
	

The Cooperative Solution of 
Stochastic Games	

	 	
Elon Kohlberg 
Abraham Neyman 
 

	

Working Paper 15-071 



 

 
Working Paper 15-071 

 

 
Copyright © 2015 by Elon Kohlberg and Abraham Neyman 

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may 
not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. 

 

 
 

The Cooperative Solution of Stochastic 
Games 

  
Elon Kohlberg 
Harvard Business School 

Abraham Neyman 
The Hebrew University of Jerusalem 

 

 



The Cooperative Solution of Stochastic Games

Elon Kohlberg∗ and Abraham Neyman†

January 23, 2015

Abstract

Building on the work of Nash, Harsanyi, and Shapley, we define
a cooperative solution for strategic games that takes account of both
the competitive and the cooperative aspects of such games. We prove
existence in the general (NTU) case and uniqueness in the TU case.
Our main result is an extension of the definition and the existence and
uniqueness theorems to stochastic games - discounted or undiscounted.

1 Introduction

Stochastic games, introduced by Shapley ([21]), may be described as follows.
At each stage, the game is in one of a finite number of states. Each one of n
players chooses an action from a finite set of possible actions. The players’
actions and the state jointly determine a payoff to each player and transition
probabilities to the succeeding state.

While the theory of stochastic games has been developed in many differ-
ent directions, there has been practically no work on the interplay between
stochastic games and cooperative game theory. Our purpose here is to take
an initial step in this direction.
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Building on the work of Nash ([16]), Harsanyi ([9]), and Shapley ([22]),
we define a cooperative solution for strategic games and prove an existence
theorem. Our main result is an extension of the definition and the existence
theorem to stochastic games.

The original idea appears in Nash ([16]), who pioneered the notion of
a solution that takes account of both the competitive and the cooperative
aspects of a strategic game. Nash defined such a solution for two-person
games and proved an existence and uniquenss theorem.

The solution is derived by means of “bargaining with variable threats.”
In an initial competitive stage, each player declares a “threat” strategy, to
be used if negotiations break down; the outcome resulting from deployment
of these strategies constitutes a “disagreement point.” In a subsequent co-
operative stage, the players coordinate their strategies to achieve a Pareto
optimal oucome, and share the gains over the disagreement point; the sharing
is done in accordance with principles of fairness.

The extension of the Nash solution to n-player strategic games requires
several ideas. These appear, more or less explicitly, in the work of Harsanyi
([9]), Shapley ([22]), Aumann and Kurtz ([3]), and Neyman ([17]). However,
there does not seem to be a single comprehensive treatment. Thus we provide
a formal definition and existence proof for what we believe is the simplest
possible generalization of the Nash solution. We refer to it as the cooperative
solution of a strategic game.

The first step is to consider an alternative view of the two-player case.
Under the assumption of transferable utility (TU), the outcome of “bargain-
ing with variable threats” can be described very simply. (The description
that follows is due to Shapley ([23]). It also appears in Kalai and Kalai
([10]), who use it to define their “co-co-value.”)

Let s denote the maximal sum of the players’ payoffs in any entry of
the payoff matrix, and let d be the minmax value of the zero-sum game
constructed by taking the difference between player 1’s and 2’s payoffs. Then
the Nash solution splits the amount s in such a way that the difference in
payoffs is d. Specifically, the payoffs to players 1 and 2 are, respectively,
1
2
s + 1

2
d and 1

2
s − 1

2
d. (Appendix A provides a simple example highlighting

the insights that this solution affords.)
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The procedure can be generalized to n-player TU games as follows. Let s
denote the maximal sum of payoffs in any entry of the payoff matrix, and let
dS be the minmax value of the zero-sum game between a subset of players,
S, and its complement, N \S, where the players in each of these subsets
collaborate as a single player, and where the payoff is the difference between
the sum of payoffs to the players in S and the sum of payoffs to the players
in N \S.

The cooperative solution splits the amount s in such a way as to reflect
the relative strengths of the subsets S. Specifically, the cooperative solution
is the Shapley value of the1 coalitional game v, where v(N) = s and for
S ( N , v(S)− v(N \S) = dS.

Since the above procedure is well defined and results in a single vector
of payoffs, it follows that any n-person TU strategic game has a unique
cooperative solution.

To get a sense of this solution, note that in a three-player game the payoff
to player 1 is 1

3
s+ 1

3
[d1 − 1

2
(d2 + d3)]. (See Proposition 1.)

Next, we consider the more general case of non-transferable utility (NTU)
games. Here, implementation of the above-described procedure is more chal-
lenging. While in the TU case, the objective of a set of players acting as a
single player is, obviously, to maximize the sum of their payoffs, in the NTU
case, the objective is unclear.

Still, it is possible to generalize the Nash solution to NTU games. The
essential idea is Shapley’s method of “lambda-transfers.” Imagine that util-
ity becomes transferable after multiplication by some scaling factors, λ =
(λ1, . . . , λn) ≥ 0. Compute the cooperative solution of the resulting TU
game. If this cooperative solution is, in fact, feasible without actual trans-
fers of utility, then it is defined as a cooperative solution of the NTU game.

It is easy to verify that, in two-person NTU games,“bargaining with vari-
able threats” in fact coincides with the lambda-transfer method. Thus Nash’s

1The use of the definite article is not entirely correct, as the provided equations do not
determine the coalitional game. However, they do determine its Shapley value (Corollary
1).
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([16]) original proof establishes existence and uniqueness of the cooperative
solution in any two-person strategic game.

We prove that a cooperative solution exists in any n-person strategic
game. In NTU games with more than two players there may well be multiple
solutions 2

In the central part of this paper, we extend these developments to stochas-
tic games. Our main result is a definition and existence theorem for the co-
operative value in TU or NTU stochastic games. The result applies to both
discounted and undiscounted games.

In fact, we show that in stochastic games, just as in strategic games, the
cooperative value satisfies the following. Existence and uniqueness in two-
person games, existence and uniqueness in n-person TU games, and existence
in n-person NTU games3.

The structure of the paper is as follows.

In Section 2 we review the notions of a coalitional game and the Shapley
value of such a game.

In Section 3 we define the cooperative solution for TU and NTU strategic
games and provide existence and uniqueness theorems.

As the notion of the minmax value in undiscounted stochastic games is
crucial for the cooperative solution in such games, we provide in Section 4 a
self-contained review.

In Section 5 we define the cooperative solution for TU and NTU stochastic
games and provide existence and uniqueness theorems.

In Section 6 we present asymptotic properties of this solution concept.

2Note the analogy with exchange economies. In the TU case there is a unique compet-
itive equilibrium; in the NTU case there might be multiple equilibria.

3At first blush, existence theorem in the undiscounted case may seem surprising. After
all, the analysis of n-person undiscounted stochastic games is notoriously difficult. In
particular, there is no existence theorem for ε-Nash equilibria in such games. However,
the generaliztion still goes through. The reason is that (as will become clear in the sequel)
the notion of a cooperative value does not rely on Nash equilibrium analysis in the n-
player stochastic game itself. Rather, it only makes use of minmax analysis in two-person
(zero-sum) stochastic games, played betwen a coaltion of players and its complement.
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2 The Shapley Value of Coalitional Games

A coalitional game with transferable utility (“coalitional game” for short) is
a pair (N, v), where N = {1, . . . , n} is a finite set of players and v : 2N → R
is a mapping such that v(∅) = 0.

