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ditions: 1) for a representative firm, the slope of the conditional expected return
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1 Introduction

The ample evidence that expected equity returns are time-varying (Cochrane, 2011)

has significant implications on how investors should make capital allocation decisions

when they face different investment horizons.1 In particular, capturing the dynamics in

expected returns is critical in assessing the holding period returns of investment oppor-

tunities over different horizons, which can guide investors in tailoring their portfolios to

match their desired investment horizons. For example, investors who allocate their capital

intertemporally must make projections of firm-level expected holding period returns in

order to construct optimal portfolios. Ignoring the dynamics of expected returns — such

as by assuming that expected returns are constant across time for a given firm — can

lead to poor capital allocation decisions and as shown by Ang and Liu (2004) significant

equity valuation errors.

Despite its importance, there is not yet a solution for obtaining time-varying expected

holding period returns on equity at the firm level that can be easily applied to the cross

section of firms. Popular firm-level expected returns produced by the traditional CAPM

and the Fama and French (1993) three-factor model, or the more recent proxies suggested

by the implied cost of equity capital literature implicitly assume constant expected re-

turns.

Our paper fills a void in the literature, and contributes by providing a theoretically-

motivated, parsimonious, and easily-implementable model of expected holding period

returns over arbitrary horizons. The model is derived from the present value approach

of Vuolteenaho (2002) with a valuation equation similar to the popular Ohlson (1995)

residual income model, but extended to allow for dynamic expected returns.

We make two key assumptions. First, building on prior research, we assume that both

1This paper uses the terms expected rates of stock returns, expected returns, cost of capital, and
discount rates interchangeably.
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expected stock returns and expected ROE are mean-reverting. Second, we assume that in

the long run expected returns and expected ROE converge, or, stated differently, a firm’s

ability to generate profits over and above its cost of capital (abnormal profitability) will be

eroded by competition over time. These lead to a parsimonious solution for estimating

the expected holding period returns over arbitrary horizons, an approach that can be

easily applied to the cross section of firms using regressions of historical returns on two

firm fundamentals: the book-to-market (BM) ratio and return on equity (ROE).

Our approach relates to the recent line of literature that utilizes the present value

relation to study expected returns (e.g., Ang and Bekaert, 2007; van Binsbergen and

Koijen, 2010; Campbell and Thompson, 2008; Cochrane, 2008; Ferreira and Clara, 2011;

Kelly and Pruitt, 2013; Lettau and Ludvigson, 2005; Lettau and Van Nieuwerburgh,

2008; Pástor, Sinha, and Swaminathan, 2008). Whereas the literature has been focused

on forecasting aggregate returns (at the market or portfolio levels), we focus on firm-level

expected returns and their performance in predicting the cross section of future returns.

Also related to our study is the recent line of literature which has begun to study the

prices and risk premiums of the term structure of dividend strips (e.g., van Binsbergen,

Brandt, and Koijen, 2012; van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; Lettau and

Wachter, 2007). While related, ours is devoted to studying the expected returns from

holding equity over different horizons. Further, a central theme in the term structure

literature is the use of forward looking market based prices (such as the value of dividend

strips, or bonds), our paper differs here since we derive holding period returns estimates

based on historical realized returns and accounting data and do not require instruments

such as dividend strips to form projections.

Our baseline implementation of the model uses BM and ROE constructed using quar-

terly financial statements to forecast holding period returns in quarterly intervals. We

study the cross-sectional properties of the model-implied proxies of expected holding pe-
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riod returns and document that they exhibit significant ability in predicting the cross

section of future holding period returns up to 3-years ahead. In out-of-sample tests,

which range from 1986 to 2013, our expected return estimates predict the cross section of

future returns with a regression slope coefficient for 3-, 12-, 24-, and 36-month ahead log

returns of 0.86, 0.72, 0.60, and 0.52, respectively, where all coefficients are significant at

the 1% level. 3-month ahead proxies are especially reliable, as the regression slope is sta-

tistically no different from 1 and the intercept is no different from 0, consistent with the

behavior of true expected returns. Portfolio sorts using these proxies also yield a strong

monotonic relation with future returns: going long the top decile and short the bottom

decile of 3-, 12-, 24-, and 36-month expected return firms produce spreads future returns

of 5.48%, 15.42%, 30.44%, and 46.32%, respectively, all significant at the 1% level.

These results are robust to various implementations of the model: for example, by im-

plementing instrumental variables estimation or using annual financial statement data. In

contrast to our model-implied proxies, we find that firm-level expected returns produced

by the popular factor-based models (i.e., CAPM, Fama and French, 1993 three-factor

model, and a four factor model that augments the previous with a momentum factor) do

not positively predict the cross section of future returns. Overall, our firm-level proxies

are far more reliable than the factor-based alternatives.

These empirical findings make several contributions. First, we contribute method-

ologically by providing a fundamentals-based model that can forecast the cross section of

stock returns out-of-sample and over different horizons. This builds on the work of Ang

and Liu (2004), who developed a conditional CAPM model to discount portfolio-level

cash flows at different horizons. To our knowledge, our paper and that of Callen and Lyle

(2011) provide the only empirical methods for obtaining the firm-level multi-period ahead

expected returns forecasts. However, unlike the work of Callen and Lyle (2011), who es-

timate firm-level expected holding period returns implied by option contracts that are
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limited by the existence and liquidity of contracts of different expirations, our method-

ology uses accounting data and is easily applied to the cross section of firms. Moreover,

our firm-level proxies are particularly useful in light of the observation that CAPM and

other common factor-based models can be difficult to apply over different investment

horizons — unless one assumes that factor loadings and premiums are flat — coupled

with the finding that these models do not reliably and positively predict out-of-sample

future returns. Our solution is a more useful input to inform investors’ capital allocation

decisions.

