enormous short of corporate
bonds, which is likely to be quite costly in practice (Nashikkar and Pedersen (2007)). More to
the point, Asquith, Au, Covert, and Pathak (2013) estimate that the daily average par value of
bonds shorted for the entire market was $85.6 billion in the mid 2000s. Moreover, Boyarchenko,
Costello, La’O, and Shachar (2017) uses regulatory data to show that, for dealers, the flow of new
net protection sold is largely unhedged with any shorting activity in the corporate bond market.

A similar framework applies for buyers of protection. A salient feature of regression (5) is that
CDS-derived buyer capital shocks BCf,t do not reliably relate to spread movements. To be clear,
my interpretation of this fact is not that buyers are inconsequential for CDS pricing. Regression
(5) is structured to test whether BCf,t influences f ’s firm-specific risk premium, which arises
from market segmentation. It could very well that buyers impact CDS pricing by changing the
compensation required for holding firm f ’s exposure to systematic risk factors. It could also be that
BCf,t is simply not a good proxy for shocks to the effective risk aversion for buyers, a reasonable
conclusion if buyers are partially hedged with a long position in corporate bonds.

I of course cannot make conclusive statements about hedging because I do not directly observe
the entire portfolio of buyers or sellers. Still, it is difficult to imagine an alternative explanation that
would not only explain my empirical results, but also account for the fact that the largest sellers
likely cannot scale a hedge to match the size of their CDS portfolio. Overall, it therefore seems
reasonable to think that the largest net protection sellers execute their positions to gain exposure to
credit risk, as opposed to those exposures being hedged by other positions in their corporate bond
portfolio. It is harder for me to make more definitive statements about buyers, though empirically
my results are consistent with some form of them hedging.
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4.2 Are Capital Shocks at the CDS Desk Large?

Even if hedging is not an issue, is it plausible that my CDS-based capital shocks are large enough
to induce a change in the risk appetite of sellers? Recall from Table 2 that the average capital
shock for net sellers has a weekly standard deviation of around $675 mm dollars. To give this
number some context, I obtained a measure of dealer trading capital from 2010 SEC FOCUS
filings, matched with the top five dealers in terms of net protection sold at that time. I chose
2010 because dealers were the primary sellers of protection in the U.S. at that time (see Figure 5).
Additionally, I focus on the top five dealers because the top five sellers for the average firm account
for an about 80% of all selling in 2010 (see Figure 1). For these five dealers, excess net capital
– a measure of cash-equivalent capital for trading purposes — is about $24 billion; this estimate
overstates the true amount of unencumbered net excess capital because many of these reserves are
re-lent through repo transactions (Singh (2011)).

As a simple thought experiment, suppose the $24 billion capital cushion for these five dealers is
designed to accommodate stress over the course of a quarter. Broker-dealers are active in a several
asset classes, and for illustration, suppose there are five: commodities, currencies, equities, fixed
income, and credit. Across the five broker-dealers, this means each sub-division or desk has about
$24 billion / 5 = $4.8 billion to finance trading activity over the course of the quarter. Scaling
this down from a quarterly to a weekly number means that the CDS desk has a $4.8 billion / 12 =
$400 million capital cushion on a week-to-week basis. Compared to this cushion, $675 million in
weekly capital movements at the CDS desk of sellers seems economically meaningful.

As an empirical matter, I do not necessarily need my CDS-based capital shocks to be massive.
The identification strategy in the paper only requires that they are reasonably large enough to detect
changes in the risk appetite of traders. Insofar as my regression tests are well-identified, the fact
that seller capital shocks possess any explanatory at all for spreads implies that they are meaningful
enough to change seller risk appetite.

4.3 Alternative Construction Methodologies

My analysis thus far has used dollar-based measures of capital because I do not observe the initial
margins paid by each counterparty. In turn, it is difficult to compute the return of a given counter-
party’s CDS portfolio without making further parametric assumptions. In the Online Appendix, I
approximate the initial margin supporting each counterparty’s CDS portfolio by loosely following
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FINRA’s margin guidelines. In that same appendix, I then estimate the regression in Equation (5)
using this alternative measure of capital, which I summarize here. I interpret the results using re-
turns with some degree of caution, mainly because my methodology for computing returns relies
on strong assumptions about initial margins.

With that said, the results from this exercise confirm the negative relationship between seller
capital shocks and CDS spreads. When measuring capital in returns, the point estimate on seller
capital shocks is negative and measured with statistical precision. It is also comforting that the
economic impact of a seller loss on spreads also lines up well with the headline results in Sec-
tion 3.2.2. For buyers, there does appear to be a statistically significant and positive relationship
between portfolio returns and CDS spreads, though the magnitude of the effect is quite small. Fur-
thermore, buyer capital shocks are not robust to measuring capital shocks in dollars versus returns,
so it seems less likely that I am detecting a robust relationship between buyer capital and spreads.

5 Additional Analysis

In this section, I investigate some additional channels through which the structure of the CDS
market may interact with pricing. More specifically, I explore whether the relationship between
capital shocks and pricing has changed through time. A related feature of the CDS market that I
explore is whether heterogeneity in the types of active financial institutions impacts pricing. This
channel is particularly important because, as I document, asset managers have steadily replaced
dealers as the primary providers of default insurance since 2010. In addition, I reinforce the causal
nature of my main findings using the 2011 Japanese Tsunami as a case study. Finally, I provide
some suggestive evidence that seller losses in the CDS market also impact bond market pricing.

5.1 Do capital losses matter more after the crisis?

In the aftermath of the 2008 crisis, the CDS market has undergone deep structural reforms in terms
of how trading is organized, margin requirements, etc. A natural question is whether the price
impact of seller capital shocks has also changed. The following regression assesses this possibility:

� log(CDSf,t) = af + ai,t �
2016X

Y=2010

�S,Y ⇥ SCf,t ⇥ 1(Y ear = Y ) + �B ⇥ BCf,t + �
0
Zf,t + "f,t
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where 1(Y ear = Y ) is an indicator variable for when the year of date t equals Y . The coefficients
�S,Y measure how a dollar loss at firm f ’s sellers impacts spreads in year Y . I plot these coefficients
and their 95% confidence intervals in Figure 3. As seen in the plot, seller capital shocks have
steadily had a larger effect on spreads as time has passed since the crisis. In 2010, a billion dollar
seller loss raised spreads by 1.5%, whereas in 2016 the same loss raised spreads by nearly 5%.

What might explain these results? One potential answer rests on the fact that asset managers
have steadily replaced dealers as the primary providers of CDS protection. To visualize this compo-
sitional shift, I compute the proportion of net selling and buying done by various types of financial
institutions at each point in time, with specific details contained in Appendix A.3. Examples of
types are commercial banks, insurance companies, asset managers (e.g. hedge funds), dealers, etc.

