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Abstract

This study tests the importance of Ricardian technology differences for international
trade. The empirical analysis has three comparative advantages: including emerging and
advanced economies, isolating panel variation regarding the link between productivity and
exports, and exploiting heterogeneous technology diffusion from immigrant communities in
the United States for identification. The latter instruments are developed by combining
panel variation on the development of new technologies across U.S. cities with historical set-
tlement patterns for migrants from countries. The instrumented elasticity of export growth
on the intensive margin with respect to the exporter’s productivity growth is between 1.6
and 2.4 depending upon weighting.
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1 Introduction

Trade among countries due to technology differences is a core principle in international eco-
nomics. Countries with heterogeneous technologies focus on producing goods in which they
have comparative advantages; subsequent exchanges afford higher standards of living than are
possible in isolation. This Ricardian finding is the first lesson in most undergraduate courses
on trade, and it undergirds many modelling frameworks on which recent theoretical advances
build (e.g., Dornbusch et al. 1977, Eaton and Kortum 2002, Costinot et al. 2012). In response
to Stanislaw Ulam’s challenge to name a true and nontrivial theory in social sciences, Paul
Samuelson chose this principle of comparative advantage due to technology differences.

While empirical tests date back to David Ricardo (1817), quantifying technology differ-
ences across countries and industries is extremely diffi cult. Even when observable proxies for
latent technology differences are developed (e.g., labor productivity, industrial specialization),
cross-sectional analyses risk confounding heterogeneous technologies with other country-industry
determinants of trade. Panel data models can further remove time-invariant characteristics
(e.g., distances, colonial histories) and afford explicit controls of time-varying determinants (e.g.,
factor accumulation, economic development, trading blocs). Quantifying the dynamics of un-
even technology advancement across countries is an even more challenging task, however, and
whether identified relationships represent causal linkages remains a concern. These limitations
are particularly acute for developing and emerging economies. This is unfortunate as non-OECD
economies have experienced some of the more dramatic changes in technology sets and manufac-
turing trade over the last thirty years, providing a useful laboratory for quantifying Ricardian
effects.

This study contributes to the empirical trade literature on Ricardian advantages in three
ways. First, it utilizes a panel dataset that includes many countries at various development
stages (e.g., Bolivia, France, South Africa), a large group of focused manufacturing industries,
and an extended time frame. The 1975-2000 World Trade Flows (WTF) database provides
export data for each bilateral route (exporter-importer-industry-year), and data from the United
Nations Industrial Development Organization (UNIDO) provide labor productivity estimates.
The developed data platform includes substantially more variation in trade and productivity
differences across countries than previously feasible.

The second contribution is to provide panel estimates of the elasticity of export growth with
respect to productivity development. Following the theoretical work of Costinot et al. (2012)
that is discussed below, estimations include fixed effects for importer-industry-year and exporter-
importer-year. The importer-industry-year fixed effects control, for example, for trade barriers
in each importing country by industry segment, while the exporter-importer-year fixed effects
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control for the overall levels of trade between countries (e.g., the gravity model), labor cost struc-
tures in the exporter, and similar. While these controls account for overall trade and technology
levels by country, permanent differences in the levels of these variables across industries within a
country are used for identification. This paper is the first to quantify Ricardian elasticities when
further modelling cross-sectional fixed effects for exporter-importer-industry observations. This
panel approach only exploits variation within industry-level bilateral trading routes, providing
a substantially stronger empirical test of the theory.

The third and most important contribution is to provide instruments for the labor pro-
ductivity development in exporting countries. Instruments are essential in this setting due to
typical concerns: omitted variable biases for the labor productivity measure, reverse causality,
and the potential for significant measurement error regarding the productivity differences across
countries. The instruments exploit heterogeneous technology diffusion from past migrant com-
munities in the United States for identification. These instruments are developed by combining
panel variation on the development of new technologies across US cities during the 1975-2000
period with historical settlement patterns for migrants and their ancestors from countries that
are recorded in the 1980 Census of Populations.

The foundation for these instruments is the modelling of Ricardian advantages through differ-
ences across countries in their access to the US technology frontier. Recent research emphasizes
the importance of immigrants in frontier economies for the diffusion of technologies to their home
countries (e.g., Saxenian 2002, 2006, Kerr 2008, Papageorgiou and Spilimbergo 2008). These
global connections and networks facilitate the transfer of both codified and tacit details of new
innovations, and Kerr (2008) finds foreign countries realize manufacturing gains from stronger
scientific integration, especially with respect to computer-oriented technologies. Multiple studies
document specific channels sitting behind this heterogeneous diffusion.1

As invention is disproportionately concentrated in the United States, these ethnic networks
significantly influence technology opportunity sets in the short-run for following economies. This
study uses heterogeneous technology diffusion from the United States to better quantify the im-
portance of technology differences across countries in explaining trade patterns. Trade between
the United States and foreign countries is excluded throughout this study due to network ef-
fects operating alongside technology transfers. Attention is instead placed on how differential

1Channels for this technology transfer include communications among scientists and engineers (e.g., Saxenian
2002, Kerr 2008, Agrawal et al. 2011), trade flows (e.g., Rauch 2001, Rauch and Trindade 2002), and foreign
direct investment (e.g., Kugler and Rapoport 2007, 2012, Foley and Kerr 2013). Recent research further quantifies
the role of international labor mobility in these exchanges (e.g., Saxenian 2006, Kapur and McHale 2005, Nanda
and Khanna 2010, and Obukhova 2008, 2009).
Other sources of heterogeneous technology frontiers are geographic distances to major R&D nations (e.g.,

Keller 2002b), the innovative efforts of trading partners (e.g., Grossman and Helpman 1991, Coe and Helpman
1995, Coe et al. 1997), or international patenting decisions (e.g., Eaton and Kortum 1999). Keller (2004) reviews
the technology transfer literature.
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technology transfer from the United States– especially its industry-level variation by country–
influences exports from the foreign country to other nations. Said differently, the study quanti-
fies the extent to which India’s exports, for example, grow faster in industries where technology
transfer from the United States to India is particularly strong.

The instrumented elasticity of export growth on the intensive margin with respect to the
exporter’s productivity growth is 2.4 in unweighted estimations. The elasticity is 1.6 when
using sample weights that interact worldwide trade volumes for exporters and importers in
the focal industry. Thus, the study estimates that a 10% increase in the labor productivity
of an exporter for an industry leads to about a 20% expansion in export volumes within that
industry compared to other industries for the exporter. This instrumented elasticity is weaker
than Costinot et al.’s (2012) preferred estimate of 6.5 derived through producer price data for
OECD countries in 1997, but it is quite similar to their 2.7 elasticity with labor productivity
data that are most comparable to this study. The two analyses are also qualitatively similar in
terms of their relationships to uninstrumented elasticities. This study does not find evidence of
substantial adjustments in the extensive margin of the group of countries to which the exporter
trades. These results are robust to sample composition adjustments and variations on estimation
techniques. Extensions quantify the extent to which heterogeneous technology transfer can be
distinguished from a Rybczynski effect operating within manufacturing, evaluate differences in
education levels or time in the United States for past migrants in instrument design, and test
the robustness to controlling for direct ethnic patenting growth by industry in the United States.

This study concludes that comparative advantages are an important determinant of trade;
moreover, Ricardian differences are relevant for explaining changes in trade patterns over time.
These panel exercises are closest in spirit to the industrial specialization work of Harrigan (1997b)
and the structural Ricardian model of Costinot et al. (2012). Other tests of the Ricardian
model are MacDougall (1951, 1952), Stern (1962), Golub and Hsieh (2000), Morrow (2010), Chor
(2010), Shikher (2010), Fieler (2011), Costinot and Donaldson (2012), Caliendo and Parro (2012),
Bombardini et al. (2012), and Levchenko and Zhang (2012). The comparative advantages of
this work are in its substantial attention to non-OECD economies, the stricter panel assessment
using heterogeneous technology diffusion, and the instruments built off of differential access
to the US frontier. Work on migration-trade linkages dates back to Gould (1994), Head and
Reis (1998), and Rauch and Trindade (2002), with Bo and Jacks (2012), Bahar and Rapoport
(2013), and Cohen et al. (2013) being recent contributions that provide references to the lengthy
subsequent literature. This paper differs from these studies in its focus on technology transfer’s
role for export promotion as an independent mechanism from migrant networks. In addition to
contributing to the trade literature, the study documents for emerging economies an economic
consequence of emigration to frontier economies like the United States.2

2Davis and Weinstein (2002) consider immigration to the United States, technology, and Ricardian-based
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2 Theory and Estimating Framework

This section develops the basic estimating equation from the multi-country and multi-industry
model of Costinot et al. (2012). This framework builds off the model of Eaton and Kortum
(2002) to articulate appropriate estimation of Ricardian advantages. A simple application builds
ethnic networks and heterogeneous technology diffusion into this theory. The boundaries of the
framework and the statistical properties of the estimating equation are discussed.3

2.1 Costinot et al. (2012) Theoretical Framework

A world economy is comprised of I countries and K industries or goods. Labor is the sole factor
of production and there are constant returns to scale in the production of each good. Labor is
perfectly mobile across industries and immobile across countries. Li and wi are the number of
workers and the wage rate in country i, respectively. Consumers consume their full wages in each
period. Accordingly, time subscripts are omitted until the estimating equation is introduced.
Countries are free to produce or trade all goods. Each good k ∈ K has an infinite number of
varieties indexed by ω ∈ Ω ≡ [1, . . . ,+∞]. zki (ω) represents the number of units of the ωth
variety of good k that can be produced with one unit of labor in country i.

Following Eaton and Kortum (2002), zki (ω) is a random variable drawn independently for
each triplet (i, k, ω) from a Fréchet distribution,

F k
i (z) = exp[−(z/zki )−θ], for all z ≥ 0, (1)

where zki > 0 and θ > 1. Thus, technological differences across countries and industries depend
on two parameters, zki and θ. The first parameter z

k
i captures the fundamental productivity

of country i in industry k, which affects the productivity of all producers (e.g., institutions,
climate). For each industry, the cross-country variation of this zki parameter governs the cross-
country variation in relative labor productivity that sits at the core of the standard Ricardian
model. A larger zki raises the absolute advantage for trade for exporter i in industry k. The second
parameter θ models the intra-industry heterogeneity that exists due to the scope for idiosyncratic
differences in technological know-how across varieties. This variation is the same in all countries
and industries, and θ parameterizes the impact of changes in fundamental productivity levels
zki on aggregate trade flows. A larger θ implies a tighter distribution that limits the scope for
comparative advantage across nations.

trade. Their concern, however, is with the calculation of welfare consequences for US natives as a consequence
of immigration due to shifts in trade patterns.

3Dornbusch et al. (1977), Wilson (1980), Baxter (1992), Alvarez and Lucas (2007), and Costinot (2009)
provide further theoretical underpinnings for comparative advantage.
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Trade frictions have iceberg costs such that for each unit of good k shipped from exporter i
to importer j, only 1/dkij ≤ 1 units arrive, with dkii = 1 and dkil ≤ dkij · dkjl for any third country l
to rule out cross-country arbitrage opportunities. Perfect competition in markets and constant
returns to scale in production imply that the price pkj (ω) paid by buyers of variety ω of good k
in any country j is

pkj (ω) = min
i∈I

[ckij(ω)], (2)

where ckij(ω) = (dkij · wi)/zki (ω) is the cost of producing and delivering one unit of this variety
from country i to country j. For each variety ω of good k, buyers in country j select the best
price available from around the world. An increase in country i’s effi ciency for good j lowers the
price it must charge.

Representative consumers in each country have a two-tier utility function. The upper tier is
Cobb-Doublas, and the preference parameter αkj measures the share of expenditure on varieties
from industry k in country j. The lower tier is constant elasticity of substitution (CES), and
σkj is the elasticity of substitution between varieties. Accordingly, expenditures are such that in
any importer j, total expenditure on variety ω of good k is

xkj (ω) = [pkj (ω)/pkj ]
1−σkj · αkjwjLj, (3)

where 0 ≤ αkj ≤ 1, σkj < 1+θ, and pkj ≡
[∑

ω′∈Ω p
k
j (ω

′)1−σkj
]1/(1−σkj )

. The restriction σkj < 1+θ is

a technical assumption that guarantees the existence of a well-defined CES price index pkj . The
consumer price index in country j is pj ≡

∏K
k=1(pkj )

αkj .