Second, whereas the asset pricing literature has mostly focused on the performance of

aggregate predictive regressions (e.g., Welch and Goyal, 2008; Campbell and Thompson,

2008) and, more generally, the out-of-sample predictive ability of aggregate return fore-

casters (e.g., van Binsbergen and Koijen, 2010; Kelly and Pruitt, 2013), there is relatively

little evidence on the out-of-sample predictive ability and reliability of firm-level expected

returns produced by cross-sectional regressions. We contribute new evidence to this end

and show that cross-sectional-regression based estimates of firm-level expected returns

are reliably associated with the cross section of future returns.

Moreover, our results show that reliable proxies of firm-level expected holding period

returns can be obtained using only realized returns, the BM ratio, and ROE. This find-

ing contributes to the recent literature focused on the estimation of firm-level expected

returns, such as the implied cost of capital literature, which has produced a plethora of

proxies that are not only fraught with implementation issues but also have not been found

to be reliable (e.g., Easton and Monahan, 2005).2 Moreover, while recent research has

2Proxies offered by this literature, (e.g., Claus and Thomas, 2001; Gebhardt, Lee, and Swaminathan,
2001; Easton, Taylor, Shroff, and Sougiannis, 2002; Easton, 2004; Gode and Mohanram, 2003) typically
require solving complicated non-linear equations which can produce multiple solutions, the choice of
which lacks theoretical guidance. Furthermore, these measures often rely on analysts’ biased forecasts
of future earnings (Hou, Van Dijk, and Zhang, 2012; Mohanram and Gode, 2012), are sensitive to the
estimation of long-term growth estimates (e.g., Easton et al., 2002; Nekrasov and Ogneva, 2011), and
assume constant expected returns, all of which lead to noisy measures of expected equity returns (e.g.,
Hughes, Liu, and Liu, 2009; Wang, 2013).
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begun to examined the link between firm characteristics and the cross section of future

returns, these papers use ad hoc models and empirically inspired predictors (e.g., Lee,

So, and Wang, 2012 and Lewellen, 2013) and their methods are not easily adapted to

accommodate muti-period ahead forecasts (e.g., Lyle, Callen, and Elliott, 2013). Our

approach is guided by a fully-solved valuation model involving only two determinants,

and the resultant proxies are reliable.

We also contribute further evidence on the open question on the persistence in ex-

pected returns, a key structural parameter of our model that is recovered in the estima-

tion. Whereas Kelly and Pruitt (2013) argue that expected annual returns are far less

persistent (AR(1) parameter of < 0.3) than those documented in prior literature (AR(1)

parameters between 0.91 to 0.94), our estimates are closely in line with the latter, despite

differences in estimation methodologies.

Finally, though the main focus of the paper is on the cross-sectional properties of

the firm-level estimates of expected returns implied by BM and ROE, in supplemental

analyses we also examine how the model performs in capturing the time-series variations

in aggregate conditions. We find that, for the representative firm, the slope of the con-

ditional expected return curve (i.e., the difference between annualized long-horizon and

short-horizon holding period returns) tracks economic conditions. This slope is more

positive during normal times or times of economic expansion, when expected short-run

returns are relatively low; during times of economic distress or uncertainty, on the other

hand, this difference becomes less positive, as uncertainty and risk in the short-run are

elevated. Moreover, we show that the model produces a forecaster of aggregate returns

that exhibits a modest predictive ability of 3-month ahead returns, with a predictive

R2 of 0.62%. A comparison to the state-of-the-art forecaster proposed by Kelly and

Pruitt (2013) suggests that as more quarterly fundamental data becomes available, the

performance of this simple aggregate forecaster can be expected to improve.
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Thus, we contribute to the literature by offering a model and methodology for estimat-

ing expected returns that is not only useful in forecasting the cross section of firm-level

returns but also the time-series variation in aggregate returns. To our knowledge, no other

model or methodology has been shown to exhibit evidence of predictive ability in both of

these dimensions. For example, sophisticated forecasters like the ones proposed by van

Binsbergen and Koijen (2010) or Kelly and Pruitt (2013) could not be implemented for

the cross section of firms given the extensive time-series data needed to perform their

filtering algorithms; and although they could be applied to forecast the portfolio level

returns in time series, it is unclear whether differences between portfolio-level expected

returns forecast differences in future returns.3

The remainder of the paper is organized as follows. Section 2 presents the model for

valuing stock prices and estimating expected returns. Section 3 discusses the estimation

of the model and presents our empirical findings. Section 4 discusses the robustness tests

and supplemental analyses. Section 5 concludes the paper. All proofs are detailed in the

Appendix.