Figures 4 and 5 plot the share of net selling and buying, respectively, for both dealers and asset
managers. I focus on these two counterparty types because they are by far the largest two types for
both buyers and sellers. As seen in Figure 4, dealers have consistently purchased around half of all
protection, with almost all of the remaining buying going to asset managers

The aggregate proportion of selling by counterparty types appears in Figure 5. In contrast to
buyers, the composition of sellers has dramatically changed since 2010. At the beginning of the
sample, dealers accounted for 80 percent of all protection sold in U.S. CDS markets. Moreover,
50 percent of aggregate selling was in the hands of less than five dealers. Nonetheless, the total
proportion sold by dealers has declined dramatically over time, with dealers accounting for less
than 30 percent of total selling by the end of the sample. Instead, asset managers have grown into
a much larger role in providing default insurance for the U.S. market.

To check whether this shift translates to pricing, column 4 of Table 5 interacts seller capital
shocks with the share of selling by asset managers as follows:

�cdsf,t = �cdsf,t�1

+ �
0

1

�Zf,t + ⇣bBCf,t + ⇣sSCf,t + ⇣saSCf,t ⇥ AMSf,t + ⇣aAMSf,t + "f,t

The regression also includes a firm fixed effect af and an industry-by-time fixed effect ai,t, but I
omit them to save space. The coefficient of interest is ⇣sa, which measures whether capital shocks
have a differential impact on pricing when asset managers are responsible for more selling. Column
4 of Table 5 indicates that seller capital losses have a larger impact on spreads if sellers are asset
managers. The interaction term between asset manager share and seller capital is significantly
negative and fairly large in magnitude. For example, from 2010 to 2014, the share of selling by
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asset managers moved from roughly 15 percent to 75 percent. In turn, the interaction term implies
that the impact of a $1 bn seller capital loss on spreads has changed from 1.4 to 3.5 percent over this
same time period. One way to rationalize this finding is that asset managers have a higher shadow
cost of capital than dealers, who were the primary provider of credit insurance at the beginning of
the sample. This interpretation is reasonable given that, relative to dealers, hedge funds are more
specialized and generally have a smaller capital base; thus, they are more likely to face external and
internal capital market frictions. On balance then, it seems plausible that the increased response
of CDS spreads to seller capital losses can attributed to the fact that asset managers have replaced
dealers as the primary insurance providers in the CDS market since 2010.

5.2 The 2011 Japanese Tsunami as a Case Study

I now turn to a natural experiment that will further establish a causal link between capital losses
and CDS pricing. The event I focus on is the Japanese tsunami of March 2011, which was the result
of a magnitude 9.0 earthquake off the coast of Tohoku. The tsunami occurred on a Friday, and had
a significant impact on the risk of the country as a whole. For example, Japan’s sovereign CDS
spread increased by nearly 50 percent from 80 to 115 basis points on the following Monday. In
this subsection, I summarize the key components of this analysis. The Online Appendix contains
additional details, as well as additional background information on the tsunami.

To illustrate the logic of my approach, suppose Hedge Fund A had sold a great deal of CDS
protection on Japanese firms, but Hedge Fund B had not. After the tsunami hits, Hedge Fund A

has more capital at risk than Hedge Fund B. Broadly speaking, the results from Section 3 suggests
that Hedge Fund A should be more risk averse than Hedge Fund B. Consequently, U.S. firms for
whom Hedge Fund A is a large net seller should see their spreads rise, relative to firms for whom
Hedge Fund B is a large seller.

To formalize the preceding thought experiment, I construct measures of how exposed a U.S.
firm f was to the tsunami through its sellers:

�S,f :=

X

f2Sf


|NSc,f |
NOf

�
⇥NSc,JPN

where NSc,JPN is the net amount sold by counterparty c on Japanese firms. Sf is the set of sellers
for firm f , prior to the tsunami. �S,f is the weighted-average exposure of f ’s sellers to Japan. The
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term in brackets is the weight, and is the proportion of total net outstanding for f that is sold by c.
�B,f is defined in the same fashion, except for buyers, and is the weighted average exposure of f ’s
buyers to Japan. I take the absolute value of NSc,f in the definition above to ensure the weights
are positive and sum to 1, regardless of whether defining �S or �B.

All of my measures are computed as of March 11, 2011, so I omit time dependencies for
brevity. Hence, these � measures capture the ex-ante risk that a negative shock to Japan impacts
f ’s sellers or buyers. This distinction is important for a few reasons. For one, after the tsunami hit,
there was widespread concern of a nuclear meltdown at the Fukushima plant. A consensus view
at the time was that a meltdown would cause catastrophic damage to many Japanese firms and the
broader economy. These losses never materialized because the Japanese government was able to
stave off a nuclear meltdown. Thus, using realized losses on Japanese positions would potentially
miss the large ex-ante risk faced by CDS market participants exposed to Japan, and in turn, the
influence of these participants on pricing in the U.S. market. These � measures also provide an
complimentary way to proxy for shocks to the risk appetite of sellers. Unlike the capital shock
proxies used in Section 3.2, � does not derive from realized gains or losses. In a sense, the �
measures thus provide a robustness check to the paper’s primary message that the fluctuation in
the risk appetite of CDS traders transmit to spreads.

To tease out my main hypothesis, I estimate variants of the following cross-sectional regression:

� log(CDSf,1) = a+ �
1

�S,f + �
2

�B,f + �0
�Zf + "f (9)

where Zf is essentially the same set of firm-level controls used in Section 3. As before, I use
Moody’s 5-year EDF, the change in Markit’s LGD, and the equity return of the firm. Because
certain industries may have been more exposed to Japanese firms, I include an industry fixed effect
based on each firm’s NAICS code in some specifications. I also include level of CDS spreads for
each firm on 3/11/2011 to control for the possibility that � captures sellers/buyers who specialize
in riskier credits. Finally, I include the 90-day running volatility of each firm’s CDS spread (in
log-changes); this allows for the possibility that reference entities who experienced large spread
movements post-tsunami are those that have larger volatility.
� log(CDSf,1) is the log-change in f ’s CDS spread in the week following the tsunami. To re-

iterate, I consider only U.S. firms. There are certainly identification issues with attributing changes
in CDS spreads after the tsunami with high levels of �, as the regression (9) would suggest. One
obvious example is that sellers with large Japanese exposures also specialize in U.S. firms that are
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fundamentally linked to the Japanese economy. In Section 3 of Online Appendix, I fully frame
the identification issues and rule out this “specialization” hypothesis for both buyers and sellers of
U.S. firms. Table 7 summarizes the results of running variations of regression (9).