For any subset (“coalition”) S ⊂ N , v(S) may be interpreted as the total
utility that the players in S can achieve on their own. Of course, such an
interpretation rests on the assumption that utility is transferable among the
players.

Shapley [21] introduced the notion of a “value,” or an a priori assessment
of what the play of the game is worth to each player. Thus a value is a
mapping ϕ : R2N → RN that assigns to each coalitional game v a vector of
individual utilities, ϕv.

Shapley proposed four desirable properties, and proved that they imply
a unique value mapping. This mapping – the Shapley value – can be defined
as follows:

ϕiv :=
1

n!

∑
R

(v(PRi ∪ i)− v(PRi )), (1)

where the summation is over the n! possible orderings of the set N and
where PRi denotes the subset of those j ∈ N that precede i in the ordering
R. Thus, the allocation to player i is the weighted average of the marginal
contributions, v(S∪i)−v(S), weighted according to the frequency with which
i appears right after S in a random ordering of N .

From the formula, it is easy to see that the Shapley value has the following
properties.

For all coalitional games (N, v), (N,w),

Efficiency
∑
i∈N

ϕiv = v(N).

(2)

Linearity ϕ(αv+βw) = αϕv+βϕw ∀α, β ∈ R.
(3)
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Note: These are two of four properties that characterize the Shapley
value. We spell them out because they will be used in the sequel.

We will also use three additional consequences of (1):

min
S⊂N,i/∈S

(v(S ∪ i)− v(S)) ≤ ϕiv ≤ max
S⊂N,i/∈S

(v(S ∪ i)− v(S)) , (4)

ϕiv =
∑
S⊂N
S3i

(s− 1)!(n− s)!
n!

(v(S)− v(N \S)) , where s = |S|, (5)

and

ϕvi =
1

n

n∑
k=1

(k − 1)!(n− k)!

(n− 1)!

∑
S⊂N

S3i,|S|=k

dS =
1

n

n∑
k=1

di,k, (6)

where dS := v(S)− v(N\S), and di,k denotes the average of the dS over
all k-player coalitions that include i.

Obviously, (5) implies:

Corollary 1. The Shapley value, ϕv, is determined by the differences v(S)−
v(N \S), S ⊂ N .

Notes:

• Property (4), known as the Milnor condition, was proposed by Milnor
[14] as a desirable property of a solution to a coalitional game. It says
that the allocation to a player must lie between the smallest and the
largest marginal contributions of that player. Cleraly, this holds for the
Shapley value.
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• Property (5) is well known. One way to see its validity is as follows.
Let S 3 i. In an ordering in which i is the last element of S, the
marginal contribution is v(S) − v(S − i). In the reverse ordering the
marginal contribution is (v(N \ S ∪ i) − (v(N \ S)). Since the set of
reverse orderings is the same as the set of orderings, we might as well
replace each summand in the r.h.s. of (1) by the average marginal
contributions in the ordering and its reverse. Thus

ϕiv :=
1

n!

∑
S3i

∑
R:PRi =S−i

(
1

2
((v(S)− v(N \ S)) + (v(N \ S ∪ i)− v(S − i))) .

But as S ranges over the subsetst of N that include i, so does N \S∪ i.
Thus we have

ϕiv :=
1

n!

∑
S3i

(s− 1)!(n− s)!(v(S)− v(N \ S)),

which is the same as (5).

• Property (6) is an immediate consequence of (5).

• An alternative way to compute the Shapley value from the dS = v(S)−
v(N \S) is to choose a representative v, e.g.,

v(∅) = 0, v(N) = dN , and for ∅ 6= S ⊂ N, v(S) =
1

2
dS and v(N\S) = −1

2
dS,

(7)
and then apply the general formula (1).

3 The Cooperative Solution of Strategic Games

3.1 Strategic Games

A finite strategic game is a triple G = (N,A, g), where
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• N = {1, . . . , n} is a finite set of players,

• A is the finite set of a player’s pure strategies, and

• g = (gi)i∈N , where gi : AN → R is player i’s payoff function.

Remark: In order to simplify the notation, we assume that the set of
pure strategies is the same for all players. Since these sets are finite, there is
no loss of generality.

We use the same notation, g, to denote the linear extension

• gi : ∆(AN)→ RN ,

where for any set K, ∆(K) denotes the probability distributions on K.

And we denote

• Ai = A and AS =
∏

i∈S A
i, and

• XS = ∆(AS) (correlated strategies of the players in S).

Remark: The notation XS = ∆(AS) is potentially confusing. Since
X = ∆(A), it would seem that XS should stand for (∆(A))S (independent
randomizations by the players in S) and not for ∆(AS) (correlated random-
izations). Still, we adopt this notation for its compactness.

3.2 The cooperative solution of TU strategic games

In TU games it is assumed that players can make side payments; i.e., utility
can be transferred from one player to another. Thus it is meaningful to
consider the maximal sum of payoffs available to all the players:

v(N) := max
x∈XN

∑
i∈N

gi(x). (8)
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Note: In a single-person maximization there is no advantage in using
randomized strategies. Thus v(N) = maxa∈AN

∑
i∈N g

i(x) . We use the
formulation in (8) merely in order to conform with the case S = N in (9).

The question, then, is how the amount v(N) is split among the players.
As discussed in the Introduction, we capture the strength of any coalition,
S, by means of the minmax value of the zero-sum game played between S
and its complement, where each of these coalitions acts as a single player:

v(S)− v(N \S) := max
x∈XS

min
y∈XN\S

(∑
i∈S

gi(x, y)−
∑
i 6∈S

gi(x, y)

)
. (9)

We then apply the Shapley value. This may be justified by the view that
the Shapley value is a fair allocation of v(N) reflecting the strength of the
various coalitions, S ⊂ N . (See, e.g., Young [24].4)

Definition 1. The cooperative solution of the TU strategic game G is the
Shapley value, ϕv, where v is a coalitional game satisfying (9).

By Corollary 1, any coalitional game satisfying (9) has the same Shapley
value. Thus the above procedure is well defined:

Theorem 1. Every TU strategic game has a unique cooperative solution.

And, applying equation (5), we have:

Proposition 1. Let G be a TU strategic game. Its cooperative solution,
ψ ∈ RN , may be described as follows:

ψi =
1

n

n∑
k=1

di,k,

where di,k denotes the average of the

dS := max
x∈XS

min
y∈XN\S

(∑
i∈S

gi(x, y)−
∑
i 6∈S

gi(x, y)

)
over all k-player coalitions S that include i.

4According to Young, a fair sharing rule must allocate to each player an amount that
depends only on that player’s marginal contributions. He shows that this requirement,
along with standard conditions of efficiency and symmetry, characterizes the Shapley value.
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3.3 The cooperative solution of NTU strategic games

In a general strategic game, the payoffs represent von Neumann–Morgenstern
utilities of the outcomes. Therefore, two different games where the payoffs of
each player differ by a positive factor are the same. Thus we cannot assume
transferable utility.

Since in NTU games addition of payoffs is meaningless, the focus of atten-
tion no longer is the maximum sum of payoffs but rather the Pareto frontier
of the feasible set,

F := {g(x) : x ∈ XN} = conv{g(a) : a ∈ AN},

which consists of all the payoff vectors that can be attained when the
players correlate their strategies.