2 The Model

We derive a stock valuation model based on the log-linearization of Vuolteenaho

(2002). The linearization approach allows for firm-specific log returns to be expressed in

terms of log BM ratio and log ROE, assuming the clean surplus relation holds. Based on

this decomposition, realized log returns for a firm (i) can be written as

ri,t+1 = bmi,t − k1bmi,t+1 + roei,t+1, (1)

3Forecasts can perform well in the time-series but not in the cross section, for example, if there are
portfolio-specific biases that are constant but do not preserve the rank ordering of portfolio-level expected
returns.
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where, ri,t+1 = ln
(
Si,t+1+Di,t+1

Si,t

)
, bmi,t = ln

(
Bi,t

Si,t

)
is the log BM ratio where Bi,t (Si,t) is

the book (market) value of equity, Di,t+1 are dividends; roei,t+1 = ln
(

1 +
Ei,t+1

Bi,t

)
is log

ROE where Ei,t+1 represents firm earnings for period t + 1; and k1 is a cross-sectional

constant close to one. From here, the log BM ratio can be conveniently expressed in

terms of expected log returns and expected log ROE:4

bmi,t =
∞∑
j=1

kj−1
1 (Et[ri,t+j]− Et[roei,t+j]) . (2)

We assume in addition that expected log returns, Et[ri,t+1] ≡ µi,t, and expected log

ROE, Et[roei,t+1] ≡ hi,t, are time-varying and mean-reverting. For tractability, we assume

that both follow AR(1) processes with a common mean,

Expected Log Returns: µi,t+1 = µi + κi(µi,t − µi) + ξi,t+1, and (3)

Expected Log ROE: hi,t+1 = µi + ωi(hi,t − µi) + εi,t+1, (4)

where ωi and κi represent the levels of persistence in expected log returns and ROE,

respectively; µi represents the long-run average expected log return as well as the long-run

expected log ROE; and (ξi,t+1, εi,t+1) are expected returns and expected ROE innovations

assumed to be IID with mean zero and finite second moment. Under the AR(1) structure,

log BM ratio can be simplified as

bmi,t =
1

1− k1κi
(µi,t − µi)−

1

1− k1ωi
(hi,t − µi) . (5)

It follows that in the long run book values and market values are expected to converge

to the same mean, consistent with mark-to-market accounting.5

4Details of the derivation are in Appendix A.
5This is consistent with Vuolteenaho (2002), whose log-linearization expands around a common point

for both dividend-to-price and dividend-to-book. If we take this expansion point as the unconditional
mean in the ratios, it implies that E[log(D

S )] = x = E[log(D
B )] or E[log(S)] = E[log(B)].
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The assumption that expected returns are AR(1) or mean-reverting is common in

modeling interest rates (e.g., Cochrane, 2001; Duffie, 2001) as well as in modeling ex-

pected returns of equities (Campbell, 1991; van Binsbergen and Koijen, 2010; Pástor and

Stambaugh, 2012; Wang, 2013). Our assumption of mean-reverting expected ROE follows

Freeman, Ohlson, and Penman (1982), Lee, Myers, and Swaminathan (1999), Gebhardt

et al. (2001), and Dichev and Tang (2009). The common mean assumption is implicit

in the Vuolteenaho (2002) log-linearization and is, in spirit, similar to the motivation for

the dynamics of Ohlson (1995), who assumes long-run abnormal earnings converge to

zero due to competition. However, we acknowledge the possibility that this assumption

may not be empirically supported as features of accounting systems, such as conservative

accounting, may result in expected ROEs that differ from the expected rate of returns

in the long-run even if firms do not earn economic rents (e.g., Cheng, 2005; Feltham

and Ohlson, 1995, 1996; Penman and Zhang, 2002; and Zhang, 2000). While we may be

potentially trading off parsimony for realism, to the extent that the difference between

expected log ROE and expected log returns converges to a non-zero constant in the long

run, it is unclear how or to what extent our assumption might bias our model’s ability to

explain realized returns. Ultimately, we test to what extent the model’s implied proxies

of expected log returns predict the cross section of future returns.

2.1 Stock Prices

Given the dynamics of expected log returns and expected log ROE modeled above,

the log market value of equity (si,t) can be parsimoniously expressed as

si,t = bi,t + α1(hi,t − µi)− α2(µi,t − µi), (6)
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where α1 = 1
1−ωik1

and α2 = 1
1−κik1 . This equation says that firm value can be written in

a form similar to that of the seminal Ohlson (1995) model. Firm values are anchored by

book value plus a linear combination of “abnormal” expected log ROE and “abnormal”

expected log returns.

We expect the coefficient α1 to be positive because, all else equal, higher levels of

expected profitability should imply higher prices, and we expect α2 to be positive because,

all else equal, higher levels of expected returns lower equity values. AR(1) persistence

parameters less than unity would imply that both α1 > 0 and α2 > 0.

This closed form solution for stock prices also allows for an analysis of the the poten-

tial (mis)valuation effects of assuming constant expected rates under dynamic expected

returns. In particular, if long-run expected returns are used, an assumption that reflects

the common practice of applying the long-run average returns in valuation models, then

the pricing errors arising from assuming constant expected returns can be expressed as:

ERROR = |Si,true − Si,wrong
Si,true

| = |1− exp(α2(µi,t − µi))|, (7)

where Si,true is the price of the stock with time-varying expected returns and Si,wrong

is the stock valuation assuming a constant expected returns. Clearly, the smaller the

difference between short-run and long-run expected returns, the smaller the valuation

error. Moreover, the lower the persistence in conditional expected returns – thus quicker

reversion to the long-run mean – the smaller the valuation error. Though an investigation

into these mispricing effects is beyond the scope of our paper, we believe this to be an

important area of research in the valuation literature and provide here a simple analytical

framework.
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2.2 Expected Holding Period Returns

Rearranging equation (6) and solving for µi,t, expected returns over the next period

can be expressed as

µi,t = µi +
1

α2

[bmi,t + α1(hi,t − µi)]. (8)

In this setting, expected log returns can be determined by a constant, the log BM ratio,

and expectations of log ROE. Intuitively, higher levels of BM and higher expectations

about ROE imply higher expected returns.