The value of total exports from exporter i to importer j in industry k is xkij ≡
∑

ω′∈Ωkij
xkj (ω

′),

where Ωk
ij denotes the set of varieties exported. The share of exports in importer j and industry

k from country i is πkij ≡ xkij/
∑I

i′=1 x
k
i′j. With this model structure, the bilateral exports from

exporter i to importer j in industry k is

xkij =
(wid

k
ij/z

k
i )−θ∑I

i′=1(wi′dki′j/z
k
i′)
−θ
· αkjwjLj, (4)

which has an intuitive interpretation that closely connects to a similar expression in Eaton and
Kortum (2002). The righthand terms express the overall economic size of the importer j and its
preferences over goods. The lefthand fraction describes the extent to which the exporter is the
lowest cost producer of the good, taking into account geographic distances, production costs,
technology levels, and the underlying heterogeneity in varieties for countries. Under assumptions
of balanced trade, the relatives wages around the world can further be determined.

Costinot et al. (2012) show that equation (4) provides the foundation for estimating an
econometric equation of the form

ln
(
x̃kij
)

= δij + δkj + θ ln(z̃ki ) + εkij, (5)
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where x̃kij represents "corrected" trade flows that adjust for country openness. Similarly, z̃
k
i

represents observed productivity, given that not every country produces every good as it can
import goods from other countries. δij and δ

k
j are vectors of exporter-importer and importer-

industry fixed effects. Comparing equations (5) and (4) shows the basic function of these fixed
effects. The importer-industry fixed effects control for the righthand terms about the importer
and its preferences over goods. Importer-industry fixed effects also account for the denominator
of the lefthand fraction, given that it is a worldwide aggregate for an industry. The exporter-
importer fixed effects capture the numerator’s terms, which emphasize cost levels in the exporter
and distances between the two countries. Under the assumption that the delivery cost term dkij
in the numerator can be expressed in proportionate terms over these two vectors of fixed effects
(e.g., dkij = dij · dkj ), specification (5) provides an unbiased estimate of the θ parameter. An
alternative assumption is that the residual differences in delivery costs after controlling for these
vectors of fixed effects are uncorrelated with the focal productivity level z̃ki .

2.2 Estimating Equation

This study quantifies this Ricardian theory through worldwide trade in manufacturing goods.
Rather than attempting to jointly model Ricardian advantages with other determinants of trade
(e.g., Davis and Weinstein 2001, Morrow 2010), estimations isolate the role of technology differ-
ences through the structure outlined by Costinot et al. (2012) along with first differencing and
instrumental variables. The first step is to extend equation (5) to include time t,

ln
(
x̃kijt
)

= δijt + δkjt + θ ln(z̃kit) + εkijt. (6)

It is important to note that this extension is being applied to the fixed effect terms. Thus, the
exporter-importer fixed effects in the cross-sectional format become exporter-importer-year fixed
effects in a panel format. The empirical work below estimates equation (6) for reference, but
most of the specifications instead examine a first-differenced form,

∆ ln
(
x̃kijt
)

= δijt + δkjt + θ∆ ln(z̃kit) + εkijt, (7)

where the fixed effects and error term are appropriately adjusted.

The motivation for first differencing is stronger empirical isolation of the θ parameter. By
themselves, exporter-importer-year and importer-industry-year fixed effects in equation (6) allow
identification of the θ parameter in two ways: 1) longitudinal changes in z̃kit over time and 2)
long-term differences in z̃kit across industries for the exporter. In a cross-sectional estimation of
equation (5), it is not feasible to distinguish between these forms. This second effect persists
when extending the equation (6) to a panel setting because the exporter-importer-year fixed
effects δijt only account for the aggregate technology changes for exporters.
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Whether estimating the θ parameter through both forms of variation is appropriate depends
upon model assumptions, beliefs about unmeasured factors, and measurement error. It is helpful
to illustrate by considering the exports of Germany in automobiles. The study examines trade
over the 1980-1999 period. Throughout this period, Germany held strong technological advan-
tages and labor productivity for manufacturing automobiles relative to the rest of the world.
Over the course of the period, this productivity also changed in relative terms. If one can fea-
sibly isolate these productivity variables, then having both forms of variation is an advantage.
A second and related issue is that first differencing the data exacerbates the downward bias
that measurement error causes for estimates of the θ parameter. There are plenty of reasons to
suspect non-trivial measurement error in industry-level labor productivity estimates developed
from the UNIDO database.

On the other hand, the earlier discussion about the delivery cost term dkij highlights why
removing long-term differences might be an advantage. The basic identification constraint for
the econometric analysis is that technology levels of exporters cannot be distinguished from
other unobservable factors that also vary by exporter-industry or exporter-industry-year for the
long-term technology levels and their longitudinal changes, respectively. The first is particularly
worrisome given its general nature. First differencing is not foolproof against omitted factors,
but it does require that the changes in these factors correlate with the changes in the focal
productivity level in the exporters of z̃kit. For the delivery cost example that was outlined above,
first differencing permits the allowable proportionate structure dkij = dij · dkj to be extended to
dkijt = dijt · dkjt · dkij, where the third term represents the long-term delivery costs for the exporter
to the importer by industry. This latter approach of panel estimation, while very common in
micro-economic analyses, has yet to be extended to the Ricardian literature.

Beyond this discussion, a few other notes about the estimation of (7) are warranted. The
dependent variable is bilateral manufacturing exports by exporter-importer-industry-year. The
lack of trade for a large number of bilateral routes at the industry level creates econometric
challenges with a log specification. These zero-valued exports are predicted by the model as
an exporter is rarely the lowest cost producer for all countries in an industry. This study
approaches this problem by separately testing the intensive and extensive margins of trade.
Most of the focus is on the intensive margin of trade expansion, where the dependent variable
is the log growth in the value of bilateral exports ∆ ln

(
x̃kijt
)
. The intensive margin of exports

captures both quantities effects and price effects (e.g., Acemoglu and Ventura 2002, Hummels
and Klenow 2005). In tests of extensive margin of trade expansion– that is, commencing exports
to new import destinations– the dependent variable becomes a dichotomous indicator variable
for whether measurable exports exist. Differences in the sample construction for these two tests
are discussed when describing the trade dataset.

Beyond the model’s background, the exporter-importer-year fixed effects perform several
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functions. They intuitively require that Germany’s technology expansion for auto manufacturing
exceed its technology expansion for chemicals manufacturing if export growth is stronger in autos
than chemicals. Thus, these fixed effects remove aggregate trade growth by exporter-importer
pairs common across industries. These uniform expansions could descend from factors specific to
one country of the pair (e.g., economic growth and business cycles, factor accumulations, terms
of trade and price levels) or be specific to the bilateral trading pair (e.g., trade agreements,
preferences4). This framework is thus a powerful check against omitted variables biases, helping
to isolate the Ricardian impetus for trade from relative factor scarcities and other determinants of
trade. The fixed effects also control for the gravity covariates commonly used in empirical trade
studies. National changes in factor endowments may still influence industries differentially due
to the Rybczynski effect, which is explicitly tested for below. The importer-industry-year fixed
effects control for tariffs imposed upon an industry in the importing country. More broadly, they
also control for the aggregate growth in worldwide trade in each industry, relative price changes,
and the potential for trade due to increasing returns to scale (e.g., Helpman and Krugman 1985,
Antweiler and Trefler 2002).

More subtly, a key difference between multi-country Ricardian frameworks and the classic
two-country model of Dornbusch et al. (1977) is worth emphasizing. This difference influences
how the comparative static of increasing a single country-industry technology parameter z̃kit,
ceteris paribus, is viewed. The multi-country theoretical framework allows for increases in z̃kit
to reduce exports on some bilateral routes for the exporter-industry. This effect is due to
general equilibrium pressures on input costs and extreme value distributions. The treatment
effect is measured across all export destinations and thus captures the general Ricardian pattern
embedded in the model. This effect, however, is a net effect that may include reduction of
exports on some routes.5

2.3 Heterogeneous Technology Diffusion and Ricardian Trade

While the Ricardian framework assigns a causal relationship of export growth to technology de-
velopment, in practice the empirical estimation of specification (7) can be confounded by reverse
causality or omitted variables operating by exporter-industry-year even after first differencing.
Reverse causality may arise if engagement in exporting leads to greater technology adoption,
perhaps through learning-by-doing or for compliance with an importer’s standards and regula-
tions. An example of an exporter-industry-year omitted factor is a change in government policies
to promote a specific industry, perhaps leading to large technology investments and the adoption

4Hunter and Markusen (1988) and Hunter (1991) find these stimulants account for up to 20% of world trade.
5Costinot et al. (2012) provides a more detailed discussion, including the extent to which the industry ordering

of the two-country model is found in the relative ordering of exports for countries.
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of policies that favor the chosen industry’s exports relative to other manufacturing industries.
This would lead to an upward bias in the estimated θ parameter.6

Heterogeneous technology transfer from the United States provides an empirical foothold
against these complications. Consider a leader-follower model where the technology state in
exporter i and industry k is

z̃kit = z̃k,USt ·Υk
i ·Υit ·Mk

it. (8)

z̃k,USt is the exogenously determined US technology frontier for each industry and year. Two
general shifters govern the extent to which foreign nations access this frontier. First, Υk

i models
time-invariant differences in the access to or importance of US technologies to exporter i and
industry k, potentially arising due to geographic separation (e.g., Keller 2002b), heterogeneous
production techniques (e.g., Davis and Weinstein 2001, Acemoglu and Zilibotti 2001), or similar
factors. The shifterΥit models longitudinal changes in the utilization of US technologies common
to all industries within exporter i, for example, changes due to declines in communication and
transportation costs, greater general scientific or business integration, and so on. In what follows,
both of these shifters could further be made specific to an exporter-importer pair.

By themselves, these first three terms of model (8) describe the realities of technology dif-
fusion but are not useful for identification when estimating specification (7). The technology
frontier z̃k,USt is captured by the importer-industry-year fixed effects, the bilateral Υk

i shifter is
removed in the first differencing, and the longitudinal Υit shifter is captured in the exporter-
industry-year fixed effects. The final term Mk

it, however, describes differential access that the
migrants to the United States from exporter i provide to the technologies used in industry k.
This term models the recent empirical literature that finds that overseas diaspora and ethnic
communities aid technology transfer from frontier countries to their home countries. If there is
suffi cient industry variation in this technology transfer, once removing the many fixed effects
embedded into specification (7), then this transfer may provide an exogenous instrument to the
exporter productivity parameter z̃kit in a way that allows very powerful identification for the role
of Ricardian advantages in trade.

The design of this instrument combines spatial variation in historical settlement patterns
in the United States of migrant groups from countries with spatial variation in where new
technologies emerged over the period of the study. The instrument takes the form

Mk
it =

∑
c∈C

M%i,c,1980 ·
[
Techk,A−Sc,t

Techk,A−Sc,1980

]
, (9)

6More specifically, the innovation in industrial policy support must be non-proportional across manufacturing
industries. Long-term policies to support certain industries more than others are accounted for by the first
differencing. Uniform changes in support across industries are also jointly accounted for by panel fixed effects.
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where c indexes US cities. M%i,c,1980 is the share of individuals tracing their ancestry to country
i– defined in more detail below and including first-generation immigrants– that are located in
city c in 1980. These shares sum to 100% across US cities. The bracketed fraction is a technology
ratio defined for an industry k. The ratio measures for each city how much patenting grew in
industry k relative to its initial level in 1980. The fraction exceeds one when when a city’s
level of invention for industry k grows from the base period, and it falls below one if the city’s
invention for an industry weakens.

The instrument thus interacts the spatial distribution across US cities of migrants from
exporter i with the city-by-city degree to which technological development for industry k grew
in locations. By summing across cities, equation (9) develops a total metric for exporter i and
industry k that can be first differenced to instrument for ∆ ln(z̃kit) in equation (7). A subtle but
important point is that the instrument can only work in a first-differenced format (or equivalent
panel data model with bilateral route fixed effects). This restriction is because the expression
(9) does not have a meaningful cross-sectional level to it– for all countries and industries, the
value ofMk

it is equal to one in 1980 by definition. As such,M
k
it cannot predict the cross-section of

trade in 1980. However, Mk
it does provide insight about changes in technology opportunity sets

over time that can be used for identification in estimations that consider changes in technology
and trade over time.

