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Abstract

Despite their popularity as proxies of expected returns, the implied cost of capital’s
(ICC) measurement error properties are relatively unknown. Through an in-depth
analysis of a popular implementation of ICCs by Gebhardt, Lee, and Swaminathan
(2001) (GLS), I show that ICC measurement errors can be not only nonrandom
and persistent, but can also be associated with firms’ risk or growth characteris-
tics, implying that ICC regressions are likely confounded by spurious correlations.
Moreover, I document that biases in GLS’ measurement errors are driven not only
by analysts’ systematic forecast errors but also by functional form assumptions, so
that correcting for the former – a primary focus of the ICC literature – is insufficient
by itself. From these findings, I argue that the choice between ICCs and realized
returns involves a tradeoff between bias and efficiency, and suggest that realized
returns should be used in conjunction with ICCs to make more robust inferences
about expected returns.
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1 Introduction

The implied cost of equity capital (ICC), defined as the internal rate of return that

equates the current stock price to discounted expected future dividends, is an increasingly

popular class of proxies for the expected rate of equity returns in accounting and finance.1

ICCs have intuitive appeal in that they are anchored on the discounted-cash-flow valu-

ation model. Moreover, ICCs have two distinct advantages over alternatives such as ex

post realized returns. First, ICCs are forward-looking and utilize forecasts of a firm’s

future fundamentals (e.g., consensus analyst forecasts of future earnings). Second, ex

post realized returns are noisy estimates of expected returns, as evidenced by Campbell

(1991) and Vuolteenaho (2002). These advantages promulgated a growing body of liter-

ature that uses ICCs to study the cross-sectional variations in expected returns, where

inferences are made from regressions of ICCs on firm characteristics or regulatory events

of interest.2

While ICCs are likely more precise than alternatives like realized returns, the prop-

erties of their measurement errors—the differences between the firm’s ICC and (unob-

served) true expected returns—are not fully understood, and these properties can have

significant implications. If ICC measurement errors are systematically correlated with

firm characteristics, researchers’ inferences may be confounded by spurious correlations

with measurement errors. If so, researchers face a bias-efficiency tradeoff when choosing

between ICCs and realized returns. On the other hand, if ICC measurement errors are

uncorrelated with the regressors, e.g., if they are “classical” or random noise, then in

1That is, ICCs are the êri,t that solves

Pi,t =

∞∑
n=1

Et [Di,t+n]

(1 + êri,t)
n ,

where Pi,t is firm i’s price at time t, and Et [Di,t+n] is the time-t expectation of the firm’s dividends in
period t+ n.

2For example, Botosan (1997) studies the impact of corporate disclosure requirements; Chen, Chen,
and Wei (2009) and Chen, Chen, Lobo, and Wang (2011) examine the impact of different dimensions of
corporate governance; Daske (2006) examines the effect of adopting IFRS or US GAAP; Dhaliwal, Krull,
Li, and Moser (2005) examines the effects of dividend taxes; Francis, LaFond, Olsson, and Schipper
(2004) study the effects of earnings attributes; Francis, Khurana, and Pereira (2005) study the effects of
firms’ incentives for voluntary disclosure; Hail and Leuz (2006) examine the effect of legal institutions
and regulatory regimes; and Hribar and Jenkins (2004) examine the effect of accounting restatements.
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large sample the estimated regression coefficients converge to the true associations be-

tween firm characteristics and expected returns. If so, ICCs should be unambiguously

preferred over realized returns.

Why might one expect ICCs to have nonrandom measurement errors? Measurement

errors in ICCs can arise from two potential sources, each of which has the potential to

be nonrandom and systematically associated with firm characteristics. The first source

of ICC measurement errors is forecast errors of future fundamentals (e.g., cash flows

or earnings). To the extent that such forecasts are systematically biased toward certain

types of firms, the resulting ICCs can be expected to contain measurement errors that are

correlated with the characteristics of such firms. For example, La Porta (1996); Dechow

and Sloan (1997); Frankel and Lee (1998); and Guay, Kothari, and Shu (2011) show that

consensus analyst EPS (as well as long-term growth) forecasts tend to be more optimistic

for growth firms. Thus, all else equal, ICCs constructed using these analyst forecasts

could produce measurement errors that are systematically more positive for growth firms

than for value firms. Moreover, this source of measurement errors could be persistent

if analysts’ optimism is persistent, perhaps due to heuristic biases (e.g., Lys and Sohn,

1990; Elliot, Philbrick, and Wiedman, 1995).

A second source of ICC measurement errors is model misspecification, which results

from erroneous assumptions embodied in the functional form that maps information and

prices to expected returns. Model misspecification, by its nature, produces persistent

errors; moreover, if the extent of misspecification varies with firm type, ICC measurement

errors can be expected to be correlated with firm characteristics even if forecasts of

future earnings are unbiased. For example, ICCs implicitly assume constant expected

returns, despite the growing body of literature on time-varying expected returns (e.g.,

Cochrane, 2011; Ang and Liu, 2004; Fama and French, 2002; Jagannathan, McGrattan,

and Scherbina, 2001). ICC is a measure of yield and can be viewed as a “weighted average”

of expected future returns which can overstate (understate) the true expected returns

over the next period if the term structure is upward-sloping (downward-sloping). If

the term structure of expected returns varies with certain firm characteristics, they could
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generate nonrandom ICC measurement errors.3 Consistent with this, the theoretical work

of Hughes, Liu, and Liu (2009) show that when expected returns are stochastic but ICCs

implicitly assume constant expected returns, ICCs differ from expected returns and ICC

measurement errors can be correlated with firms’ risk and growth profiles, even if forecasts

of future cash flows are perfectly rational. As a consequence, despite a concerted effort to

understand and mitigate the impact of systematic forecast biases on ICC measurement

errors (e.g., Easton and Sommers, 2007; Hou, Van Dijk, and Zhang, 2012; Guay et al.,

2011; Mohanram and Gode, 2012), it is still possible for ICCs to produce measurement

errors—resulting from model misspecification—that are systematically correlated with

firm characteristics and can be persistent.

Though the above provides some intuition behind nonrandomness in ICC measure-

ment errors, the relations between firm characteristics and ICC measurement errors are

ex ante ambiguous. In particular, it is unclear how a given firm characteristic would in-

teract with the two potential sources of measurement errors. Therefore, these properties

of ICC measurement errors are ultimately open empirical questions that have significant

implications for empirical research using ICCs. In a discussion paper on the implied

cost of capital, Lambert (2009) commented that “[there are likely] biases and spurious

correlations in estimates of implied cost of capital.” Echoing such sentiments, Easton

(2009) concluded in his survey of ICC methodologies that “as long as measurement error

remains the Achilles’ Heel in estimating the expected rate of returns, it should be one of

the focuses of future research on these estimates.” (p.78)

This paper provides a first study on the persistence and cross-sectional properties of

ICC measurement errors. In particular, I seek to examine whether ICC measurement

errors are random in nature, or whether there is evidence of systematic associations with

firm characteristics. A finding that measurement errors are random would support their

use as dependent variables in regression settings. On the other hand, documenting non-

random measurement errors that are associated with firm characteristics raises concerns

about spurious correlations, because regressions of ICCs on firm characteristics could

3Lyle and Wang (2014) show that the slope of the term structure is higher for growth firms (those
with low book-to-market multiple).
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reflect associations with measurement errors rather than expected returns.

To address these questions, I develop a methodology for estimating the persistence of

ICC measurement errors and their cross-sectional associations with firm characteristics.

The methodology anchors on two main sets of assumptions. First, I assume that unex-

pected returns, the difference between future realized returns and expected returns, are

uncorrelated with ex ante publicly available information. On an intuitive level, this as-

sumption says “news is news”—by definition news cannot be systematically predictable.4

Second, I model expected returns and ICC measurement errors as AR(1) processes to

allow for the possibility of time-varying and persistent expected returns and ICC mea-

surement errors, respectively. A finding of an AR(1) persistence parameter value of 0 for

ICC measurement errors would suggest that they are random measurement errors.

Based on these two sets of assumptions, I derive methodologies for estimating the

persistence parameters of expected returns and measurement errors based on the auto-

covariances of ICCs and the covariances between realized returns and ICCs. Moreover,

utilizing the AR(1) structures in expected returns and ICC measurement errors, I show

that a transformation of ICCs—a linear combination of ICC values and the persistence

parameters—produces a “well-behaved” proxy for ICC measurement errors in the form

of the sum of a firm-specific mean, the ICC measurement error, and random noise. Be-

cause this proxy takes a form akin to the classic errors-in-dependent-variable set up, I

show that valid inferences on the associations between ICC measurement errors and firm

characteristics can be made using fixed effects regressions.

I apply these methodologies to a popular implementation of ICCs, colloquially known

as “GLS” in recognition of its creators (Gebhardt, Lee, and Swaminathan, 2001), and

document three main findings that contribute to the ICC literature. First, I present the

first direct evidence that ICC measurement errors can be nonrandom and quite persis-

tent: GLS measurement errors have an average (median) persistence parameter of 0.46

(0.48). Second, I show that ICC measurement errors can be systematically associated

4Note that this condition is implied by the stronger assumption that realized returns are bias free, an
assumption that has been questioned by the ICC literature (e.g., Easton and Monahan, 2005; Botosan,
Plumlee, and Wen, 2011). However, the paper’s methodology applies so long as biases in expected returns
are constant and unexpected returns are not predictable.
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with firm characteristics: GLS measurement errors are cross-sectionally associated with

firm risk and growth characteristics, such as market capitalization, book-to-market ratio,

3-month momentum, analyst coverage, and analyst long-term growth forecasts. Third, I

find that the associations between GLS measurement errors and firm characteristics per-

sist even after controlling for analyst forecast biases, consistent with GLS measurement

errors driven by both functional form misspecification and by analyst forecast biases—

the primary source of measurement errors focused on by the empirical ICC literature

(e.g., Easton and Sommers, 2007; Guay et al., 2011; Hou et al., 2012). In particular, I

document that GLS measurement errors are positively associated with the slope of the

term structure in expected returns.

To provide comfort in the paper’s methodologies and inferences about GLS mea-

surement errors, I conduct a further construct validity test. The logic of this test rests

on the observation that if the paper’s methods yield valid inferences about GLS mea-

surement errors, they also produce valid inferences about expected returns.5 In other

words, this methodology should produce estimates that better capture the systematic

associations between expected returns and firm characteristics compared to regressions

that use GLS. To test these implications, I compare the performance of expected-return

proxies constructed using historically-estimated regression coefficients estimated based on

the paper’s methodology and based on GLS. I find that regression coefficients estimated

using the paper’s methodology generate expected-return proxies that exhibit substan-

tially better ability in sorting average future returns, providing confidence in the paper’s

methodology for making inferences about GLS measurement errors.

Based on the evidence documented in this paper, I draw several conclusions that are

important for the ICC literature. First, empirical results involving cross-sectional re-

gressions of ICCs on firm characteristics are likely confounded by spurious correlations

between ICC measurement errors and firm characteristics. Second, methodologies for

mitigating ICC measurement errors such as portfolio grouping and instrumental vari-

5Specifically, subtracting the model-derived proxy for ICC measurement errors from ICC produces a
“well-behaved” proxy for expected returns, again one that takes a form similar to the classic errors-in-
dependent-variables set up that allows for valid inferences on the associations between expected returns
and firm characteristics using fixed effects regressions.
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ables are limited in effectiveness since common grouping variables or instruments (e.g.,

market capitalization and book-to-market ratio) are likely correlated with the measure-

ment errors, as is the case of GLS. Third, correcting for systematic analyst forecast errors

alone is unlikely to be adequate in fully addressing ICC measurement errors, since the

latter are also driven by errors arising from model misspecification (e.g., the implicit

assumption of constant expected returns).

Nevertheless, researchers need not abandon ICCs entirely. After all, making inferences

about unobserved expected returns is a difficult task and no proxy of expected returns is

perfect or strictly dominates all alternatives. I argue that a researcher’s choice between

ICCs and realized returns involves a tradeoff between bias and efficiency. ICCs have the

distinct advantage of having less noisy or more precise measurement errors, but their

nonrandomness can bias regression estimates and confound inferences. On the other

hand, realized returns have the distinct advantage of having unpredictable errors (i.e.,

“news”), which allow for consistent estimation of regression coefficients, but the noisiness

in these errors make the regression estimates imprecise. The use of realized returns as a

proxy of expected returns, therefore, yields low-powered and conservative tests. Based

on this observation, in the last section of the paper I suggest a conservative approach for

how realized returns and ICCs can be used together to provide more robust inferences

about expected returns.

The remainder of the paper is organized as follows. Section 2 of the paper describes

the theoretical model and lays out the estimation procedures. Section 3 presents the

empirical results. Section 4 discusses the implications of the paper’s findings, and offers

some practical recommendations for researchers.

2 Theoretical Model and Empirical Methodology

In this section I motivate the potential concerns with inferences about expected re-

turns that arise from regressions using ICCs. In particular, when ICC measurement errors

are nonrandom, regressions of ICCs on firm characteristics could reflect spurious corre-

6



lations with measurement errors. I then develop empirical methodologies for studying

the properties of ICC measurement errors that provides answers to two primary research

questions of interest. Are ICC measurement errors nonrandom? If so, are they associated

with firm characteristics?

2.1 Motivation

Researchers are often interested in understanding the association between a particular

firm characteristic (e.g., earnings quality, corporate governance) and a firm’s (unobserved)

expected rate of returns,

eri,t ≡ Et (ri,t+1) . (1)

To examine these questions empirically, a regression framework is typically employed

using a proxy of expected returns (êri,t) as a dependent variable, where

êri,t = eri,t + wi,t (2)

and wi,t is the proxy’s measurement error.

The standard approach assumes that expected returns are linear in firm characteristics

(3) with standard OLS assumptions on residuals. Assume also that measurement errors

are linear in certain firm characteristics with standard assumptions on residuals (4). A

univariate case is presented here for simplicity and without loss of generality.

eri,t = δ0 + δ · zi,t + εeri,t (3)

wi,t = β0 + β · xi,t + εwi,t (4)

where (εwi,t, ε
er
i,t) ∼iid (0, 0) ;

E
(
εwi,t|zi,t, xi,t

)
= E

(
εeri,t|zi,t, xi,t

)
= 0

The last condition, that the residuals are mean independent of the firm characteristics,

implies that the residuals and firm characteristics are uncorrelated, which allow for the

consistent estimation of the slope coefficients.
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Because the dependent variable is measured with error, the estimated slope coefficient

of interest could be biased to the extent that measurement errors are associated with the

regressor. On the other hand, to the extent that measurement errors are “classical” or

random noise, the estimated slope coefficient continues to be consistent.

I present a simple illustrative example for intuition. Without loss of generality, sup-

pose that zi,t = xi,t = Sizei,t, where Sizei,t is firm i’s log of market capitalization at the

beginning of period t.6 Then, equations (2), (3), and (4) imply the following relation

between the expected-return proxy and Size.

êri,t = (δ0 + β0) + (δ + β)Sizei,t +
(
εeri,t + εwi,t

)
If measurement errors are random (i.e., β = 0), then a regression of the expected-return

proxy on Size produces valid estimates of δ. If measurement errors are nonrandom and

associated with Size (i.e., β 6= 0), then such a regression produces a biased estimate of

δ. This bias results from the (spurious) correlation between Size and the measurement

error (β) and confounds the researcher’s inferences on expected returns.

2.2 Empirical Methodology

The preceding example provides intuition behind why nonrandom ICC measurement

errors can critically affect inferences about unobserved expected returns. But study-

ing the nonrandomness of ICC measurement errors empirically is not easy, given that

firms’ true expected returns are unobserved. To help address these questions, I develop

methodologies below for estimating the persistence in ICC measurement errors and their

cross-sectional associations with firm characteristics under the linearity assumptions of

(3) and (4).