To define the cooperative solution of an NTU strategic game, we deploy
the lambda-transfer method of Shapley ([22]).

Assume that utility becomes transferable after an appropriate multipli-
cation by scaling factors λ = (λ1, . . . , λn) ≥ 0, λ 6= 0. Then we can proceed
in analogy with the TU case.

The total payoff available to all players is

vλ(N) := max
x∈XN

∑
i∈N

λig
i(x), (10)

and the relative strength of a coalition S is captured by

vλ(S)− vλ(N \S) := max
x∈XS

min
y∈XN\S

(∑
i∈S

λigi(x, y)−
∑
i 6∈S

λigi(x, y)

)
. (11)

Note: When S = N this is the same formula as (10), considering that
N \N = ∅.

As in the TU case, we may define the cooperative value of the strategic
game G by taking the Shapley value, ϕvλ. However, there are two difficulties.
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First, it is unclear how the scaling factors λ ought to be chosen. Second,
to attain ϕvλ the players might have to resort to transfers of utility, which
are ruled out by the assumption of NTU.

The idea underlying the lambda-tranfer method is not to specify a single
λ but rather to accept any λ for which the associated Shapley value can be
implemented without actual transfers of utility. Thus we require that ϕ(vλ)
be a λ-rescaling of an allocation in the feasible set.

In other words, using the notation

f ∗ g := (figi)i∈N ∀f, g ∈ RN

we require that ϕvλ = λ ∗ ψ, where ψ ∈ F .

Note that, by the linearity of the Shapley value, for every vector λ of
scaling factors, and for every α > 0, if ϕ(vλ) = λ ∗ ψ then ϕ(vαλ) = αλ ∗ ψ.
Hence, we can normalize λ to lie in the simplex

∆ := {λ = (λ1, . . . , λn) ∈ Rn, λ ≥ 0,
∑
i∈N

λi = 1}.

In summary:

Definition 2. ψ ∈ F = conv{g(a) : a ∈ AN} is a cooperative solution of the
strategic game G if ∃λ ∈ ∆ such that ϕ(vλ) = λ ∗ψ, where vλ is a coalitional
game satisfying (11).

Theorem 2. Every finite strategic game has a cooperative solution.

This theorem is closely related to the results of Shapley [22] and Harsanyi
[9]. A proof is provided in Appendix A. It is a special case of Neyman [17].

Notes:

• The manner in which certain exchange rates – those that allow imple-
mentation of a solution without actual side payments – arise from the
data of the game, bears some similarity to the manner in which market
clearing prices arise from the data of an exchange economy.
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• The lambda-transfer method has been applied in other contexts, most
notably in defining a Shapley value for NTU coalitional games.

• The philosophical underpinnings of the lambda-transfer method have
generated lively discussion among game theorists, e.g., Aumann ([1]
and [2]) and Roth ([20]).

4 Stochastic Games

In a stochastic game, play proceeds in stages. At each stage, the game is
in one of a finite number of states. Each one of n players chooses an action
from a finite set of possible actions. The players’ actions and the state
jointly determine a payoff to each player and transition probabilities to the
succeeding state.

We assume that before making their choices, the players observe the cur-
rent state and the previous actions.

Definition 3. A finite stochastic game-form is a tuple Γ = (N,Z,A, g, p),
where

• N = {1, 2, . . . , n} is a finite set of players,

• Z is a finite set of states,

• A is the finite set of a player’s stage actions,

• g = (gi)i∈N , where gi : Z ×AN → R is the stage payoff to player i, and

• p : Z × AN → ∆(Z) are the transition probabilities.

Remark: We use the same notation N , A, g, as in a strategic game. The
different meanings should be apparent from the context.

Remark: Again we make the simplifying assumption that the set of stage
actions, A, is the same for all players; furthermore, we assume that the set
of actions is independent of the state. In other words, if Ai[z] denotes player
i’s set of actions in state z, then Ai[z] = A for all i and z.
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In order to define a specific stochastic game we must indicate the players’
strategies and their payoffs. We denote the players’ behavioral strategies in

the infinite game by

• σit : (Z × AN)t−1 × Z → ∆(A) and

• σi = (σit)
∞
t=1 , σ = (σi)i∈N .

The strategies σ along with the initial state z determine a probability
distribution P z

σ over the plays of the infinite game, and hence a probability
distribution over the streams of payoffs. The expectation with respect to this
distribution is dented by Ez

σ.

Of course, there are many possible valuations of the streams of payoffs.
One standard valuation is obtained by fixing a number of stages, k. We
denote:

• γik(σ)[z] = Ez
σ

1
k

∑k
t=1 g

i(zt, at),

• γik(σ) = (γik(σ)[z])z∈Z , and

• γk(σ) = (γik(σ))i∈N .

We refer to the game with this valuation as the k-stage game and denote
it by Γk.

Another standard valuation is obtained by applying a discount rate, 0 <
r < 1. We denote:

• γir(σ)[z] = Ez
σΣ∞t=1r(1− r)t−1gi(zt, at),

• γir(σ) = (γir(σ)[z])z∈Z , and

• γr(σ) = (γir(σ))i∈N .

We refer to the game with this valuation as the r-discounted game and
denote it by Γr.

Note: In fact, Γr is a family of games, Γzr, parameterized by the initial
state. Similarly for Γk.

We denote by vr, respectively vk, the minmax value of Γr, respectively
Γk.
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4.1 The r-discounted game: Two-person zero-sum

In a two-person zero-sum stochastic game, N = {1, 2} and g2 = −g1. To
simplify the notation, we denote σ1 = σ, σ2 = τ , and γr(σ, τ) = γ1

r (σ
1, σ2),

and similarly γk(σ, τ) = γ1
k(σ

1, σ2).

Definition 4. v ∈ RZ is the minmax value of the r-discounted game (respec-
tively, the k-stage game) if ∃σ0, τ0 s.t. ∀σ, τ

γr(σ0, τ) ≥ v ≥ γr(σ, τ0) (respectively, γk(σ0, τ) ≥ v ≥ γk(σ, τ0)).

Note: The vector notation above says that, for all z ∈ Z, v[z] is the
minmax value of the game with initial state z.

We denote by Val(G) the minmax value of a two-person zero-sum strategic
game G.

Theorem 3. (Shapley 1953) Let Γr be a two-person zero-sum r-discounted
stochastic game.

• Γr has a minmax value and stationary optimal strategies. Furthermore:

• (v[z])z∈Z is the minmax value of Γr with initial state z iff it is the
(unique) solution of the equations

v[z] = Val Gr[z, v] ∀z ∈ Z (12)

where
Gr[z, v](a) := rg(z, a) + (1− r)Σz′p(z, a)[z′]v[z′].

• If xr[z] and yr[z] are optimal strategies for players 1 and 2, respectively,
in the (one-shot) game Gr[z, v], then the stationary strategies σt =
xr, τt = yr ∀t are optimal strategies in Γr.

We denote by vr, respectively vk, the minmax value of Γr, respectively
Γk. (The existence of vk is obvious, as Γk is a finite game.)
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4.2 Markov decision processes

A single-person stochastic game is known as a Markov Decision Process
(MDP). Since in a single-person one-shot game the player has a pure op-
timal strategy, Theorem 3 implies:

Corollary 2. In an r-discounted MDP there exists an optimal strategy that
is stationary and pure.