Two other points about the instrument’s design are important to bring out as they specif-
ically relate to potential concerns about the instrument. One concern would be that migrants
from exporter i select cities specifically to acquire technologies useful for their home country’s
exports. This seems less worrisome perhaps for individual migrants, but it is quite plausible
when contemplating a German automobile manufacturer opening a new facility in the United
States (e.g., Alcacer and Chung 2007). The instrument seeks to rule out this concern by fixing
the city distribution of migrants from exporter i at their city locations in 1980. This approach
eliminates endogenous resorting, and the results below are also shown to be robust to focusing
on second-generation and earlier migrants.

A second concern is one of reverse causality. The United States relies extensively on immi-
grants for its science and engineering labor force, with first-generation immigrations accounting
for about a quarter of the bachelor’s educated workforce and half of those with PhDs. Moreover,
immigrants account for the majority of the recent growth in the US science and engineering
workforce. The spatial patterns of new high-skilled immigrants frequently build upon ethnic
enclaves and impact the innovation levels in those locations (e.g., Kerr and Lincoln 2010, Hunt
and Gauthier-Loiselle 2010, Peri et al. 2013). Thus, a worry could be that the technology
growth for cities in model (9) is endogenous. The concern would be that Germany is rapidly
developing innovations and new technologies for the automobile industry, and this expansion is
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simultaneously leading to greater exports from Germany and the migration of German scientists
that are patenting automobile technologies to the United States.

This concern is addressed in several ways throughout this study, including sample decompo-
sition exercises, lag structure tests, and similar exercises. The most straightforward safeguard,
however, is already built into model (9). The patenting data, as described below, allow us to
separate the probable ethnicities of inventors in the United States. By focusing on inventors
of Anglo-Saxon ethnic heritage, one can remove much of this reverse causality concern. The
Anglo-Saxon group accounts for about 70% of US inventors during the time period studied, and
so this group reflects the bulk and direction of US technological development.7

Addressing these concerns also provides the approach (9) with a conceptual advantage with
respect to the fixed effect estimation strategy. The first differencing in specification (7) controls
for the initial distributionsM%i,c,1980, and the importer-industry-year fixed effects δ

k
jt control for

the technology growth ratio for industry k. This separation is not perfect due to the summation
over cities, but it is closely mimicked. Thus, the identification in these estimations comes off
these particular interactions. This provides a strong lever against concerns of omitted factors
or reverse causality, and the well-measured US data can provide instruments that overcome the
downward bias in coeffi cients due to measurement error.

3 Data Preparation

This section describes the key data employed in this study and their preparation.

3.1 Labor Productivity Data

Productivity measures z̃kit are taken from the Industrial Statistics Database of the United Nations
Industrial Development Organization (UNIDO). The UNIDO collects industry-level manufactur-
ing statistics for The International Yearbook of Industrial Statistics and specialized publications
on topics like development and competition. Researchers at the UNIDO supplement the data
resources of the OECD with national records for non-OECD members, creating a unique global
resource. The UNIDO’s stated objective is the compilation of internationally comparable and
internally consistent series (e.g., variable definitions, accounting units, collection procedures).

7Very strong crowding-in or crowding-out of natives by immigrant scientists and engineers would create a bias
in the Anglo-Saxon trend itself. Kerr and Lincoln (2010) find very limited evidence of either effect at the city
level for the United States during this time period and for the time horizons considered here (i.e., first differencing
over five-year periods).
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The UNIDO data provide an unbalanced panel over countries, industries, and time periods,
and the availability of these data are the key determinant of this study’s sample design. Esti-
mations consider manufacturing industries at the three-digit level of the International Standard
Industrial Classification system (ISIC3). Data construction starts by calculating the annual
labor productivity in available industries and countries during the 1980-1999 period. These
annual measures are then collapsed into the mean labor productivity level for each five-year
period from 1980-1984 to 1995-1999. This aggregation into five-year time periods affords a
more balanced panel by abstracting away from the occasional years when an otherwise reported
country-industry is not observed. The higher aggregation is also computationally necessary
below due to the tremendous number of fixed effects considered.

These labor productivity measures are first differenced in log format for inclusion in equation
(7). Thus, an exporter i and industry k is included if it is observed in the UNIDO database in
two adjacent periods. Sample inclusion also requires that the country-industry be reported in
two observations at least five years apart (e.g., to prevent an included observation only being
present in 1989 and 1991). The main estimations consider the three change periods of 1980-
1984→1985-1989, 1985-1989→1990-1994, and 1990-1994→1995-1999.

Table 1a describes the 88 exporting countries included. Column 2 provides a count of the
number of periods the country is included in after the first difference is taken, with a maximum
of three changes. Column 3 documents the count of bilateral route observations included at
the exporter-importer-industry level for the intensive-margin estimations. The total observation
count is 103,839 intensive-margin changes for an exporter-importer-industry. Countries differ
in their observation counts, even if observed for the same number of periods, due to variations
in their industry-level reporting in the UNIDO database and minimum requirements for export
volumes discussed below.

Column 4 documents the average manufacturing productivity levels for countries, expressed
in US dollars. While direct comparisons across countries are limited with an unbalanced panel,
productivity differences between industrialized countries and developing nations are clearly evi-
dent. Oil-producing countries (e.g., Kuwait, Norway) have the highest average labor productiv-
ity levels, with Ireland, Japan and Singapore among the highest when excluding oil producers.
Afghanistan, Bangladesh, and Myanmar are among the lowest levels recorded. A small num-
ber of country-industry observations with under ten employees or very problematic data are
excluded. Column 5 documents the mean growth rate in labor productivity for each country
over its observations. These growth rates are five-year differences, with outliers winsorized at
their 2% and 98% levels for reporting. Hong Kong, Myanmar, Peru, and Syria have the highest
growth rates, while the Dominican Republic, Tanzania, and Romania show the sharpest declines.

Table 1b provides similar statistics for the 26 industries, aggregating over countries. Industry
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353 (Petroleum refineries) has the highest average labor productivity, while industry 322 (Wear-
ing apparel, except footwear) has the lowest. Productivity growth is strongest in industries 382
and 383 (Machinery, except electrical, and Machinery, electric). Productivity growth rates are
lowest in industry 323 (Leather products) and industry 361 (Pottery, china, earthenware).8

3.2 Export Volumes

Bilateral exports x̃kijt are taken from the 1975-2000 World Trade Flows Database (WTF) devel-
oped by Feenstra et al. (2005). This rich data source documents product-level values of bilateral
trade for most countries from 1980-1999. Similar to the development of the labor productivity
variables, these product flows are aggregated into five-year periods from 1980-1984 to 1995-1999
and then first differenced in log format. Each productivity growth observation available with
the UNIDO dataset is paired with industry-level bilateral export observations from that country.
All exporting countries other than the United States are included.

The majority of export volumes for bilateral routes are zero-valued, which creates challenges
for the estimation of equation (7). It is also the case that the minimum threshold of trade
that can be consistently measured across countries and industries is US $100k in the WTF
database. While Feenstra et al. (2005) are able to incorporate smaller trading levels for some
countries, these values are ignored to maintain a consistent threshold across observations. To
accommodate these conditions, the empirical approach separately studies the extensive and
intensive margins of export expansion. Mean export volumes are taken across exporter-importer-
industry observations for five-year time periods. For the extensive margin, entry into exports
along an exporter-importer-industry route is defined as exports greater than US $100k.9

Columns 6-8 of Tables 1a and 1b describe the WTF data. These descriptives focus on the
intensive-margin estimations that require exporter-importer-industry observations maintain the
minimum threshold of trade volume. Columns 6 and 7 provide comparable statistics about the
mean export levels and growth rates for included routes. Germany and Japan have the highest
average volumes, and Nicaragua and El Salvador have the lowest average volumes. Export growth
rates are strongest in Nicaragua, Congo, and Costa Rica, and they are lowest in Guatemala and
Zimbabwe. From an industry perspective, trade volumes have the highest average values in
industries 382-384 (Machinery and Transportation equipment), and the lowest average volumes

8Most Ricardian models suggest using labor productivity to measure comparative advantage. This is fortunate
in that manufacturing output and employment data are among the most available metrics for the broad grouping
of countries under study. Labor is typically the only factor of production in Ricardian models, so a natural
extension might be total factor productivity that also allows for capital accumulation as well. Unfortunately,
capital data at the country-industry level for this sample is too sparse to be of benefit in a panel study. An
earlier version of this paper presents results using output to measure industrial specialization.

9A break exists in data collection procedures at 1984. This break does not have a significant impact on
ISIC3-level export volumes, and the results are robust to dropping the initial period.
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are observed in industry 361 (Pottery, china, earthenware). Industry 383 (Machinery, electric)
has the highest growth rate, while industries 353 (Petroleum refineries) and 371 (Iron and steel)
have the lowest.

Column 8 of Table 1a documents the share of total WTF exports for countries that are
included in this sample. The main reasons why exports are not included are lack of corresponding
UNIDO labor productivity estimates or that the exports are going to the United States. This
sample accounts for 78% of exports to destinations other than United States from these countries
(about 63% if exports to the United States are included in the denominator). Column 8 of Table
1b provides comparable data for industries. The sample accounts for 69% of exports in these
industries to destinations other than United States. This share is lower than 78% due to the
inclusion of exporters not captured in Table 1a. Much of the decline on the industry side comes
through limited representation of major petroleum producers.10

3.3 US Historical Settlement Patterns

The first building block for the instrument is the historical settlement patterns of migrants from
each country M%i,c,1980. These data are taken from the 1980 Census of Populations, which is
the earliest US census to collect the detailed ancestry of respondents (as distinguished from
immigration status or place of birth). The detailed ancestry codes include 392 categories with
positive responses, and this study maps these categories to the UNIDO records. Respondents
are asked primary and secondary ancestries, but the classifications only focus on the primary
field given the many missing values in the secondary field. There are multiple ancestry groups
that map to the same country, but the mapping procedure limits each ancestry group to map
to just one UNIDO country. Categories not linked to a specific UNIDO country are dropped
(e.g., Western Europe not elsewhere classified, Cosswack, Ossetian). In total, 89% of the US
population in 1980 is mapped.

Metropolitan statistical areas, which will be referred to as cities for expositional ease, are
identified using the 1% Metro Sample. This dataset is a 1-in-100 random sample of the US
population in 1980 and is designed to provide accurate portraits of cities. The set C over which
M%i,c,1980 is calculated includes 210 cities from the 1980 census files are linked to the US patent
data described next. The primary measures of M%i,c,1980 include all individuals regardless of
age or education level to form M%i,c,1980, only dropping those in group quarters (e.g., military
barracks) or not living in an urban area. Extensions test variations on these themes.

10Price deflators are not available for this sample (exports or labor productivity data). To the extent that
exporter-industry-year deflators are comprised of exporter-year, industry-year, and exporter-industry compo-
nents, the fixed effects and first differencing strategy will control for them automatically. Residual exporter-
industry-year trends could bias OLS estimations. The IV estimations will overcome any such OLS biases due to
deflators.
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Columns 9 and 10 of Table 1a provide the largest cities for each country’s ancestry population.
Due to their large overall size and high immigration shares, cities like New York, Los Angeles,
and Miami appear frequently. Nonetheless, there is substantial heterogeneity. East and West
Coast cities are more likely to link respectively to European and Asian ancestries, for example,
while southern parts of the United States link more to Latin American ancestries. The migration
from Nordic countries to the mid-west is evident (e.g., Finland’s presence in Minnesota).

3.4 US Patenting Data

The second building block for the instrument is the trend in patenting for each city Techk,A−Sc,t .
These series are quantified through individual records of all patents granted by the United States
Patent and Trademark Offi ce (USPTO) from January 1975 to May 2009. Each patent record
provides information about the invention (e.g., technology classification, citations of patents on
which the current invention builds) and inventors submitting the application (e.g., name, city).
Hall et al. (2001) provide extensive details on this dataset. USPTO patents must list at least one
inventor, and multiple inventors are allowed. Approximately 7.8 million inventors are associated
with 4.5 million granted patents during this period.