6This simplifying assumption, made here for illustration only, is unnecessary for the remainder of the
paper.
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2.2.1 Assumption 1: AR(1) Structures

To make the analysis of measurement errors tractable, I begin by modeling the time-

series behavior of expected returns and measurement errors to as AR(1) processes, with

persistence parameters of φi and ψi and with innovations ui,t+1 and vi,t+1, respectively:

eri,t+1 = µui + φi · eri,t + ui,t+1; (5)

wi,t+1 = µvi + ψi · wi,t + vi,t+1; (6)

where (ui,t, vi,t)
′ ∼ iid

(
(0, 0)′ , Σuv

)
,Σuv invertible; (7)

|φi| , |ψi| < 1; and (8)

φi 6= ψi. (9)

In this setup, both AR(1) parameters are assumed to be constant across time; moreover,

while the persistence parameter of expected returns (φi) is firm-specific, the persistence

of expected-returns-proxy measurement errors (ψi) is implicitly firm- and model-specific

(i.e., dependent on the model that generates the ICC). Finally, I make the regularity

assumption that the two processes are stationary (8), and the identifying assumption

that, for each firm, the AR(1) parameters are not equal to each other (9).

The AR(1) assumption on expected returns (5) captures the possibility that expected

returns are persistent and time-varying.7 This modeling choice is common in the asset

pricing literature (e.g., Conrad and Kaul, 1988; Poterba and Summers, 1988; Campbell,

1991; Pástor, Sinha, and Swaminathan, 2008; Binsbergen and Koijen, 2010; Pástor and

Stambaugh, 2012; Lyle and Wang, 2014), and is consistent with the growing literature on

time-varying (e.g., Cochrane, 2011; Ang and Liu, 2004; Fama and French, 2002; Jagan-

nathan et al., 2001) and persistent (e.g., Fama and French, 1988; Campbell and Cochrane,

1999; Pástor and Stambaugh, 2009) expected returns.

The AR(1) assumption about measurement errors captures the possibility that mea-

7As noted in Campbell (1990) and Campbell (1991), the AR(1) assumption on expected returns need
not restrict the size of the market’s information set, and in particular does not assume that the market’s
information set contains only past realized returns. The AR(1) assumption merely restricts the way
in which consecutive periods’ forecasts relate to each other, and it is quite possible that each period’s
forecast is made using a large set of variables.
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surement errors could also be persistent and time-varying. Unlike the assumption on

expected returns, this assumption is new—to my knowledge there are no existing esti-

mates of the persistence of ICC measurement errors. Note that this modeling choice does

not impose persistence by assumption, as a persistence parameter of 0 is possible.

There is, however, rationale for why ICC measurement errors could be nonrandom and

persistent. One source of measurement errors in ICC stems from analyst forecast errors,

which can be potentially persistent. For example, analysts may be slow to incorporate

new information (e.g., Lys and Sohn, 1990; Elliot et al., 1995) and update their forecasts

sluggishly due to heuristic biases in how new information is weighed relative to old in-

formation. Elliot et al. (1995) argue that analysts are conservative in incorporating new

information into their forecasts, consistent with the belief adjustment model of Hogarth

and Einhorn (1992) in which analysts (overly) anchor to old information about the firm

and (under) adjust their priors based on new information. This type of behavioral bias

could lead to persistence in forecast errors, and, consequently, persistence in ICC mea-

surement errors. The second source of ICC measurement errors, model misspecification,

could also give rise to persistent measurement errors, to the extent that the misspecifi-

cation is persistent. For example, the assumption of constant expected returns that is

implicit (and persistent) in ICC models could give rise to persistent ICC measurement

errors.

Ultimately the persistence in ICC measurement errors is an open empirical question.

A finding that ICC measurement errors have a persistence parameter of 0 would be

significant, as such a result would imply that measurement errors are random, mitigating

concerns about spurious inferences in regression settings. In this case, ICCs should be

unambiguously preferred over realized returns as a proxy of expected returns.
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2.2.2 Assumption 2: News is News

In order to estimate the AR(1) parameters of the model, I make a second assumption

that unexpected returns, or newsi,t+1 defined from the identity

ri,t+1 = eri,t + newsi,t+1, (10)

is uncorrelated with ex ante publicly available information. This assumption is a state-

ment that “news is news,” or that news cannot be, by definition, systematically pre-

dictable. If “news” is anticipated, it is part of expectations and not news.

More formally, this assumption is implied by the stronger assumption that realized

returns are bias free. Though this stronger assumption follows from the definition of

conditional expectations,8 it is an assumption that has been questioned by the ICC

literature (e.g., Easton and Monahan, 2005; Botosan et al., 2011). Thus this paper makes

the weaker assumption that unexpected returns are uncorrelated with ex ante publicly

available information, which allows for biased expected returns so long as the biases are

constant.

Note that the notation and set up used here is similar to that of Lee, So, and Wang

(2014). Like this paper, Lee et al. (2014) studies properties of measurement errors of ex

ante proxies of expected returns by making the “news is news” assumption. There are

some important differences nonetheless. Lee et al. (2014) is primarily interested in the

variance in measurement errors, and derives a methodology for ranking ex ante measures

8Realized returns (ri,t+1) is the sum of expected returns and news,

ri,t+1 = E[ri,t+1|χt] + δi,t,

where χt is the publicly available information at time t. Taking conditional expectations on both sides
and substituting E[ri,t+1|χt] = E[E(ri,t+1|χt)|χt] yields

E[δi,t|χt] = 0,

or that realized returns are unbiased.
Note that this paper’s “news is news” assumption is implied by this definition. The conditional mean

independence condition above implies that news is uncorrelated with publicly available information, i.e.,

E[δi,txt|χt] = xtE[δi,t|χt] = 0

for any xt ∈ χt. Thus, this definition of expected returns implies that unexpected returns cannot be
systematically predictable based on ex ante information.
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of expected returns on the basis of their measurement error variances. This paper focuses

on the nonrandomness of these measurement errors, in particular their associations with

firm characteristics. To make this paper’s methodology tractable requires additional

assumptions, not required in Lee et al. (2014), on the stochastic process [i.e., AR(1)]

describing measurement errors and expected returns.

2.3 Estimating AR(1) Parameters

Under the AR(1) structures and the “news is news” assumption, I show in Appendix A

that the persistence parameters of expected returns and ICC measurement errors can be

estimated. To summarize, I derive a) the autocovariance function for the expected-return

proxy and b) the covariance function between realized returns and expected returns. I

then show that the persistence parameters can be identified by relating these covariance

functions.

2.4 Estimating Measurement Error Associations with Firm Char-

acteristics

The above modeling set up also allows for the estimation of the associations between

ICC measurement errors and firm characteristics. In particular, the AR(1) structures

above yield a proxy for ICC measurement errors with desirable properties. Substitution
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of (5) and (6) into (2) and some simple algebraic manipulations produce ŵi,t:
9

êri,t+1 − φiêri,t
ψi − φi︸ ︷︷ ︸
ŵi,t(ψi,φi)

=

(
µui + µvi
ψi − φi

)
︸ ︷︷ ︸

αi

+ wi,t +
ui,t+1 + vi,t+1

ψi − φi
(11)

= β0 + β · xi,t + αi +

(
εωi,t +

ui,t+1 + vi,t+1

ψi − φi

)
(12)

by the linearity assumption of (4).

This proxy for ICC measurement errors, by equation (11), is a sum of three com-

ponents: (1) a firm-specific constant (αi); (2) the unobserved measurement error (wi,t);

and (3) iid mean 0 innovations. This proxy takes a form akin to the classical errors-in-

variables structure, i.e., the proxy is the sum of the target variable of interest and iid

mean 0 noise. The difference here is that the measurement error (ŵi,t − wi,t), while iid,

has a non-zero mean. In particular, under the linearity assumption relating ICC measure-

ment errors to firm characteristics (4), the measurement-error proxy can be written in

the form of a standard fixed effects model (12). Thus, under this model one can estimate

β, the associations between measurement errors and firm characteristics (xi,t), through a

fixed-effects regression of ŵi,t (ψi, φi) on xi,t.
10

This setup also allows for inferences about the association between expected rate of

returns and firm characteristics—the researcher’s ultimate goal. In particular, a well-

behaved measurement error structure can by obtained from a simple modification of the

9To show the algebraic steps:

êri,t+1 = eri,t+1 + wi,t+1 by definition of expected-return proxy

= (µui + φieri,t + ui,t+1) + (µvi + ψiwi,t + vi,t+1) by AR(1) assumptions

= (µui + µvi) + φieri,t + ψiwi,t + (ui,t+1 + vi,t+1)

= (µui + µvi) + φiêri,t + (ψi − φi)wi,t + (ui,t+1 + vi,t+1)

Thus êri,t+1 − φiêri,t = (µui + µvi) + (ψi − φi)wi,t + (ui,t+1 + vi,t+1)

To arrive at the expression for ŵi,t (ψi, φi) requires the identifying assumption of (9): φi 6= ψi.
10Alternatively, if the fixed effects can be assumed to be uncorrelated with firm characteristics, then

β can be estimated by a standard OLS regression of ŵi,t on xi,t.
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ICC: subtract ŵi,t (ψi, φi) from the expected-return proxy.

êri,t − ŵi,t (ψi, φi) = eri,t + wi,t − αi − wi,t −
ui,t+1 + vi,t+1

ψi − φi
by eqns (2), (11)

= −αi + eri,t +
ui,t+1 + vi,t+1

φi − ψi
(13)

= δ0 + δ · zi,t − αi +

(
εeri,t +

ui,t+1 + vi,t+1

φi − ψi

)
(14)

by linearity assumption of eqn (3)

Similar to before, equation (13) shows that the modified expected-return proxy (êri,t−

ŵi,t) is the sum of three components: (1) a firm specific constant (−αi); (2) the unobserved

expected returns (eri,t); and (3) iid mean 0 AR(1) innovations. Compared to the definition

of an expected-return proxy (2), the key feature in this modification is the absence of the

measurement-error term (ωi,t) in equation (13).

As before, this proxy takes a form akin to the classical errors-in-variables structure.

Viewed differently, this modification of ICCs replaces the original (potentially “bad”)

measurement errors with well-behaved ones. Under the linearity assumption relating

expected returns to firm characteristics (3), the modified expected-return proxy can be

expressed (14) in the form of a standard fixed-effects model. The slope coefficients (δ)

of interest, therefore, can be estimated by fixed-effects regressions of êri,t − ŵi,t on zi,t.

Alternatively, this methodology can be viewed as a way to “control” for the measurement

error in a regression setting. In particular, it is equivalent to regressing êri,t on firm

characteristics and controlling for ŵi,t, but constraining the slope coefficient to be 1.

The above procedures for estimating the associations of firm characteristics with ICC

measurement errors and with expected returns require the AR(1) parameters, which need

to be estimated. As summarized in Section 2.2.2 and detailed in Appendix A, this paper

develops an estimation procedure for these AR(1) parameters under the setup of the

model.
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3 Empirical Results

In this section I apply the above methodologies to the popular GLS (Gebhardt et al.,

2001) model in order to assess empirically whether ICCs measurement errors could be

nonrandom and whether they could be associated with firm characteristics. I also provide

evidence for the validity of this methodological approach in explaining GLS measurement

errors.

3.1 The Expected-Return Proxy: GLS

GLS is a practical implementation of the residual income valuation model11 with a

specific forecast methodology, forecast period, and terminal value assumption. Appendix

B details the derivation of GLS from the residual income model. To summarize, the

time-t GLS expected-return proxy for firm i is the êrglsi,t that solves

Pi,t = Bi,t +
11∑
n=1

Et[NIi,t+n]

Et[Bi,t+n−1]
− êrglsi,t(

1 + êrglsi,t

)n Et [Bi,t+n−1] +

Et[NIi,t+12]

Et[Bi,t+11]
− êrglsi,t

êrglsi,t

(
1 + êrglsi,t

)11Et [Bi,t+11] , (15)

where Et [NIi,t+1] and Et [NIi,t+2] are estimated using median analyst FY1 and FY2 EPS

forecasts (FEPSi,t+1 and FEPSi,t+2) from the Institutional Brokers’ Estimate System

(I/B/E/S), and where Et [NIi,t+3] (FEPSi,t+3) is estimated as the median FY2 ana-

lyst EPS forecast times the median analyst gross long-term growth-rate forecast from

I/B/E/S. For those firms with no long-term growth forecasts, GLS uses the growth

rate implied by the one- and two-year-ahead analyst EPS forecasts—i.e., FEPSi,t+3 =

FEPSi,t+2 (1 + FEPSi,t+2/FEPSi,t+1). In estimating the book value per share, GLS

relies on the clean surplus relation and applies the most recent fiscal year’s dividend-

payout ratio (k) to all future expected earnings to obtain forecasts of expected future

dividends—i.e., EtDt+n+1 = EtNIt+n+1 × k. GLS uses the trailing 10-year industry me-

11Also known as the Edwards-Bell-Ohlson model, the residual income model simply re-expresses
the dividend discount model by assuming that book value forecasts satisfy the clean surplus relation,
EtBi,t+n+1 = EtBi,t+n + EtNIi,t+n+1 − EtDi,t+n+1, where EtBi,t+n, EtNIi,t+n, and EtDi,t+n, are the
time-t expectation of book values, net income, and dividends in t+ n.
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dian ROE to proxy for
Et[NIi,t+12]

Et[Bi,t+11]
.12 Finally, for years 4–12, each firm’s forecasted ratio of

expected net income over expected beginning book value is linearly interpolated to the

trailing 10-year industry median ROE.

I use GLS to study the properties of ICC measurement errors for two primary reasons.

First, it is one of the most widely used implementations of ICCs in studying expected

return variation. Table 1 reports that since the work of Botosan (1997) that spawned

the literature, 69% of the papers that study expected return variation using ICCs employ

GLS.13 A second reason for choosing GLS is that the model contains several interesting

features, e.g., the roles of three-year-ahead forecasts and industry median ROE, that can

contribute to measurement errors. These features are useful from a validation standpoint,

because they provide some of the intuitions against which the efficacy of this paper’s

empirical methodology for explaining GLS measurement errors can be checked.

I compute GLS for all U.S. firms (excluding ADRs and those in the “Miscellaneous”

category in the Fama-French 48-industry classification scheme) from 1976 to 2010, com-

bining price and total-shares data from CRSP, annual financial-statements data from

Compustat, and data on analysts’ median EPS and long-term growth forecasts from

I/B/E/S. GLS is computed as of the last trading day in June of each year, resulting in a

sample of 75,055 firm-year observations.

In Table 2, summary statistics on GLS in my sample are reported and contrasted

with realized returns, an ex post proxy for ex ante expected returns. Panel A reports

annual cross-sectional summary statistics, including the total number of firms, the mean

12The use of “expected” long-run ROE to proxy for
Et[NIi,t+12]
Et[Bi,t+11]

can be viewed as a functional form

assumption that contributes to measurement error, by Jensen’s inequality.
13Table 1 summarizes the proxies of expected returns employed by papers published in top tier ac-

counting and finance journals published since 1997. These journals are The Accounting Review, Journal
of Accounting and Economics, Journal of Accounting Research, Review of Accounting Studies, Contem-
porary Accounting Research, Accounting Horizons, Journal of Finance, Journal of Financial Economics,
Review of Financial Studies, and Journal of Corporate Finance. By combing through ABI-ProQuest
and Business Source Complete as well as through the historical archives of the journals, I identified 54
papers that use ICCs as a measure of expected returns and, in particular, as a dependent variable in
cross-sectional regression settings. These do not include the theoretically or methodologically oriented
papers on ICCs, such as Gebhardt et al. (2001) or Easton and Monahan (2005). From this set of papers,
54% use the model of Claus and Thomas (2001), 69% use GLS, 61% use the related models of Gode and
Mohanram (2003) and Ohlson and Juettner-Nauroth (2005), and 70% use the related models of PEG or
MPEG (Easton, 2004); in contrast, future realized returns is the least popular, used in only 24% of the
papers.
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and standard deviation of GLS and 12-month-ahead realized returns, the risk-free rate,

and the implied and ex post risk premiums.14 Panel B reports summaries of the Panel

A data by five-year sub-periods and for the entire sample period. For example, columns

2-7 of Panel B report the averages of the annual median and standard deviation of GLS,

the averages of the annual mean and standard deviation in realized returns, the average

of the annual risk-free rate, and the average of the annual implied risk-premium over the

relevant sub-periods.