Note: The same corollary applies to stochastic games with perfect infor-
mation. In such games, at each state z one player is restricted to a single
action; i.e., A1[z] or A2[z] consists of a single point.

In fact, the corollary can be substantially strengthened:

Theorem 4. (Blackwell 1962) In every MDP there exists a uniformly opti-
mal pure stationary strategy. That is, there exists a pure stationary strategy
σ∗ such that

(i) σ∗ is optimal in the r-discounted MDP for all r < r0 for some r0 > 0.
Furthermore:

(ii) ∀ε > 0, ∃kε > 0, such that σ∗ is ε-optimal in the k-stage game for all
k > kε, and

(iii) ḡk := 1
k

∑k
t=1 g(at, zt) converges Pσ∗ a.e., and Eσ∗ limk→∞ ḡk ≥ Eσ lim supk→∞ ḡk ∀σ.

Note: For completeness, we provide a proof of Blackwell’s theorem in
Appendix C.

Notes:

• The limit of ḡk exists Pσ∗ a.e. because a stationary strategy induces
fixed transition probabilities on the states, resulting in a Markov chain.
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• As σ∗ is ε-optimal in Γk, it follows that limk→∞ vk = limk→∞Eσ∗ ḡk =
Eσ∗ limk→∞ ḡk exists. This implies that vr converges to the same limit.
(One way to see this is to apply Lemma 1 below.)

• Statement (ii) is, of course, equivalent to

(ii‘) σ∗ is ε-optimal in the k-stage game for all but finitely many values
of k.

• While the theorem guarantees the existence of a strategy that is optimal
uniformly for all small r, it only guarantees the existence of a strategy
that is ε-optimal uniformly for all large k. To see that the optimal
strategy in the k-stage game might depend on k, consider the following
example: In state 1, one action yields 0 and a transition to state 2; the
other action yields 1 and the state is unchanged. In state 2, there is a
single action yielding 3 and with probability 0.9 the state is unchanged.
The unique optimal strategy is to play the first action in the first k− 1
stages and the second action in stage k.

Blackwell’s theorem establishes the existence of a stationary strategy that
is optimal in a very strong sense. It is simultaneously optimal in all the
r-discounted games with r > 0 sufficiently small, and simultaneously (essen-
tially) optimal in all the k-stage games with k sufficiently large; it is also
optimal when infinite streams of payoffs are evaluated by their limiting av-
erage.

In other words, Blackwell’s theorem establishes the existence of a station-
ary strategy that is optimal in the MDP under any one of the three main
interpretations of the infinite-stage model:

(i) Future payoffs are discounted at a very small positive but unspecified
discount rate, or – equivalently – at every stage the game stops with
some very small positive probability.

(ii) The “real” game is finite, with a large but unspecified number of stages.
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(iii) There is an unspecified valuation of infinite streams of payoffs. This
valuation lies between the lim inf and the lim sup of the average payoff
in the first k stages.

Blackwell’s theorem also implies the existence of a value, i.e., a maximal
payoff that can be (uniformly) guaranteed according to each of the three
interpretations above.

Indeed, let v := limr→0 vr = limk→∞ vk. Then ∀ε > 0 ∃r′ε, k′ε s.t. ∀ σ

(i‘) ε+ γr(σ
∗) ≥ v ≥ γr(σ)− ε ∀ 0 < r < r′ε,

(ii‘) ε+ γk(σ
∗) ≥ v ≥ γk(σ)− ε ∀ k > k′ε, and

(iii‘) Eσ∗ lim infk→∞ ḡk ≥ v ≥ Eσ lim supk→∞ ḡk.

The left inequalities indicate that the payoff v is guaranteed by the strategy
σ∗; and the right inequalities indicate that no larger payoff can be guaranteed
by any strategy.

4.3 The undiscounted game: Two-person zero-sum

In an undiscounted two-person zero-sum stochastic game it is not obvious
how to define the value and optimal strategies.

A natural first attempt is to proceed in analogy with Blackwell’s theo-
rem for MDPs. First, define a pair of strategies σ0, τ0 for player 1 and 2,
respectively, to be optimal, if there exist r0 > 0 and k0 > 0 such that, for all
σ, τ ,

(i) γr(σ0, τ) ≥ γr(σ, τ0) ∀ 0 < r < r0.

(ii) γk(σ0, τ) ≥ γk(σ, τ0) ∀ k > k0.
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(iii) Eσ0,τ lim infk→∞ ḡk ≥ Eσ,τ0 lim supk→∞ ḡk.

(Note that (ii) holds in MDPs within ε.)

Next, prove the existence of stationary strategies satisfying these condi-
tions.

However, it turns out that for some games there exist no stationary strate-
gies that satisfy either (i), or (ii), or (iii), even within an ε.

This is illustrated by the game known as the Big Match (Gilette [8])
where, moreover, there are even no Markov strategies that satisfy either (i),
or (ii), or (iii) within an ε ([7]).

The main difficulty in the transition from MDPs to two-person games is
this: In an r-discounted MDP, the same strategy that is optimal for some
small r is also optimal for other small r; but this is not so in two-person
games. For example, the unique optimal strategy for player 1 in the r-
discounted Big Match, while guaranteeing the minmax value of that game,
guarantees only the maxmin in pure strategies (+o(1) as r → 0) in the
r2-discounted Big Match.

However, upon reflection, it appears that if we wish to define the notion
that a player can “guarantee” a certain payoff in the undiscounted game, then
the essential requirement should be this: For any ε > 0 there is a strategy
guaranteeing the payoff up to ε, simultaneously in all (i) r-discounted games
with r sufficiently small, (ii) k-stage games with k sufficiently large, and (iii)
games where the valuation of a stream of payoffs lies between the lim inf and
lim sup of the average payoff in the first k stages. It is not essential that this
strategy be stationary or that it be independent of ε, as is the case in MDPs.

In other words, our requirement should be an analog of conditions (i‘),
(ii‘), and (iii‘) above, but where the strategy σ∗ may depend on ε and it need
not be stationary (or even Markov).

Thus we define v to be the minmax value of the (undiscounted) game if
player 1 can guarantee v and player 2 can guarantee −v. Formally, we have:

Let σ, σε denote strategies of player 1 and τ, τε denote strategies of player
2.
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Definition 5. v ∈ RZ is the (minmax) value of a two-person zero-sum
stochastic game if ∀ε > 0, ∃σε, τε, rε > 0, and kε > 0 s.t. ∀σ, τ

(i) ε+ γr(σε, τ) ≥ v ≥ γr(σ, τε)− ε ∀ 0 < r < rε.

(ii) ε+ γk(σε, τ) ≥ v ≥ γk(σ, τε)− ε ∀ k > kε.

(iii) ε+ Eσε,τ lim infk→∞ ḡk ≥ v ≥ Eσ,τε lim supk→∞ ḡk − ε.

Notes:

• Condition (i) can be dropped from the definition as it is a consequence
of condition (ii). (See below.)

• v ∈ R is the uniform, respectively, the limiting-average, value of a two-
person zero-sum stochastic game if ∀ε > 0, ∃σε, τε and kε > 0 s.t.
∀σ, τ (ii), respectively, (iii), holds.