Consistent with the results in Section 3.2, there is no evidence of a transmission channel via
buyers of CDS. Indeed, the coefficient on �B,f is small and insignificant in all specifications. In
contrast, the coefficient on �S,f indicates a strong, positive effect of seller exposure to Japan and
subsequent U.S. CDS spread movements. Column 1 includes only the � variables, and columns
3-5 sequentially add other control variables. The coefficient on �S,f remains stable throughout.
Interestingly, including an industry fixed effect in the regression has a negligible effect on the
point estimate of �S,f . This is because the regression also includes each firm’s own equity return;
thus, any information contained in the industry fixed effect is subsumed by the more granular
information contained in individual equity returns. Lastly, column 6 adds controls for the average
change in buyer and seller leverage. As in Section 3.3, controlling for leverage does not drive out
�S,f in the regression, a result that is consistent with some form of internal capital market frictions.

To get a sense of magnitude, consider a U.S. firm whose sellers were in the 90th percentile in
terms of their exposure to Japanese firms. Similarly, consider a U.S. firm whose sellers were in the
10th percentile. Firms in the 90th percentile saw their spread levels increase 2.5 percent, relative
to the 10th percentile, in the week following the tsunami. While this is not overwhelmingly large,
it is important to note that Japanese exposures comprise only a fraction of the largest sellers’ CDS
exposures; accordingly, one would not necessarily expect a massive response of U.S. sellers to
the threat of a Japanese shock. More importantly, this natural experiment provides strong causal
evidence of the channel through which sellers in the CDS market impact spreads.

As a placebo test, Columns 8 and 9 of Table 7 use each firm’s equity return in the week after
the tsunami as the dependent variable, as opposed to CDS spread changes. The logic behind this
placebo test mirrors Section 3.4.1. For one, the equity holders for firm f are probably different
than f ’s CDS sellers. In addition, equity markets are less likely to suffer from the same frictions
as the CDS market; presumably, capital because can flow much faster to investment opportunities
in equities. Thus, one would not expect increased risk aversion of CDS sellers to impact equity
returns. As expected, Columns 8 and 9 indicate that whether or not a firm’s CDS sellers were
exposed to Japan has no explanatory power for equity returns after the tsunami — the transmission
mechanism appears to be specific to the CDS market.
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5.3 The Bond Market

CDS markets are tightly linked to bond markets through no arbitrage conditions (Duffie (1999)).
Given that I have shown a tight link between the capital of protection sellers and CDS spreads, a
natural question is whether this same link exists for corporate bond markets. To study this in more
detail, I test whether capital shocks for CDS market participants impacts the CDS-Bond basis.
Loosely speaking the CDS-Bond basis is the difference between CDS spreads for a firm f and
maturity-matched bond yields for that same firm. By no arbitrage, the CDS-Bond basis should
be zero, but there are well-documented times where the basis diverges from zero (e.g. Bai and
Collin-Dufresne (2013)). If shocks at protection sellers only impact CDS markets, then the basis
should also move in response to these shocks. Alternatively, if changes in seller capital also lead
to changes in corporate bond pricing, then the basis should be unaffected by seller shocks.

The following regression teases out these two potential hypotheses:

�Basisf,t = af + �
0

1

�Zf,t + �
0

2

�Xt + ✓sSCf,t + ✓bBCf,t + "f,t (10)

where Basisf,t is the CDS-Bond basis for firm f at time t. I measure the basis using “Z-Spreads”
from Bloomberg (see the Online Appendix for details). Zf,t is the same vector of firm-level con-
trols used in regression (5), as is the vector of macroeconomic controls Xt. SCf,t is my workhorse
capital shock measure for f ’s CDS sellers. BCf,t is the same variable for f ’s buyers.

Columns 5 and 6 of Table 5 contain the results from estimating regression (10). There are
two important caveats to this analysis. First, Z-Spreads are a noisy proxy for bond yields, so the
regression must be interpreted with some caution.21 Second, due to lack of reliable basis data, the
sample size of the regression is small relative to main analysis in Section 3. With these caveats in
mind, Column 5 indicates that there is not much evidence that seller or buyer shocks in the CDS
market change the CDS-Bond basis. The point estimates on SCf,t and BCf,t are both statistically
indistinguishable from zero. Column 6 replaces the macroeconomic controls with an industry-
by-time fixed effect. In this case, seller capital shocks one again have no statistically discernible
influence on the CDS-Bond basis. In contrast, the coefficient on buyer capital shocks is statistically
significant in this regression. Still, the magnitude of the effect is small: a one standard deviation
buyer capital shock leads to a 2 basis point increase in the basis. Plus, given the results in Column
5, the positive relationship between the basis and BCf,t does not seem to be a robust one.

21See the Online Appendix for a complete discussion.
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While by no means conclusive, this evidence suggests that the response of the bond market
to seller and buyer capital shocks echoes that of the CDS market. A negative capital shock to
sellers leads to an increase in CDS spreads, and because the CDS-bond basis does not change,
bond yields also rise. This finding is consistent with previous research showing that pricing in the
CDS market leads the corporate bond market (e.g. Blanco et al. (2005); Zhu (2006); Norden and
Weber (2009)). A natural reason to expect CDS markets to lead bond markets is that active money
managers like hedge funds prefer to trade in the CDS market for liquidity reasons (Longstaff et al.
(2005); Oehmke and Zawadowski (2017)), whereas bond holders tend to be buy-and-hold investors
like pension funds.

6 Conclusion

This paper uses data on CDS positions to show that the capital of CDS protection sellers plays a
significant role in determining CDS spread dynamics. My evidence suggests that a firm’s short run
CDS spread fluctuations are partially driven by the capital of the CDS desks at financial institutions
who provide default insurance on the firm. In contrast to neoclassical asset pricing models, these
findings imply that the CDS market for a given name is segmented in the short run.

In addition, my results suggest that internal capital market frictions at financial institutions —
whether due to agency issues, optimal risk management, or simple lack of capital — can act as an
additional layer of segmentation in markets where outside capital is slow to enter. In this sense, one
can view the trading desks at large financial institutions as individual silos whose capital base is not
instantaneously integrated with the larger firm. These types of segmentation issues are most likely
to impact asset classes where investment requires a fair amount of specialization and expertise.