The base patent data are augmented in three ways. First, the addresses listed on inventor
records are used to group patents to the cities identified in the 1980 census. This procedure uses
city lists collected from the Offi ce of Social and Economic Data Analysis at the University of
Missouri, with a matching rate of 99%. Manual recoding further ensures that all patents with
more than 100 citations and all city names with more than 100 patents are identified. Some
smaller metropolitan areas identified in the patent data are excluded since they do not link to
places identified in the 1980 census. Only patents with all inventors living in the United States
at the time of their patent application are included, and multiple inventors are discounted so
that each patent receives the same weight when measuring inventor populations.

Second, the USPTO issues patents by technology categories rather than by industries. The
work of Johnson (1999), Silverman (1999), and Kerr (2008) develops concordances that link the
USPTO classifications to ISIC3 industries in which new inventions are manufactured or used.
The main estimations focus on industry-of-use, affording a composite view of the technological
opportunity developed for an industry. Studies of advanced economies find accounting for these
inter-industry R&D flows important (e.g., Scherer 1984, Keller 2002a). Estimations using the
alternative categorization of technologies to industry of manufacturer are also presented below.
Cohen (2011) discusses the larger literature on industry-level mappings and evidence regarding
patents, R&D, and productivity.

Finally, the probable ethnicities of inventors are estimated through the names listed on
patents. This procedure exploits the fact the individuals with surnames Gupta or Desai are
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likely to be Indian, Wang or Ming are likely to be Chinese, and Martinez or Rodriguez are
likely to be Hispanic. The name matching work exploits two commercial databases of ethnic
first names and surnames, and the procedures have been extensively customized for the USPTO
data. The match rate is 98% for US domestic inventors, and the process affords the distinction of
nine ethnicities: Anglo-Saxon, Chinese, European, Hispanic, Indian, Japanese, Korean, Russian,
and Vietnamese.11

Most of the estimations in this paper only use whether inventors are of Anglo-Saxon origin,
as a means for reducing the potential of reverse causality as discussed above. The Anglo-Saxon
share of US domestic patenting declines from 73% in 1980-1984 to 66% in 1995-1999. This group
accounts for a majority of patents in each of the six major technology categories developed
by Hall et al. (2001). Appendix Table 1 provides descriptive statistics. This approach, in
combination with the interactions embedded in model (9), has the subtler advantage of allowing
the construction of instruments for many more countries and their ancestry groups than what
one can directly identify through inventor names, either due to lack of names for some countries
(e.g., Ethiopia, Oman) or due to extensive name overlap among countries within an ethnic group
(e.g., most of Latin America sharing Hispanic names). Extensions to this main approach are
considered after the core instrumental variable results are presented.

As with the productivity and trade data, the patenting series are aggregated into five-year
blocks by city and industry. These intervals start in 1975-1979 and extend through 1995-1999,
and the series are normalized by the patenting level of each city-industry in 1980-1984. These
series are then united with the spatial distribution of each country’s ancestry group using model
(9) to form an aggregate for each country-industry, and the log growth rate is then calculated
across these five-year intervals. The lag of this growth rate is used as the instrument for the pro-
ductivity growth rate in an exporter-industry. That is, the estimated growth in technology flows
from Brazil’s chemical industry during 1975-1979→1980-1984 is used as the instrument for the
growth in Brazil’s labor productivity in chemicals for the 1980-1984→1985-1989 period. This lag
structure follows the emphasis in Kerr (2008) on the strength of ethnic networks for technology
diffusion during the first 3-6 years after a US invention is developed, and the comparison to
contemporaneous flows is shown in robustness checks.

The Costinot et al. (2012) model dictates the inclusion of importer-industry-year fixed effects
δkjt in specification (7) for structural reasons such as country preferences. Two other rationales
exist for having at least industry-year fixed effects due to the data development depicted. First,
the US technology frontier is taken as exogenous in model (8), and the identification of the θ

11Kerr (2007) documents specific algorithms, lists frequent ethnic names, and provides extensive descriptive
statistics. This paper also discusses quality assurance exercises performed. For example, the ethnic-name database
can be applied to foreign patents registered with the USPTO. The ethnic-name database assigns ethnicities to 98%
of foreign records. Moreover, estimated inventor compositions are quite reasonable– for example, approximately
90% of inventors filing from Chinese countries and regions are classified as ethnically Chinese.
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parameter should thus be independent of the pace of US technology expansion in different indus-
tries. A second methodological rationale stems from the US patent process. US patent grants
have increased dramatically since the early 1980s. While several factors lie behind this increase,
it is clear that USPTO grant rates grew faster than the underlying growth of US scientific per-
sonnel and innovation can explain. Moreover, differences in grant rates exist across industries.
The fixed effects account for these secular changes in the underlying patenting productivity.12

4 Empirical Results

This combined dataset is a unique laboratory for evaluating Ricardian technology differences
in international trade. This section commences with ordinary least squares (OLS) estimations
using the UNIDO and WTF data. The instrumental variable (IV) results are then presented.

4.1 Base OLS Specifications

Table 2 provides the basic OLS estimations. Column 1 presents the "between" estimates from
specification (6) before first differencing the data; the dependent variable is the log mean nominal
value of bilateral exports for the five-year period. These estimates identify the θ parameter
through variation within bilateral trading routes and variation across industries of an exporter.
This framework parallels most Ricardian empirical studies. Column 2 presents the "within"
estimate from specification (7) that utilizes first differencing to isolate productivity and trade
growth within exporter-importer-industry cells.

Estimations in Panel A weight bilateral routes by an interaction of total exporter and im-
porter trade in the industry. For example, the weight given to Germany’s exports of automobiles
to Nepal is the total export volume of Germany in the auto industry interacted with the total
imports of Nepal in the auto industry, using averages for each component across the sample
period. These weights focus attention on routes that are likely to be more important and give a
sense of the overall treatment effect from Ricardian advantages. The weights, however, explicitly
do not build upon the actual trade volume for a route to avoid an endogenous emphasis on where
trade is occurring. Estimates in Panel B are unweighted. This study reports results with both
strategies to provide a range of estimates.

Estimations cluster standard errors by exporter-industry. This reflects the repeated applica-
tion of exporter-industry technology levels to each route and the serial correlations concerns of

12For example, Griliches (1990), Kortum and Lerner (2000), Kim and Marschke (2004), Hall (2005), Branstetter
and Ogura (2005), Jaffe and Lerner (2005), and Lemley and Sampat (2007).
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panel models. Other variants are reported below, too. Finally, the combination of 88 countries,
26 industries, and 3 time intervals creates an enormous number of exporter-importer-year and
importer-industry-year fixed effects. The number of import destinations is in fact larger than the
88 exporters, as a UNIDO data match is not required for import destinations. With such a large
dataset, it is computationally diffi cult to include exporter-importer-year and importer-industry-
year fixed effects, especially when considering IV estimations. By necessity, manual demeaning is
employed to remove the exporter-importer-year fixed effects, and this procedure is applied over
the importer-industry-year fixed effects. The baseline estimates also use an aggregated version
of the importer-industry-year fixed effects where the industry level used for the groups is at the
two-digit level of the ISIC system rather than the three-digit level (reducing this dimension from
26 industries to 8 higher-level industry groups). Robustness checks on these simplifications are
reported below.

Interestingly, the "between" and "within" elasticities estimated in Panel A are both around
0.6 on the intensive margin. These coeffi cients suggest that a 10% growth in labor productivity
for an exporter-industry is associated with a 6% growth in exports. The estimates in Panel B
are lower at 0.2-0.4, but they remain economically and statistically important. These elasticities
are somewhat lower than the unit elasticity often found in this literature with OLS estimation
techniques and cross-sectional data. There are many empirical reasons why this might be true,
with greater measurement error for productivity estimates outside of OECD sources certainly
being among them. An elasticity greater than or equal to one is also the baseline for the
Ricardian theory in Section 2. The IV estimates reported below are greater than one and have
a comparable level on some dimensions to those estimated with OECD countries. The next
subsection continues with extensions for these OLS estimates to provide a foundation for the IV
results.

4.2 Extended OLS Results

Table 3 provides robustness checks on the first-differenced estimates, which are the focus of the
remainder of this study. The first column repeats the core results from Column 2 of Table 2.
The next two columns show robustness to dropping Brazil and China. Brazil, of all included
countries, displays the most outlier behavior with respect to its productivity growth rates, likely
due to definitional changes, but Brazil’s exclusion does not affect the results. The results are
also similar when excluding China, which experienced substantial growth during the sample
period. It is generally worth noting that the 1980-1999 period pre-dates the very rapid take-off
of Chinese manufacturing exports after 2000. Unreported tests considered other candidates like
Mexico, Germany, and Japan, and these tests, too, found the results very stable to the sample
composition, reflective in large part of the underlying exporter-importer-year fixed effects.
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Column 4 shows the results when excluding industry 383 (Machinery, electrical). The coeffi -
cient estimates are reduced in size by about 30% from Column 1, but they remain quite strong
and well-measured overall. The exclusion of industry 383 has the largest impact on the results
of the 26 industries in the sample, which is why it is reported. This importance is not very
surprising given the very rapid development of technology in this sector, its substantial diffusion
around the world, and its associated trade. On this dimension, the industry-year portion of the
importer-industry-year fixed effects play a very stabilizing role. Column 5 shows that winsoriz-
ing the sample at the 2%/98% delivers similar results, indicative that outliers are not overly
influencing the measured elasticities.

It was earlier noted that computational demands require that the main estimations employ
the ISIC2-level industry groups when preparing importer-industry-year fixed effects. Columns
6-8 test this choice in several ways. First, Column 6 shows that the results hold when estimating
the full model with ISIC2-based cells, so that the importer-industry-year fixed effects exactly
match the cell construction. The weaker variation reduces the coeffi cient estimates by half,
but the results remain statistically and economically important. Columns 7 and 8 alternatively
estimate the model using the sample from Kerr (2008) that focuses on a subset of the UNIDO
data in the 1985-1997 period. The Kerr (2008) sample is substantially smaller in size than
the present one, and so there is greater flexibility with respect to these fixed effect choices.
The choice of industry aggregation for the importer-industry-year fixed effects does not make a
material difference in this sample.13

Finally, Column 9 shows the results with exporter-level clustering. The labor productivity
and export development of industries within countries may be correlated with each other due to
the presence of general-purpose technologies, learning-by-doing (e.g., Irwin and Klenow 1994),
and similar factors, and Feenstra and Rose (2000) show how the export ranges of countries
can change over time in systematic ways across industries. Clustering at the exporter level
allows for greater covariance across industries in this regard, and returns lower standard errors.
Most papers in this literature use robust standard errors on cross-sectional data, which would
translate most closely to bilateral-route clustering in a panel model. Unreported estimates
consider bilateral-route clustering and alternatively bootstrapped standard errors, and these
standard errors are smaller than those reported in Column 9.

Table 4 considers several extensions of this work to characterize heterogeneity in the sample.
Column 2 interacts the regressor with the GDP/capita level of the exporter, broken down into
quintiles. Interestingly, the link between base productivity and exports that is being captured
in this study is mainly coming off of the lower-income countries, suggestive of higher trade

13This extra check also has the advantage of linking the two studies closer together since the Kerr (2008) paper
focuses extensively on productivity growth due to technology transfer. Stability to the somewhat different data
preparation steps in Kerr (2008) is comforting.
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due to varieties among developed economies. This may be due to the greater potential for
within-country productivity dispersion in the sample of developing and emerging economies,
their more rapid productivity development over the 1980-1999 period, and similar factors. It
is similar to the conclusion of Fieler (2011) that trade among advanced economies links to
product differentiation and variety (low θ), while trade among emerging economies links more
closely to fundamental productivity levels (higher θ).14 By contrast, Column 3 finds very little
difference across countries of different sizes. Columns 4 and 5 also show very little connection
of export growth to geographic distances, excepting the fact that the growth in exports is not
simply happening to bordering countries. These extensions suggest that spatial distance is a
second-order factor in shaping where export growth occurs following technology expansion.