Overall, the patterns and magnitudes shown in Table 2 are consistent with prior

implementations of GLS (e.g., Gebhardt et al., 2001). Critically, these patterns illustrate

an important difference between ICC and realized return as expected-return proxies.

Consistent with prior work (e.g., Campbell, 1991; Vuolteenaho, 2002), these summary

statistics suggest that GLS is much more precise (i.e., they have lower measurement error

variance). Unlike realized returns, whose average cross-sectional standard deviation is

47.67%, GLS exhibits far less variation, with an average cross-sectional standard deviation

of 4.34%. Therefore, a finding that GLS measurement errors are random noise would

support the view that ICCs should be unambiguously preferred over realized returns in

regression settings.

3.2 Randomness of GLS Measurement Errors

To address whether GLS measurement errors are random, AR(1) parameters of GLS

measurement errors are estimated following the methodology outlined in Appendix A. I

also estimate the AR(1) parameter for the expected returns process.

Appendix A shows that the GLS measurement-error persistence parameter for a firm

(ψglsi ) is identified by the equation ci (s) − cri (s+ 1) = ψi × [ci (s− 1)− cri (s)], where

ci (s) ≡ Cov
(
êrglsi,t+s, êr

gls
i,t

)
is the s-th order sample autocovariance of the firm’s GLS. The

measurement-error persistence parameter can be estimated from the slope coefficient of

an OLS regression of {ĉi (s)− ĉri (s+ 1)}Ts≥1 on {ĉi (s− 1)− ĉri (s)}Ts≥1, where ĉi (s) is

14Risk-free rates are the one-year Treasury constant maturity rate on the last trading day in June
of each year, obtained from the website of the Federal Reserve Bank of St. Louis: http://research.

stlouisfed.org/fred2/series/DGS1/
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the sample analog of ci (s). Similarly, the expected-returns persistence parameter for a

firm (φi), under the model dynamics, is identified by the equation cri (s+ 1) = φi×cri (s),

where cri(s) ≡ Cov
(
ri,t+s, êr

gls
i,t

)
is the covariance between firm i’s realized annual returns

from t + s − 1 to t + s and GLS in period t. The expected-returns AR(1) parameter

can be estimated from the slope coefficient of an OLS regression of {ĉri (s+ 1)}Ts≥1 on

{ĉri (s)}Ts≥1, where ĉri(s) is the sample analog of cri(s).

For tractability, I assume persistence parameters are industry-specific and report in

Table 3 the estimates based on the Fama and French (1997) 48-industry classification.15

Panel B of Table 3 reports the estimated persistence parameters, the t-statistics, and R2

for each of the 48 Fama-French industries (excluding the “Miscellaneous” category), and

Panel A reports summary statistics across all industries.

In every industry the estimated persistence parameters for expected returns are pos-

itive and bounded between 0 and 1. Across the 47 industries in the sample, the mean

(median) industry AR(1) parameter for expected returns is 0.55 (0.56), with a standard

deviation of 0.21, mean (median) t-statistics of 3.82 (3.35), and mean (median) R2 from

the linear fit of 36.39% (34.88%).

Centrally, Table 3 reports the first estimates, to my knowledge, of ICC measurement-

error persistence in the literature. These estimates suggest that GLS measurement errors

are persistent. Though on average less persistent than expected returns, the estimated co-

efficients are significant. The mean (median) industry AR(1) parameter for GLS measure-

ment errors is 0.47 (0.48), with a standard deviation of 0.18, mean (median) t-statistics

of 3.05 (3.03), and mean (median) R2 from the linear fit of 29.23% (28.93%). In an

untabulated t-test test, I find an overall t-statistic of 17.61, rejecting the null that the

mean persistence in GLS measurement errors is no different from 0 at the 1% level.

To summarize, these AR(1) estimates suggest that GLS measurement errors are non-

random. They also raise the possibility that GLS measurement errors could induce biases

15These estimates are produced using sample industry-specific covariances and autocovariances for up

to 19 lags. For each industry l and for lags s = 1, ..., 19, I estimate ĉrl(s) ≡ Ĉov
(
ri,t+s, êr

gls
i,t

)
∀i ∈ l

and ĉl (s) ≡ Ĉov
(
êrglsi,t+s, êr

gls
i,t

)
∀i ∈ l. These estimated covariances, {ĉrl (s)}19s≥1 and {ĉrl (s)}19s≥1, are

then used to estimate the industry-specific expected-returns and GLS measurement-error persistence
parameters.
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in regression settings, as motivated and discussed in Section 2. I examine this possibility

empirically next.

3.3 Cross-Sectional Variation in GLS Measurement Errors

To assess the cross-sectional associations between GLS measurement errors and firm

characteristics, I construct the GLS measurement-error proxy using the estimated industry-

based AR(1) parameters estimates:

ŵglsi,t

(
ψ̂glsi , φ̂i

)
≡
êrglsi,t+1 − φ̂iêr

gls
i,t

ψ̂glsi − φ̂i
. (16)

Following the methodology developed in Section 2, these associations of interest can be

estimated in a regression of ŵglsi,t on firm characteristics and industry fixed effects.

3.3.1 GLS Measurement Errors and Firm Characteristics

Table 5 reports results from a pooled fixed-effects regression of the GLS measurement-

error proxy (ŵglsi,t ) on ten firm characteristics that are commonly hypothesized (or have

been shown) to explain the cross-sectional variation in expected returns and that have

been widely used as explanatory variables in the ICC literature: Size, defined as the log of

market capitalization (in $millions); BTM, defined as the log ratio of book value of equity

to market value of equity; 3-Month Momentum, defined as a firm’s realized returns in the

three months prior to June 30 of the current year; DTM, defined as the log of 1 + the

ratio of long-term debt to market capitalization; Market Beta, defined as the CAPM beta

and estimated for each firm on June 30 of each year by regressing the firm’s stock returns

on the CRSP value-weighted index using data from 10 to 210 trading days prior to June

30; Standard Deviation of Daily Returns, defined as the standard deviation of a firm’s

daily stock returns using returns data from July 1 of the previous year through June 30 of

the current year; Trailing Industry ROE, defined as the industry median return-on-equity

using data from the most recent 10 fiscal years (minimum 5 years and excluding loss firms)

and using the Fama-French 48-industry definitions; Analyst Coverage, defined as the log
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of the total number of analysts covering the firm; Analyst Dispersion, defined as the log

of 1 + the standard deviation of FY1 analyst EPS forecasts; and Analyst LTG, defined

as the median analyst projection of long-term earnings growth. All analyst-based data

are reported by I/B/E/S, as of the prior date closest to June 30 of each year. Summary

statistics of the main dependent and independent variables are reported in Table 4.16

Industry fixed effects are included throughout, following the estimation methodology

(12), and year dummies are also included to account for time fixed effects. The compu-

tation of standard errors also warrants explanation, as it is extensive and requires two

steps. First, I account for within-industry and within-year clustering of residuals by com-

puting two-way cluster robust standard errors (see Petersen, 2009; Gow, Ormazabal, and

Taylor, 2010), clustering by industry and year. Second, since the AR(1) parameters are

estimated, I account for the additional source of variation arising from the first-stage es-

timation following the bootstrap procedure of Petrin and Train (2003).17 All coefficients

and standard errors have been multiplied by 100 for ease of reporting, so that each coef-

ficient can be interpreted as the expected percentage point change in GLS measurement

errors associated with a 1 unit change in the covariate.

Table 5 reports empirical evidence that GLS measurement errors are significantly asso-

ciated with characteristics relevant to the firm’s risk and growth profile (e.g., Size, BTM,

and Analyst LTG) and with characteristics relevant to the firm’s information environment

(e.g., Analyst Coverage and Analyst Dispersion). Columns 1 and 2 report a positive (neg-

ative) association between Size (BTM and 3-Month Momentum) and GLS measurement

errors, but no significant associations exist with DTM, Market Beta, Standard Devia-

tion of Daily Returns, or Trailing Industry ROE. Column 3 considers only analysts-based

variables, and finds a negative (positive) association between Analyst Dispersion (Ana-

16Note that the mean value for the measurement error proxies cannot be interpreted as the average
measurement error in GLS. This is because, by equation (11), this proxy contains a fixed effects term.

17The methodology adds an additional term—the incremental variance due to the first-stage

estimation—to the variance of the parameters obtained from treating
(
φ̂i, ψ̂

gls
i

)
as the true

(
φi, ψ

gls
i

)
.

Specifically, I generate 1000 bootstrap samples from which to estimate 1000 bootstrap AR(1) parameters.
I then re-estimate the regressions using the bootstrapped AR(1) parameters (i.e., using the 1000 new
bootstrap dependent variables). Finally, the variance in regression parameter estimates from the 1000
bootstraps is added to the original (two-way cluster robust) variance estimates (which are appropriate
when φ and ψ are observed without error). These total standard errors are reported in Table 5.
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lyst Coverage and Analyst LTG) and GLS measurement errors. When combining analyst

and non-analyst regressors (i.e., columns 4 and 5), BTM, 3-Month Momentum, Analyst

Coverage, and Analyst LTG are significantly associated with GLS measurement errors.

The coefficients on Size and their statistical significance attenuate in these specifications,

compared to specifications that do not include Analyst Coverage (i.e., columns 1 and

2), likely due to their relatively high correlation (72%). Interpreting the specification

in column 5, I find that, all else equal, a 1 unit increase in the firm’s BTM (3-Month

Momentum) is associated with an expected 2.24 (8.20) percentage point decrease in GLS

measurement errors, with significance at the 10% (10%) level, and a 1 unit increase in a

firm’s Analyst Coverage (Analyst LTG) is associated with an expected 1.97 (2.25) per-

centage point increase in GLS measurement errors, with significance at the 5% (5%) level.

The adjusted R2s are high across the board, around 80% for each specification. However,

this is a byproduct of the empirical strategy and driven by the industry fixed effects.18

To provide some intuition for these results, the estimates of Table 5 are consistent

with the findings in the literature on the biases in analysts’ forecasts. For example, the

empirical findings that analysts tend to issue overly optimistic forecasts for growth firms

(e.g., Dechow and Sloan, 1997; Frankel and Lee, 1998; Guay et al., 2011) imply that

growth (lower BTM ) firms tend to have higher ICCs and, all else equal, should produce

more positive ICC measurement errors—consistent with the negative coefficients on BTM

in Table 5. The empirical literature also finds that high long-term-growth estimates

may capture analysts’ degree of optimism (La Porta, 1996), implying that firms with

high long-term-growth projections tend to have higher ICCs and, all else equal, should

produce more positive ICC measurement errors—consistent with the positive coefficients

on Analyst LTG in Table 5.

Overall, this evidence suggests that GLS measurement errors lead to spurious cor-

relations in regression settings. For example, inferences on firm characteristics such as

BTM based on GLS regressions are biased due to correlations with measurement errors.

It is worth noting that not all of the risk proxies included in this analysis exhibit a sig-

18The identification of the coefficients requires industry fixed effects. Moreover, by construction, there
is substantial across industry variation in (ŵglsi,t ) which uses industry-specific persistence parameters.
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nificant association with GLS measurement errors (e.g., DTM and Market Beta). An

implication is that researchers can continue to make valid inferences on the coefficients of

these “good” risk proxies (z), i.e., that are not correlated with GLS measurement errors,

so long as they are uncorrelated with those risk proxies (x) found to be correlated with

GLS measurement errors, in a regression of GLS on x and z. If x and z are correlated,

however, then the coefficient on z would also be biased.

3.3.2 GLS Measurement Errors, Analyst Forecast Optimism, and Term Struc-

ture

Though biases in analysts’ forecasts provide intuition for the results of Table 5, they

may not be the only drivers of GLS measurement errors. Firm characteristics (e.g., Size

and BTM ) can also influence measurement errors through functional form misspecifica-

tion, for example through the implicit ICC assumption of constant expected returns.19

This section examines whether both sources of ICC measurement errors—analyst forecast

errors and functional form misspecification—lead to biases.

The existing empirical and methodological literature on ICCs have focused solely on

the role of forecast biases as a source of measurement errors (e.g., Easton and Sommers,

19The relations between firm characteristics and ICC measurement errors are, therefore, ex ante am-
biguous, because it is unclear how a given firm characteristic would interact with the two potential
sources of measurement errors. To illustrate, let

w (x) = f̂
(
p, Ê (x) , x

)
− f (p,E, x)

where f̂ is a function mapping prices and forecasts of earnings to an ICC, f is the function mapping
prices and “true” expectations of earnings to “true” expected returns, and w is the measurement error.
Let x be some firm characteristic that is relevant in determining expected returns, ICCs, and expected
earnings, and that also affects the degree of optimism in earnings forecasts Ê.

A simple first-order Taylor approximation of w around x = 0 yields the following expression

w ≈
[
f̂
(
p, Ê(0), 0

)
− f (p,E, 0)

]
+
[
f̂E

(
p, Ê(0), 0

)
Êx (0) + f̂x

(
p, Ê(0), 0

)
− fx (p,E, 0)

]
x,

so that the marginal effect of the firm characteristic x on measurement errors is approximated by:

w′ ≈ f̂E
(
p, Ê(0), 0

)
Êx (0) +

[
f̂x

(
p, Ê(0), 0

)
− fx (p,E, 0)

]
.

This expression says that a change in the firm characteristic x affects ICC measurement errors in two
ways: through its effect on the forecast of earnings and through a functional form effect.

This expression suggests that it is, in general, difficult to sign w′ for some arbitrary characteristic x.
While f̂E is positive, the signs of Êx, f̂x, and fx are ambiguous. For any arbitrary firm characteristic,
therefore, there is no clear prediction on how it will be associated with ICC measurement errors.
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2007; Guay et al., 2011; Hou et al., 2012). Therefore, examining whether analysts’ forecast

biases are the sole driver of ICC measurement error biases is important because of the

implications for the efficacy of improving forecasts as a solution to improving ICCs.

Specifically, I test roles of analyst forecast optimism and the implicit assumption

of a constant expected return (Hughes et al., 2009) in driving GLS measurement er-

rors. Ex ante, I expect ICC measurement errors (w) to be increasing with the degree

of earnings-forecast optimism, Ê − E. The intuition comes from the dividend discount

model: holding prices and fundamentals (i.e., true expected returns) fixed, an increase in

forecasted cash flows (the numerator) in some future period mechanically increases the

implied cost of capital (the denominator), thereby making the measurement errors—the

difference between the ICC and the underlying expectation of returns—more positive. I

also expect ICC measurement errors to be increasing in the slope of the term structure in

expected returns, or the difference between expected one-period returns in the long-run

from expected returns over the next period. Because an ICC represents a yield, or im-

plicitly assumes a flat term structure in expected returns, it can be viewed as a weighted

average of expected future returns [
∑∞

j=1 ωjEt (rt+j)]. This average can overstate (under-

state) the true expected returns over the next period [Et (rt+1)] if the term structure is

upward-sloping (downward-sloping), since long-run expected returns are relatively high

(low). Thus, all else equal, ICC measurement errors are more positive for firms with more

positive-sloping term structures in expected returns.