• Obviously, if the value, respectively, the uniform value or the limiting-
average exists, then it is unique.

• If a minmax value, v, exists then v = limr→0 vr = limk→∞ vk.

• As noted earlier, every MDP has a value.

We now show that (ii) implies (i). More generally, (ii) implies

(iv) ∀ε > 0,∃σε, τε and wε > 0 s.t. ∀σ, τ and for any non-increasing
sequence of non-negative numbers (wt)

∞
t=1 that sum to 1, if w1 < wε,

then
ε+ γw(σε, τ) ≥ v ≥ γw(σ, τε)− ε,

where γw(σ)[z] := Ez
σ

∑∞
t=1 wtg(zt, at).

This follows from the lemma below.

Lemma 1. Any non-increasing sequence of non-negative numbers (wt) that
sum to 1 is an average of sequences of the form e(k)∞t=1, where e(k)t = 1

k
for

t ≤ k and e(k)t = 0 for t > k.
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Proof. It is easy to see that (wt) =
∑∞

t=1 αke(k), where αk = k(wk − wk+1).

Clearly, αk ≥ 0 and
∑∞

k=1 αk =
∑∞

k=1 wk = 1.

Theorem 5. (Mertens and Neyman 1981)
Every finite two-person zero-sum stochastic game has a minmax value.

We denote the minmax value by VAL(Γ).

Notes:

• The first step towards a proof was taken by Blackwell and Ferguson
[7]. They showed that in the Big Match, for any ε > 0, there exist non-
Markov strategies that satisfy (iii) within an ε. This was extended by
Kohlberg [11] to a special class of stochastic games – repeated games
with absorbing states. The general definition and existence theorem
were provided by Mertens and Neyman [12].

• A priori there is no reason to rule out the possibility that the uniform
value exists while the limiting-average value does not, or vice versa,
or that both exist but differ. However, the existence theorem for the
value implies that (in a finite stochastic game) both the uniform and
the limiting-average values exist and are equal.

• A consequence of the above is that our results apply to the undiscounted
value, whether we consider the uniform or the limiting-average value.

Corollary 3. Let vr (respectively, vk) denote the minmax value of the r-
discounted game (respectively, the k-stage game). Then v = VAL(Γ) iff
v = limr→0 vr

(respectively, v = limk→∞ vk).

Corollary 4. If Γ = (N,Z,A, g, p) and Γ′ = (N,Z,A, g′, p) then

‖VAL(Γ)− VAL(Γ′)‖∞ := max
z∈Z
|VAL(Γ)[z]− VAL(Γ′)[z]| ≤ ‖g − g′‖∞,

where ‖g‖∞ := max(z,a)∈Z×A |g(z, a)|.
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To prove the corollary, first note that the stage payoffs in the games Γ
and Γ′ differ by at most ‖g − g′‖∞. Therefore ḡk and ḡ′k differ by at most
the same amount; thus an optimal strategy in Γk guarantees vk − ‖g − g′‖∞
in Γ′k, and vice versa, which implies that ‖vk − v′k‖ ≤ ‖g − g′‖∞. Next, let
k →∞ and apply the previous corollary.

Corollary 5. Every MDP has a uniform value.

Note: Of course, this corollary also follows from Blackwell’s theorem.

5 The cooperative solution of stochastic games

We now proceed to define the cooperative solution of a stochastic game in
analogy with the definition for strategic games.

Let Γ be a stochastic game. For every S ⊆ N , denote by

• XS = ∆(AS) the set of all correlated stage actions of the players in
S.

• σSt : (Z ×AN)t−1×Z → XS a correlated stage strategy of the players
in S at time t.

• σS = (σSt )∞t=1 a correlated behavior strategy of the players in S.

• ΣS = {σS} the set of all correlated behavior strategies of the players
in S.

In addition, denote by

• ΣN
s.p. the finite set of stationary pure strategies in ΣN .
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5.1 The cooperative solution of two-person stochastic
games

The existence and uniqueness theorem of Nash ([16]) requires only the ex-
istence of a minmax value in two-person strategic games. Since a minmax
value exists in stochastic games (Theorem 5), the same proof goes through.

Theorem 6. Every two-person stochastic game, discounted or undiscounted,
TU or NTU, has a unique cooperative solution.

5.2 The cooperative solution of TU stochastic games

The existence and uniqueness of a cooperative solution in TU stochastic
games goes through in the same way as for TU strategic games, with the
following adjustments:

Equation 8 is replaced by

v(N) := max
σ∈ΣN

∑
i∈N

gi(x), (13)

and equation 9 is replaced by

v(S)− v(N \S) := VAL(ΓS), (14)

.

where ΓS denotes the two-person zero-sum stochastic game played be-
tween S and N\S, where the pure stage actions are AS and AN\S, respec-
tively, and where the stage payoff to S is given by∑

i∈S

gi(z, aS, aN\S)−
∑
i 6∈S

gi(z, aS, aN\S).

.
Thus we have:

Theorem 7. Every TU stochastic game, discounted or undiscounted, has a
unique cooperative solution.
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5.3 The cooperative solution of NTU discounted stochas-
tic games

Consider the r-discounted game, Γr. We define the feasible set, Fr, as follows:

Fr := {γr(σ) : σ ∈ ΣN}
= conv{γr(σ) : σ ∈ ΣN

s.p.}. (15)

Note: The equation says that Fr is a convex polytope spanned by the
expected payoffs of the finitely many pure stationary strategies. It is a simple
analog of the first equation in (17).

Since every two-person zero-sum r-discounted stochastic game has a min-
max value (Theorem 3), a cooperative solution can be defined in the same
way as for strategic games.

Let

Val(ΓSr,λ) := max
σ∈ΣS

min
τ∈ΣN\S

(∑
i∈S

λiγir(σ, τ)−
∑
i 6∈S

λiγir(σ, τ)

)
.

Definition 6. ψr ∈ Fr is an NTU-value of the r-discounted stochastic game
Γr if
∃λ ∈ ∆ such that ϕ(vr,λ) = λ∗ψ, where vr,λ is a coalitional game satisfying

vr,λ(S)− vr,λ(N \S) := Val(ΓSr,λ) ∀S ⊆ N. (16)

Note: In the case S = N , vr,λ(N) = Val(ΓNr,λ) = maxσ∈ΣN

∑
i∈N λ

iγi(σ).

Theorem 8. Every NTU discounted stochastic game has a cooperative solu-
tion.
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5.4 The cooperative solution of NTU undiscounted stochas-
tic games

We define the feasible set F0 ⊂ RN as follows:

F0 := {x : ∃σ ∈ ΣN s.t. x = lim
r→0

γr(σ)}

Lemma 2.

F0 = conv{x : ∃σ ∈ ΣN
s.p. s.t. x = lim

r→0
γr(σ)}

= {x : ∃σ ∈ ΣN s.t. x = lim
k→∞

γk(σ)}

= conv{x : ∃σ ∈ ΣN
s.p. s.t. x = lim

k→∞
γk(σ)}. (17)

Note: The lemma says that F0 is a convex polytope spanned by the lim-
iting expected payoffs of the finitely many pure stationary strategies, where
the limits can be taken either as limr→0 γr(σ) or as limk→∞ γk(σ).