In contrast to the Ricardian framework, Heckscher-Ohlin-Vanek (HOV) models describe trade
as resulting from factor differences across countries (e.g., labor, capital, natural resources). In
the above model, technology is the only channel promoting export growth due to identical
factor endowments and no intertemporal factor accumulation. During the period studied, some
countries experienced significant growth in their skilled labor forces and physical capital stocks,
as well as their technology sets, and the former could lead to growth in manufacturing exports
due to the Rybczynski effect. Capital accumulation is particularly noted in rapid advances
made by several East Asian economies (e.g., Young 1992, 1995; Ventura 1997). The inclusion
of exporter-importer-year fixed effects suggests that a Rybczynski effect for the manufacturing
sector as a whole is not responsible for the observed trade patterns. Columns 6-8 provide
additional evidence that the observed role for technology within manufacturing is not due to
specialized factor accumulations.15

The intuition behind the proposed test is straightforward. Under the Rybczynski effect, the
accumulation of skilled workers in country i shifts country i’s specialization towards manufac-
turing industries that employ skilled labor more intensively than other factors. By grouping
manufacturing industries by their skilled-labor intensities, tests examine if technology’s impor-
tance is preserved after time trends are removed for these industry groups within each country.
These time trends are included in addition to the fixed effects listed at the bottom of the table.
To illustrate, the computer and pharmaceutical industries are both highly skill intensive. A
general Rybczynski effect due to skilled worker accumulation in China would favor specializa-
tion and export growth in these industries equally. Additional confidence for technology’s role is
warranted if China’s exports grow faster in the skill-intensive industry that receives the strongest
technology transfer from the United States relative to its peer industries.
14These interactions are an empirical extension that are beyond the closed-form model depicted in Section 2.

Fieler (2011) provides a theoretical foundation for this work.
15See Heckscher (1919), Ohlin (1933), and Vanek (1968). Dornbusch et al. (1980) provide a classic HOV

model, while Schott (2003) and Romalis (2004) offer powerful extensions and empirical tests. Trefler (1994,
1996), Harrigan (1997b), Davis and Weinstein (2001), Chor (2010), Morrow (2010), and Burstein and Vogel
(2012) jointly explore technology and factor differences as determinants of trade.
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To implement this matching exercise, industries are grouped into quintiles based upon their
factor intensities in the United States. Three intensities are studied– the industry’s capital-labor
ratio, the industry’s mean wage rate, and the share of non-production workers in the industry’s
labor force. Table 1b documents for each industry the quintile groupings assigned. Textiles
and apparel consistently rank in the lowest quintile in all three classifications schemes, while
chemicals and industrial machinery consistently fall into top quintiles. Some differences do exist
though. The correlations among quintile groupings are 0.77 for capital-labor and mean wage,
0.60 for mean wage and non-production share, and 0.44 for capital-labor and non-production
share. The role for technology holds up well in all three variants. These findings suggest an
omitted factor accumulation is not confounding the identified role for technology.16

4.3 Base IV Results

Table 5 presents the core IV results. The first column reports the first-stage estimates of how
∆ ln(Mk

it) predicts∆ ln(z̃kit). The first-stage elasticity in Panel A is 0.6, suggesting a 10% increase
in the technology flow metric from the United States predicts a 6% increase in labor productivity
abroad at the exporter-industry level. The unweighted estimates in Panel B suggest a smaller
3% increase. While the second elasticity is lower, the instrument generally performs better in the
unweighted specifications due to its more precise measurement. The F statistics in Panels A and
B are 4.7 and 11.6, respectively. The sample weights in Panel A place greater emphasis on larger
and more advanced countries that have large export volumes (e.g., Germany, Japan). While this
framework finds a substantial response, the weighted dependency of this group on heterogeneous
technology transfer from the United States is noisier than in the unweighted estimations that
emphasize more developing and emerging countries.

The second column presents the reduced-form estimates where ∆ ln(Mk
it) predicts ∆ ln(x̃kijt)

using a format similar to equation (7). In both panels, there is substantial reduced-form link of
technology flows to export volumes.

The third column provides the second-stage estimates from equation (7) having used∆ ln(Mk
it)

to predict ∆ ln(z̃kit). In Panel A’s estimation, the weighted elasticity is 1.6, suggesting a 16%

16The ideal test would simply remove factor-based trade from export volumes studied. This is test is unattain-
able for several theoretical and practical reasons. First, while 2x2x2 HOV models (two countries, factors, and
goods) cleanly predict a country exports goods that intensely use the factors in which the country is well en-
dowed, this prediction does not hold universally in settings with multiple goods and factors (e.g., the critique of
Leamer (1980) on Leontief’s (1953) paradox). Likewise, bilateral trade patterns due to factor-based differences
are only determined for special cases in a multi-country world (e.g., Romalis 2004). Thus, strong assumptions
would be required for distinguishing factor-based trade in this empirical setting. Practically speaking, the data
constraint is also prohibitive as factor data and industry input-output matrices are very poorly measured for
most of the countries and years covered by this study. Davis and Weinstein (2001) study this issue using OECD
data. Morrow (2010) comparatively assesses the Ricardian and HOV models in a unified framework. Morrow
finds that the two models each offer valid partial descriptions and ignoring one force for comparative advantage
does not bias empirical tests of the other.
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increase in export volumes for every 10% increase in labor productivity. In Panel B’s unweighted
estimation, the 10% increase in labor productivity is linked to a 24% increase in export volumes.
The second-stage elasticity in Panel B is larger than in Panel A, as the IV estimates provide the
reduced-form scaled up by the first-stage effects. Thus, even though the unweighted reduced-
form estimate in Column 2 is smaller than the weighted reduced-form estimate, this ordering
reverses once scaled-up by the first stages.

This study does not overly favor one set of estimates. The unweighted and unweighted ap-
proaches both have merits and liabilities. Instead, the conclusion from this work is that the
instrumented elasticity is in the neighborhood of 2. This instrumented elasticity is weaker than
the preferred instrumented elasticity of 6.5 that Costinot et al. (2012) estimate for OECD coun-
tries cross-sectionally in 1997 using producer price data, but it is quite similar to the 2.7 elasticity
that they estimate with labor productivity metrics. While it is impossible to differentiate among
the various reasons as to why the IV estimates are larger than the OLS estimates, a very likely
candidate is that OLS suffers from a substantial downward bias due to measurement error in the
labor productivity estimates, especially with the substantial differencing embedded in equation
(7). While it is likely that omitted factors or reverse causality influenced the OLS estimations
as well, these appear to have been second-order to the measurement issues.17

It is important to identify the dual meaning of the higher IV results compared to OLS with
respect to the θ parameter. In Section 2’s model, a higher θ parameter corresponds to a reduced
scope for intra-industry trade due to comparative advantages across varieties. IV estimations
thus suggest that OLS specifications overestimate the scope for intra-industry trade because
they understate the link between country-industry productivity improvements and their asso-
ciated export volumes. Both impetuses can be connected to Ricardian theories of comparative
advantage for trade, but role of the structural θ parameter needs to be carefully delineated.

These estimates are significant in terms of their potential economic importance and explana-
tory power. Using an elasticity of 2, the interquartile range of country-level labor productivities
in Table 1a can explain 75% of the interquartile range in export levels. Similarly, the interquar-
tile range of country-level labor productivity growth can explain 142% of the interquartile range
in export growth levels.

To this point, the reported estimations have only focused on the intensive margin of export
growth. Appendix Table 2 reports OLS and reduced-form results related to the extensive margin
of trade commencement. These estimations follow Tables 2 and 5 in their approach, with linear

17Costinot et al. (2012) adjust export volumes for trade openness using the import penetration ratio for a
country-industry. The estimates are very similar when undertaking this approach, being 1.163 (0.457) and 2.513
(1.138) for weighted and unweighted specifications, respectively. This approach is not adopted for the main
estimations due to worries about mismeasurement in the import penetration ratio when combining UNIDO and
WTF data.
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probability models considering an indicator variable for exports above US $100k on a bilateral
route as the outcome variable. The OLS and reduced-form results do not display significant
elasticities. Computational limits prevent the full estimation of IV elasticities, but the zero-
valued reduced-form elasticities are suffi cient to conclude that the IV results would also be
weak. On the whole, this study concludes that the exporting growth due to enhanced labor
productivity and technology transfer comes through export growth on existing routes rather
than through entry into new bilateral routes.18

4.4 Extended IV Results

Table 6 provides robustness checks in the same format as Table 3. The instrumented elasticity is
again very stable to the exclusion of high-profile countries. The weighted elasticity is very stable
in Column 4 to excluding industry 383 (Machinery, electrical), while the unweighted elasticity
strengthens. This choice of reporting is again due to electrical machinery having the largest
impact on the results, with, for example, very similar elasticities to Column 1 being observed if
excluding industry 382 (Machinery, except electrical). Results are also again very similar with a
winsorized sample. The instrumented elasticities are reasonably stable to variations on industry
dimensions and samples in Columns 6-8 in terms of economic magnitudes, but the standard
errors on the unweighted sample in Panel B become too large for definitive conclusions. The
last column again shows the results are robust to exporter-level clustering. Employing bilateral-
route clustering or bootstrapped standard errors would substantially increase the precision of
the results.

Table 7 reports additional robustness checks related to the instrument design. Results in
Column 2 are similar when using the total technology trends for cities in model (9) rather
than just the Anglo-Saxon ethnic trend. More deviation, however, is observed when using the
technology-to-industry concordances that emphasize where manufacturing occurs, rather than
where technologies are used. The main estimations focus on industry-of-use, affording a com-
posite view of the technological opportunity developed for an industry. Keller (2002b) reports
inter-industry R&D flows aid productivity growth significantly within OECD countries, equal to
half or more of the own-industry development. Estimations with manufacturing industries sup-
port the using-industry specifications in a weighted format, albeit with larger standard errors.
Unweighted estimates have a zero-valued first stage that prevents further analysis. This differ-
ence emphasizes the importance of technology adoption behind the labor productivity results.

Columns 3-7 test variations on the construction of M%i,c,1980. Columns 4 and 5 show that
very similar results are obtained when using first- or later-generation migrants for defining the
18This test links exporting in a specific industry with technology for that industry. This approach differs from

examinations of the extensive margins of trade that count the number of independent varieties exported (e.g.,
Feenstra 1994, Feenstra and Rose 2000, Hummels and Klenow 2005).
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spatial patterns of migrants. This comparability is not surprising given the persistence of ethnic
enclaves in the United States and their attraction of new immigrants from the home country. This
stability suggests that the results are not being influenced by endogenous migrant decisions about
which cities will show particular strength in patenting growth for certain industries. Columns
6 and 7 show similar results when using bachelor’s educated workers from a country’s ancestry
versus those without bachelor’s degrees, with the weighted estimations somewhat favoring the
distribution of bachelor’s educated workers. Overall, these variations suggest a strong stability
to this part of the IV’s construction.

Column 8 of Table 7 tests a more stringent specification that augments equation (7) to
include additional fixed effects for distance-industry-year, where distance is an indicator variable
for being more than the median distance from the United States. This augmented specification
controls even more tightly for geographical distance as a determinant of technology diffusion,
finding continued and strong evidence that differential technology transfer from the United States
matters. Similar results are also found when including an equivalent set of fixed effects that
partition on GDP/capita of countries. Column 9 demonstrates robustness to dropping countries
with a limited migrant connection to the United States, specifically those nations with fewer
than 100k people in the United States in 1980 reporting ancestral connections to the country.

Unreported estimations also test including the three Rybczynski effect controls discussed
with Table 4. In the unweighted estimations, the inclusion of these controls does not materially
influence the instrumented elasticities. All three elasticities are in the range of 1.5-2.1 and are
statistically significant at a 5% level or higher. In the weighted estimations, these controls
have a larger impact. For the non-production share control, the weighted elasticity is 2.5 (1.7),
while estimations with the other two controls have invalid first stages. Thus, the conclusions
regarding heterogeneous technology transfer, productivity growth, and exports for the weighted
estimations need to be cautious to acknowledge that these effects are not well-distinguished from
a generalized Rybczynski effect operating inside of the manufacturing sector itself. In unweighted
estimations, these effects are better distinguished.