I begin by testing the relation between GLS measurement errors and the degree of

optimism in analyst forecasts; doing so requires unbiased forecasts for earnings expec-

tations. For this purpose I adopt the mechanical earnings-forecast model of Hou et al.

(2012), which produces benchmark earnings forecasts in a two-step process: first, esti-

mate historical relations between realized earnings and firm characteristics by running

historical pooled cross-sectional regressions; second, apply the historically estimated co-

efficients on current firm characteristics to compute the model-implied expectation of

future earnings.20

20Appendix B explains my implementation and estimation of Hou et al. (2012)’s mechanical forecast
model.
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This characteristic-based mechanical forecast model is a useful benchmark for study-

ing analyst forecast optimism. Hou et al. (2012) show that these mechanical earnings

forecasts closely match the consensus analyst forecasts in terms of forecast accuracy, but

exhibit lower levels of forecast bias. Moreover, they show that these forecasts produce

higher levels of earnings response coefficients compared to consensus analyst forecasts,

and argue that their mechanical forecasts are closer to the true expectations of earnings.21

Denoting Hou et al.’s time-t mechanical forecasts of FYt+τ EPS as Êj,t+τ , I define

the following analyst optimism variables: for τ = 1, 2, 3, FYτ Forecast Optimism is the

difference between the analyst FYτ median EPS forecast and Êj,t+τ . A benchmark for

a firm’s average long-run earnings is also necessary to obtain empirical measures for

the level of optimism in the terminal earnings forecast in GLS. I use the average of

FY3, FY4 and FY5 mechanical forecasts [i.e., (Êj,t+3 + Êj,t+4 + Êj,t+τ )/3] as the long-

run benchmark, and define Terminal Forecast Optimism as the difference between the

implied FY12 earnings and the long-run benchmark.22 Finally, following the literature,

I also create scaled versions of the optimism variables, scaling by total assets and by the

standard deviation in analyst FY1 earnings forecasts.

It is worth highlighting several features of GLS that yield some intuitions about the

expected relations between GLS measurement errors and analyst forecast optimism and

that facilitate the assessments of my empirical methodology and results. The first such

feature is the important role of the FY3 earnings forecast. GLS forecasts the ratio of

expected net income to expected book value from FY4 to FY11 by linearly interpolating

from the forecasted FY3 ratio to the trailing industry median ROE. Holding constant the

accuracy of the terminal forecast, to the extent that FY3 earnings forecasts are overly

optimistic, the subsequent years’ forecasts will also be upwardly biased. Therefore, the

21These authors define forecast bias as realized earnings minus forecast earnings (standardized by
market capitalization for model-based forecasts and by price for I/B/E/S forecasts); they define forecast
accuracy as the absolute value of forecast bias.

22The use of the average of FY3, FY4, and FY5 as a benchmark need not follow from the assump-
tion that such an average represents a good levels forecast of the firm’s long-run earnings. Under the
assumption that the difference between the GLS terminal EPS forecast and the long-run benchmark
is proportional to the difference between the GLS terminal EPS forecast and the true but unobserved
expected long-run EPS, variations in Terminal Forecast Optimism may still be informative about the
degree of terminal forecast optimism.
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degree of optimism in FY3 forecasts is expected to play an especially important role in

explaining GLS measurement errors. A more obvious feature of GLS is the important role

of the terminal value assumption. All else equal, GLS measurement errors are expected

to be positively associated with the degree of optimism in the terminal earnings forecast.

Table 6 reports results from a pooled fixed-effects regression of GLS measurement-

error proxy (ŵglsi,t ) on FY1, FY2, and FY3 Forecast Optimism and Terminal Forecast

Optimism. Year and industry fixed effects are included throughout, and the computation

of standard errors as well as the reporting conventions are identical to Table 5. Columns

1-3 use the unscaled optimism variables, and columns 4-6 (7-9) use the scaled optimism

variables, scaling by total assets (standard deviation of FY1 analyst forecasts).

Consistent with intuition, GLS measurement errors are associated positively and sig-

nificantly (at the 1% level) with FY3 Forecast Optimism (columns 1, 4, and 7), and

positively and significantly (at the 5% level) with Terminal Forecast Optimism (columns

2, 5, and 8), regardless of scaling.23 In specifications that include all optimism variables

(columns 3, 6, and 9), FY3 Forecast Optimism appears to be more important in explain-

ing measurement errors, as its coefficient remains associated positively and significantly

(at the 5% level) with GLS measurement errors, while the coefficient on Terminal Forecast

Optimism is attenuated and no longer statistically significant at conventional levels.24

Interpreting the coefficients in column 3, I find that a one dollar increase in analysts’

FY3 Forecast Optimism is associated with an expected 1.14 percentage-point increase

in GLS measurement errors, with statistical significance at the 5% level. A one dollar

increase in Terminal Forecast Optimism is associated with an expected 22 basis-point

increase in GLS measurement errors, but the coefficient is not statistically significant at

the conventional levels. Measures of FY1 and FY2 Forecast Optimism are not significant

in any of the specifications in Table 6, which is unsurprising in that for GLS the bias in

FY3 earnings forecasts has disproportionate influence on GLS measurement errors. Over-

all, these results are consistent with GLS’ unique modeling features, and provide comfort

23In untabulated results, I find that scaling forecasts by price yields qualitatively identical results to
those of Table 6.

24This may be due to the possibility that earnings forecast optimism can be measured with greater
precision in the short run than in the long run.
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that the methodology developed in this paper are useful for explaining the variations in

GLS measurement errors.

I now turn to consider jointly the influence of analyst forecast optimism and the

implicit assumption of constant expected returns on GLS measurement errors. In partic-

ular, I use a proxy from the work of Lyle and Wang (2014), who develop a methodology

for estimating the term structure of expected returns at the firm level based on two firm

fundamentals: BTM and ROE. Their model assumes that the expected quarterly-returns

and the expected quarterly-ROE revert to a long-run mean following AR(1) processes,

and produces empirical estimates of a firm’s expected returns over all future quarters. I

approximate the slope of the term structure (Term) as the difference between the long-

run expected (quarterly) returns from the expected one-quarter-ahead returns following

the model of Lyle and Wang (2014).

Table 7 replicates the fixed-effects regressions of Table 6, but includes as additional

controls Size, BTM, 3-Month Momentum, and Term. Qualitatively the results with

respect to analyst forecast optimism remain unchanged, but the coefficients and their

statistical significance attenuate slightly relative to Table 5. The attenuation is likely a

result of the correlation between analyst optimism and the controls—for example, the

aforementioned empirical observation that analysts are overly optimistic about higher-

growth (e.g., lower BTM ) firms.

Of particular importance is the consistent finding that the constant term structure

assumption is important in driving GLS measurement errors. In all specifications, the

steeper the slope in the term structure of expected returns, the more positive are GLS

measurement errors, consistent with expectations, with all coefficients on Term being

statistically significant at the 5% level. Moreover, the coefficients on Size and 3-Month

Momentum remain statistically significant in nearly all of the specifications, even after

controlling for biases in analyst forecasts. These empirical findings support the view

that analyst forecast biases do not, by themselves, drive the biases in GLS errors, and

that functional form misspecification incrementally and significantly contributes to these

biases also. Finally, to my knowledge, the empirical results of Tables 5–7 are the first
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direct empirical evidence broadly in support of the theoretical results of Hughes et al.

(2009).

3.3.3 Validity Test

The findings of Tables 6 and 7 are consistent with intuitions about the sources of

GLS measurement errors, providing some comfort and validity to the methodologies de-

veloped in this paper. In this section I conduct further validity tests to speak to the

informativeness of this paper’s methodologies about GLS measurement errors. The logic

of this validity test relies on expected returns as a statistical construct—the conditional

expectation of future returns—and is consistent with the view that realized returns are

unbiased for expected returns.25 Under this construct, good proxies of expected returns

should, on average, sort future realized returns (e.g., Guay et al., 2011; Hou et al., 2012;

Lyle and Wang, 2014; Lewellen, 2015).

Section 2.4 shows that if ŵglsi,t indeed captures GLS measurement errors’ cross-sectional

associations with firm characteristics, then a modified version of GLS (êrmglsi,t ≡ êrglsi,t −

ŵglsi,t ) captures the cross-sectional association between expected returns and firm char-

acteristics. In other words, if the paper’s model is valid for GLS, then a fixed-effects

regression of Modified GLS (ModGLS) on firm characteristics should, compared to GLS,

produce regression coefficients that better capture the systematic associations between

expected returns and firm characteristics. If so, these regression coefficients can be used

to form proxies of expected returns that exhibit superior ability in sorting future returns.

Following this intuition, I construct proxies of expected returns using historically esti-

mated regression coefficients on firm characteristics estimated using ModGLS, and com-

pare them with similarly estimated expected-return proxies but estimated using GLS. A

finding that those proxies constructed from historically estimated associations between

ModGLS and firm characteristics exhibit superior ability in sorting future returns is

consistent with the paper’s empirical methodologies being informative about GLS mea-

25An alternative that has been relied on in the ICC literature is a model-based construct (e.g., Botosan
and Plumlee, 2005; Botosan et al., 2011), in which expected returns are expected to exhibit certain
associations with measures of risk, as predicted by theoretical models.
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surement errors.

I follow a two step procedure to create expected-return proxies using historically

estimated associations between ModGLS and firm characteristics. First, in each year (t)

I regress ModGLS on firm characteristics using three years’ data from t−1 to t−3 (with

year and industry fixed effects), and obtain estimated coefficients δ̂t−1.
26 Second, I apply

the coefficients δ̂t−1 on current values of covariates Xt to obtain expected returns (Fitted

ModGLS) over the next year.

I consider three sets of covariates (corresponding to the significant covariates in the

three regression specifications of Table 10 presented in the next section). Model 1 is a

three-factor model with

Xt = {Sizet, BTMt, Momentumt} ;

Model 2 is a five-factor model with

Xt = {Sizet, BTMt, Momentumt, DTMt, StdRett} ;

and Model 3 is an seven-factor model with

Xt = {Sizet,BTMt,Momentumt,DTMt, StdRett, AnalystDispersiont, AnalystLTGt}.27

After estimating the Fitted ModGLS using this procedure, I sort them into decile port-

folios and summarize the average realized 12-month-ahead returns within each decile. I

compare these average returns to those produced by decile portfolios formed by GLS (i.e.,

by decile ranking êrglsi,t ) and Fitted GLS, which is created following the above two-step

procedure but using GLS as the dependent variable. Again, if the regression coefficients

estimated using ModGLS better capture the systematic relations between expected re-

26The regression requires a 1-year lag since the dependent variable, êrmglsi,t ≡ êrglsi,t − ŵi,t
(
ψ̂glsi , φ̂

)
,

requires êrmglsi,t+1. Recall that ŵi,t

(
ψ̂glsi , φ̂

)
=

êrglsi,t+1−φ̂iêr
gls
i,t

ψ̂gls
i −φ̂i

.
27Because of the high degree of correlation between Size and Analyst Coverage, I use only the former

even though in Table 10 the coefficients on Analyst Coverage are significant.
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turns and firm characteristics, then I expect Fitted ModGLS to sort future returns better

than does Fitted GLS. As a performance metric, I compare the average decile spread—the

average difference in the realized 12-month-ahead returns between the top and bottom

decile portfolios—over the period from June 30, 1979 to June 30, 2010.28

Table 8 Panel A (B) compares the realized 12-month-ahead market-adjusted (size-

adjusted) returns between GLS, Fitted GLS, and Fitted ModGLS decile portfolios, which

are formed annually.29 The Fitted ModGLS sorts future returns best, producing substan-

tially larger decile spreads (reported in row 1) than either GLS or Fitted GLS. Panel A

(B) finds the average market-adjusted (size-adjusted) annual decile spread for GLS to

be 1.4% (-0.30%), with time-series t-statistic of 0.43 (-0.95), suggesting that those firms

with the highest values of GLS do not on average have realized returns that are statisti-

cally different from those with the lowest values of GLS.30 Similarly, in none of the three

models does Fitted GLS exhibit significant ability to sort future market- or size-adjusted

returns.

In contrast, Fitted ModGLS exhibits economically and statistically significant ability

to sort future returns in each of the three models. Fitted ModGLS estimated using Model

1, 2, and 3 produces average decile spreads in market-adjusted (size-adjusted) returns of

11.16% (9.23%), 9.37% (7.58%), and 8.51% (6.69%), with all spreads statistically different

from 0% at the conventional levels. Finally, tests of the hypotheses that the decile spreads

produced by Fitted ModGLS are no different from those produced by GLS (reported in

row 3) or Fitted GLS (reported in row 4) are rejected at the conventional levels in all

cases, whether using a standard t-test or the Wilcoxon signed-rank test, suggesting that

Fitted ModGLS exhibits superior return-sorting ability.

Table 9 repeats the exercise presented in Table 8, but considers decile portfolios formed

within each year and each Fama-French industry. In other words, Table 8 compares the

relative performance of GLS, Fitted GLS, and Fitted ModGLS in sorting future returns

28The first year for which I obtain Fitted ModGLS estimates is 1979, since our overall sample begins
in 1976 and obtaining Fitted ModGLS estimates requires data from 1976 to 1978.

29Market adjustment is performed using the value-weighted CRSP market index; size adjustments are
performed using CRSP size deciles, formed at the beginning of each calendar year.

30Time-series t-statistics are computed using the time-series standard deviation of annual decile
spreads.
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for the cross section of stocks, while Table 9 compares how they sort within-industry

returns. Overall, the results of Table 9 are consistent with those of Table 8. GLS and

Fitted GLS exhibit no economically or statistically significant within-industry return-

sorting ability. In contrast, Fitted ModGLS exhibits significant within-industry return-

sorting ability in each of the three models, with decile spreads that are economically and

statistically significant and that are statistically different from those produced by GLS

or Fitted GLS.

In summary, Tables 8 and 9 are evidence that the methodology developed in this paper

is informative about GLS measurement errors. These tables also lend further credence

to the results of Tables 5–7 and suggest that regressions using Modified GLS produce

coefficients that better capture the systematic relations between expected returns and

firm characteristics.

3.4 Expected Returns and Firm Characteristics

Having established the efficacy of this paper’s methodology in explaining GLS mea-

surement errors, I turn to the assessment of regression inferences using GLS.

3.4.1 Comparing Inferences from GLS and ModGLS

In Table 10 Panels A, B, and C, I estimate fixed-effects regressions of expected-return

proxies on firm characteristics widely hypothesized to be associated with the expected

rate of returns. For ease of interpretation, I follow Gebhardt et al. (2001) and standardize

each explanatory variable by its cross-sectional annual mean and standard deviation. Year

and industry fixed effects are included in each regression and the reporting conventions

are as specified in Table 5.

Columns 1 and 2 of each panel report fixed-effects regression coefficients estimated

using GLS and ModGLS, respectively. Panel A considers Size, BTM, and 3-Month Mo-

mentum as covariates, as in Model 1 of Tables 8 and 9. Consistent with the prior

literature, regressions using GLS in Panel A, column 1 suggest a a negative (positive)

and significant association between expected returns and Size (BTM ). The association
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between GLS and 3-Month Momentum is negative and statistically significant at the 1%

level, which is inconsistent with the well-documented momentum effect (e.g., Jegadeesh

and Titman, 1993; Chan, Jegadeesh, and Lakonishok, 1996) that higher momentum firms

are expected to have higher future returns. One explanation is that this negative asso-

ciation is an artifact of how GLS (and ICCs more generally) is constructed. Since price

and êrglsi,t are inversely related by construction (15), holding expectations of future fun-

damentals fixed, firms with greater recent price appreciation may also tend to have lower

values of GLS.