Proof. We first show that F0 is convex. Let x′, x′′ ∈ F0. Then ∃σ′, σ′′ ∈ ΣN

s.t. x′ = limr→0 γr(σ
′) and x′′ = limr→0 γr(σ

′′). By Kuhn’s theorem ∃σ̂ ∈ ΣN

that induces the same distribution on the plays of the game as the mixed
strategy 1

2
σ′ + 1

2
σ′′. Thus γr(σ̂) = γr(

1
2
σ′ + 1

2
σ′′) = 1

2
γr(σ

′) + 1
2
γr(σ

′′) and
therefore

F0 3 lim
r→0

γr(σ̂) =
1

2
lim
r→0

γr(σ
′) +

1

2
lim
r→0

γr(σ
′′) =

1

2
x′ +

1

2
x′′.

Next we note that, since F0 is convex, F0 ⊇ conv{x : ∃σ ∈ ΣN
s.p. s.t. x =

limr→0 γr(σ)}. To prove the equality, assume F0 3 x0 6∈ conv{x : ∃σ ∈
ΣN
s.p. s.t. x = limr→0 γr(σ)}.

Then there is a separating linear functional, y ∈ RN , such that

〈y, x0〉 > 〈y, x〉 ∀x = lim
r→0

γr(σ) s.t. σ ∈ ΣN
s.p..

But this contradicts Theorem 4 w.r.t. the MDP with stage payoff 〈y, g〉.

A similar argument shows that the second set of limits is also a convex
polytope spanned by the limiting expected payoffs of the pure stationary
strategies.
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Finally, note that if σ is a stationary strategy, then limr→0 γr(σ) =
limk→∞ γk(σ) (see Lemma 5). Thus the first and the third sets in (17) are
equal, and therefore all three sets are identical to F0.

For future reference, we note the following:

Lemma 3. Let F0(λ) := {λ ∗ x : x ∈ F0}. Then

(i) if y ∈ F0(λ) then yi ≤ λi‖gi‖ ∀i ∈ N , and

(ii) the mapping λ→ F0(λ) is continuous.

We define the cooperative solution of the undiscounted stochastic game
analogously to Definition 2 for strategic games.

Definition 7. ψ ∈ F0 is a cooperative solution of the stochastic game Γ if
∃λ ∈ ∆ such that ϕ(vλ) = λ ∗ ψ, where vλ is a coalitional game with

vλ(S)− vλ(N \S) := VAL(ΓSλ) ∀S ⊆ N.

Note: In the case S = N , vλ(N) = VAL(ΓNλ ) is the maximal expected
payoff in the MDP with the single player N , where the pure stage actions
are AN and the stage payoff is

∑
i∈N λig

i(z, a).

Theorem 9. Every NTU undiscounted stochastic game has a cooperative
solution.

The proof is presented in Appendix C.

In summary, we have:

Theorem 10. Every finite stochastic game, discounted or undiscounted, TU
or NTU, has a cooperative solution.
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6 Asymptotic Expansions

Recall that an atomic formula is an expression of the form p > 0 or p = 0,
where p is a polynomial with integer coefficients in one or more variables;
an elementary formula is an expression constructed in a finite number of
steps from atomic formulae by means of conjunctions (∧), disjunctions (∨),
negations (∼), and quantifiers of the form “there exists” (∃) or “for all” (∀).
A variable is free in a formula if somewhere in the formula it is not modified
by a quantifier ∃ or ∀. An elementary sentence is an elementary formula with
no free variables.

Lemma 4. For fixed (N,Z,A) the statement of Theorem 6 is an elementary
sentence.

The proof is given in Appendix E.

If we think of the variables as belonging to a certain ordered field, then a
sentence is either true or false. For instance, the sentence, ∀x > 0 ∃y s.t. y2 =
x, is true over the field of real numbers but false over the field of rational
numbers.

An ordered field is said to be real–closed if no proper algebraic extension
is ordered. Tarski’s principle states that an elementary sentence that is true
over one real-closed field is true over every real-closed field. (See, e.g., [4].)

It is well known that the field of power series in a fractional power of
r (real Puiseux series) that converge for r > 0 sufficiently small, ordered
according to the assumption that r is “infinitesimal” (i.e., r < a for any real
number a > 0), is real-closed. (See, e.g., [4], or [19].)

A generic element of this field is a series of the form

Σ∞k=Kαkr
k/M ,

where M is a positive integer, K is an integer, and αk ∈ R, and where the
series converges for r > 0 sufficiently small. Of course, if the series remains
bounded as r → 0 then K = 0.

Thus, given Theorem 8 and Lemma 4, Tarski’s principle implies the fol-
lowing:
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Theorem 11. Fix (N,Z,A). For every 1 > r > 0 there exist ψr ∈ RN , λr ∈
RN , and vr,λr ∈ R2N satisfying the cooperative solution conditions (25) to
(28), such that each coordinate of these variables has an asymptotic expansion
(in a right neighborhood of 0) of the form

Σ∞k=0αkr
k/M . (18)

More precisely, there exist real Puiseux series ψ̃i, λ̃i, and ṽ(S) s.t. for
any r > 0 sufficiently small and for all i ∈ N and S ⊂ N , these series
converge to ψir, λ

i
r and vr,λr(S), respectively.

Notes:

• One may consult [4] for additional detail regarding the application of
Tarski’s principle for obtaining asymptotic solutions, as r → 0, in r-
discounted stochastic games.

• An alternative proof of Theorem 11 is obtained by noting that for
every fixed (N,Z,A, g, p), the set of tuples (r, ψr, λr, vr,λr) that satisfy
the cooperative solution conditions (25) to (28) is a semialgebraic set,
whose projection on the first coordinate (r) is (0, 1). Therefore, there
is a function r 7→ (ψr, λr, vr,ψr), such that each one of its coordinates
has an expansion of the form (18). (See, [19].)

We now apply Theorem 11 to derive an asymptotic version of Theorem
10.

Let r → 0. In light of the asymptotic expansion (18), ψr → ψ0, λr →
λ0 ∈ ∆, and vr,λr → vλ0 .

By Lemma 6 (in Appendix C), ψ0 ∈ F0. By Corollary 4, vλ0 is the
uniform minmax value of ΓSλ0 for all S ⊆ N . Thus, ψ0, λ0, and vλ0 satisfy the
requirements of Definition 5; hence ψ0 is an NTU-value of Γ. In summary:

Theorem 12. Every finite stochastic game Γ has a cooperative solution that
is the limit, as r → 0, of cooperative solutions of the r-discounted games.
Furthermore, these cooperative solutions, as well as their scaling factors and
the associated minmax values and optimal strategies in the zero-sum scaled
games, are real Puiseux series converging to their counterparts in the game
Γ.
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Note: The above derivation of Theorem 12 provides an alternative proof
of the existence of a cooperative solution in undiscounted stochastic games.

7 Discussion

The paper details the extension of the Harsanyi–Shapley–Nash cooperative
solution for one-shot strategic games to finite stochastic games. The proper-
ties of a finite stochastic game that are used are: A) finitely many players,
states, and actions, B) complete information, and C) perfect monitoring, i.e.,
the current state and players’ past actions are observable.