Given the dynamics of expected returns from equation (3) and conditional expected

returns over the next period from equation (8), a full description of expected holding

period returns over arbitrary future horizons can be expressed in closed form:

T∑
j=1

Et[ri,t+j] =
T∑
j=1

Et[µi,t+j−1] = µiT +
(1− κTi )

1− κi
1

α2

[bmi,t + α1(hi,t − µi)]. (9)

This equation implies that the average expected holding period return on equity over

time T ( 1
T

∑T
j=1 Et[µi,t+j−1]) consists of a long-run average return component (µi) and

a short-run average return component ( 1
T

(1−κTi )

1−κi
1
α2

[bmi,t + α1(hi,t − µi)]). As the holding

period horizon increases, average holding period returns converge to long-run expected

returns.

The simplicity of the above equation reveals this model’s appeal. Unlike other ad-

hoc methods for estimating the expected rate of returns, this model is parsimonious

and grounded in the present value approach. It is linear in only two firm fundamental

characteristics and allows for relatively straight forward estimation of firm level holding

period returns over various horizons. Finally, this model overcomes some important

limitations that have plagued the implied cost of capital models: 1) they assume constant

discount rates; 2) they rely on ad-hoc terminal growth estimates; and 3) their estimation
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often requires solving non-linear equations via numerical methods that may or may not

converge, or may converge to multiple solutions. Our model is fully dynamic, allows for

the simultaneous estimation of long-term rates of returns on the book value and market

value of equity, and its parameters are easy to compute.

3 Model Calibration and Main Empirical Tests

In this section we describe the process of estimating equation (8), including the data

requirements and key inputs, to compute the model-implied estimates of expected holding

period returns. We then present our main empirical tests to assess the cross-sectional

performance of these estimates.

3.1 Data and Calibration

To estimate the model parameters empirically, we assume the following relations be-

tween realized and expected log returns and log ROE:

ri,t+1 = µi,t + ηi,t+1, (10)

roei,t+1 = hi,t + νi,t+1, (11)

where µi,t and hi,t are expected log returns and log ROE, respectively, and the noise

terms ηi,t+1 and νi,t+1 are mean zero and independently distributed. Substituting into

equation (8) and applying the AR(1) assumption to expected log ROE yields the following

estimable equation relating one-period ahead realized log returns to current log BM ratios

and log ROE,

ri,t+1 = µi

(
1− ωi

α1

α2

)
︸ ︷︷ ︸

β0

+ (1− κik1)︸ ︷︷ ︸
β1

bmi,t +

(
ωi

1− kik1

1− ωik1

)
︸ ︷︷ ︸

β2

roei,t + ζi,t+1, (12)
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where β1 = 1
α2

, β2 = ωi
α1

α2
, and ζi,t+1 = α1

α2
(εit − ωiνi,t) + ηi,t+1.

To estimate (12), we match return and price data from The Center for Research in

Security Prices (CRSP) with financial statement data from Compustat. In matching the

data to the model, we needed to choose a frequency with which expected returns and

expected ROE evolves according to the assumed dynamics. Our main empirical analysis

uses quarterly data — i.e., expected quarterly returns and ROE follow AR(1) — since this

represents the highest frequency with which ROE and other accounting data is realized.

In light of this, our implementation of this model, which incorporates dynamic expected

ROE, utilizes quarterly financial statements and makes forecasts of holding period returns

on a quarterly basis.

Specifically, at the end of March, June, September, and December of each calendar

year we match future delisting-adjusted quarterly returns (following Beaver, McNichols,

and Price, 2007) over to the most recently available quarterly financial statement data

from Compustat. Financial statement data are considered publicly available if the earn-

ings for a particular fiscal period have been announced (Compustat variable RDQ).6

Combining the publicly available quarterly financial statement data with end-of-quarter

market prices, we construct the log BM ratio (bmi,t) and log ROE (roei,t). Since quar-

terly financial statements are only available starting at the end of 1970, we construct

bmi,t and roei,t and match them to future quarterly log returns starting from March 1971

and ending in September 2013.

We make forecasts of expected future log returns on a quarterly basis, at the end of

each calendar year quarter, and calibrate the model by estimating equation (12) through

pooled regressions estimated at the Fama and French (1997) 48 industry level, using

6More specifically, at the time of the forecast, we use the most recent publicly available book values,
earnings, and dividends from the set of financial statement data for which earnings were most recently
announced. For those firms with missing RDQ values in Compustat we assume an earnings announce-
ment date that is 3 months from the fiscal quarter end. Our results are qualitatively unchanged by
conducting the empirical analysis on the subset of firms with non-missing RDQ values.
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historical realized log quarterly returns, log BM ratios, and log ROE to avoid look-ahead

bias.7

Implicit here are the assumptions that: 1) expected log quarterly returns and expected

log quarterly ROE follow AR(1) processes with a common long-run mean; and 2) the

model parameters are industry-specific and may be time-varying.8 These industry-specific

assumptions follow from the intuition that over time firms tend to become more like their

industry peers (e.g., Gebhardt et al., 2001) and that any abnormal expected ROE (in

excess of expected returns) should tend to erode over time as a result of industry-level

competition.9

These industry-specific parameters are easily recovered from the estimated coefficients

of (12):10

κ = (1− β1) /k1, (13)