The primary IV estimations build a five-year lag structure into when the technology growth
occurs in the United States to when the productivity growth happens abroad. Thus, growth
in technology flows over the 1975-1979→1980-1984 period towards an exporter-industry are
used to predict labor productivity growth and export growth during the 1980-1984→1985-1989
period. This five-year lag matches discussions of rates of differential technology flows across
countries. Appendix Table 3 compares this lag structure with contemporaneous technology flows
in estimations similar to the first-stage and reduced-form specifications. The lagged estimator is
stronger than the contemporaneous estimator when both are modelled independently or when
modelled jointly. This pattern provides comfort in the estimation design and the proposed causal
direction of the results.
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Another test utilizes the ethnic patenting growth in the United States to formulate an addi-
tional control against reverse causality. This control is calculated as the patenting growth within
each industry in the United States by members of the focal ethnic community. Thus, estima-
tions consider the technology transfer instrument (9) and its impact for productivity growth
and trade after controlling for the direct growth of patenting by industry of ethnic communities.
The control is calculated across the ethnic groups discussed in Section 3, with the same control
applied to countries within an ethnicity (e.g., the growth in US patenting by ethnic Hispanic
inventors for computers is used as a control with both Mexico’s and Chile’s computer productiv-
ity and exports). As some countries do not map to an identifiable ethnic group with the name
matching approach, the sample is reduced to 73,545 observations. For this sample, the weighted
and unweighted instrumented elasticities before the ethnic patenting control is introduced are
1.32 (0.54) and 2.21 (0.92), respectively. With the control, these instrumented elasticities are
very similar at 1.40 (0.64) and 2.32 (1.37), respectively.19

5 Conclusions

While the principle of Ricardian technology differences as a source of trade is well established
in the theory of international economics, empirical evaluations of its importance are relatively
rare due to the diffi culty of quantifying and isolating technology differences. This study exploits
heterogeneous technology diffusion from the United States through ethnic migrant networks to
make additional headway. Estimations find bilateral manufacturing exports respond positively
to growth in observable measures of comparative advantages. Ricardian technology differences
are an important determinant of trade in longitudinal changes, in addition to their cross-sectional
role discussed earlier.

Leamer and Levinsohn (1994) argue that trade models should be taken with a grain of salt
and applied in contexts for which they are appropriate. This is certainly true when interpret-
ing these results. The estimating frameworks have specifically sought to remove trade resulting
from factor endowments, increasing returns, consumer preferences, etc. rather than test against
them. Moreover, manufacturing exports are likely more sensitive to patentable technology im-
provements than the average sector, and the empirical reach of the constructed dataset to include
emerging economies like China and India heightens this sensitivity. Further research is needed
to generalize technology’s role to a broader set of industrial sectors and environments.

Beyond quantifying the link between technology and trade for manufacturing, this paper also
serves as input into research regarding the benefits and costs of emigration to the United States
19Earlier versions of this paper consider direct ethnic patenting and exports more extensively. The early work

also evaluates the role of sector reallocation from agriculture, the empirical contrast of the technology states in
the exporter and the importer, and the potential for vertical integration through parts trade (e.g., Ng and Yeats
1999, Schott 2004). These results are available upon request.
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for the migrants’home countries (i.e., the "brain drain" or "brain gain" debate). While focusing
on the Ricardian model and its parameters, the paper establishes that the technology transfer
from overseas migrants are strong enough to meaningfully promote exports. Care should be
taken to not overly interpret these findings as strong evidence of a big gain from migration.
The paper does not seek to establish a clear counterfactual in the context of immigration from
the source countries’point of view (e.g., Agrawal et al. 2011). As such, the positive export
elasticities due to US heterogeneous technology diffusion do not constitute welfare statements
relative to other scenarios. Future research needs to examine these welfare implications further.
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growth rate 
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Share of 
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exports 

included in 

sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Afghanistan 1 15 3.7E+03 0.01 2.2E+08 -0.15 0.79 San Francisco, CA Dallas-Ft. Wth, TX

Algeria 3 40 3.3E+04 -0.13 2.6E+08 -0.09 0.01 Tampa-St. Pete, FL Boston, MA

Argentina 3 819 9.0E+04 0.28 3.3E+10 0.36 0.64 New York, NY Los Angeles, LA

Australia 3 1819 1.4E+05 0.19 6.4E+10 0.42 0.68 Los Angeles, LA New York, NY

Austria 3 3702 1.4E+05 0.35 1.6E+11 0.53 0.97 New York, NY Los Angeles, LA

Bangladesh 3 194 3.7E+03 0.07 3.6E+09 0.54 0.44 New York, NY Los Angeles, LA

Barbados 3 18 5.1E+04 0.05 9.9E+07 0.18 0.33 New York, NY Boston, MA

Belgium 3 1445 1.4E+05 0.16 9.4E+10 0.45 0.20 Detroit, MI Green Bay, WI

Bolivia 3 102 6.8E+04 -0.05 1.3E+09 0.11 0.69 Los Angeles, LA New York, NY

Brazil 2 829 7.8E+04 0.47 7.8E+10 0.25 0.60 New York, NY Los Angeles, LA

Bulgaria 3 640 2.8E+04 0.10 5.2E+09 0.43 0.48 Chicago, IL Los Angeles, LA

Cameroon 3 102 2.0E+04 -0.06 1.7E+09 -0.12 0.51 Washington, DC None

Canada 3 3876 1.9E+05 0.17 1.2E+11 0.45 0.98 Boston, MA Los Angeles, LA

Chile 3 723 2.2E+05 0.15 2.8E+10 0.45 0.86 New York, NY Los Angeles, LA

China 3 2618 1.3E+04 0.18 4.0E+11 1.25 0.82 San Francisco, CA New York, NY

Colombia 3 876 5.5E+04 0.10 6.9E+09 0.52 0.42 New York, NY Miami, FL

Congo 1 2 4.3E+04 0.47 1.1E+07 1.56 0.03 Los Angeles, LA None

Costa Rica 3 63 4.6E+04 0.11 3.2E+08 1.31 0.12 New York, NY Los Angeles, LA

Cote d'Ivoire 1 41 5.2E+04 -0.08 8.8E+09 0.35 0.85 Baltimore, MD New York, NY

Cuba 1 47 2.0E+04 -0.04 2.4E+09 -0.36 0.61 Miami, FL New York, NY

Cyprus 3 319 3.9E+04 0.15 1.6E+09 0.30 0.61 New York, NY San Francisco, CA

Denmark 2 1954 1.2E+05 0.18 9.9E+10 0.49 0.72 Los Angeles, LA Salt Lake City, UT

Dom. Republic 1 14 3.8E+04 -0.37 5.1E+08 0.74 0.35 New York, NY Miami, FL

Ecuador 3 252 4.6E+04 0.02 2.9E+09 0.60 0.70 New York, NY Los Angeles, LA

Egypt 3 396 3.1E+04 0.21 5.0E+09 0.13 0.55 New York, NY Los Angeles, LA

El Salvador 2 5 4.3E+04 0.02 1.7E+06 -0.02 0.00 Los Angeles, LA San Francisco, CA

Ethiopia 1 22 1.0E+04 -0.10 2.6E+08 -0.19 0.18 Chicago, IL Atlanta, GA

Fiji 2 31 4.3E+04 -0.01 9.3E+08 0.07 0.60 San Francisco, CA Honolulu, HI

Finland 3 2319 1.6E+05 0.39 9.7E+10 0.74 0.79 Duluth-Super., MN Minn.-St. Paul, MN

France 3 6100 1.6E+05 0.36 7.3E+11 0.48 0.83 Los Angeles, LA Boston, MA

Germany 1 1379 2.1E+05 0.28 1.1E+12 0.33 0.68 Chicago, IL New York, NY

Ghana 3 51 1.8E+04 0.02 1.4E+09 0.63 0.36 New York, NY Los Angeles, LA

Greece 3 1860 9.9E+04 0.14 3.0E+10 0.36 0.91 New York, NY Chicago, IL

Guatemala 3 32 2.1E+04 -0.18 1.1E+08 -0.55 0.04 Los Angeles, LA Chicago, IL

Honduras 3 51 2.9E+04 -0.11 2.8E+08 0.75 0.16 New York, NY Los Angeles, LA

Hong Kong 3 2453 1.0E+05 0.53 1.4E+11 0.56 0.96 New York, NY Sacramento, CA

Hungary 3 1446 2.7E+04 0.17 3.8E+10 0.79 0.85 New York, NY Cleveland, OH

Iceland 3 177 1.2E+05 0.23 6.2E+09 0.43 0.92 Los Angeles, LA Seattle, WA

India 3 2544 1.8E+04 0.14 6.0E+10 0.72 0.81 New York, NY Chicago, IL

Indonesia 3 735 2.0E+04 0.12 5.4E+10 1.10 0.45 New York, NY Los Angeles, LA

Table 1a: Descriptive statistics for exporting countries

WTF manufacturing exports

Notes: Table provides descriptive statistics on intensive-margin sample. An included observation is the first-difference of values for an exporter-importer-

industry-period from the prior period. For the differencing, the exporter's labor productivity at the industry level must be reported in the UNIDO database in 

both periods and the export volumes in the World Trade Flows database must exceed $100k for both periods. All trade with the United States is excluded. 

Column 2 reports the number of periods after first differencing that a country is included, and the third column provides route-level observation counts after 

first differencing. Columns 4 and 5 provide labor productivity estimates from the UNIDO database. Columns 6-8 report statistics from the World Trade 

Flows database, with volumes expressed in US dollars.  The last two columns document the two largest ethnic heritage cities used in the instrument design. 

Cities are defined at the consolidated metropolitan area level, with abbreviated names provided.

Count of 

periods in 

sample as 

exporter 

after FD
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1980 city for 
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exporter 
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Largest 1980 city 
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population

UNIDO productivity



Country

Mean 

labor prod. 

over 

included 

industries

Mean log 5-

year 

growth for 

included 

industries

Mean 

exports per 

5-year 

period 

included

Mean log 5-

year 

growth rate 

for routes

Share of 

total WTF 

exports 

included in 

sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Iran 2 157 2.1E+04 -0.09 4.4E+09 0.43 0.55 Los Angeles, LA San Francisco, CA

Ireland 3 2061 2.9E+05 0.41 1.2E+11 0.79 0.96 New York, NY Philadelphia, PA

Israel 3 1123 1.0E+05 0.22 1.3E+10 0.69 0.50 New York, NY Los Angeles, LA

Italy 3 6102 1.5E+05 0.35 6.2E+11 0.50 0.89 New York, NY Philadelphia, PA

Jamaica 2 3 1.1E+05 0.07 7.6E+06 0.92 0.01 New York, NY Miami, FL

Japan 3 5799 2.7E+05 0.37 1.2E+12 0.43 0.99 Honolulu, HI Los Angeles, LA

Jordan 3 113 5.3E+04 0.20 5.5E+08 0.25 0.26 New York, NY Detroit, MI

Kenya 3 231 4.8E+04 0.13 1.1E+09 0.32 0.28 Washington, DC San Francisco, CA

Kuwait 3 391 7.8E+05 0.12 1.5E+10 -0.35 0.74 Orlando, FL Providence, RI

Macau 3 166 2.7E+04 0.33 3.6E+09 0.34 0.72 Los Angeles, LA Seattle, WA

Malaysia 3 1317 6.6E+04 0.33 1.1E+11 1.28 0.61 San Francisco, CA Los Angeles, LA

Malta 3 223 2.0E+05 0.50 3.5E+09 0.83 0.68 Detroit, MI New York, NY

Mexico 3 1474 7.3E+04 0.21 3.8E+10 0.84 0.82 Los Angeles, LA San Antonio, TX

Morocco 3 551 4.2E+04 0.00 1.8E+10 0.54 0.86 New York, NY Chicago, IL

Myanmar 2 40 2.4E+03 0.64 3.2E+08 0.38 0.24 Washington, DC Los Angeles, LA

Nepal 1 2 7.0E+03 0.21 1.7E+06 0.42 0.00 Boston, MA St. Louis, MO

Netherlands 3 5429 2.7E+05 0.29 5.1E+11 0.46 0.91 Los Angeles, LA Grand Rapids, MI

New Zealand 3 735 1.0E+05 0.31 1.7E+10 0.40 0.49 Washington, DC San Francisco, CA