In the general model of a repeated game, which can be termed a stochastic
game with incomplete information and imperfect monitoring, the stage payoff
and the state transitions are as in a classic stochastic game, but the initial
state is random, and each player receives a stochastic signal about players’
previous stage actions and the current state.

The result, namely, that for each fixed 1 > r > 0 the r-discounted game
has a cooperative solution, and its proof, are both identical to those given
here for the finite stochastic game with perfect monitoring. The existence of
a cooperative solution in the undiscounted case depends on the existence of a
uniform value in the corresponding two-person zero-sum model. Note, how-
ever, that the existence of a cooperative solution in the undiscounted game
does not depend on the existence of equilibrium payoffs in the corresponding
undiscounted games.

8 Appendix A: The Cooperative Solution in

a Simple Example

Consider the two-person TU game[
2, 1 −1,−2
−2,−1 1, 2

]
.
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At first blush the game looks entirely symmetrical. The set of feasible
payoffs ( the convex hull of the four entries in the matrix) is symmetrical;
and the maximum payoff that each player can guarantee is the same, namely,
0. (Player 1’s and 2’s minmax strategies are (1

2
, 1

2
) and (2

3
, 1

3
), respectively.)

Thus one would expect the maximal sum of payoffs s = 3 to be shared
equally, i.e., (1.5, 1.5). However, the Nash analysis reveals a fundamental
asymmetry. In the zero-sum game of differences[

1 1
−1 −1

]

the minmax value d = 1 indicates that player 1 has an advantage. Indeed,
the Nash solution – (2, 1) – reflects this advantage.

9 Appendix B: Existence of a cooperative so-

lution in strategic games

Theorem 2 Every finite strategic game has a cooperative solution.

Proof. Recall that F = conv{g(a) : a ∈ A}. Let F (λ) = {λ ∗ x : x ∈ F} and
E(λ) =

{
y ∈ F (λ)

∣∣ ∑
i∈N yi is maximal on F (λ)

}
. We claim that

(i) yi ≤ Kλi ∀y ∈ E(λ) and

(ii) ϕi(vλ) ≥ −Kλi ∀λ ∈ ∆,

whereK := maxi∈N maxa∈A |gi(a)| denotes the largest absolute value of a payoff in G.

To see (i), note that |xi| ≤ K ∀x ∈ F ; therefore |yi| ≤ Kλi ∀y ∈ F (λ),
and in particular yi ≤ Kλi ∀y ∈ E(λ).

To see (ii), set v(S) as in (7). Then
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2vλ(S ∪ i)

= max
x∈XS∪i

min
y∈XN\(S∪i)

(∑
j∈S∪i

λjg
j(x, y)−

∑
j 6∈S∪i

λjg
j(x, y)

)

≥ max
x∈XS

min
y∈XN\S

(∑
j∈S∪i

λjg
j(x, y)−

∑
j 6∈S∪i

λjg
j(x, y)

)

≥ max
x∈XS

min
y∈XN\S

(∑
j∈S

λjg
j(x, y)−

∑
j 6∈S

λjg
j(x, y)

)
− 2Kλi

= 2vλ(S)− 2Kλi, (19)

where the first and last equalities follow from (9). Thus

vλ(S ∪ i)− vλ(S) ≥ −Kλi ∀S 63 i. (20)

By (4), this implies (ii).

We now define a correspondence H : ∆→ RN as follows:

H(λ) :=

{
λ+

ϕ(vλ)− y
2K

∣∣∣∣ y ∈ E(λ)

}
.

We wish to show that H(λ) ⊂ ∆.

Let z ∈ H(λ). Since the Shapley value is efficient, ϕ(vλ) lies in E(λ),
which implies that

∑
i∈N(ϕ(vλ)− y)i = 0 for any y ∈ E(λ). Thus

∑
i∈N zi =∑

i∈N λi = 1.

It remains to show that zi ≥ 0. Indeed, by (ii) and (i),

zi = λi +
ϕi(vλ)− yi

2K
≥ λi +

−Kλi −Kλi
2K

≥ λi − λi = 0.

Rewriting

H(λ) = (λ+
ϕvλ
2K

)− 1

2K
E(λ)

and noting that E(λ) is convex, we conclude that H(λ) is convex for every
λ.
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The minmax value is continuous in the payoffs, and so vλ(S) is continuous
in λ. Since the Shapley value of a coalitional game v is linear in v(S)S⊂N , it
follows that ϕ(vλ) is continuous in λ.

Clearly, the set-valued mapping λ → F (λ) is continuous, implying that
the mapping λ → E(λ) is upper-semi-continuous. Therefore H : ∆ → ∆
is an upper-semi-continuous correspondence satisfying the conditions of the
Kakutani fixed-point theorem.

Thus there exists a λ0 such that λ0 ∈ H(λ0), i.e., ϕ(vλ0) = y0, where
y0 ∈ E(λ0). Let ψ0 ∈ F be such that y0 = λ0 ∗ψ0. Then ψ0 is an NTU-value
of the game G.

10 Appendix C: Existence of a cooperative

solution in stochastic games

Theorem 9
Every NTU undiscounted stochastic game has a cooperative solution.

Proof. The proof is carried out in analogy with the proof of Theorem 2, with
the following adjustments:

• The feasible set F = conv{g(a) : a ∈ AN} is replaced by F0 = {limr→0 γr(σ) :
σ ∈ ΣN}.

• The coalitional game vλ is no longer defined by reference to the minmax
value of the one-shot game between S and N\S, but rather it is defined
by reference to the minmax value of the stochastic game played between
S and N\S.

The two properties of F that are needed in the proof are that, for some
constant K, xi ≤ Kλi for all x ∈ F , and that the mapping from λ to
F (λ) = {λ ∗ x : x ∈ F} is continuous in λ. These properties hold for F0 as
well. (See Lemma 3.)
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The two properties of vλ that are needed in the proof are the continuity
of vλ in λ and inequality (20), namely:

vλ(S ∪ i)− vλ(S) ≥ −Kλi ∀S 63 i.

But the validity of (20) for stochastic games can be proved in the same
way as for one-shot games, i.e., by means of the inequalities (19). Specifically:

The first and last equations in (19) just state the definition of vλ.

The second inequality says that, if we compare two two-person zero-sum
games with the same payoffs, where in the first game player 1’s (respectively,
player 2’s) strategy set is larger (respectively, smaller) than in the second
game, then the value of the first game is greater than or equal to the value of
the second game. But this is true for the minmax value of stochastic games
just as well as it is true for the standard minmax value of matrix games.

The third inequality says that, if we compare two two-person zero-sum
games with the same strategy sets, where the payoffs of the two games differ
by at most 2λi‖gi‖, then the values of these games differ by at most 2λi‖gi‖.
By Corollary 4, this holds in stochastic games just as well, when “payoffs”
are replaced by “stage payoffs.”

Finally, we note that the continuity of vλ is also a consequence of Corollary
4:

|vλ(S)− vλ′(S)| = |VAL(ΓSλ)− VAL(ΓSλ′|) ≤
N∑
i=1

‖gi‖|λi − λ′i|.

With these adjustments, the proof of Theorem 10 goes through in the same
way as the proof of Theorem 2.

11 Appendix D: Stationary Strategies

Lemma 5. If σ is a stationary strategy then
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(i) limk→∞ γk(σ) and limr→0 γr(σ) exist and are equal.