µ = β0/ (1− β2) , (14)

ω =
β2/β1

1 + (β2/β1) k1

. (15)

A few caveats with the estimation of these model parameters are worth mention-

ing. First, consistent estimation of (κ, µ, ω) follows from the consistent estimation of

(β0, β1, β2). This is a non-trivial result that follows from Slutsky’s Theorem (Hayashi,

2000) and the continuity of the function f : (β0, β1, β2) 7→ (κ, µ, ω). Second, for purposes

of constructing expected future log returns, explicit estimates of ω are unnecessary; in

7For example, to make a forecast at the end of June 2010 we use quarterly realized log returns up to
June 30, 2010 and observable quarterly bmi,t and roei,t up to March 30, 2010.

8Note that estimation of equation (12) requires expected log returns, expected log ROE, and log BM
ratio to be stationary, a property that follows from our mean-reversion assumptions on the first two
series.

9We also note that the estimation of parameters by industry is common in return regressions (e.g.,
Callen and Segal, 2004; Callen, Hope, and Segal, 2005).

10The value of k1 is usually assumed to be around 0.97, but its value appears to have little impact on
empirical results for values in the range of 0.95 to 1 (e.g., Callen and Segal, 2010).
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fact, for constructing expected one-quarter ahead log returns, explicit estimates of both

ω and κ are unnecessary. Third, we winsorize AR(1) parameter estimates at 0.9999 and

the expected long-run return estimates at 0.3 or -0.3. Finally, although we winsorize the

estimated model parameters, for purposes of constructing expected future log returns we

use raw estimates of (α1, α2).

In our primary tests we use a training (or burn-in) sample consisting of 60 quarters of

data, from 1971Q1 to 1985Q4, for each industry. Therefore, our out-of-sample forecasting

begins at the end of March 1986.11 We use a “cumulative” window approach, or recursive

estimation, in that all available historical data are used to estimate equation (12) in order

to form forecasts of expected log returns. However, in untabulated robustness tests all the

results of our paper are qualitatively similar when we use a rolling, 60-quarter window

estimation approach. Finally, to mitigate the influence of outliers, we winsorize the

regressors at the top and bottom 0.5% in each regression.

3.2 Summary Statistics

We begin by estimating the model using quarterly data via OLS, which has the appeal

of being simple and efficient.12 Table 1 reports summary statistics on the median values

of the industry-level estimates of the coefficients in equation (12) and the implied model

parameters. Panel B reports the time-series medians for each industry, and Panel A

reports distributional summary statistics of Panel B. The mean (median) coefficient on log

BM and log ROE are 0.0263 (0.0251) and 0.2695 (0.2323), respectively, whereas the mean

(median) estimate of the constant coefficient is 0.0074 (0.0091). We find that, on average

for a given industry, both expected returns and expected ROE are highly persistent, with

11Though the choice of burn-in period is ad-hoc, we believe it is reasonable in terms of providing a
sufficiently large training sample and a sufficiently representative out-of-sample period. Nevertheless, as
we discuss and show below, our results are robust to different burn-in period choices.

12As we note in the robustness test section below, this method of estimation may produce biased
coefficients.
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average (median) AR(1) parameters of 0.9834 (0.9847) and 0.9036 (0.9244), respectively.

The variation in the industry median persistence in expected returns is relatively small,

with a standard deviation of 0.0096, compared to the variation in the persistence of the

expected log ROE, with a standard deviation of 0.0616 and a comparably larger inter-

quartile range.

Overall, these persistence estimates add to the empirical evidence on the persistence

of expected returns. Unlike Kelly and Pruitt (2013) who argue that expected return per-

sistence is substantially lower (< 0.3) than what has been documented in prior literature,

our estimates are closely in line with the latter. For example, van Binsbergen and Koijen

(2010) obtained an annual persistence parameter of 0.932 for the expected one-year ahead

market return, which is close to the our annualized mean quarterly persistence parameter

of 0.98344 ≈ 0.9352.

Using the estimated coefficients and implied model parameters
(
β̂1, β̂2, µ̂, κ̂

)
we form

expectations for each firm, conditional on currently available data, of holding period

returns following

T∑
j=1

µ̂t+j−1 = µ̂T +
(1− κ̂T )

1− κ̂
[β̂1bmt + β̂2(roet − µ)]. (16)

Specifically, at the end of each calendar quarter we construct forecasts of 1-, 4-, 8-, and

12-quarter-ahead holding period returns using the most recently available historically

estimated parameters to avoid look-ahead bias.

Table 2 Panel A reports the time-series average of the cross-sectional distributional

summary statistics for the estimated expected log returns over different horizons, the

implied long-term expected quarterly log return, the difference between the long-term

and 1-quarter ahead expected log (annualized) returns, and the difference between the

4-quarter and 1-quarter ahead expected log (annualized) returns. For comparison, Table
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2 Panel B reports the time-series average of the cross-sectional distributional summary

statistics for the different horizons’ of realized log returns.

Comparing the mean expected returns to that of the mean realized returns over dif-

ferent horizons suggests that our expected return proxies map well into to future average

realized returns. For example mean expected returns (realized) returns are -0.0070 (-

0.0156), -0.0257 (-0.0598), -0.0460 (-0.1116), and -0.0616 (-0.1478), respectively, for 1-,

4-, 8-, and 12-quarters-ahead. Thus, our expected return proxies appear to generate

realistic values for multiple points in the future. However, for a more comprehensive

assessment of these proxies we turn to the next section.