Heterogeneity in the type of financial institution that acts as a net seller of protection is a key
determinant of spread dynamics as well. A striking trend in the data is that dealers have been
replaced as the primary sellers of protections by asset managers. A likely explanation for this
pattern is that new regulation has made it less profitable (or even possible) for dealers to ultimately
bear credit risk via CDS. Still, the evidence in this paper indicates that capital losses at asset
managers have a stronger impact on pricing than losses at dealers. Put differently, a potential
unintended consequence of post-crisis regulation is that CDS prices are now even more influenced
by the capital positions of a few players in the market, as opposed to fundamental risk exposures.
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FIGURES

Figure 1: Concentration of Net Sellers and Buyers

Notes: This figure plots an aggregate measure of the share of selling (or buying) by the top five sellers (or buyers) in the CDS market. For each firm
f , I first compute the share of the top five net sellers and net buyers. The share of selling by a counterparty on a firm is the net amount sold on that
firm divided by the net notional outstanding on the firm (ignoring maturity). Net buy shares are defined analogously. At each point in time, I then
take a weighted-average of these share measures across all firms, where the weights are determined by the net notional outstanding of each firm f .
See Section 2 for complete variable definitions. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Figure 2: The Response of CDS Spreads to Seller Losses By Horizon

Notes: This figure plots the coefficients ⇣s from the following regression: �h log(CDSf,t+h�1) = af � ⇣s(h)⇥ SCf,t + ⇣b(h)⇥ BCf,t +

�
0
�hZf,t+h�1+✓

0
�kXt+h�1. The �h operator takes the difference between a variable at time t�1+h and time t�1. SCf,t measures the

dollar change from time t� 1 to t (in $ bn) in the mark-to-market value of firm f ’s net sellers, excluding all positions written on firms in the same
industry as f . BCf,t is the same variable, except for f ’s net buyers. Zf,t is a vector of firm-level controls. These include: the lagged log-change
in CDS spread, each firm’s own equity return, the log-change in Moody’s expected default frequency (EDF), the log-change in loss-given-default
(LGD) from Markit, and the change in Markit depth. af is a firm fixed effect. The 95% confidence interval is based on standard errors from the
regression. To compute standard errors, I first use a within-firm HAC correction. I then compute standard errors that are double clustered by firm
and time. To be conservative, I use the larger of the two to compute confidence bands. CDS spreads come from Markit, have a 5-year maturity, are
denominated in USD, and cover senior unsecured debt with documentation clause MR. Log-changes in CDS spreads are winsorized at the 1% level
and reported in percentage terms (scaled by 100). Additionally, I apply the following filters to the data: (i) the underlying firm must be registered in
the United States; (ii) each firm must have at least 162 observations, which is the 5th percentile in terms of observations per firm; (iii) the firm must
have a non-zero net notional outstanding; and (iv) the CDS spread must be less than 5000 bps. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Figure 3: The Response of CDS Spreads to Seller Losses by Year

Notes: This figure plots the coefficients ��S,Y from the following regression: � log(CDSf,t) = af + ai,t +
P2016

Y =2010 �S,Y ⇥ SCf,t ⇥
1(Y ear = Y ) + �B ⇥ BCf,t + �

0
Zf,t. 1(Y ear = Y ) is a dummy variable for when the year of t equals Y . SCf,t measures the dollar

change (in $ bn) in the mark-to-market value of f ’s net sellers, excluding all positions written on firms in the same industry as f . BCf,t is the
same variable, except for f ’s net buyers. Zf,t is a vector of firm-level controls. These include: the lagged log-change in CDS spread, each firm’s
own equity return, the log-change in Moody’s expected default frequency (EDF), the log-change in loss-given-default (LGD) from Markit, and
the change in Markit depth. ai,t is an industry-by-time fixed effect, where the industry is defined by Markit. af is a firm fixed effect. The 95%
confidence interval is based on standard errors from the regression, which are double clustered by firm and time. CDS spreads come from Markit,
have a 5-year maturity, are denominated in USD, and cover senior unsecured debt with documentation clause MR. Log-changes in CDS spreads
are winsorized at the 1% level and are reported in percentage terms (scaled by 100). Additionally, I apply the following filters to the data: (i) the
underlying firm must be registered in the United States; (ii) each firm must have at least 162 observations, which is the 5th percentile in terms of
observations per firm; (iii) the firm must have a non-zero net notional outstanding; and (iv) the CDS spread must be less than 5000 bps. Data is
weekly and spans 2/19/2010 to 10/7/2016.
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Figure 4: Share of Net Buying by Dealers and Asset Managers

Notes: This figure plots an aggregate measure of the share of protection buying by dealers and asset managers in the CDS market. For each firm
f , I first compute the share of buying by a given counterparty type. The share of buying by a counterparty-type on a firm is the net amount bought
on that firm divided by the net notional outstanding on the firm (ignoring maturity). At each point in time, I then take a weighted-average of these
share measures across all firms, where the weights are determined by the net notional outstanding of each firm f . See Appendix A.3 for complete
variable definitions. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Figure 5: Share of Net Selling by Dealers and Asset Managers

Notes: This figure plots an aggregate measure of the share of protection selling by dealers and asset managers in the CDS market. For each firm
f , I first compute the share of selling by a given counterparty type. The share of selling by a counterparty-type on a firm is the net amount sold
on that firm divided by the net notional outstanding on the firm (ignoring maturity). At each point in time, I then take a weighted-average of these
share measures across all firms, where the weights are determined by the net notional outstanding of each firm f . See Appendix A.3 for complete
variable definitions. Data is weekly and spans 2/19/2010 to 10/7/2016.
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APPENDIX FIGURES

Figure A1: The Size of the United States CDS Market (Net Notional)

Notes: This figure plots the net notional outstanding in the United States CDS market. For a given firm f , the total net notional sold is the sum
of the net amount sold by all counterparties who are net sellers of protection on f . To compute the net amount sold by a counterparty c on f , I
disaggregate index positions and net them against any single name positions. See the Online Appendix for complete details. The total size of the
market is then the sum of the net notional outstanding across all firms. For this analysis, a firm is defined as a combination of the underlying firm
(e.g. Ford) and a maturity bucket (e.g. 0-2 years). The maturity buckets I consider are (in years): 0-2, 2-4, 4-6, 6-8, 8-10, and 10+. The hashed area
in the plot shows the total net notional outstanding that comes from actual single name positions, and the shaded area shows the amount that comes
indirectly through index positions. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Figure A2: The Size of the United States CDS Market (Gross Notional)

Notes: This figure plots the gross notional outstanding in the United States CDS market. For a given firm f , the total gross notional sold is the sum
of the gross notional exposure by all counterparties who trade in f . The total size of the market is then the sum of the gross notional outstanding
across all firms. For this analysis, a firm is defined as a combination of the underlying firm (e.g. Ford) and a maturity bucket (e.g. 0-2 years). The
maturity buckets I consider are (in years): 0-2, 2-4, 4-6, 6-8, 8-10, and 10+. The hashed area in the plot shows the total gross notional outstanding
that comes from actual single name positions, and the shaded area shows the amount that comes indirectly through index positions. Data is weekly
and spans 2/19/2010 to 10/7/2016.
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TABLES

Table 1: Summary Statistics of Credit Metrics

CDS Spread EDF LGD
Level (bps) Log-Diff (%) Level (bps) Log-Diff (%) Level (%) Log-Diff (%)