Column 2 of Panel A estimates fixed-effects regression coefficients of ModGLS on

Size, BTM, and 3-Month Momentum. The coefficients on Size and BTM remain neg-

ative and positive, respectively, similar to the column 1 results using GLS, though the

estimated magnitudes differ. In contrast, the coefficient on 3-Month Momentum reverses

in sign: it is positive and statistically significant at the 10% level, consistent with the

momentum phenomenon. The empirical evidence in Table 5, GLS measurement errors

are more negative for higher momentum firms, suggest that the negative and significant

coefficients on 3-Month Momentum in column 1 reflects Momentum’s associations with

GLS measurement errors.

Panel B of the table considers four additional firm characteristics as covariates: Market

Beta, DTM, StdDev of Daily Returns, and Trailing Industry ROE. In column 1, using

GLS as the dependent variable, the coefficients on Size, BTM, and 3-Month Momentum

are very similar to those reported in Panel A, column 1 in terms of both magnitudes and

statistical significance. Moreover, GLS is associated negatively and significantly (at the

1% level) with Market Beta, and positively and significantly with DTM, StdDev of Daily

Returns, and Trailing Industry ROE (all at the 1% level). The results on Market Beta

and Trailing Industry ROE are unexpected and likely a result of spurious correlations. If

the capital asset pricing model explains the cross section of expected returns, the relation

between expected returns and Beta should be positive. If CAPM does not work, or if the

estimation of Beta is too noisy, there should be no association with expected returns. It is

also unclear whether a positive association should exist between a firm’s expected returns
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and its Trailing Industry ROE. A potential explanation is that this again is a mechanical

artifact of the way GLS is constructed. Since GLS uses the Trailing Industry ROE in

its terminal value assumptions, higher Trailing Industry ROE mechanically yields higher

values of GLS, all else equal.

Panel B, column 2, which uses ModGLS as the dependent variable, also shows that

the inclusion of the four additional variables has little impact on the coefficients on

Size, BTM, and 3-Month Momentum: all three coefficients remain very similar to those

reported in Panel A, column 2, in terms of both magnitudes and statistical significance.

As in Panel A, the coefficient on 3-Month Momentum reverses in sign, from negative

and significant in column 1 to positive and significant in column 2. Moreover, Panel B,

column 2, reports coefficients on DTM and StdDev of Daily Returns that are positive and

significant, consistent both with expectations and with column 1. Unlike in column 1, the

coefficient on Market Beta is no longer statistically different from 0, though its magnitude

is larger; nor is the coefficient on Trailing Industry ROE any longer statistically different

from 0, with magnitudes that are substantially attenuated toward zero. This evidence,

combined with the results of Table 5 are consistent with the associations of GLS with

Beta and Trailing Industry ROE reflecting measurement errors in GLS.

Panel C adds to the covariates in Panel B three analyst-based variables: Analyst

Coverage, Analyst Dispersion, and Analyst LTG. The addition of these variables does not

substantially change the magnitudes or significance of the coefficients on the non-analyst

variables in column (1) compared to Panel A. Moreover, I find that GLS is positively and

significantly (at the 1% level) associated with Analyst Dispersion and Analyst LTG. The

coefficient on Analyst Coverage is negative, but not statistically different from 0, probably

due to its high correlation with Size. The positive association between GLS and Analyst

LTG is inconsistent with the empirical observation that firms with high LTG estimates

tend on average to have lower returns (e.g., La Porta, 1996) and is likely a mechanical

artifact of how GLS is computed. Recall that GLS uses median analyst forecasts of

FY1, FY2, and FY3 EPS; however, the FY3 forecast is imputed by applying Analyst

LTG projections to the median FY2 EPS forecast. To the extent that larger values of
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Analyst LTG tend to be too extreme, as argued by La Porta (1996), GLS’ forecasts of

FY3 earnings will also be too optimistic. In other words, the positive association between

GLS and Analyst LTG probably reflects the degree of optimism in FY3 forecasts.31 With

the exception of Size, the addition of analyst variables in Panel C does not substantially

change the magnitudes or significance of the coefficients on the non-analyst variables in

column 2 relative to those in Panel A. The attenuation in the coefficient and significance

of Size is not surprising, given the relatively high correlation (72%) between Analyst

Coverage and Size. Consistent with column 1, I find ModGLS to be associated positively

and significantly (at the 1% level) with Analyst Dispersion; however, unlike column 1

and consistent with expectations, the coefficient on Analyst LTG reverses in sign and

becomes negative and statistically significant at the 5% level. This evidence, combined

with the results of Table 5, suggest that the associations between GLS and Analyst LTG

are likely influenced by systematic measurement errors in GLS.

3.4.2 Inferences After Removing Forecast Biases

A natural question arising from the above results—that GLS likely suffers from spu-

rious correlations through dependent-variable measurement errors—is whether mitigat-

ing earnings-forecast biases could improve regression inferences. Complementing the re-

sults of Tables 6 and 7 suggest that earnings-forecast optimism is not the sole driver of

GLS measurement errors, column 3 of each panel addresses this question by considering

“MechGLS” as an alternative dependent variable in Table 10. This proxy of expected

returns is an implementation of GLS but uses the benchmark earnings forecasts of Hou

et al. (2012).

The regression coefficients using MechGLS are, in general, directionally similar to

those estimated using GLS, but the magnitudes and statistical significance differ. For

example, in all three panels the coefficients on Size and BTM are substantially larger

in magnitude than those estimated using GLS, and generally closer to the coefficients

estimated using ModGLS (reported in column 2). However, many of the surprising

31In untabulated results, I find that the measures of FY3 Forecast Optimism used in this paper are
positively and significantly associated with Analyst LTG.
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coefficients estimated using GLS persist in regressions using MechGLS. In particular,

3-Month Momentum and Market Beta remain negative and significant (both at the 1%

level), while Trailing Industry ROE remains positive and significant (at the 1% level) in

all relevant panels. As discussed above, because the associations with Momentum and

Trailing Industry ROE are likely a mechanical artifact of GLS’ functional form, it is not

surprising that correcting for forecast biases do not have an effect on these coefficients.

In contrast, it is interesting to note that removing systematic biases in analyst forecasts

explains away the puzzling negative association between GLS and Analyst LTG, though

the coefficient is insignificant statistically.

In summary, MechGLS appears to resolves some puzzling associations between GLS

and firm characteristics. Many of the unexpected associations persist, however, consis-

tent with the view that the spurious correlations between firm characteristics and GLS

measurement errors arise from both analysts’ earnings-forecast errors and from functional

form misspecification.

3.4.3 Inferences from Ex Post Realized Returns

Realized returns is defined as the sum of expected returns and unexpected returns,

or news (see, e.g., Campbell, 1991; Vuolteenaho, 2002). Under the assumption that

“news is news,” that is unexpected returns cannot be systematically correlated with ex

ante information, regressions using realized returns lead to consistent estimates of the

associations between expected returns and firm characteristics. Despite this advantage,

however, the noisiness of returns [e.g., Table 2 column (7)] implies that their use in

regression settings can be expected to reduce the precision with which researchers can

estimate associations between expected returns and firm characteristics.32

32To see these more formally, in estimating the slope coefficient (β) from

y = β0 + β · x+ ε,

the critical condition for consistency is the uncorrelatedness between the residual (ε) and the regressor
(x). Combining equations (10) and (1), the relation between realized returns and firm characteristics
can be written as

ri,t+1 = δ0 + δ · zi,t +
(
εeri,t + newsi,t).

The properties of the residual (ε ≡ εeri,t+newsi,t) imply uncorrelatedness with the regressor zi,t, meaning
that OLS yields consistent estimates of δ.
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Column 4 of each panel in Table 10 reports regressions using 12-month-ahead realized

returns as an ex post proxy for expected returns. Comparing these regression coeffi-

cients to those estimated using the alternative proxies of expected returns, I find that the

coefficients in column 4 align most closely with those in column 2, estimated using Mod-

GLS. Like column 2, column 4 reports a positive and significant coefficient on 3-Month

Momentum across all three panels, and no statistical significance in the coefficients on

Market Beta and Trailing Industry ROE. However, consistent with a lack of precision,

regressions of realized returns in Panels B and C do not obtain statistical significance in

any additional covariates considered, in contrast to ModGLS.

Comparisons of column 4 coefficients on Size, BTM, and Momentum further bolster

the hypothesis that regression coefficients estimated using GLS (or MechGLS) are influ-

enced by spurious correlations with the dependent variable’s measurement errors, and

that the problem is unlikely to be fully resolved by accounting for systematic earnings-

forecast biases. In particular, whereas column 4 regressions suggest that higher Mo-

mentum is positively and significantly associated with higher expected rates of returns,

regressions using GLS and MechGLS lead to the opposite conclusion.

4 Implications, Recommendations, and Conclusion

This paper documents the first direct empirical evidence that ICC measurement er-

rors can be nonrandom and correlated with firm characteristics. Applying methodologies

developed in this paper to GLS, a popular implementation of ICCs, I show that GLS’

measurement errors are on average quite persistent, with a median persistence parameter

of 0.48. Moreover, I show that GLS measurement errors are associated with firm char-

acteristics commonly associated with risk and growth profiles, and that these patterns

are driven not only by systematic biases in analyst forecasts but also by functional form

Recall also that the OLS coefficients have the following sampling distribution (under homoscedasticity):

√
N(β̂ − β) ∼ N(0, σ2

εE(xix
′
i)),

where x′i,t = [1, x1i,t, x2i,t, ..., xki,t]. The noisiness in realized returns increases the noisiness in the residual
and the sampling variation in OLS coefficients, reducing precision.
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assumptions embedded in GLS.

These findings not only imply that regression coefficients estimated using ICCs may

capture or be influenced by spurious associations with dependent-variable measurement

errors, but also that the standard methods for addressing measurement errors, namely

portfolio grouping and instrumental variables, are unlikely to be effective. The idea

behind grouping is to form portfolios of firms with similar expected returns, so that mea-

surement errors (presumed to be random) cancel out on average at the portfolio level.

Ideally, groups should be formed to minimize the within-group variation and maximize

the across-group variation in expected returns. In practice, since true expected returns

are not observed, the formation of grouping portfolios often involves the use of firm char-

acteristics such as Size and BTM (e.g., Easton and Monahan, 2005), which are assumed

to be correlated with expected returns but not with measurement errors. Clearly, the

usefulness of this methodology is limited by the extent to which the grouping variables are

systematically associated with measurement errors, or the extent to which measurement

errors fail to cancel out in portfolios. In the case of GLS (i.e., Table 5), since aver-

age measurement errors are systematically different for firms of different Size and BTM,

differences in average GLS values across portfolios formed on these variables are likely

confounded by the portfolio differences in average measurement errors, raising doubts

about the efficacy of such grouping methods.

Based on similar rationale, the instrumental variables (IV) approach is also unlikely

to be effective. The idea behind the IV approach is to fit ICCs with a set of variables,

the instruments, that are correlated with expected returns but not measurement errors.

The usefulness of this approach depends on the validity of the instruments. Firm char-

acteristics like Size and BTM are commonly-used instruments for ICCs (e.g., Gebhardt

et al., 2001; Easton and Monahan, 2005), but again the evidence in Table 5 suggests

that these variables (among others) violate the exclusion restriction (i.e., uncorrelated-

ness with measurement errors) in the case of GLS, raising doubts about the usefulness of

the IV approach.

Making inferences on unobserved variables is a notoriously difficult task. In studying
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the properties of unobserved expected returns and in choosing among proxies of expected

returns, researchers face important trade offs in the proxies’ measurement error properties.

The choice between any ICC and realized returns is a tradeoff between bias and efficiency.

The measurement errors of realized returns—unexpected returns or news—are noisy but

cannot, by definition of news, be systematically predictable over time. On the other hand,

ICCs such as GLS may be less noisy, but their measurement errors can be systematically

associated with firm characteristics. In other words, whereas ICCs are more precise, they

have biases that, as illustrated in this paper, can confound regression inferences. Realized

returns, on the other hand, yield consistent regression estimators in large sample, but are

noisy and imprecise.

Given these tradeoffs, how should researchers make inferences about expected returns?

In general, I argue that, to convincingly establish an association between expected returns

and firm characteristics using ICCs, researchers should complement ICC regressions with

regressions using realized returns. Caution should be applied in particular when ICC

regressions and realized returns regressions produce statistically significant regression

coefficients with opposite signs (e.g., the coefficient on Momentum in columns 1, 3, and

4 of Table 10), as these likely indicate evidence of spurious correlations with dependent

variable measurement errors. However, in the 54 ICC papers I surveyed for this study,

reported in Table 1, only 24% used realized returns as an alternative benchmark.

A practical and conservative approach for researchers is to begin with realized returns.

Because realized returns are imprecise, their use as proxies of expected returns yields low-

powered and conservative tests. If researchers are able to obtain statistical significance

using realized returns, it would be sufficient for inference. In the absence of obtaining

significant coefficients using realized returns, researchers can proceed to ICCs, which

are more precise. However, researchers ought to acknowledge, discuss, and examine the

possibility that the regression coefficients may be driven by spurious correlations with

measurement errors. Finding that realized returns produce coefficients of similar sign

and magnitude, but lack the significance that is obtained in regressions that use ICCs,

can assuage these concerns. Another possibility is to demonstrate that different ICC
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models, in particular models with relatively low correlation, yield consistent results.33 Of

course, one possibility is to also implement GLS and the modified GLS approach proposed

in this paper.

ICCs are an intuitively appealing class of expected-return proxies with the potential to

help researchers better understand the cross-sectional variation in expected returns, but,

echoing the sentiments of Easton (2009) and Lambert (2009), much remains unknown

about their measurement errors and how to correct for them. Thus the use of ICCs in

regression settings should be interpreted with caution. In the mean time, we should not

hastily give up on realized returns as a proxy of expected returns.

33For example, Botosan et al. (2011) and Hou et al. (2012) report relatively low correlations between
GLS and the PEG (or MPEG) models of Easton (2004). On the other hand, there’s a relatively a
high degree of correlation between GLS and ICC models proposed by Claus and Thomas (2001) and
implementations of Gordon and Gordon (1997).
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Appendix

A Estimating AR(1) Parameters

To estimate the AR(1) parameters, recall the relation between future realized returns
to ex ante conditional expected returns in Eqn (10): ri,t+1 = eri,t + newsi,t+1. I assume
that unexpected returns, news, cannot be systematically predictable. I argue that this
property must be true by definition of “news,” but it is also implied by the definition of
conditional expectations. Conditional expectations are optimal in the sense of minimizing
mean squared errors and its “Decomposition Property” (Angrist and Pischke, 2008, pp.32-
33) provides the necessary structure on unexpected returns: it cannot be systematically
predictable based on ex ante information. Under this “news is news” assumption the
AR(1) parameters can be identified through the time-series autocovariance functions
of expected-return proxies and the time-series covariance between realized returns and
expected-return proxies.

A.1 Time-Series Expected-Return Proxy Autocovariance

Under the AR(1) structure and the “news is news” assumption, the sth order autoco-
variance function for a firm i is given by

ci(s) ≡ Cov (êri,t+s, êri,t) (A1)

= φsi [V ar (eri,t) + Cov (eri,t, wi,t)] + ψsi [V ar (wi,t) + Cov (eri,t, wi,t)] ,

which is consistent with a covariance-stationary process.