3.3 Cross-Sectional Validation Tests

We validate the model by examining the cross-sectional properties of these expected

return proxies and to assess its reliability. In particular, we examine the ability of these

firm-level estimates of expected returns to predict the cross section in future holding

period returns up to three-years ahead.

We conduct regression-based tests as well as portfolio-based tests. In the first set of

tests, we estimate pooled regressions of realized log returns over a holding period horizon

on our measure of ex ante expectations of log stock returns over that horizon:

ri,t+T = δ0 + δ1Et[ri,t+T ] + wi,t+T . (17)

Having true conditional expectations of holding period returns yields δ0 = 0 and δ1 = 1

for all holding periods T , but in lieu of satisfying these absolute benchmarks, positive

and significant δ1 coefficients imply positive return sorting ability on average.

Table 3 reports regression estimates of equation (17) for T = 3-, 12-, 24-, and 36-

months. In columns (5)–(8), we include industry fixed effects to test the return pre-
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dictability of our proxies within industry. These results indicate that the model-implied

proxies of expected log returns are significantly associated with future log returns up to

three years ahead. The coefficients on 3-, 12-, 24-, and 36-month expected log returns are

0.8555 (0.8342), 0.7162 (0.6852), 0.5954 (0.5606), and 0.5244 (0.4904), respectively, for

the specifications without (with) industry fixed effects, with each coefficient significantly

different from 0 at the 1% level.13 The magnitudes of the slope coefficients attenuate as

the holding period lengthens. Since our expected return proxies are conditional on the

information set at time t, measurement errors are likely to be greater at longer holding

period horizons, contributing to greater attenuations of the slope coefficients. Neverthe-

less, the associations between expected and realized returns remain highly statistically

significant at longer horizons.

The one-quarter ahead expected log return proxies perform especially well. The base-

line specification of column (1) reports a slope coefficient of 0.8555, which is not only

economically large and statistically significant at the 1% level, but we also fail to reject

the null hypothesis that this slope coefficient is different from 1 at the 10% level. Fur-

thermore, we also fail to reject the null that the constant is no different from 0 at the

10% level. In untabulated tests, we find similar, but generally stronger, results using

Fama-MacBeth regressions. The coefficients on 3-, 12-, 24-, and 36-month expected log

returns are 0.8415, 0.7006, 0.5947, and 0.5268, respectively, with each coefficient being

significant at the 1% level.

These regression results also indicate that the firm-level proxies of expected returns

explain 1.2%, 2.8%, 3.6%, and 4.03% of the variation in 3-, 12-, 24-, and 36-month ahead

returns, respectively, so that most of the variation in firm-level stock returns are driven

by news. Moreover, we find that most of the unexpected stock returns are driven by cash

13We use two-way cluster robust standard errors, clustering by time and by firm, to account for both
cross-sectional and time-series correlation in the residuals (see Petersen, 2009 and Gow, Ormazabal, and
Taylor, 2010).
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flow news, consistent with the findings of Vuolteenaho (2002).14

We complement the above parametric return regression tests with a portfolio-level

analysis to test the cross-sectional predictive ability of expected holding period return

proxies.15 We form, on each forecast date, portfolios based on quintile as well as decile

rankings of the expected log return proxy, and summarize the average ex post log return

produced by each equal-weighted quantile portfolio. We perform this exercise across

different horizons, matching quantile portfolios for 3-, 12-, 24-, and 36-month ahead

expected log returns to their respective ex post realized log returns.

Table 4 reports the results of the portfolio exercise and provides, consistent with the

regression tests of Table 3, further evidence that the model-implied proxies exhibit signif-

icant ability to predict the cross section of future returns. In all cases, quintile portfolios

sort future log returns monotonically, with economically and statistically significant aver-

age spreads between the top and bottom portfolios. We find an average quintile (decile)

spread in 3-, 12-, 24-, and 36-month ahead market-adjusted [left-hand side of the table]

log returns of 0.0790 (0.1094), 0.2491 (0.3286), 0.3297 (0.4240), and 0.3481 (0.4483), re-

spectively, with all average log return spreads significantly different from 0 at the 1%

level. To account for the possibility that these equal-weighted portfolio returns could

be driven by small firms, we also replicate the portfolio exercise (right-hand side of the

table) but summarize size-adjusted log returns, and find qualitatively similar, although

14Our model also leads to a simple decomposition of unexpected returns, similar to Vuolteenaho (2002).
By combining equations (1) and (5), unexpected returns can be expressed as

rt+1 − µt = A1ξt+1 +A2εt+1 + νt+1, (18)

for some constants A1, A2. Here, A2
1V ar[ξt+1] represents the variance in expected returns news.

Parameters of this equation can be estimated by regressing rt+1 − µ̂t on ξ̂t+1 = µ̂t+1 − κ̂µ̂t and
ε̂t+1 = Êt+1[roet+2] − ω̂Êt[roet+1], where Êt[rt+1] is our model-implied expected rates of quarterly

returns, Êt[roet+1] is lagged roe, and κ̂ and ω̂ are the sample average persistence parameters.