Nicaragua 1 1 4.1E+04 0.40 7.4E+05 1.90 0.00 Los Angeles, LA San Francisco, CA

Nigeria 3 28 1.1E+05 -0.06 7.9E+07 0.04 0.03 New York, NY Washington, DC

Norway 3 2295 3.4E+05 0.26 8.5E+10 0.36 0.90 Minn.-St. Paul, MN Seattle, WA

Oman 1 14 3.1E+05 -0.19 1.4E+09 0.60 0.33 Los Angeles, LA Salinas, CA

Pakistan 3 784 2.1E+04 0.19 2.1E+10 0.46 0.87 New York, NY Los Angeles, LA

Panama 3 288 3.7E+04 -0.06 3.0E+09 0.07 0.47 New York, NY Los Angeles, LA

Peru 3 354 6.6E+04 0.54 3.0E+09 0.26 0.27 New York, NY Los Angeles, LA

Philippines 3 930 2.8E+04 0.35 3.5E+10 0.97 0.80 San Francisco, CA Los Angeles, LA

Poland 3 1213 2.6E+04 0.25 4.1E+10 0.69 0.71 New York, NY Chicago, IL

Portugal 3 2160 6.1E+04 0.39 7.2E+10 0.72 0.96 Providence, RI San Francisco, CA

Romania 1 191 6.7E+03 -0.31 8.0E+09 -0.08 0.29 New York, NY Los Angeles, LA

Senegal 3 64 3.5E+04 0.10 1.6E+09 0.19 0.81 Los Angeles, LA Washington, DC

Singapore 3 2790 2.6E+05 0.51 2.0E+11 0.83 0.94 New York, NY San Francisco, CA

South Africa 3 1017 5.1E+04 -0.02 3.1E+10 0.36 0.67 New York, NY Dallas-Ft. Wth, TX

South Korea 3 3204 1.2E+05 0.52 2.5E+11 0.95 0.84 Los Angeles, LA New York, NY

Spain 3 5130 1.4E+05 0.36 2.6E+11 0.69 0.97 New York, NY Los Angeles, LA

Sri Lanka 3 348 8.0E+03 0.20 3.5E+09 0.63 0.59 Los Angeles, LA Boston, MA

Sweden 3 4032 1.5E+05 0.30 2.5E+11 0.45 0.98 Minn.-St. Paul, MN Chicago, IL

Switzerland 2 908 1.9E+05 0.29 1.1E+11 0.35 0.42 Los Angeles, LA New York, NY

Syria 3 87 9.9E+04 0.54 9.1E+08 0.47 0.36 New York, NY Chicago, IL

Taiwan 3 2022 7.7E+04 0.46 2.1E+11 0.87 0.74 Los Angeles, LA San Francisco, CA

Tanzania 3 54 6.6E+03 -0.35 1.6E+08 0.55 0.09 New York, NY Chicago, IL

Thailand 2 499 5.7E+04 0.37 4.2E+10 1.33 0.37 Los Angeles, LA New York, NY

Trinidad-Tobago 3 41 1.7E+05 0.11 4.9E+08 -0.36 0.22 New York, NY Washington, DC

Tunisia 1 46 8.8E+04 0.25 2.6E+09 -0.39 0.15 New York, NY Los Angeles, LA

Turkey 3 1233 6.8E+04 0.25 4.8E+10 0.81 0.80 New York, NY Los Angeles, LA

United Kingdom 3 7143 1.6E+05 0.37 6.1E+11 0.48 0.90 Los Angeles, LA New York, NY

Uruguay 3 431 4.4E+04 0.20 6.5E+09 0.21 0.88 New York, NY Washington, DC

Venezuela 3 490 3.1E+05 -0.03 8.4E+09 -0.01 0.51 New York, NY Miami, FL

Zimbabwe 3 14 3.7E+04 0.12 5.7E+07 -0.58 0.01 Los Angeles, LA None

Table 1a, continued

Count of 
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ISIC Industry title

Mean level 

per 5-year 

period

Mean log 

5-year 

growth 

rate for 

industries

Mean 

exports per 

5-year 

period

Mean log 

5-year 

growth 

rate for 

routes

Share of 

total WTF 

exports 

included in 

sample

Share of 

patenting 

included in 

sample

Mean log 

5-year 

growth 

rate

Capital/ 

labor 

ratio

Mean 

wages

Non-

prod. 

worker 

share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

311 Food products 8183 1.5E+05 0.16 5.9E+11 0.33 0.74 0.02 0.15 3 2 3

313 Beverages 2294 2.2E+05 0.31 6.5E+10 0.49 0.75 0.01 0.17 5 3 5

314 Tobacco 1498 3.3E+05 0.22 2.6E+10 0.49 0.56 0.00 0.15 5 5 3

321 Textiles 7067 6.8E+04 0.22 4.9E+11 0.48 0.79 0.02 0.16 2 1 1

322 Wearing apparel, except footwear 3738 4.5E+04 0.18 2.8E+11 0.48 0.83 0.00 0.20 1 1 1

323 Leather products 2605 7.8E+04 0.14 7.8E+10 0.64 0.73 0.00 0.19 1 1 1

324 Footwear, except rubber or plastic 1848 5.8E+04 0.30 4.8E+10 0.42 0.44 0.00 0.19 1 1 1

331 Wood products, except furniture 3217 7.5E+04 0.15 1.1E+11 0.47 0.73 0.01 0.15 2 1 1

332 Furniture, except metal 2551 7.9E+04 0.21 7.9E+10 0.56 0.68 0.01 0.16 1 1 2

341 Paper and products 4382 1.7E+05 0.19 2.0E+11 0.35 0.76 0.03 0.15 4 4 2

342 Printing and publishing 2736 9.6E+04 0.20 4.4E+10 0.43 0.68 0.01 0.16 2 2 5

351 Industrial chemicals 6309 2.5E+05 0.23 5.3E+11 0.46 0.59 0.05 0.10 5 5 4

352 Other chemicals 5379 1.7E+05 0.21 2.8E+11 0.60 0.53 0.08 0.18 4 4 5

353 Petroleum refineries 2257 1.6E+06 0.24 2.2E+11 0.03 0.50 0.01 0.09 5 5 4

354 Misc. petroleum and coal products 722 2.7E+05 0.15 1.8E+10 0.62 0.29 0.01 0.10 4 4 4

355 Rubber products 3819 1.0E+05 0.29 7.8E+10 0.45 0.75 0.01 0.14 3 3 2

361 Pottery, china, earthenware 1648 5.4E+04 0.12 1.4E+10 0.44 0.58 0.00 0.14 1 2 2

362 Glass and products 2750 1.1E+05 0.24 3.7E+10 0.47 0.58 0.01 0.14 4 3 1

369 Other non-metallic mineral 3157 1.2E+05 0.22 6.6E+10 0.38 0.70 0.01 0.12 4 3 3

371 Iron and steel 4301 2.0E+05 0.29 2.6E+11 0.27 0.59 0.01 0.13 5 5 2

372 Non-ferrous metals 3355 2.1E+05 0.21 1.7E+11 0.35 0.60 0.02 0.16 4 3 3

381 Fabricated metal products 5612 9.0E+04 0.20 2.2E+11 0.42 0.69 0.05 0.15 2 3 3

382 Machinery, except electrical 6989 1.5E+05 0.43 1.1E+12 0.67 0.67 0.25 0.25 3 4 4

383 Machinery, electric 6513 1.5E+05 0.46 1.1E+12 0.74 0.81 0.22 0.26 3 4 5

384 Transport equipment 5714 2.0E+05 0.33 1.0E+12 0.49 0.76 0.09 0.16 2 5 4

385 Professional & scientific equipment 5195 1.1E+05 0.28 2.8E+11 0.45 0.81 0.08 0.24 3 4 5

Table 1b: Descriptive statistics for ISIC Revision 2 industries

WTF manufacturing exports

Notes: See Table 1a. Column 3 provides route-level observation counts by industry after first differencing. Columns 4 and 5 provide labor productivity estimates from the UNIDO 

database. Columns 6-8 report statistics from the World Trade Flows database, with volumes expressed in US dollars.  Industries 356 and 390 are excluded. Columns 9-10 report the share 

and growth rate of patenting in United States that is used for the technology transfer measures. The last columns report the quintile to which the industry is assigned for the Rybczynski 

effect controls of country time trends x industry quintiles.

US quintiles (5 = Highest)US patenting

Count of 

intensive-

margin 

obs. after 

FD

UNIDO productivity



Between estimation FD estimation

(1) (2)

DV: Log bilateral exports DV: Δ Log bilateral exports

Log country-industry labor 0.640***

productivity (0.242)

Δ Log country-industry labor 0.573***

productivity (0.185)

Observations 149,547 103,839

Importer-Industry-Yr FE Yes Yes

Exporter-Importer-Yr FE Yes Yes

DV: Log bilateral exports DV: Δ Log bilateral exports

Log country-industry labor 0.361***

productivity (0.091)

Δ Log country-industry labor 0.210***

productivity (0.041)

Observations 149,547 103,839

Importer-Industry-Yr FE Yes Yes

Exporter-Importer-Yr FE Yes Yes

Table 2: OLS estimations of labor productivity and exports

Panel A: Weighting bilateral routes by the interaction of exporter and 

importer trade in industry (summed across all bilateral routes)

Panel B: Excluding sample weights

Notes:  Panel estimations consider manufacturing exports taken from the WTF database.  Data are organized by exporter-

importer-industry-year.  Industries are defined at the three-digit level of the ISIC Revision 2 system.  Annual data are 

collapsed into five-year groupings beginning with 1980-1984 and extending to 1995-1999.  The dependent variable in 

Column 1 is the log mean nominal value (US$) of bilateral exports for the five years; the dependent variable in Column 2 

is the change in log exports from the prior period.  The intensive margin sample is restricted to exporter-importer-industry 

groupings with exports exceeding $100k in every year.  The $100k threshold is chosen due to WTF data collection 

procedures discussed in the text.  Labor productivity from the UNIDO database measures comparative advantages.  

Column 1 estimates Ricardian elasticities using both within-panel variation and variation between industries of a country.  

Column 2 estimates Ricardian elasticities using only variation within panels.  Estimations in Panel A weight bilateral 

routes by the interaction of total exporter and importer trade in industry; estimations in Panel B are unweighted.  

Estimations cluster standard errors by exporter-industry.  Importer-Industry-Yr FE are defined at the two-digit level of the 

ISIC system.  *, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.



Base 

estimation 

(Column 2, 

Table 2)

Excluding 

exports 

from Brazil

Excluding 

exports 

from China

Excluding 

electrical 

machinery

Using a 

2%/98% 

winsorized 

sample

Using ISIC 

2-digit level 

industry 

groups

Kerr (2008) 

sample 

using Imp-

ISIC2-Year 

fixed effects

Kerr (2008) 

sample 

using Imp-

ISIC3-Year 

fixed effects

Using 

exporter-

level 

clustering

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Δ Log country-industry labor 0.573*** 0.573*** 0.472*** 0.390*** 0.493*** 0.266** 0.287** 0.281** 0.573***

productivity (0.185) (0.185) (0.097) (0.121) (0.133) (0.112) (0.113) (0.138) (0.086)

Observations 103,839 103,010 101,221 97,326 103,839 51,483 23,345 23,345 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Δ Log country-industry labor 0.210*** 0.210*** 0.221*** 0.154*** 0.264*** 0.097*** 0.248*** 0.184*** 0.210***

productivity (0.041) (0.041) (0.041) (0.039) (0.043) (0.037) (0.066) (0.069) (0.048)

Observations 103,839 103,010 101,221 97,326 103,839 51,483 23,345 23,345 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 3: Robustness checks on OLS specifications in Table 2

Panel A: Weighting bilateral routes by the interaction of exporter and importer trade in industry

Panel B: Excluding sample weights

Notes:  See Table 2.