A.2 Time-Series Realized Returns—Expected-Return Proxy Co-
variance

To derive the covariance between realized returns s periods ahead and current ex-
pected returns, I turn to the returns decomposition of Eqn (10). Substituting in the
definition of expected-returns proxies from Eqn (2), s-year-ahead realized returns can be
related to the current period’s expected returns as

ri,t+s = φs−1i eri,t +
s−2∑
n=0

φni ui,t+n+1 + δt+s.

Using this decomposition, the kth order return-proxy covariance for a firm i is given by

cri(s) ≡ Cov (ri,t+s, êri,t) (A2)

= φs−1i [V ar (eri,t) + Cov (eri,t, wi,t)] .
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A.3 Identifying AR(1) Parameters

Combining the above functions ci(s) and cri(s), the following relations are obtained:

ci (s)− cri (s+ 1) = ψi × (ci (s− 1)− cri (s)) , and (A3)

cri (s+ 1) = φi × cri (s) for s ≥ 1. (A4)

Thus, using sample estimates ĉi(s) and ĉri(s), ψi can be estimated from a time-series
regression of {ĉi (s)− ĉri (s+ 1)}Ts≥1 on {ĉi (s− 1)− ĉri (s)}Ts≥1; similarly, φi can be esti-

mated from a time-series regression of {ĉri (s+ 1)}Ts≥1 on {ĉri (s)}Ts≥1.
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B Residual Income Model and GLS

This paper’s estimation of a firm’s expected rate of equity returns follows the method-
ology of Gebhardt et al. (2001) (GLS), a valuation model based on the residual-income
model that re-expresses the dividend-discount model:

Pi,t =
∞∑
n=1

Et [Di,t+n]

(1 + êri,t)
n .

By assuming that forecasts of book values satisfy clean surplus relation, i.e.,

EtBi,t+n+1 = EtBi,t+n + EtNIi,t+n+1 − EtDi,t+n+1,

where EtBi,t+n, EtNIi,t+n, and EtDi,t+n, are the time-t expectation of book values, net
income, and dividends in t+ n, the dividend-discount model can be rewritten as

Pi,t = Bi,t +
∞∑
n=1

Et [NIi,t+n]− êri,tEt [Bi,t+n−1]

(1 + êri,t)
n .

= Bi,t +
∞∑
n=1

Et[NIi,t+n]

Et[Bi,t+n−1]
− êri,t

(1 + êri,t)
n Et [Bi,t+n−1] .

Practical implementation of RIM requires explicit forecasts and a terminal-value esti-
mate. GLS forecasts future earnings and book values for 12 years and makes a terminal-
value assumption based on the trailing industry median ROE. GLS is the êrglsi,t that solves

Pi,t = Bi,t +
11∑
n=1

Et[NIi,t+n]

Et[Bi,t+n−1]
− êrglsi,t(

1 + êrglsi,t

)n Et [Bi,t+n−1] +

Et[NIi,t+12]

Et[Bi,t+11]
− êrglsi,t

êrglsi,t

(
1 + êrglsi,t

)11Et [Bi,t+11] ,

where Et [NIi,t+1] and Et [NIi,t+2] are estimated using median I/B/E/S analyst FY1 and
FY2 EPS forecasts (FEPSi,t+1 and FEPSi,t+2) and where Et [NIi,t+3] (FEPSi,t+3) is
estimated as the median FY2 analyst EPS forecast times the median analyst gross long-
term growth-rate forecast. For those firms with no long-term growth-rate forecasts, GLS
uses the growth rate implied by the one- and two-year-ahead analyst EPS forecasts—i.e.,
FEPSi,t+3 = FEPSi,t+2 (1 + FEPSi,t+2/FEPSi,t+1). In estimating the book value per
share, GLS relies on the clean surplus relation and applies the most recent fiscal year’s
dividend-payout ratio (k) to all future expected earnings to obtain forecasts of expected
future dividends: i.e., EtDt+n+1 = EtNIt+n+1×k. GLS uses the trailing 10-year industry

median ROE to proxy for
Et[NIi,t+12]

Et[Bi,t+11]
. Finally, for years 4–12, each firm’s forecasted ratio

of expected net income over expected beginning book value is linearly interpolated to the
trailing 10-year industry median ROE.
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C Mechanical Forecast Model Coefficients

This table reports the average regression coefficients and their time-series t-statistics from annual
pooled regressions of one-year-ahead through five-year-ahead earnings on a set of variables that
are hypothesized to capture differences in expected earnings across firms. Specifically, for each
year t between 1970 and 2010, I estimate the following pooled cross-sectional regression using
the previous ten years (six years minimum) of data:

Ej,t+τ = β0 +β1EVj,t+β2TAj,t+β3DIVj,t+β4DDj,t+β5Ej,t+β6NEGEj,t+β7ACCj,t+εj,t+τ

where Ej,t+τ (τ = 1, 2, 3, 4, or 5) denotes the earnings before extraordinary items of firm j in
year t + j, and all explanatory variables are measured at the end of the year t; EVj,t is the
enterprise value of the firm (defined as the sum of total assets and market value of equity minus
the book value of equity); TAj,t is total assets; DIVj,t is the dividend payment; DDj,t is a
dummy variable that equals 0 for dividend payers and 1 for non-payers; NEGEj,t is a dummy
variable that equals 1 for firms with negative earnings and 0 otherwise; and ACCj,t is total
accruals scaled by total assets, where total accruals are calculated as the change in current
assets plus the change in debt in current liabilities minus the change in cash and short-term
investments and minus the change in current liabilities. R2 is the time-series average R-squared
from annual regressions.

Yrs Cons EV TA DIV DD E NEGE ACC R2

1 2.097 0.010 -0.008 0.327 -2.251 0.756 0.963 -0.017 0.855
(5.36) (44.83) -(33.65) (37.83) -(3.47) (162.04) (2.27) -(8.93)

2 3.502 0.013 -0.009 0.487 -3.191 0.680 3.143 -0.019 0.798
(6.51) (40.52) -(27.40) (39.45) -(3.68) (98.27) (2.73) -(7.68)

3 14.855 -0.001 0.002 0.610 -10.001 0.337 1.397 0.010 0.466
(23.05) (5.65) (0.30) (42.83) -(9.48) (50.71) (0.61) (0.60)

4 21.346 0.000 0.002 0.503 -13.631 0.231 -0.713 0.008 0.336
(29.45) (4.78) (0.07) (36.95) -(11.70) (36.41) -(0.76) (2.11)

5 26.535 -0.001 0.003 0.445 -16.003 0.173 -3.038 0.008 0.261
(33.44) -(3.16) (6.44) (33.51) -(12.76) (27.59) -(2.13) (1.43)
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Table 1. Use of ICCs in Academic Literature

Table 1 reports the proxies of expected returns used in papers published since 1997 in the fol-
lowing accounting and finance journals: The Accounting Review (TAR), Journal of Accounting
and Economics (JAE), Journal of Accounting Research (JAR), Review of Accounting Studies
(RAST), Contemporary Accounting Research, Accounting Horizons, Journal of Finance, Jour-
nal of Financial Economics, Review of Financial Studies, and Journal of Corporate Finance.
These articles are collated by searching for keywords and citations. Keyword searching involves
searching full-text and abstracts in ABI-Proquest, Business Source Complete, and the historical
archives of each journal for combinations of the terms “implied” and “ex ante” with variations
on the term “cost of capital” (e.g., “cost of equity capital,” “equity cost of capital,” “risk pre-
mium”). Citation searching uses Google Scholar to find papers in the leading journals that cite
the following methodological papers in the implied cost of capital literature: Botosan (1997),
Claus and Thomas (2001), Easton (2004), Gebhardt et al. (2001), Gode and Mohanram (2003),
Ohlson and Juettner-Nauroth (2005). Finally, in tallying the table’s statistics, I counted pa-
pers that use expected-return proxies as a dependent variable in regression settings and exclude
papers that are theoretic or methodological in nature. Panel A Reports the number of such ar-
ticles found from each journal. Panel B reports the distribution of the ICC measures used in the
literature. “CT” refers to the model of Claus and Thomas (2001), “GLS” refers to the model of
Gebhardt et al. (2001), “OJ/GM” refers to the related models of Ohlson and Juettner-Nauroth
(2005) and Gode and Mohanram (2003), and “PEG/MPEG” refers to the related models in
Easton (2004). “Composite” indicates the use of composite ICC measures (typically involving
taking the average of the four measures), while “Realized Returns” indicates the use of ex post
returns.

Panel A: Number of Papers by Journal

Total TAR JAE JAR RAST Other

54 17 4 11 7 15

Panel B: Expected-Return Proxies Used

CT GLS
OJ /
GM

PEG /
MPEG

Realized
Returns

Composite

54% 69% 61% 70% 24% 46%
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Table 2. Summary Statistics on Expected-Return Proxies

Table 2, Panel A, reports, for all firm-year observations at the end of June of each year from
1976 to 2010, (1) the total number of observations, (2) the annual mean value of GLS, (3)
the standard deviation of GLS, (4) the 12-month risk-free rate, (5) the implied risk premium,
calculated as the difference between mean GLS and the risk-free rate, (6) the mean 12-month-
ahead realized returns, (7) the standard deviation of 12-month-ahead realized returns, and (8)
the ex post risk premium, calculated as the difference between mean returns and the risk-
free rate. Risk-free rates as of the last trading day in June each year are obtained from the
Federal Reserve Bank of St. Louis’ one-year Treasury constant-maturity-rate series (http:
//research.stlouisfed.org/fred2/data/DGS1.txt). Each column of Panel B reports, for
each five year interval from 1976 to 2010, the time-series averages for the respective columns of
Panel A.

Panel A: Summary Statistics, by Year

(1) (2) (3) (4) (5) (6) (7) (8)
Mean StdDev Implied RF Mean StdDev Ex Post

Year Obs GLS GLS Premium Rate Returns Returns Premium

1976 529 12.02% 3.85% 6.46% 5.56% 9.80% 28.47% 3.34%
1977 655 12.49% 3.55% 5.72% 6.77% 18.95% 32.50% 13.23%
1978 792 12.57% 2.80% 8.38% 4.19% 15.88% 29.34% 7.50%
1979 1,069 13.57% 5.45% 9.40% 4.17% 17.64% 37.59% 8.24%
1980 1,091 14.38% 6.70% 8.49% 5.89% 43.34% 45.60% 34.85%
1981 1,137 13.91% 12.32% 14.87% -0.96% -12.60% 29.05% -27.47%
1982 1,189 14.91% 7.22% 14.34% 0.57% 92.69% 75.36% 78.35%
1983 1,249 10.65% 3.93% 9.70% 0.95% -8.65% 29.54% -18.35%
1984 1,503 12.57% 3.30% 12.30% 0.27% 24.54% 42.38% 12.24%
1985 1,508 11.49% 3.75% 7.71% 3.78% 29.99% 47.26% 22.28%
1986 1,543 9.97% 3.24% 6.41% 3.56% 11.74% 37.66% 5.33%
1987 1,641 9.97% 3.46% 6.77% 3.20% -4.60% 32.74% -11.37%
1988 1,661 11.15% 3.82% 7.50% 3.65% 14.59% 41.58% 7.09%
1989 1,707 10.85% 4.30% 8.12% 2.73% 7.60% 44.24% -0.52%
1990 1,746 11.01% 3.88% 8.05% 2.96% 4.40% 39.83% -3.65%
1991 1,776 10.64% 4.04% 6.32% 4.32% 16.13% 46.90% 9.81%
1992 1,883 10.11% 4.37% 4.05% 6.06% 26.96% 58.02% 22.91%
1993 2,097 9.25% 3.35% 3.45% 5.80% 5.83% 37.05% 2.38%
1994 2,567 9.87% 3.11% 5.51% 4.36% 25.09% 54.05% 19.58%
1995 2,774 9.77% 3.87% 5.65% 4.12% 25.58% 57.87% 19.93%
1996 3,046 9.27% 3.28% 5.70% 3.57% 19.70% 49.88% 14.00%
1997 3,284 9.11% 3.66% 5.67% 3.44% 20.76% 53.11% 15.09%
1998 3,401 9.03% 3.29% 5.38% 3.65% 1.10% 68.40% -4.28%
1999 3,277 9.75% 3.99% 5.07% 4.68% 19.25% 119.70% 14.18%
2000 3,006 10.51% 5.24% 6.08% 4.43% 17.76% 63.93% 11.68%
2001 2,714 9.68% 4.63% 3.72% 5.96% 4.17% 51.12% 0.45%
2002 2,606 9.11% 3.65% 2.06% 7.05% 5.54% 54.12% 3.48%
2003 2,674 9.09% 3.57% 1.09% 8.00% 38.26% 60.68% 37.17%
2004 2,842 8.40% 2.76% 2.09% 6.31% 12.31% 38.14% 10.22%
2005 2,975 8.49% 3.23% 3.45% 5.04% 16.64% 42.71% 13.19%
2006 3,092 8.53% 3.37% 5.21% 3.32% 18.35% 37.67% 13.14%
2007 3,104 8.14% 3.02% 4.91% 3.23% -17.56% 40.70% -22.47%
2008 3,071 10.39% 6.31% 2.36% 8.03% -24.43% 37.57% -26.79%
2009 2,855 10.92% 6.63% 0.56% 10.36% 27.88% 55.59% 27.32%
2010 2,991 10.32% 4.90% 0.32% 10.00% 34.18% 48.21% 33.86%
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Table 2. Continued

Panel B: Summary Statistics, by 5-Year Intervals

(1) (2) (3) (4) (5) (6) (7) (8)
Mean StdDev Implied RF Mean StdDev Ex Post

Year Obs GLS GLS Premium Rate Returns Returns Premium

1976-1980 4,136 13.01% 4.47% 7.69% 5.32% 21.12% 34.70% 13.43%
1981-1985 6,586 12.71% 6.10% 11.78% 0.92% 25.19% 44.72% 13.41%
1986-1990 8,298 10.59% 3.74% 7.37% 3.22% 6.75% 39.21% -0.62%
1991-1995 11,097 9.93% 3.75% 5.00% 4.93% 19.92% 50.78% 14.92%
1996-2000 16,014 9.54% 3.89% 5.58% 3.96% 15.71% 71.00% 10.13%
2001-2005 13,811 8.95% 3.57% 2.48% 6.47% 15.38% 49.35% 12.90%
2006-2010 15,113 9.66% 4.85% 2.67% 6.99% 7.68% 43.95% 5.01%

All 75,055 10.63% 4.34% 6.08% 4.54% 15.97% 47.67% 9.88%
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Table 3. AR(1) Parameters

Table 3, Panel A, reports summary statistics on the expected-returns (φ) and GLS measurement-
error (ψ) AR(1) parameters of equations (5) and (6), estimated by OLS regressions of equations
(A3) and (A4) by Fama-French 48 industry. T (φ) and R2(φ) [T (ψ) and R2(ψ)] are the White-
robust t-statistics and R2 from the estimation of (A4) [(A3)]. ψ − φ and |ψ − φ| are the
difference and the absolute value of the difference between the GLS measurement error and
expected return persistence parameters. Panel B reports the AR(1) parameter estimates for
each of the Fama-French industries.