(ii) γr(σ) is a bounded rational function in r.

This result is well known (e.g., [5], [6], or [18]). For completeness, we
provide a proof.

Proof. A stationary strategy, σt = σ ∀t, induces the same expected payoffs,
gσ, and the same transition probabilities, Pσ, at every stage, where gσ : Z →
RN is defined by

gσ[z] = g(z, σ(z)) =
∑
a∈A

σ(z)[a]g(z, a)

and P : Z → ∆(Z) is defined by

Pσ(z)[z′] = p(z, σ(z))[z′] =
∑
a∈A

σ(z)[a]p(z, a)[z′].

Since Pσ is a Markov matrix, ||Pσ|| ≤ 1 . As is well known, this implies
that the sequence

1
k

∑k
t=1 P

t−1
σ converges, and therefore

γk(σ) =
1

k

k∑
t=1

P t−1
σ gσ

converges as k →∞. But the convergence of γk(σ) as k →∞ implies the
convergence of γr(σ) as r → 0, to the same limit. (This follows from, e.g.,
Lemma 1.)

To prove (ii) note that, since ||Pσ|| ≤ 1, the power series
∑∞

t=1(1− r)tP t
σ

converges to (I − (1− r)Pσ)−1, so that

γr(σ) =
∞∑
t=1

r(1− r)t−1P t−1
σ gσ = r(I − (1− r)Pσ)−1gσ.

Thus γr(σ) is a rational function in r. It is bounded by maxz,a |gi(z, a)|.
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Note: An alternaitve proof of (i) can be obtained by applying the Hardy–
Littlewood Tauberian theorem, which asserts that if αt ≥ 0, t = 1, 2, 3, . . .,
then the convergence of

∑∞
t=1 r(1−r)t−1αt as r → 0, implies the convergence

of 1
k

∑k
t=1 αt as k →∞, to the same limit. First, establish, as in (ii) above,

that γr(σ) is a bounded rational function in r. Thus limr→0 γr(σ) exists. As-
suming, w.l.o.g., that g(z, a) ≥ 0 ∀(z, a), and applying the Hardy–Littlewood
theorem to the sequence αt := Ez

σg(zt, at), it follows that limk→∞ γk(σ) exists
and the limits are equal.

We now apply the lemma to provide a proof of Blackwell’s theorem.

Proof of Theorem 4

Proof. By Corollary 2, for any 0 < r < 1 some pure stationary strategy
is optimal in the r -discounted MDP. Thus, a pure stationary strategy that
yields the highest expected payoff among the finitely many pure stationary
strategies is optimal.

Since the expected payoffs of these strategies are rational functions, they
can cross only finitely many times. It follows that one of them is maximal
in an interval [0, r0]; thus the corresponding pure stationary strategy, σ∗, is
optimal in that interval. This proves part (i).

Now, let σ∗ be as above. Then for r < r0, γr(σ
∗) = vr. By Lemma 5,

then,

lim
k→∞

γk(σ
∗) = lim

r→0
γr(σ

∗) = lim
r→0

vr.

Since statment (ii) amounts to

lim
k→∞

γk(σ
∗) = lim

k→∞
vk,

we must show that
lim
r→0

vr = lim
k→∞

vk. (21)
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First, by Theorem 3,

v 1
k

= Val G 1
k

[v 1
k
], (22)

where Gr[v] = (Gr[z, v])z is the one-shot game defined in (12).

Next, by backwards-induction,

vk = Val G 1
k
[vk−1]. (23)

Finally, since γr(σ
∗) is a bounded rational function in r, there is an inter-

val, [0, r′], where vr = γr(σ
∗) is continuously differentiable. Thus, for some

c ∈ R,

‖v 1
k
− v 1

k−1
‖ ≤ c

1

k(k − 1)
, ∀k > K ′ :=

1

r′
. (24)

From (22), (23), and (24),

‖v 1
k
− vk)‖ ≤ (1− 1

k
) ‖v 1

k
− vk−1‖ ≤ (1− 1

k
) ‖v 1

k−1
− vk−1‖+ ck−2.

Multiplying by k and adding up for k = K ′+ 1, . . . , K, we have

K |v 1
K
− vK | ≤ K ′ |v 1

K′
− vK′|+ c lg(K).

Thus v 1
K
− vK → 0 as K →∞ , which implies (21). This completes the

proof of (ii).

The first part of (iii) is proved in the note following the statement of
Blackwell’s theorem. The second part is 4) in Proposition 3 of Neyman [18].
For a proof see pp. 21–22 there.
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Lemma 6. If x0 = limr→0 xr, where xr ∈ Fr, then x0 ∈ F0.

Proof. By (15),

xr =
∑
m∈M

µr,m γr(ηm)

where {ηm}m∈M are the finitely many pure stationary strategies, and where
µr,m ≥ 0 and

∑
m∈M µr,m = 1.

Let rn be a subsequence such that limn→∞ µrn,m = µ0,m ∀m ∈ M . Since
ηm is stationary, limn→∞ γrn(ηm) exists. (Lemma 5.) Thus

x0 = lim
r→0

xr =
∑
m∈M

µ0,m lim
r→0

γr(ηm) = lim
r→0

γr(σ0),

where σ0 =
∑

m∈M µ0,m ηm.

12 Appendix E: “A cooperative solution ex-

ists in Γr” is an elementary sentence

Lemma 4

The statement “for every r-discounted stochastic game there exists a
cooperative solution” is an elementary sentence.

Proof. Fix finite N, Z, and A. The statement may be written as follows:

∀(g, p) and ∀ 0 < r < 1, ∃ψr ∈ RN , ∃λr ∈ RN , and ∃vr,λr ∈ R2N s.t.

ψr ∈ Fr (25)

λr ∈ ∆ (26)

vr,λr(S)− vr,λr(N \S) := Val(ΓSr,λr) ∀S ⊆ N (27)

and
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ϕ(vr,λr) = λr ∗ ψr. (28)

In this statement, the variables g, p, r, ψr, λr, and vr,λr are all modified by
∃ or ∀. Thus we must show that (25)–(28) are elementary formulae where
these are the only free variables.

In the interest of brevity, we show only that (25)–(28) are elementary
formulae. It is straightforward to verify that no variables but the ones listed
above are free in any of these formulae.

We first consider (26). The statement that “each coordinate is non-
negative and the sum of the coordinates is 1,” is obviously an elementary
formula.

Next, we consider (28). This is an elementary formula because the Shap-
ley value, ϕ : R2N → RN , being a linear function, can be expressed in the
form

ϕ(v)i =
∑
S⊂N

cSi v(S),

where the cSi are (rational) constants, independent of v.

Next, we consider (27). It is well known that, if G is a one-shot two-
person zero-sum game, then the statement y = Val(G) is an elementary
formula. (See, e.g., [4].) By (12), then, the statement y = Val(Γr), where Γr
is an r-discounted stochastic game, is also an elementary formula.

Finally, we consider (25). Obviously, (12) applies in the case of a stochas-
tic r-discounted game with a single-player who has a single strategy, σ.
Therefore the statement y = γr(σ) is an elementary formula. Since Fr is
the convex hull of the finitely many γr(σ) corresponding to pure stationary
strategies, (25) is an elementary formula as well.
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