Mean 177.23 -0.09 79.44 -0.07 60.56 0.00
Std. Dev. 232.44 5.23 145.45 4.10 3.02 1.17
p25 60.57 -2.36 14.88 -1.68 60.00 0.00
p50 104.61 -0.02 36.71 -0.05 60.00 0.00
p75 199.45 1.75 90.06 1.51 60.00 0.00
Min 10.19 -15.95 3.46 -13.84 31.50 -28.77
Max 4991.84 19.58 3217.55 14.29 92.60 31.13
N 128,243 128,243 128,243 128,243 128,243 128,243

Notes: This table reports summary statistics for CDS spreads, expected default frequencies (EDF), and loss-given-default (LGD). CDS spreads
come from Markit, have a 5-year maturity, are denominated in USD, and cover senior unsecured debt with documentation clause MR. EDFs come
from Moody’s and are 5-year expected default probabilities. LGDs also come from Markit. For data in levels, CDS and EDFs are expressed in basis
points (bps) and LGD is expressed in percentage points. For log-differences, all quantities are expressed in percentage points. I apply the following
filters to the data: (i) the underlying firm must be registered in the United States; (ii) each firm must have at least 162 observations, which is the 5th
percentile in terms of observations per firm; (iii) the firm must have a non-zero net notional outstanding; and (iv) the CDS spread must be less than
5000 bps. I winsorize log-differenced data at the 1% tails. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Table 2: Summary Statistics of Capital Measures

Sellers Buyers
SC ($mm) Leverage �Leverage BC ($mm) Leverage �Leverage

Mean -4.49 29.53 0.01 -6.81 30.11 0.00
Std. Dev. 676.70 11.73 1.83 455.70 11.28 1.76
p10 -676.42 17.08 -1.72 -462.86 18.37 -1.73
p25 -240.73 21.30 -0.77 -194.81 22.72 -0.77
p50 -0.93 27.22 -0.05 -9.64 27.62 -0.06
p75 259.66 35.81 0.78 173.04 36.07 0.80
p90 666.27 45.23 1.73 452.57 45.92 1.72
Min -6222.00 6.88 -19.71 -5750.97 6.88 -61.07
Max 4312.58 110.63 20.06 4095.81 113.14 42.52
N 128,243 127,760 127,752 128,243 127,772 127,766

Notes: This table reports summary statistics for various capital measures used to explain changes in credit spreads. Capital measures are computed
in each week for net sellers and net buyers of protection for each firm f (see Table 1 for a description of firm selection). For firm f ’s net sellers
(buyers), SCf,t (BCf,t) measures the dollar change in the mark-to-market value of their CDS portfolio, excluding positions written on firms in
the same industry as f . For example, consider firm f in industry i at time t. SCf,t is computed by summing the weekly change in market value
of CDS positions over all of f ’s net sellers, excluding all their positions on firms in industry i. Leverage is the average debt-to-equity ratio for net
sellers (or buyers) of a firm, computed for sellers or buyers with available leverage data. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Table 3: CDS Spread Dynamics and Capital

Dep. Variable � log(CDSf,t)

(1) (2) (3) (4) (5) (6) (7) (8)
SCf,t -2.72** -2.75** -2.06** -2.11** -2.04** -1.76** -2.27** -1.82**

(0.27) (0.30) (0.27) (0.31) (0.23) (0.30) (0.24) (0.33)

BCf,t 0.17 0.05 0.47 0.35 -0.04 -0.01 -0.26 -0.06
(0.32) (0.38) (0.29) (0.34) (0.19) (0.26) (0.20) (-0.21)

Firm Controls Y Y Y Y Y Y Y Y
Option-Mkt Controls Y Y Y Y
Macro Controls Y Y
FE (i, t) (i, t) (i, r, t) (i, r, t)

Within-f R2 0.22 0.26 0.24 0.28 0.38 0.46 0.53 0.47
# of f 399 240 399 240 399 240 375 221
N 128,243 59,578 118,956 58,460 128,243 59,545 111,966 47,232

Notes: This table reports regressions of the form: � log(CDSf,t) = c + ⇣s ⇥ SCf,t + ⇣b ⇥ BCf,t + �
0
Zf,t + ✓

0
Xt. The table reports the

estimates for ⇣s and ⇣b. Zf,t is a vector of firm-level controls. These include: the lagged log-change in CDS spread, each firm’s own equity return,
the log-change in Moody’s expected default frequency (EDF), the log-change in loss-given-default (LGD) from Markit, and the change in Markit
depth. When included, the option-based controls are: the log-change in option-implied CDS spreads (computed according to Carr and Wu (2011))
and the change in ATM volatility from option prices. When included, macro controls are: returns to the three Fama-French factors, the change in
the slope of the Treasury yield curve, the change in the 10-year Treasury yield, the change in the VIX, and the change in the TED spread. SCf,t

measures the dollar change (in $ bn) in the mark-to-market value of f ’s net sellers, excluding all positions written on firms in the same industry as f .
BCf,t is the same variable, except for f ’s net buyers. All regression specifications include a firm fixed effect, and reported R2 are computed within
each firm group. Some regressions also include an industry-by-time fixed effect, where the industry is defined by Markit. Columns (7)-(8) use a
fixed effect based on the intersection industry, rating, and time, where ratings are obtained from S&P. CDS spreads come from Markit, have a 5-year
maturity, are denominated in USD, and cover senior unsecured debt with documentation clause MR. Log-changes in CDS spreads are winsorized
at the 1% level and are reported in percentage terms (scaled by 100). Additionally, I apply the following filters to the data: (i) the underlying firm
must be registered in the United States; (ii) each firm must have at least 162 spread observations, which is the 5th percentile in terms of observations
per firm; (iii) the firm must have a non-zero net notional outstanding; and (iv) the CDS spread must be less than 5000 bps. All standard errors are
double clustered by firm and time, and listed below point estimates in parenthesis. * indicates a p-value of less than 0.1 and ** indicates a p-value
of less than 0.05. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Table 4: CDS Spread Dynamics, Portfolio-Level Capital, and Institution-Wide Capital

Dep. Variable � log(CDSf,t)

(1) (2) (3) (4) (5)
SCf,t -2.04** -1.64** -1.51** -1.63** -1.61**

(0.23) (0.21) (0.21) (0.21) (0.22)
BCf,t -0.04 0.15 0.21 0.16 0.19

(0.19) (0.17) (0.17) (0.17) (0.18)
�Seller Leveragef,t 0.26**

(0.07)
�Buyer Leveragef,t 0.11**

(0.05)
�Seller CDSf,t -1.08

(1.31)
�Buyer CDSf,t -0.22

(1.04)
�Seller SRISKf,t -0.02

(0.02)
�Buyer SRISKf,t -0.01

(0.02)
Industry-by-Time FE Y Y Y Y Y
Dealers Majority Sellers N Y Y Y Y
Within f -group R2 0.38 0.36 0.34 0.36 0.37
# of f 399 396 396 396 396
N 128,243 91,027 90,398 89,850 84,727

Notes: This table reports regressions of the form: � log(CDSf,t) = c + +⇣sSCf,t + ⇣bBCf,t + ✓sISCf,t + ✓bIBCf,t + �
0
Zf,t + "f,t.