Panel A: Summary of Industry-Based AR(1) Parameters

Exp Ret AR(1) Parameter Meas Error AR(1) Parameter Diff
Statistic φ T (φ) R2(φ) ψ T (ψ) R2(ψ) ψ − φ |ψ − φ|

Min 0.0411 0.2295 0.0033 0.0091 0.0391 0.0001 -0.3435 0.0050
P25 0.3432 2.1741 0.1484 0.3625 1.7783 0.1687 -0.1435 0.0482
Mean 0.5296 3.8999 0.3517 0.4583 3.1198 0.2900 -0.0651 0.1241
Median 0.5609 3.3547 0.3488 0.4759 3.0334 0.2923 -0.0669 0.1017
P75 0.6993 4.6066 0.5060 0.6115 4.3487 0.4124 -0.0145 0.1824
Max 0.8828 10.9994 0.8041 0.7902 6.4917 0.6107 0.3198 0.3435
Std Dev 0.2288 2.7517 0.2372 0.2046 1.6772 0.1724 0.1496 0.0928

Panel B: Parameters by Industry

Exp Ret AR(1) Parameter Meas Error AR(1) Parameter Diff
Statistic φ T (φ) R2(φ) ψ T (ψ) R2(ψ) ψ − φ |ψ − φ|

Aero 0.4924 1.4347 0.2087 0.4465 1.3351 0.1742 -0.0460 0.0460
Agric 0.4711 2.2308 0.2099 0.3711 3.3389 0.2767 -0.1000 0.1000
Autos 0.5151 2.7750 0.3128 0.4329 1.8321 0.1815 -0.0822 0.0822
Banks 0.8167 7.0113 0.6573 0.6819 3.9986 0.5143 -0.1349 0.1349
Beer 0.7508 5.0177 0.6177 0.5939 2.6149 0.3526 -0.1568 0.1568
BldMt 0.5090 5.0311 0.3621 0.4769 2.4830 0.2333 -0.0321 0.0321
Books 0.7444 5.4945 0.6688 0.6006 3.9898 0.5084 -0.1438 0.1438
Boxes 0.7399 6.6686 0.6952 0.6693 5.1139 0.4931 -0.0705 0.0705
BusSv 0.4505 2.7653 0.2999 0.1070 0.4482 0.0120 -0.3435 0.3435
Chems 0.5949 4.6537 0.4504 0.4576 2.0130 0.1955 -0.1373 0.1373
Chips 0.3223 2.2446 0.1202 0.2906 1.3173 0.0744 -0.0317 0.0317
Clths 0.6328 4.3476 0.4461 0.4865 3.0449 0.2184 -0.1464 0.1464
Cnstr 0.4620 2.0148 0.2367 0.3237 2.0405 0.2055 -0.1383 0.1383
Coal 0.7656 4.5033 0.5877 0.7273 4.5135 0.5504 -0.0383 0.0383
Comps 0.3781 1.8807 0.1395 0.6979 4.4980 0.4603 0.3198 0.3198
Drugs 0.7062 4.5281 0.4996 0.5782 4.3736 0.4578 -0.1280 0.1280
ElcEq 0.1028 0.3467 0.0105 0.2784 1.2560 0.0907 0.1757 0.1757
Enrgy 0.3852 2.1174 0.1484 0.5676 4.3891 0.4124 0.1824 0.1824
FabPr 0.3432 2.3309 0.1261 0.2000 1.4481 0.0452 -0.1433 0.1433
Fin 0.5364 3.7767 0.3488 0.6508 3.1820 0.3935 0.1144 0.1144
Food 0.8191 9.8812 0.8041 0.5600 3.7785 0.2949 -0.2591 0.2591
Fun 0.6958 6.1236 0.4761 0.6289 5.0342 0.4673 -0.0669 0.0669
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Table 3. Continued

Panel B (Continued): Parameters by Industry

Exp Ret AR(1) Parameter Meas Error AR(1) Parameter Diff
Statistic φ T (φ) R2(φ) ψ T (ψ) R2(ψ) ψ − φ |ψ − φ|

Gold 0.2417 1.3176 0.0619 0.1617 0.9536 0.0262 -0.0800 0.0800
Guns 0.7118 4.6066 0.5096 0.6753 4.3238 0.4557 -0.0365 0.0365
Hlth 0.6247 3.3483 0.3939 0.6300 3.3628 0.4000 0.0053 0.0053
Hshld 0.8828 7.3571 0.7210 0.7902 4.5180 0.5166 -0.0926 0.0926
Insur 0.4990 2.2594 0.2495 0.2249 1.3071 0.0723 -0.2741 0.2741
LabEq 0.0411 0.2295 0.0033 0.0091 0.0391 0.0001 -0.0320 0.0320
Mach 0.5561 2.9528 0.3136 0.5416 2.9643 0.3066 -0.0145 0.0145
Meals 0.5621 3.1310 0.3261 0.3805 1.7783 0.2140 -0.1816 0.1816
MedEq 0.6993 4.3783 0.5025 0.3891 2.5130 0.2037 -0.3102 0.3102
Mines 0.3395 1.4655 0.1184 0.2224 1.6248 0.1092 -0.1171 0.1171
Paper 0.6955 5.1242 0.5705 0.4237 2.0416 0.1787 -0.2717 0.2717
PerSv 0.5376 4.2492 0.2867 0.3737 2.0180 0.1679 -0.1639 0.1639
RlEst 0.3084 1.2982 0.1005 0.2589 1.2772 0.0865 -0.0495 0.0495
Rtail 0.5306 3.3547 0.2879 0.4425 2.4520 0.2276 -0.0881 0.0881
Rubbe 0.1609 0.5405 0.0213 0.3625 5.4105 0.3819 0.2016 0.2016
Ships 0.5609 4.5336 0.3134 0.5659 4.8124 0.3657 0.0050 0.0050
Smoke 0.7008 2.8130 0.5060 0.4462 1.7586 0.2806 -0.2546 0.2546
Soda 0.7843 7.8869 0.7112 0.7321 6.1354 0.5750 -0.0522 0.0522
Steel 0.5933 3.1018 0.3580 0.5280 4.2941 0.4547 -0.0653 0.0653
Telcm 0.8814 10.9994 0.7755 0.7797 4.5611 0.6107 -0.1017 0.1017
Toys 0.2426 0.7131 0.0166 0.2895 3.1156 0.0894 0.0469 0.0469
Trans 0.2845 1.2631 0.0800 0.4759 6.4917 0.4690 0.1914 0.1914
Txtls 0.6671 4.4126 0.4218 0.6223 3.8049 0.3311 -0.0447 0.0447
Util 0.7431 6.4281 0.6762 0.5424 2.7154 0.2893 -0.2007 0.2007
Whlsl 0.6088 4.5118 0.3513 0.5696 3.0334 0.3120 -0.0392 0.0392
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Table 4. Sample Summary Statistics

Table 4 reports sample distributional statistics for the primary independent and dependent
variables used in this study. Market Capitalization (Size) is (log of) the market capitalization
(in $millions); Book-to-Market Multiple (BTM ) is (log of) the ratio of book value of equity to
market value of equity; Debt-to-Market Multiple (DTM ) is (log of 1 +) the ratio of long-term
debt to market capitalization; Market Beta is estimated for each firm on June 30 of each year by
regressing the firm’s stock returns on the CRSP value-weighted index using data from 10–210
trading days prior to June 30; Standard Deviation of Daily Returns is the standard deviation of
a firm’s daily stock returns using returns data from July 1 of the previous year until July 30 of
the current year; 3-Month Momentum is a firm’s realized returns in the three months prior to
June 30 of the year in question; Trailing Industry ROE is the industry median ROE using data
from the most recently available ten fiscal years (as of June 30 of each year) and Fama-French
industry definitions; Number of Estimates (Analyst Coverage) is (log of 1 +) the number of
sell-side analysts covering the firm (as reported in I/B/E/S); StdDev of Estimates (Analyst
Dispersion) is (log of 1 +) the standard deviation of analyst FY1 forecasts (as reported in
I/B/E/S); Analyst LTG is the (gross) analyst long-term growth estimate (reported in I/B/E/S)
or, for firms without such forecasts and with positive FY1 forecasts, the implied (gross) growth
rate from the analyst median FY1 EPS forecast to the analyst median FY2 EPS forecast. FY1
(FY2) [FY3] Forecast Optimism is the difference between I/B/E/S median analyst forecasted
FY1 (FY2) [FY3] per-share earnings and the projections of the mechanical forecast model;
FY1 (FY2) [FY3] Forecast Optimism / Assets is FY1 (FY2) [FY3] Forecast Optimism divided
by total assets per share using total assets from the most recently available data (as of June
30); FY1 (FY2) [FY3] Forecast Optimism / Analyst StdDev is FY1 (FY2) [FY3] Forecast
Optimism divided by the standard deviation of analyst forecasts of FY1 EPS. Term is the
difference between the long-run expected return and the one-quarter ahead expected return,
following Lyle and Wang (2014). ŵglsi,t is the measurement-error proxy, the primary dependent
variable of interest, computed as

ŵgls
i,t ≡(êrglsi,t+1−φ̂iêr

gls
i,t )/(ψ̂gls

i −φ̂i)

where the AR(1) parameters are estimated as described in Table 3.
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Variable 5th Pctile 25th Pctile Mean Median 75th Pctile 95th Pctile StdDev N

Market Capitalization ($ Mil) 26.47 105.19 2,467.77 334.06 1,181.76 9,140.99 11,827.43 75,055
Size 3.2761 4.6557 5.9415 5.8113 7.0748 9.1205 1.7780 75,055
Book-to-Market Multiple 0.1071 0.3012 0.6616 0.5120 0.8129 1.6199 0.7790 75,055
BTM -2.2338 -1.2001 -0.7473 -0.6695 -0.2071 0.4824 0.8644 75,055
Debt-to-Market Multiple 0.0000 0.0124 0.4654 0.1496 0.4638 1.6492 1.9763 75,055
DTM -0.2800 -0.0763 0.0578 0.0322 0.1573 0.4651 0.2546 75,039
Market Beta -0.0083 0.4025 0.8447 0.7746 1.2074 1.9764 0.6060 71,422
StdDev of Daily Returns 0.0119 0.0182 0.0291 0.0253 0.0358 0.0593 0.0156 75,055
3-Month Momentum 0.0000 0.0124 0.2691 0.1394 0.3810 0.9743 0.3686 75,055
Trailing Industry ROE 0.0981 0.1168 0.1270 0.1279 0.1378 0.1526 0.0171 75,055

Number of Estimates 1.0000 2.0000 6.9799 5.0000 10.0000 22.0000 6.7776 75,037
Analyst Coverage 0.0000 0.6931 1.4937 1.6094 2.3026 3.0910 0.9811 75,037
StdDev in Estimates 0.0000 0.0100 0.1006 0.0400 0.1100 0.3800 0.1954 75,055
Analyst Dispersion 0.0000 0.0100 0.0861 0.0392 0.1044 0.3221 0.1276 75,055
Analyst LTG 1.0446 1.1050 1.2995 1.1500 1.2250 1.5390 1.8850 75,055

FY1 Optimism -1.4025 -0.2435 0.1588 0.1592 0.5403 1.6385 1.4908 73,884
FY2 Optimism -1.5886 -0.1737 0.3191 0.3417 0.8256 2.0683 1.6173 73,884
FY3 Optimism -3.0071 -0.2973 0.3979 0.4828 1.2166 3.1773 3.7569 73,884

FY1 Optimism / Assets -0.0672 -0.0063 0.0128 0.0059 0.0304 0.1101 0.1875 73,835
FY2 Optimism / Assets -0.0610 -0.0035 0.0251 0.0147 0.0490 0.1514 0.2308 73,835
FY3 Optimism / Assets -0.1404 -0.0076 0.0315 0.0205 0.0653 0.1961 0.7334 73,835

FY1 Optimism / Analyst StdDev -23.5343 -2.2687 4.3612 2.3362 10.1292 39.4040 29.9899 59,799
FY2 Optimism / Analyst StdDev -25.6145 -1.0086 7.9980 4.8920 15.7399 55.0904 35.0595 59,799
FY3 Optimism / Analyst StdDev -40.2376 -0.8458 10.7405 8.0338 23.8887 72.5512 53.2109 59,799

Terminal Optimism -2.8945 0.6249 3.1654 2.4330 4.8766 11.5870 5.1368 73,884
Terminal Optimism / Assets -0.1227 0.0132 0.2671 0.1102 0.2573 0.7681 2.1229 73,835
Terminal Optimism / Analyst StdDev -26.1256 10.2174 75.8682 39.1776 100.6350 309.4016 143.9744 59,799

Term -0.3098 -0.0019 0.0268 0.0540 0.1177 0.2462 0.2481 60,750

ŵglsi,t -2.5627 -0.5520 -0.3444 -0.1776 -0.0366 0.5013 1.6785 62,208
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Table 5. ICC Measurement Errors and Firm Risk and Growth Characteristics

Table 5 reports OLS regressions of GLS measurement-error proxy on firm characteristics. All
variables are as defined in Table 4. Year and FF48 industry fixed effects are included throughout.
Two-way cluster robust standard errors, clustered by FF48 industry and by year and adjusted for
first-stage estimation noise, appear in parentheses immediately below the coefficient estimate.
All coefficients and standard errors are multiplied by 100. Levels of significance are indicated
by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

(1) (2) (3) (4) (5)

Size 1.6057 ** 1.3286 * 0.9039 0.6252
(0.738) (0.724) (0.658) (0.669)

BTM -2.4508 * -2.3049 * -2.3409 * -2.2417 *
(1.457) (1.395) (1.362) (1.314)

3-Month Momentum -8.9592 ** -8.8014 * -8.4182 * -8.2024 *
(4.464) (4.633) (4.314) (4.510)

DTM -1.7967 -1.7186
(2.086) (2.052)

Market Beta 1.6927 1.4739
(1.340) (1.302)

StdDev of Daily Returns -42.0994 -59.7358
(58.880) (58.829)

Trailing Industry ROE 43.8398 47.2509
(148.404) (150.234)

Analyst Coverage 3.7488 *** 2.0898 ** 1.9687 **
(1.499) (1.032) (0.862)

Analyst Dispersion -7.6161 * -5.2338 -4.7855
(4.438) (3.788) (3.427)

Analyst LTG 2.3011 *** 2.3023 *** 2.2532 **
(0.896) (0.892) (0.906)

Observations 61,040 58,588 61,044 61,034 58,582
Adj. R2 0.8032 0.8055 0.8038 0.8045 0.8068
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Table 6. ICC Measurement Errors and Analyst Earnings Forecast Optimism

Table 6 reports OLS regressions of the GLS measurement-error proxy on various measures of analyst FY1, FY2, and FY3 Forecast Optimism as
defined in Table 4. Year and FF48 industry fixed effects are included throughout. Two-way cluster robust standard errors, clustered by FF48
industry and by year and adjusted for first-stage estimation noise, appear immediately below the coefficient estimate in parentheses. All coefficients
and standard errors are multiplied by 100. Levels of significance are indicated by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

Unscaled Optimism Scaled Optimism, by Assets Scaled Optimism, by Std of Forecast
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Terminal Forecast Optimism 0.4524 *** 0.2197 3.9529 ** 2.0636 0.0139 *** 0.0073
(0.137) (0.202) (1.837) (2.002) (0.005) (0.006)

FY1 Forecast Optimism -0.8076 -0.6360 -28.2524 -22.5523 -0.0449 -0.0297
(0.695) (0.663) (17.949) (17.163) (0.031) (0.035)

FY2 Forecast Optimism -0.9536 -1.1331 -3.4460 -8.7684 -0.0621 -0.0750
(0.996) (0.995) (14.722) (15.062) (0.052) (0.057)

FY3 Forecast Optimism 1.3751 *** 1.1387 ** 19.3636 *** 15.6922 ** 0.0814 *** 0.0685 **
(0.493) (0.522) (0.068) (6.282) (0.030) (0.029)

Observations 60,026 60,026 60,026 59,786 59,786 59,786 50,593 50,593 50,593
Adj. R2 0.8048 0.8041 0.8048 0.8067 0.8060 0.8069 0.8094 0.8088 0.8094
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Table 7. ICC Measurement Errors, Analyst Earnings Forecast Optimism, and Term Structure