This estimation yields Â1 = −4.8633, Â2
1 × V̂ [ξ̂t+1] = 0.02300, and V̂ [rt+1 − µ̂t] = 0.09137. Thus,

our model suggests that approximately 23.90% of the variance in unexpected returns is explained by the
variance in discount rate news, similar to Vuolteenaho (2002) who estimates this ratio to be approximately
25% using a VAR.

15As Cochrane (2011) noted, these are essentially nonparametric regression tests.
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slightly weaker in magnitude, results.

We also find that our proxies sort future net returns (rather than logs). The last two

rows of Table 4, Panel A reports average quintile (decile) spreads in 3-, 12-, 24-, and 36-

month market-adjusted returns of 0.0389 (0.0548), 0.1109 (0.1542), 0.2305 (0.3044), and

0.3551 (0.4632), respectively, again with all average spreads significantly different from 0

at the 1% level. As before, size-adjusted spreads provide similar results. The spreads in

realized net returns provides a clearer picture of the return sorting ability of our expected

return proxies. The quarterly quintile (decile) spread implies a compounded annual

market-adjusted return of 16.49% (23.79%), and a compounded annual size-adjusted

return of 15.15% (22.33%).

In untabulated results, we also conduct the portfolio tests within each industry. That

is, we form, on each forecast date and for each industry, portfolios based on quintile

as well as decile rankings of the expected log return proxy. Our findings here are very

consistent (both quantitatively and qualitatively) with those of Panel A, with average

spreads that are similar to, and sometimes even larger than, those of Panel A.

These findings are significant in illustrating how investors can use just two firm fun-

damentals to construct firm-level proxies of expected returns that sorts future returns.

Moreover, the quarterly forecasts of firm-level returns are especially reliable and line up

well with the behavior of true expected returns. These findings also demonstrate, consis-

tent with Lewellen (2013), that firm-level expected return proxies obtained from pooled

regressions of realized returns on predictors exhibit strong cross-sectional predictive prop-

erties.
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4 Robustness Tests and Supplemental Analyses

We provide in this section analyses on the sensitivity and robustness of our main

results to different implementations of the model as well as compare our model-implied

estimates of expected net returns to those implied from standard factor models. We also

assess the model’s ability to extract time varying conditions in the aggregate.

4.1 Sensitivity to Training Sample Period

We first test the performance of our expected quarterly log returns estimates to the

choice of the burn-in period, following Kelly and Pruitt (2013). Our primary results splits

the sample at 1985Q4, using the data from from 1971Q1 to 1985Q4 as the initial training

sample. In these robustness tests we produce the regression-based and portfolio-based

returns tests for a series of expected quarterly log returns estimated using varying sample

splits for the initial burn-in period, from 1981Q1 to 1999Q4.16

The first row of Figure 1 reports the slope coefficients from regression-based tests

of Table 3, with the right-hand-side graph representing the specification that includes

industry fixed effects, across different sample-split dates. Both of the figures in this

row show that across the different burn-in periods considered, the resultant proxies of

expected returns produce out-of-sample regression slope coefficients that are fairly stable

and economically as well as statistically significant.

Out-of-sample decile portfolio spreads, reported in the second and third rows of Fig-

ure 1, confirm the robustness of our estimation to the choice of initial burn-in period. We

replicate the portfolio-based tests of Table 4, specifically the spreads in 3-month ahead

realized net returns between the top and bottom decile portfolios, using expected log

returns proxies formed using different burn-in periods. The right-hand-side column rep-

16Similar to Kelly and Pruitt (2013), our earliest cutoff utilizes a training sample of 10 years and our
last cutoff leaves an out of sample forecast horizon of approximately 15 years.
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resents results using decile portfolios formed within industry. In both the market-adjusted

(second row), and the size-adjusted (third row) results, we find that the decile portfolio

spreads are consistently economically and statistically significant across all sample splits.

4.2 Instrumental Variables Estimation

The next set of tests addresses the potential issue arising from the use of the most

recently reported log ROE (roei,t) to proxy for expected log ROE (hi,t) over the next pe-

riod, which likely produces inconsistent estimates of β2 in an OLS estimation of equation

(12).17 Our model implies that the lag value of log ROE (roei,t−1) is a valid instrument

for roei,t and can be used to mitigate the potential biases in the estimated coefficients.

It is easily shown that the instrument relevance condition is met so long as ρ 6= 0; ρ = 0

implies that expected log ROE as well as realized log ROE are both white noise, with the

latter easily rejected empirically. Satisfying the instrument exogeneity condition follows

from the time-series structure of the model. Intuitively, the source of the measurement

error bias stems from the correlation between roei,t and the expected roe innovations for

the period, νi,t, or expected roe news (with respect to period t−1 information). It follows

that there is no correlation between roei,t−1 and νi,t.

Table 5, Panel A reports the distributional summary statistics for the estimated model

parameters using an instrumental variables (IV) regressions approach.18 The reporting

format follows that of Table 1, Panel A with the exception that the fourth column reports

first-stage F -statistics from the IV regressions.