The dependent variable is Δ log bilateral exports on the intensive margin by exporter-importer-industry



Capital/ labor 

ratio Mean wages

Non-prod. 

share

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Log country-industry labor 0.573*** 0.938*** 0.578*** 0.269** 0.602*** 0.465*** 0.332** 0.313**

productivity (0.185) (0.219) (0.126) (0.125) (0.186) (0.129) (0.135) (0.132)

x Second quartile of trait -0.582** 0.272 0.330**

indicated in column header (0.283) (0.284) (0.139)

x Third quartile of trait -0.972*** -0.368 0.570**

indicated in column header (0.271) (0.248) (0.231)

x Highest quartile of trait -0.734*** 0.060 0.268

indicated in column header (0.234) (0.269) (0.183)

x Bordering economies -0.581***

(0.177)

Effect at first quartile 0.938 0.578 0.269

Effect at second quartile 0.356 0.850 0.599

Effect at third quartile -0.034 0.210 0.839

Effect at highest quartile 0.204 0.638 0.536

Value at second quartile start 8,431 8,852,235 2,319

Value at third quartile start 14,765 29,900,000 5,596

Value at highest quartile start 19,024 57,100,000 9,184

Observations 103,839 103,839 103,839 103,839 103,839 103,839 103,839 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes

Table 4: Robustness checks on OLS specifications in Table 2

The dependent variable is Δ log bilateral exports on the intensive margin by exporter-importer-industry

Notes:  See Table 2.  Interactions in Column 4 use Great Circle distances between capital cities. To give a feel for these demarcations, the distances from Beijing, 

China, to the capitals of Bangladesh, United Arab Emirates, and Spain are 3029 km., 5967 km., and 9229 km., respectively. Columns 6-8 test for the Rybczynski 

effect within manufacturing. Industries are grouped into quintiles by their US capital-labor ratios, mean wage rates, and non-production worker wage bill shares. 

Table 1b lists industry groupings. Linear time trends for each country by industry quintile are included in the estimation.

Including Rybczynski effect controls of 

country time trends x industry quintiles

Base 

estimation 

(Column 2, 

Table 2)

Including 

GDP/capita 

interactions

Including 

exporter 

populations 

interactions

Including 

route 

distance 

interactions

Including 

border 

effect 

interaction



First-stage estimation Reduced-form estimation IV estimation

(1) (2) (3)

DV: Δ Log country-

industry labor productivity

DV: Δ Log bilateral 

exports

DV: Δ Log bilateral 

exports

Δ Log estimator for technology 0.589** 0.938***

flows from the United States (0.272) (0.298)

Δ Log country-industry labor 1.592**

productivity (0.637)

Observations 103,839 103,839 103,839

Importer-Industry-Yr FE Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes

DV: Δ Log country-

industry labor productivity

DV: Δ Log bilateral 

exports

DV: Δ Log bilateral 

exports

Δ Log estimator for technology 0.267*** 0.648***

flows from the United States (0.078) (0.112)

Δ Log country-industry labor 2.429***

productivity (0.791)

Observations 103,839 103,839 103,839

Importer-Industry-Yr FE Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes

Table 5: IV estimations of labor productivity and exports

Panel A: Weighting bilateral routes by the interaction of exporter and importer 

trade in industry

Panel B: Excluding sample weights

Notes:  See Table 2. The instrument combines panel variation on the development of new technologies across US cities during the 

1975-2000 period with historical settlement patterns for migrants and their ancestors from countries that are recorded in the 1980 

Census of Populations. The F statistics in Panels A and B are 4.7 and 11.6, respectively.  



Base 

estimation 

(Column 3, 

Table 5)

Excluding 

exports 

from Brazil

Excluding 

exports 

from China

Excluding 

electrical 

machinery

Using a 

2%/98% 

winsorized 

sample

Using ISIC 

2-digit level 

industry 

groups

Kerr (2008) 

sample 

using Imp-

ISIC2-Year 

fixed effects

Kerr (2008) 

sample 

using Imp-

ISIC3-Year 

fixed effects

Using 

exporter-

level 

clustering

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Δ Log country-industry labor 1.592** 1.616** 1.372** 1.616** 1.715** 0.673* 1.109*** 1.794** 1.592***

productivity (0.637) (0.644) (0.649) (0.746) (0.717) (0.393) (0.390) (0.770) (0.335)

Observations 103,839 103,010 101,221 97,326 103,839 51,483 23,345 23,345 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Δ Log country-industry labor 2.429*** 2.485*** 2.331*** 3.415** 2.862*** 1.578 3.448* -0.808 2.429***

productivity (0.791) (0.801) (0.778) (1.735) (0.851) (1.452) (2.059) (2.094) (0.646)

Observations 103,839 103,010 101,221 97,326 103,839 51,483 23,345 23,345 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 6: Robustness checks on IV specifications in Table 5

Panel A: Weighting bilateral routes by the interaction of exporter and importer trade in industry

Panel B: Excluding sample weights

Notes:  See Table 5.

The dependent variable is Δ log bilateral exports on the intensive margin by exporter-importer-industry



Base 

estimation 

(Column 3, 

Table 5)

Using total 

technology 

trend

Using 

industry 

groupings 

based on 

mfg roles

Using first-

generation 

immigrants

Using later-

generation 

immigrants

Using 

bachelor's 

educated 

workers

Using non-

bachelor's 

educated 

workers

Including 

industry x 

year x 

distance  

effects

Excluding 

exporters 

with <100k 

ethnic US 

members

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Δ Log country-industry labor 1.592** 1.513*** 2.634* 1.581*** 1.699 2.233** 1.607** 1.352*** 1.669**

productivity (0.637) (0.498) (1.583) (0.420) (1.097) (1.052) (0.683) (0.426) (0.797)

Observations 103,839 103,839 103,839 103,839 103,839 103,839 103,839 103,839 78,411

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Δ Log country-industry labor 2.429*** 3.342*** Invalid 2.645*** 2.341** 2.727*** 2.812*** 2.485*** 2.251***

productivity (0.791) (1.096) first stage (0.733) (1.062) (0.988) (0.962) (0.776) (0.875)

Observations 103,839 103,839 103,839 103,839 103,839 103,839 103,839 103,839 78,411

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 7: Robustness checks on IV specifications in Table 5

The dependent variable is Δ log bilateral exports on the intensive margin by exporter-importer-industry

Panel A: Weighting bilateral routes by the interaction of exporter and importer trade in industry

Panel B: Excluding sample weights

Notes:  See Table 5.



Anglo-Saxon Chinese European Hispanic Indian Japanese Korean Russian Vietnam.

1975-1979 74.8% 2.1% 15.6% 2.7% 2.0% 0.6% 0.3% 1.9% 0.1%

1980-1984 73.4% 2.9% 15.1% 2.7% 2.6% 0.7% 0.4% 2.0% 0.1%

1985-1989 72.2% 3.6% 14.6% 2.9% 3.1% 0.8% 0.5% 2.1% 0.2%

1990-1994 70.0% 4.8% 14.1% 3.2% 3.9% 0.9% 0.6% 2.2% 0.4%

1995-1999 66.4% 6.7% 13.6% 3.5% 5.2% 0.9% 0.7% 2.5% 0.5%

2000-2004 63.1% 8.8% 13.0% 3.8% 5.9% 1.0% 0.9% 2.8% 0.6%

Chemicals 65.8% 7.3% 14.4% 3.2% 4.9% 0.9% 0.7% 2.5% 0.3%

Computers 62.9% 8.4% 12.6% 3.4% 7.5% 1.0% 0.7% 2.7% 0.7%

Pharmaceuticals 64.8% 7.2% 14.8% 3.9% 4.6% 1.1% 0.8% 2.6% 0.3%

Electrical 64.3% 8.3% 13.3% 3.3% 5.3% 1.0% 0.9% 2.8% 0.7%

Mechanical 72.8% 3.3% 14.2% 3.3% 2.8% 0.7% 0.5% 2.2% 0.2%

Miscellaneous 74.1% 2.9% 13.9% 3.6% 2.3% 0.6% 0.5% 1.9% 0.2%

Top Cities as a WS (84) SF (14) MIL (21) MIA (16) SF (8) SD (2) BAL (2) NYC (4) AUS (2)

Percentage of SLC (83) LA (8) NOR (19) SA (9) AUS (7) SF (2) LA (1) BOS (4) SF (1)

City’s Patents NAS (82) AUS (6) STL (19) WPB (6) PRT (6) LA (2) DC (1) HRT (4) LA (1)

Bachelor's Share 87.6% 2.7% 2.3% 2.4% 2.3% 0.6% 0.5% 0.4% 1.2%

Master's Share 78.9% 6.7% 3.4% 2.2% 5.4% 0.9% 0.7% 0.8% 1.0%

Doctorate Share 71.2% 13.2% 4.0% 1.7% 6.5% 0.9% 1.5% 0.5% 0.4%

App. Table 1:  Descriptive statistics for inventors residing in United States

Ethnicity of inventor

A. Ethnic Inventor Shares Estimated from US Inventor Records, 1975-2004

B. Immigrant Scientist and Engineer Shares Estimated from 1990 US Census Records

Notes:  Panel A presents descriptive statistics for inventors residing in the US at the time of patent application.  Inventor ethnicities are estimated through inventors' names 

using techniques described in the text.  Patents are grouped by application years and major technology fields.  Cities, defined through Metropolitan Statistical Areas, 

include AUS (Austin), BAL (Baltimore), BOS (Boston), DC (Washington), HRT (Hartford), LA (Los Angeles), MIA (Miami), MIL (Milwaukee), NAS (Nashville), NOR 

(New Orleans), NYC (New York City), PRT (Portland), SA (San Antonio), SD (San Diego), SF (San Francisco), SLC (Salt Lake City), STL (St. Louis), WPB (West Palm 

Beach), and WS (Winston-Salem).  Cities are identified from inventors' city names using city lists collected from the Office of Social and Economic Data Analysis at the 

University of Missouri, with a matching rate of 99%.  Manual recoding further ensures all patents with more than 100 citations and all city names with more than 100 

patents are identified.  Panel B presents comparable statistics calculated from the 1990 Census using country of birth for scientists and engineers.  Anglo-Saxon provides a 

residual in the Census statistics.  Many US inventors with European names are native citizens.



OLS estimation Reduced-form estimation

(1) (2)

Δ Log country-industry labor -0.014**

productivity (0.005)

Δ Log estimator for technology -0.008

flows from the United States (0.083)

Observations 241,790 241,790

Importer-Industry-Yr FE Yes Yes

Exporter-Importer-Yr FE Yes Yes

Δ Log country-industry labor -0.017

productivity (0.021)

Δ Log estimator for technology 0.061

flows from the United States (0.084)

Observations 241,790 241,790

Importer-Industry-Yr FE Yes Yes

Exporter-Importer-Yr FE Yes Yes

App. Table 2: Estimations of extensive margin

Panel A: Weighting bilateral routes by the interaction 

of exporter and importer trade in industry

Panel B: Excluding sample weights

Notes:  See Tables 2 and 5.  Estimations test the extensive margin of trade through linear probability 

models.  The dependent variable is a dichotomous indicator variable taking unit value if bilateral 

exports exceed $100k.  The $100k threshold is chosen due to WTF data collection procedures 

discussed in the text.  

Dependent variable is Δ (0,1) [exports > US$100k]



(1) (2) (3) (4) (5) (6)

Δ Log estimator for technology 0.589** 0.524** 0.938*** 0.886***

flows from the United States, (0.272) (0.241) (0.298) (0.272)

lagged five years

Δ Log estimator for technology 0.376* 0.275 0.393 0.223

flows from the United States, (0.212) (0.169) (0.253) (0.256)

contemporaneous

Observations 103,839 103,839 103,839 103,839 103,839 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes

Δ Log estimator for technology 0.267*** 0.265*** 0.648*** 0.636***

flows from the United States, (0.078) (0.078) (0.112) (0.107)

lagged five years

Δ Log estimator for technology 0.064 0.059 0.473*** 0.459***

flows from the United States, (0.071) (0.069) (0.111) (0.105)

contemporaneous

Observations 103,839 103,839 103,839 103,839 103,839 103,839

Importer-Industry-Yr FE Yes Yes Yes Yes Yes Yes

Exporter-Importer-Yr FE Yes Yes Yes Yes Yes Yes

App. Table 3: Lag structure of first-stage and reduced-form estimations 

Panel A: Weighting bilateral routes by the interaction of exporter and importer trade in industry

Panel B: Excluding sample weights

Notes:  See Table 5. The first-stage and reduced-form performance of the lagged technology flows, the preferred instrument, is contrasted with 

contemporaneous flows.

DV: Δ Log country-industry labor productivity DV: Δ Log bilateral exports

DV: Δ Log country-industry labor productivity DV: Δ Log bilateral exports

First-stage estimation Reduced-form estimation