Zf,t is the following vector of firm-level controls: the lagged log-change in CDS spread, firm’s equity return, the log-change in Moody’s expected
default frequency (EDF), the log-change in loss-given-default (LGD) from Markit, and the change in Markit depth. All regression specifications
include a firm fixed effect and an industry-by-time fixed effect, where the industry is defined by Markit. SCf,t measures the dollar change (in $
bn) in the mark-to-market value of f ’s net sellers, excluding all positions written on firms in the same industry as f . BCf,t is the same variable,
except for f ’s net buyers. ISCf,t is the average change across f ’s sellers in one of three variables: 1) leverage, measured as the ratio of market
equity to debt; 2) CDS spreads; or 3) SRISK. ISC stands for “institutional seller capital” because it is measured at the institution level, not the
trading desk. IBCf,t is the same variable, except for buyers of firm f ’s protection. SRISK is an estimate of the amount of capital that a financial
institution would need to raise in order to function normally in the event of financial crisis (Brownlees and Engle (2017)). Column (1) runs the
regression without the institutional-based controls for the full sample, and corresponds to Column (5) of Table 3. Column (2) re-runs the baseline
regression for only the sample of firms where dealers are responsible for the majority of net selling. CDS spreads come from Markit, have a 5-year
maturity, are denominated in USD, and cover senior unsecured debt with documentation clause MR. Log-changes in CDS spreads are winsorized
at the 1% level and are reported in percentage terms (scaled by 100). Additionally, I apply the following filters to the data: (i) the underlying firm
must be registered in the United States; (ii) each firm must have at least 162 spread observations, which is the 5th percentile in terms of observations
per firm; (iii) the firm must have a non-zero net notional outstanding; and (iv) the CDS spread must be less than 5000 bps. The reported R2 is
computed within each firm fixed effect group. Standard errors are double clustered by firm and time, and listed below point estimates in parenthesis.
* indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Table 5: Additional Analysis of CDS Spread Dynamics and the CDS-Bond Basis

Dep. Variable RetEquity
f,t � log (OICf,t) � log(CDSf,t) �Basisf,t

(1) (2) (3) (4) (5) (6)

SCf,t -0.08 -0.40 1.45 -1.15** -1.34 3.30

(0.09) (0.57) (0.95) (0.22) (1.21) (2.18)

BCf,t -0.07 0.26 1.50 -0.31* 0.40 5.03**

(0.09) (0.53) (0.95) (0.19) (1.19) (2.05)

SCf,t ⇥AMSf,t -3.40**

(0.42)

Firm Controls Y Y Y Y

Macro Controls Y

Firms in IG Index Y

FE (i, t) (i, t) (i, t) (i, t) (i, t)

Within f -group R2 0.33 0.31 0.65 0.39 0.01 0.44

# of f 399 240 109 399 113 113

N 128,243 59,544 31,676 128,243 11,005 10,857

Notes: This table reports regressions of several different dependent variables on buyer and seller capital shocks, BC and SC, respectively. SCf,t

measures the dollar change (in $ bn) in the mark-to-market value of f ’s net sellers, excluding all positions written on firms in the same industry
as f . BCf,t is the same variable, except for f ’s net buyers. In the regressions, firm level controls include: the lagged log-change in CDS spread,
firm’s equity return, the log-change in Moody’s expected default frequency (EDF), the log-change in loss-given-default (LGD) from Markit, and
the change in Markit depth. In column (1), the dependent variable is the equity return on firm f . In column (2) it is the log-change in firm f ’s
option-implied CDS spread (Carr and Wu (2011)), denoted by � log(OICf,t). In columns (3)-(4), the dependent variable is the log-change in CDS
spreads. In Column (3), the analysis is run using only the set of firms that are in the on-the-run CDX investment grade index. In column (4), SCf,t

is interacted with the share of net selling done by asset managers (AMSf,t, which is also included as a standalone regressor). In columns (5) and
(6), the dependent variable in the regression is the CDS-bond basis, measured as the Z-spread from Bloomberg. In both (5)-(6), firm controls are the
same as in columns (3)-(4). When included, macro controls are: returns to the three Fama-French factors, the change in the slope of the Treasury
yield curve, the change in the 10-year Treasury yield, the change in the VIX, and the change in the TED spread. All regression specifications include
a firm fixed effect, and reported R2 are computed within each firm group. Some regressions also include an industry-by-time fixed effect, where
the industry is defined by Markit. CDS spreads come from Markit, have a 5-year maturity, are denominated in USD, and cover senior unsecured
debt with documentation clause MR. Log-changes in CDS spreads are winsorized at the 1% level and are reported in percentage terms (scaled by
100). Additionally, I apply the following filters to the CDS Markit data: (i) the underlying firm must be registered in the United States; (ii) each firm
must have at least 162 observations, which is the 5th percentile in terms of observations per firm; (iii) the firm must have a non-zero net notional
outstanding; and (iv) the CDS spread must be less than 5000 bps. Standard errors are double clustered by firm and time, and are listed below point
estimates in parenthesis. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is weekly and spans 2/19/2010 to
10/7/2016.
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Table 6: Individual Position Dynamics

Dep. Variable �NSc,f,t

Sellers Sellers Buyers Buyers
(1) (2) (3) (4)

�Capc,t 0.0014** 0.0029**
(4.6e-4) (4.8e-4)

RetCDS
c,t 375,346** 328,848**

(119,513) (68,835)
�(Y ) w.r.t �(X) 5.4% 8.1% 6.2% 6.1%
R2 0.00 0.01 0.00 0.00
# of c 121 121 81 81
# of f 489 489 493 493
N 1,521,050 1,521,050 1,523,307 1,523,307

Notes: This table contain regressions of the form: �NSc,f,t = ac,f + �Yc,t, where Yf,t is either the dollar change in the market-value of c’s
CDS portfolio (Cap) or the percentage return of c’s CDS portfolio (RetCDS

). To compute returns, I assume initial margin requirements for each
CDS position that mimic FINRA’s margin requirements. See the Online Appendix for a complete description of how initial margins are set. �(Y )

w.r.t. �(X) indicates the number of standard deviations the Y -variable moves in response to a one-standard deviation move in the X-variable.
Column headers labeled sellers or buyers refers to the top 10% of net sellers or net buyers, where the top 10% is determined by their total net sold
(or bought) across all firms f . Standard errors are listed below each point estimate and are double clustered by c and t. * indicates a p-value of less
than 0.1 and ** indicates a p-value of less than 0.05. Data is weekly and spans 2/19/2010 to 10/7/2016.
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Table 7: Transmission of Japanese Tsunami to U.S. CDS Markets