Table 7 reports OLS regressions of the GLS measurement-error proxy on various measures of analyst FY1, FY2, FY3, and Terminal Forecast
Optimism as defined in Table 4. Panel B includes Size, BTM, 3-Month Momentum, and Term as controls. Year and FF48 industry fixed effects are
included throughout. Two-way cluster robust standard errors, clustered by FF48 industry and by year and adjusted for first-stage estimation noise,
appear immediately below the coefficient estimate in parentheses. All coefficients and standard errors are multiplied by 100. Levels of significance
are indicated by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

Unscaled Optimism Scaled Optimism, by Assets Scaled Optimism, by Std of Forecast
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Terminal Forecast Optimism 0.2314 0.0644 3.7920 * 1.8764 0.0084 * 0.0040
(0.159) (0.217) (1.974) (2.237) (0.005) (0.006)

FY1 Forecast Optimism 0.2265 0.2613 -9.4353 -6.1555 -0.0115 -0.0043
(0.868) (0.867) (13.399) (14.476) (0.030) (0.034)

FY2 Forecast Optimism -2.6903 -2.7037 -19.5308 -21.1550 -0.0787 -0.0849
(1.702) (1.700) (16.756) (17.728) (0.057) (0.060)

FY3 Forecast Optimism 1.923 ** 1.8263 ** 22.3786 ** 17.6782 * 0.0687 ** 0.0613 **
(0.801) (0.873) (9.361) (9.106) (0.029) (0.028)

Size 1.0926 1.397 * 1.0721 1.2580 * 1.6800 *** 1.3566 * 1.2064 * 1.4928 ** 1.2173 *
(0.761) (0.834) (0.784) (0.697) (0.665) (0.700) (0.635) (0.699) (0.637)

BTM -1.9595 -2.076 -1.9603 -2.0939 -1.4452 -1.7278 -2.1485 -2.1738 -2.0637
(1.554) (1.597) (1.552) (1.466) (1.122) (1.398) (1.489) (1.539) (1.513)

3-Month Momentum -8.3062 * -8.7471 * -8.3113 * -8.4864 * -8.6387 ** -8.3624 * -9.1427 * -9.4116 * -9.1148 *
(4.499) (4.631) (4.499) (4.610) (3.687) (4.493) (5.099) (5.162) (5.093)

Term 9.4083 ** 9.3665 ** 9.3959 ** 8.8732 ** 8.7997 ** 8.8106 ** 9.3856 ** 9.4133 ** 9.4552 **
(4.194) (4.209) (4.206) (3.911) (3.913) (3.901) (4.134) (4.175) (4.180)

Observations 48,460 48,460 48,460 48,287 48,287 48,287 41,179 41,179 41,179
Adj. R2 0.8068 0.8062 0.8069 0.8086 0.8081 0.8087 0.8106 0.8101 0.8106
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Table 8. Cross-Sectional Sorting of Future Returns – by Year

Table 8, Panel A (B), reports average annual 12-month-ahead realized market-adjusted (size-
adjusted) returns for each decile portfolio, formed annually using GLS, Fitted GLS, and Fitted
Modified GLS. Fitted GLS [Modified GLS] in year t is obtained in a two-step process: (1)
regress GLS [Modified GLS] on a set of firm characteristics using the previous three years’ data,
from t − 3 to t − 1, where t ranges from 1979 to 2010; (2) apply the estimated coefficients on
the covariates at t. Model 1 includes three covariates: Size, BTM, and 3-Month Momentum;
Model 2 adds DTM and StdRet to Model 1; and Model 3 adds Analyst Dispersion and Analyst
LTG to Model 2. All variables are as defined in Table 4. In each panel, row 1 reports the
average annual spread in realized 12-month-ahead returns between the 10th and 1st deciles of
expected-return proxies; row 2 reports the time-series t-statistics in the annual spread of row
1; row 3 reports the t-statistics from a t-test (Wilcoxon signed-rank test) of the null hypothesis
that the average annual decile spread produced by Fitted Modified GLS deciles is equal to the
average annual decile spread produced by GLS deciles; row 4 reports the t-statistics from a
t-test (Wilcoxon signed-rank test) of the null hypothesis that the average annual decile spread
produced by Fitted Modified GLS deciles is equal to the average annual decile spread produced
by Fitted GLS deciles.

Panel A: Market-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS Fitted GLS ModGLS

1 0.0151 0.0248 -0.0102 0.0294 -0.0043 0.0265 -0.0060
2 0.0169 0.0125 0.0068 0.0153 0.0099 0.0178 0.0165
3 0.0252 0.0250 0.0230 0.0249 0.0219 0.0205 0.0186
4 0.0262 0.0383 0.0280 0.0260 0.0206 0.0276 0.0206
5 0.0381 0.0306 0.0239 0.0345 0.0372 0.0420 0.0383
6 0.0395 0.0378 0.0349 0.0472 0.0308 0.0480 0.0337
7 0.0478 0.0457 0.0539 0.0441 0.0528 0.0422 0.0445
8 0.0606 0.0533 0.0453 0.0466 0.0421 0.0451 0.0517
9 0.0591 0.0476 0.0512 0.0532 0.0575 0.0606 0.0609
10 0.0291 0.0419 0.1014 0.0363 0.0894 0.0272 0.0792

(1) Decile 10− 1 0.0140 0.0171 0.1116 0.0068 0.0937 0.0007 0.0851
(2) T -Statistic 0.4252 0.4847 3.3692 0.1952 2.8020 0.0201 2.5754

(3) H0: Fitted ModGLS=GLS 3.12 (2.94) 3.16 (3.09) 2.83 (2.64)
(4) H0: Fitted ModGLS=FittedGLS 3.31 (2.95) 3.25 (2.62) 3.03 (2.49)

Panel B: Size-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS GLS ModGLS

1 0.0076 0.0211 -0.0158 0.0259 -0.0107 0.0226 -0.0127
2 0.0105 0.0070 0.0014 0.0091 0.0029 0.0111 0.0093
3 0.0187 0.0172 0.0146 0.0176 0.0149 0.0138 0.0122
4 0.0189 0.0309 0.0192 0.0158 0.0116 0.0183 0.0112
5 0.0286 0.0218 0.0137 0.0246 0.0284 0.0330 0.0290
6 0.0306 0.0277 0.0250 0.0373 0.0206 0.0377 0.0239
7 0.0345 0.0339 0.0432 0.0342 0.0417 0.0316 0.0337
8 0.0471 0.0395 0.0334 0.0325 0.0291 0.0312 0.0387
9 0.0434 0.0302 0.0343 0.0380 0.0415 0.0434 0.0458
10 0.0046 0.0156 0.0764 0.0098 0.0651 0.0020 0.0542

(1) Decile 10− 1 -0.0030 -0.0055 0.0923 -0.0161 0.0758 -0.0206 0.0669
(2) T -Statistic -0.0951 -0.1693 3.6639 -0.5146 2.8973 -0.6564 2.4756

(3) H0: Fitted ModGLS=GLS 3.29 (2.97) 3.51 (3.05) 3.02 (2.75)
(4) H0: Fitted ModGLS=FittedGLS 3.57 (3.12) 3.57 (2.99) 3.24 (2.90) 57



Table 9. Cross-Sectional Sorting of Future Returns – By Year and Industry

Table 9, Panel A (B), reports average annual 12-month-ahead realized market-adjusted (size-
adjusted) returns for each decile portfolio, formed annually and within each FF48 industry using
GLS, Fitted GLS, and Fitted Modified GLS. Fitted GLS [Modified GLS] in year t is obtained
in a two-step process: (1) regress GLS [Modified GLS] on a set of firm characteristics using the
previous three years’ data, from t− 3 to t− 1, where t ranges from 1979 to 2010; (2) apply the
estimated coefficients on the covariates at t. Model 1 includes three covariates: Size, BTM, and
3-Month Momentum; Model 2 adds DTM and StdRet to Model 1; and Model 3 adds Analyst
Dispersion and Analyst LTG to Model 2. All variables are as defined in Table 4. In each
panel, row 1 reports the average annual spread in realized 12-month-ahead returns between the
10th and 1st deciles of expected-return proxies; row 2 reports the time-series t-statistics in the
annual spread of row 1; row 3 reports the t-statistics from a t-test (Wilcoxon signed-rank test)
of the null hypothesis that the average annual decile spread produced by Fitted Modified GLS
deciles is equal to the average annual decile spread produced by GLS deciles; row 4 reports the
t-statistics from a t-test (Wilcoxon signed-rank test) of the null hypothesis that the average
annual decile spread produced by Fitted Modified GLS deciles is equal to the average annual
decile spread produced by Fitted GLS deciles.

Panel A: Market-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS GLS ModGLS

1 0.0126 0.0263 0.0036 0.0308 0.0043 0.0268 0.0025
2 0.0186 0.0211 0.0137 0.0178 0.0257 0.0211 0.0249
3 0.0243 0.0200 0.0209 0.0230 0.0226 0.0226 0.0185
4 0.0233 0.0244 0.0311 0.0235 0.0268 0.0266 0.0352
5 0.0456 0.0324 0.0277 0.0280 0.0279 0.0267 0.0256
6 0.0268 0.0445 0.0329 0.0329 0.0315 0.0437 0.0323
7 0.0662 0.0492 0.0416 0.0545 0.0439 0.0470 0.0443
8 0.0576 0.0398 0.0442 0.0488 0.0433 0.0488 0.0413
9 0.0494 0.0451 0.0612 0.0551 0.0544 0.0572 0.0592
10 0.0332 0.0572 0.0888 0.0441 0.0850 0.0366 0.0827

(1) Decile 10− 1 0.0206 0.0309 0.0852 0.0133 0.0807 0.0098 0.0802
(2) T -Statistic 0.8208 1.2115 3.5691 0.4586 3.1609 0.3451 3.3088

(3) H0: Fitted ModGLS=GLS 2.97 (2.90) 3.10 (2.97) 3.17 (2.86)
(4) H0: Fitted ModGLS=FittedGLS 2.75 (2.69) 3.63 (3.09) 3.69 (3.25)

Panel B: Size-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS GLS ModGLS

1 0.0067 0.0214 -0.0018 0.0260 -0.0017 0.0218 -0.0039
2 0.0118 0.0142 0.0064 0.0105 0.0194 0.0137 0.0186
3 0.0172 0.0120 0.0119 0.0144 0.0131 0.0147 0.0095
4 0.0132 0.0166 0.0219 0.0156 0.0183 0.0186 0.0270
5 0.0363 0.0237 0.0184 0.0186 0.0181 0.0170 0.0164
6 0.0166 0.0343 0.0220 0.0235 0.0209 0.0335 0.0216
7 0.0544 0.0373 0.0307 0.0426 0.0325 0.0363 0.0327
8 0.0452 0.0269 0.0322 0.0341 0.0303 0.0346 0.0288
9 0.0340 0.0280 0.0450 0.0401 0.0379 0.0407 0.0423
10 0.0094 0.0305 0.0644 0.0179 0.0622 0.0112 0.0594

(1) Decile 10− 1 0.0027 0.0091 0.0662 -0.0081 0.0638 -0.0106 0.0633
(2) T -Statistic 0.1167 0.3935 3.4726 -0.3195 3.3975 -0.4185 3.4402

(3) H0: Fitted ModGLS=GLS 2.84 (2.58) 3.19 (2.66) 3.11 (2.58)
(4) H0: Fitted ModGLS=FittedGLS 3.02 (2.99) 4.03 (3.27) 3.76 (3.31) 58



Table 10. Expected Returns and Firm Characteristics

Table 10 reports OLS regressions of proxies of expected returns on various measures of char-
acteristics associated with a firm’s risk profile or information environment. Columns 1− 4 use
GLS, Modified GLS (ModGLS), GLS formed using Mechanical Forecasts (MechGLS), and real-
ized returns over the next 12 months (Returns) as the proxy of expected returns. Panels A, B,
and C differ by the firm characteristics considered. Each explanatory variable is standardized
by its annual average and standard deviation. Year and FF48 industry fixed effects are included
throughout. Two-way cluster robust standard errors, clustered by FF48 industry and by year
and adjusted for first-stage estimation noise, appear immediately below the coefficient estimate
in parentheses. All coefficients and standard errors are multiplied by 100. Levels of significance
are indicated by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

Panel A

Expected (1) (2) (3) (4)
Sign GLS ModGLS MechGLS Returns

Size (−) -0.6957 *** -3.4004 *** -2.0823 *** -2.5561 ***
(0.116) (1.288) (0.267) (0.978)

BTM (+) 1.2995 *** 3.3184 *** 1.7430 *** 2.7889 ***
(0.161) (1.253) (0.191) (1.100)

3-Month Momentum (+) -0.3481 *** 1.8951 * -0.3295 *** 2.2666 ***
(0.044) (1.065) (0.104) (0.799)

Observations 61,027 61,027 55,786 61,027
Adj. R2 0.4128 0.8046 0.2822 0.1166

Panel B

Expected (1) (2) (3) (4)
Sign GLS ModGLS MechGLS Returns

Size (−) -0.4725 *** -2.5426 ** -1.7987 *** -2.3925 ***
(0.112) (1.213) (0.313) (0.955)

BTM (+) 1.1624 *** 3.0511 ** 1.5379 *** 2.2843 ***
(0.160) (1.242) (0.184) (0.915)

3-Month Momentum (+) -0.3950 *** 1.8053 * -0.3745 *** 2.2743 ***
(0.030) (1.081) (0.092) (0.746)

Market Beta (+ or 0) -0.1120 *** -1.2381 -0.4855 *** -0.1655
(0.041) (0.867) (0.102) (0.757)

DTM (+) 0.5665 *** 1.2474 * 0.5601 *** 0.8990
(0.102) (0.639) (0.135) (0.814)

StdDev of Daily Returns (+) 0.5445 *** 1.4080 ** 0.5127 0.1152
(0.088) (0.695) (0.351) (1.343)

Trailing Industry ROE (0) 0.8931 *** 0.2497 0.8417 *** -2.0227
(0.101) (2.418) (0.055) (1.308)

Observations 58,576 58,576 54,063 58,576
Adj. R2 0.4722 0.8069 0.3029 0.1152
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Table 10. Continued

Panel C

Expected (1) (2) (3) (4)
Sign GLS ModGLS MechGLS Returns

Size (−) -0.4227 *** -1.3344 -1.6508 *** -2.6033 **
(0.103) (1.136) (0.316) (1.318)

BTM (+) 1.1669 *** 2.9224 ** 1.5467 *** 2.2025 **
(0.148) (1.213) (0.177) (0.926)

3-Month Momentum (+) -0.3926 *** 1.6488 * -0.3894 *** 2.2865 ***
(0.033) (0.973) (0.092) (0.746)

Market Beta (+ or 0) -0.0981 ** -1.1466 -0.4706 *** -0.1898
(0.040) (0.805) (0.102) (0.758)

DTM (+) 0.5290 *** 1.1866 * 0.5615 *** 0.8601
(0.098) (0.622) (0.137) (0.815)

StdDev of Daily Returns (+) 0.4037 *** 1.7487 ** 0.5247 0.1026
(0.086) (0.712) (0.349) (1.341)

Trailing Industry ROE (0) 0.8850 *** 0.1867 0.8352 *** -2.0216
(0.103) (2.428) (0.056) (1.311)

Analyst Coverage (−) -0.0659 -2.0284 ** -0.1874 0.1151
(0.078) (0.887) (0.122) (0.725)

Analyst Dispersion (?) 0.2070 *** 0.7824 * -0.0066 0.3719
(0.038) (0.422) (0.071) (0.465)

Analyst LTG (−) 1.3463 *** -3.2639 ** -0.0285 -0.1616
(0.072) (1.585) (0.052) (0.248)

Observations 58,570 58,570 54,063 58,570
Adj. R2 0.5669 0.8079 0.3032 0.1152
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