Dependent Variable � log(CDSf,1) Retequityf,1 ⇥ 100

(1) (2) (3) (4) (5) (6) (7) (8)
�S,f 3.23** 3.35** 3.41** 2.95** 3.47** -0.57 0.69

(1.00) (1.00) (0.89) (1.35) (1.19) (0.83) (0.84)
�B,f 0.47 0.94 0.97 0.33 0.77 0.23 0.54

(1.04) (1.06) (0.94) (1.02) (1.01) (0.67) (0.61)
Control Variables Y Y Y Y
Industry FE Y Y Y
Institution-Wide Leverage Y Y
Total N 288 288 288 280 280 280 288 288
Adj. R2 (%) 2.3 0.0 2.4 26.0 24.0 26.1 0.0 15.4

Notes: The table presents results from the regression: � log(CDSf,1) = a + �1�S,f + �2�B,f + �0Xf + "f . The dependent variable is
the change in CDS spread for U.S. firms from March 11, 2011 to March 17, 2011. �S,f and �B,f are the share-weighted average CDS exposure
of f ’s net sellers and buyers, respectively, to Japanese firms. Exposure is defined as the net amount of protection sold on Japanese firms ($1 bn),
meaning the units of �S,f and �B,f are in billions of dollar notional. The control variables are (for each firm f ): the change in the 5-year Moody’s
expected default frequency (EDF), the change in Markit’s loss-given-default, the change in Markit’s estimate of depth, the weekly equity return,
the 90-day trailing correlation of (changes in) f ’s CDS spread with the country of Japan’s CDS spread, the 90-day trailing volatility of f ’s CDS
spread, a fixed effect based on the NAICS code of each firm, and the level of the CDS spread for f on the day of the tsunami. Column (6) also
adds the average change in seller and buyer leverage to the regression. In column (7), I exclude the change in 5-year Moody’s EDF as a control
because it effectively reflects equity returns. CDS spreads come from Markit, have a 5-year maturity, are denominated in USD, and cover senior
unsecured debt with documentation clause MR. Log-changes in CDS spreads are winsorized at the 1% level and are reported in percentage terms
(scaled by 100). Standard errors are clustered within each industry group and reported below point estimates. ** indicate statistical significance at
the 5 percent level. When industry fixed effects are included with the controls, the reported R2 is within each industry group.
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APPENDIX TABLES

Table A1: Individual Position Dynamics

Dep. Variable NSc,f,t

All Sellers Buyers
(1) (2) (3)

NSc,f,t�1

0.979** 0.982** 0.975**
(0.01) (0.01) (0.00)

R2 0.96 0.96 0.95
# of c 1,087 121 81
# of f 496 489 493
N 15,234,431 1,521,050 1,523,307

Notes: This table report results from the following regression: NSc,f,t = ac,f + �⇥NSc,f,t�1, where NSc,f,t is the net sold by counterparty
c on firm fat time t. ac,f is a counterparty-by-firm fixed effect. Standard errors are listed below each point estimate and are double clustered by c
and t. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is weekly and spans 2/19/2010 to 10/7/2016.
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A Additional Facts about the CDS Market
In this appendix, I document two additional facts about the CDS market: (i) the U.S. CDS market is large in
terms of net notional credit risk transferred, with a conservative lower bound of around $1 trillion; and (ii)
the identities of the largest buyers and sellers is persistent through time. The first fact makes the case that
the pricing effects that I document in this paper are relevant for a relatively large asset class. The second
fact is useful because it establishes that the largest buyers and sellers in the CDS market maintain directional
positions for long periods of time, as opposed to simply managing their inventories.

A.1 The Size of the CDS Market
To quantify the size of the CDS market, I consider two alternative measures. The first measure is the gross
notional size of the market, which is just the sum of the notional amount of all outstanding positions. Gross
notional is thus a measure of volume, but importantly, it does not speak to the net amount of credit risk
transfer for a given firm or for the entire market.

The second measure of market size that I use is the net notional outstanding of all positions. I define the
net notional amount of credit risk outstanding for a given firm as:

NOf,t :=

X

c2Ct

max (NSc,f,t, 0) (11)

NOf,t is analogous to the face value of debt outstanding in bond markets — it captures the net amount of
protection sold (or equivalently bought) on a particular firm.

I then measure the total net outstanding for the whole market by summing NOf,t over all firms:

NOt :=

X

f2Ft

NOf,t (12)

Figures A1 and A2 plot the net notional outstanding and the gross notional outstanding of the entire U.S.
CDS market through time. Both measures provide a conservative lower bound on the size of the U.S. market
because I only include firms that I can definitively classify as being based in the United States. The Online
Appendix contains details of this classification procedure.

According to both measures, the size of the CDS market has steadily declined since the beginning of
2010. In January 2010, the gross notional size of the U.S. market was roughly $9 trillion, but by October
2016 had halved to a size of around $4 trillion.22 The net notional outstanding of the CDS market has
declined by a similar amount over this same time period, falling from a little over $1 trillion in 2010 to
about $500 billion in 2016.

22These statistics roughly accord with aggregate data provided by the Bank for International Settlements (BIS):
http://www.bis.org/publ/qtrpdf/r_qt1512_charts.pdf. The BIS double counts notional, meaning that a $1 notional po-
sition between two traders gets reported as $2 of gross notional. I instead count it as $1 of notional. After multiplying
my calculations by two, the gross notional that I report is still slightly less than the BIS’s estimate; this is not surprising
since I focus only on the U.S. CDS market. The net notional outstanding is new to this paper, given that one must net
single name exposures against index exposures in order to compute this statistic.
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Despite the downward trend in the size of the CDS market, the overall amount of notional credit risk
transferred is still fairly large. As a rough comparison of magnitude, the face value of debt outstanding
in U.S. corporate bond markets is approximately $9 trillion. Conservatively speaking, the size of the CDS
market is thus about one-twelfth of the size of the corporate bond market.

I further decompose NOf,t into the portion coming from indirect exposures through index swaps and
direct exposures through single name swaps. To do so, I first expand the net sold by a given counterparty
into two parts: NSc,f,t = NSI

c,f,t +NSS
c,f,t, where NSI is the net sold through index exposures and NSS

is the net sold through single name exposures. When computing NOf,t, the portion coming from index
exposures NOI

f,t is then:

NOI
f,t =

X

c2Sf,t

NSI
c,f,t

where Sf,t is the set of f ’s net sellers at time t. I further calculate the overall size of the market coming
from index swaps by summing NOI across all firms. The analogous statistics for net outstanding via direct
single name exposures is computed in similar fashion.

Decomposing the portion of the CDS market coming from index and single name swaps reveals an
interesting trend in the market. As shown by the hashed and shaded markers in Figures A1 and A2, most of
the decline in CDS market size is driven by the fact that the single name market is shrinking. In contrast, the
size of the index CDS market has remained relatively constant over time. I suspect that this trend is related
to two forces: (i) the introduction of central clearing for major CDS indices; and (ii) the cost of selling
protection for dealers has increased due to post-crisis regulation. Further exploration of this fact is outside
the scope of the this study.

A.2 Are the identities of large sellers and buyers persistent?
While the CDS market is certainly concentrated, it may still be the case that the identities of the largest
buyers and sellers are changing rapidly through time. For instance, a dealer that absorbs a large net buy
position in a given week may then appear as a large net seller. However, if this dealer managers its inventory
back to a more neutral stance then this concentration will be short lived. To better understand the persistence
of individual positions – and thus the persistence of the identities of the largest buyers and sellers – I run the
following regression:

NSc,f,t = ac,f + �⇥NSc,f,t�1

(13)

ac,r is a counterparty-by-firm fixed effect, meaning that this regression identifies � using time-series vari-
ation in net amount sold by a counterparty on firm f . Columns 1 of Table A1 presents the point estimate
for � when pooling all counterparties together. According to this regression, � ⇡ 0.98, which indicates that
the half-life of the average position is about nine months. Columns 2-3 rerun the regression using only the
largest net sellers and buyers, and find very similar values for �.23 These results thus show that the largest
buyers and sellers in the CDS market maintain directional positions for long periods of time, as opposed to
simply managing their inventories.

23In regression (13), standard estimation techniques are potentially inconsistent due to the Nickell (1981) bias. I
have experimented with various dynamic panel data corrections (e.g. Arellano and Bond (1991)) and obtain nearly
identical results. The reason is that T is large enough in my setting to effectively nullify the Nickell (1981) bias.
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A.3 Market Share by Counterparty Type
This subsection describes how I compute the aggregate market share of buying or selling by a particular type
of counterparty. I start by manually assigning each counterparty in the dataset to one of the following types:
CCP (Central Counterparty), commercial bank, investment bank, dealer, government agency, asset manager
(e.g. hedge fund), insurance firm, non-financial firm, or other. Next, for a particular firm f , I compute
the proportion of total net outstanding bought by type y at time t, denoted by PB(y, f, t). Similarly, the
proportion sold by type y at time t on reference entity r is given by PS(y, f, t). The aggregate amount
bought by a particular type is then the weighted-average of PB(y, f, t) across firms, where the weight is
proportional to the size of the firm’s CDS market. The same goes for the aggregate amount sold by a
particular type. Formally, this means:

PB(y, t) =

X

f2Ft

!ftPB(y, f, t)

PS(y, t) =

X

f2Ft

!ftPS(y, f, t) (14)

where !ft = NOf,t/
P

f NO(f, t). These aggregate statistics ¯PB and ¯PS are the basis of Figures 4 and 5.

B Appendix: Additional Computations
B.1 Option Implied CDS Spreads
This section describes how I use American option prices to compute an implied CDS spread. For a complete
theoretical treatment of this procedure, see Carr and Wu (2013), henceforth CW. In the interest of space, I
present only the relevant formulas and data descriptors used in the main text.

To start, Carr and Wu (2013) define what they call a “unit recovery claim” that pays a dollar if there is
a default event prior to an option’s expiration, and zero otherwise. CW assume that there exists a default
corridor [A,B] that the underlying equity price can never enter. If the equity price hits the level B, there is
a default and the stock price immediately jumps to a level that is bounded above by A. In their empirical
work, they set A = 0, which means that the equity value drops to zero upon default. I continue with this
assumption for the remainder of my treatment.

Under this assumption, CW show that, regardless of the underlying asset process, there is a robust link
between the unit recovery claim and CDS spreads. The unit recovery claim is defined as follows:

UO
(t, T ) =

Pt(K2

, T )� P (K
1

, T )

K
2

�K
1

(15)

where A  K
1

< K
2

 B. It is easy to see that, under the assumptions of the default corridor, this pays
one dollar if there is default and zero otherwise.

Next, CW show that under the assumption of a constant arrival rate and constant interest rate, the CDS
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spread of a firm is related to the price of the unit recovery claim in the following manner:

UO
(t, T ) = ⇠k ⇥ 1� exp (�(r + ⇠k)(T � t))

r(t, T ) + ⇠k
(16)

where ⇠ = 1/(1 � R), R is the recovery of the bond upon default, k is the CDS spread, and r(t, T ) is the
continously compounded interest rate between t and T . Here, T is meant to capture the expiration of both
the CDS contract and the option contract. For my purposes, I will always set T � t = 5.

Equation (16) provides a simple way to recover a CDS spread implied by option prices. Using observed
option prices, one first computes the value of the unit recovery claim. A numerical inversion then delivers
the implied CDS spread.

To implement this procedure in practice, I merge my panel of CDS spreads with American option prices
from OptionsMetrics using 6 digit CUSIPs. Furthermore, since I follow CW in assuming A = 0, the unit
recovery claim is simple the price of a deep out of the money put option, divided by its own strike price. I
use a set of filters on the options data that is similar to CW: (i) I take the option price to be the midpoint of
the bid and offer; (ii) I consider options whose bid is strictly positive; (iii) I consider options whose open
interest is strictly positive; (iv) the maturity of the option must be greater than 365 days; (iv) I use the put
option that satisfies all of the preceding qualities, and that has the delta closest to 0 and less than -0.15. ATM
volatilities are taken from the put option that is out of the money, but is closest to being at the money.

Naturally, there is a maturity mismatch in using options that might have an expiration of 2 years to
compute an implied CDS spread of 5 years. There is no real way to avoid this bias. See CW for a richer
discussion. Like with other portions of the paper, the riskfree rate is obtained from interpolating the USD
swap rate curve. Finally, I use the Markit reported recovery rate.

B.2 Macroeconomic Control Variables
In Section 3, I estimate variants of the following regression:

�cdsf,t = af + ai,t +�cdsf,t�1

+ �
0
1

�Zf,t + ⇣sSCf,t + ⇣bBCf,t

One of the important features of this regression is the industry-by-time fixed effect ai,t. In some cases, I
replace the industry-by-time fixed effect with observable macroeconomic controls. I choose these controls
based on theoretical models of credit risk and previous research on the determinants of credit spread variation
(e.g. Collin-Dufresne et al. (2001)). These variables are the VIX, TED, CFNAI, 10 year Treasury yield, and
10-year-minus-2-year Treasury yield. After first differencing these controls, I also include the three Fama-
French factors.
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