Our estimation shows that roei,t−1 is a relevant instrument for roei,t, with first stage

F -statistics of 77.18 at the 5th percentile and 1555.04, on average. The coefficient on roei,t

increases to an average (median) of 0.6038 (0.5303) from the OLS estimates of 0.2695

17This is clearly seen in the correlation between roei,t and ζi,t+1 through νi,t.
18All other aspects of the model estimation, in terms of sample selection, data cleaning, etc., are

identical to the OLS estimation procedure.
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(0.2323), suggesting that the OLS estimates may have been attenuated by measurement

errors; however, the variation in this coefficient nearly tripled to a standard deviation of

0.4148 from the OLS case of 0.1591. Thus, as expected, there is a trade-off between bias

and efficiency between these two sets of estimates. The constant coefficient estimates as

well as the estimates of the coefficient on bmi,t increased in variability, relative to their

OLS counterparts; however, while the mean (median) attenuated substantially for the

constant coefficient, from 0.0074 (0.0091) in the OLS case to 0.0036 (0.0045), it remained

relatively unchanged for the bmi,t coefficient, from the OLS estimate of 0.0263 (0.0251)

to 0.0275 (0.0269).

The increased variability in all estimated coefficients also led to the increased vari-

ability in the implied model parameters. However, this is attenuated by our winsorizing

the implied persistence parameters at 0.9999. In terms of the mean (median) of the esti-

mated model parameters, the implied long-run unconditional expectation (µ) decreased

to 0.0080 (0.0133) compared to the OLS estimate of 0.0099 (0.0127), whereas the im-

plied persistence parameter for expected log ROE (ω) experienced an increase to 0.9498

(0.9628) from the OLS estimate of 0.9036 (0.9244) and the implied persistence parameter

for expected log returns remain relatively unchanged in the mean (median).

Table 5, Panel B reproduces the return tests of Table 3, but using the IV-based proxies

of expected log returns. We continue to find significant return predictability, both in the

cross-section and within industry, up to three-years ahead. The coefficients on 3-, 12-

, 24-, and 36-month expected log returns are 0.6102 (0.5866), 0.5006 (0.4742), 0.4056

(0.3791), and 0.3485 (0.3231), respectively, for the specifications without (with) industry

fixed effects, with each coefficient significantly different from 0 at the 1% level. Although

they remain highly significant, these coefficients are uniformly lower than the OLS-based

estimates. In untabulated tests, we find similar results using Fama-MacBeth regressions.

The coefficients on 3-, 12-, 24-, and 36-month expected log returns are 0.6163, 0.5038,
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0.4199, and 0.3662, respectively, with each coefficient being significant at the 1% level. We

also replicate in untabulated tests the portfolio sort tests of Table 4 using the IV-based

proxies and continue to find return predictability up to the 3-year horizon. Although

quintile and decile portfolio hedged returns continue to be significant at the 1% level and

similar to those based on OLS-estimated proxies, they are almost uniformly smaller in

magnitude.

Overall, the use of IV estimation to mitigate potential measurement error bias pro-

duces similar, but generally noisier, parameter estimates. Our findings that the IV-based

estimates under-perform the OLS-based estimates suggest that efficiency loss in the IV

estimation process, arising from the first-stage estimation, may outweigh the gains from

bias reduction.

4.3 Annual Accounting Data

We also examine the sensitivity of our baseline results to the use of quarterly account-

ing data, which may induce measurement errors in parameter estimates due to potential

seasonality in quarterly earnings. As an alternative, we calibrate equation (12) using log

annual returns and annual accounting data—that is, we assume that expected log annual

returns and expected log annual ROE follow AR(1) processes.

We make forecasts of expected future 1-, 2-, and 3-year holding period log returns on

a annual basis, at the end of June in each calendar year, and, as before, and calibrate the

model by estimating equation (12) via pooled ordinary least squares (OLS) regressions,

pooling at the Fama and French (1997) 48 industry level and using historical realized log

annual returns, log BM ratios, and log ROE. In matching the financial statement data

to the forecast date, we assume that annual financial statement data are observable 3

months after the fiscal year end, consistent with our baseline estimation assumptions. For

example, to make a forecast at the end of June 2010 we use annual realized log returns
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up to June 30, 2010 and observable annual bmi,t and roei,t up to June 30, 2009. We make

forecasts at the end of each June 1980 to 2012. As before, we use a burn-in period of

15 years, from 1965 to 1979, to train the model and use a recursive estimation approach.

Long-run unconditional mean estimates are winsorized at 1.2 and -1.2. All other aspects

of the estimation process are identical to the quarterly OLS-based estimates.

Table 6, Panel A provides the summary statistics for the OLS-based parameter es-

timates using annual accounting data. Not surprisingly, the persistence parameters es-

timated from annual data tend to be lower than those implied by the quarterly data,

whereas the long-term unconditional expected log returns are, on average, higher. These

persistence parameter estimates are consistent with the quarterly-based estimates in the

following sense. The mean (median) annual implied persistence parameter for expected

log returns of 0.9227 (0.9294) is close to the annualized mean (median) quarterly value

of 0.98344 = 0.9352 (0.98474 = 0.9402). Similarly, the mean (median) annual persistence

parameter for expected log ROE of 0.7721 (0.7861) is relatively close to the annualized

mean (median) quarterly value of 0.90364 = 0.6667 (0.92444 = 0.7302).

Table 6, Panel B reports regression-based return tests of Table 3 using the annual-

based proxies. As with the quarterly proxies, we find strong evidence that our expected

log return proxies estimated based on annual financial statement data exhibit strong

return predictability both overall and within industry. The coefficients on 12-, 24-, and

36-month expected holding period log returns are 0.5832 (0.5450), 0.5132 (0.4729), and

0.4620 (0.4234), respectively, for the specifications without (with) industry fixed effects,

with each coefficient significantly different from 0 at the 1% level. However, all of these

slope coefficients are smaller in magnitude compared to those produced by the quarterly-

based estimates. We find very similar results using Fama-MacBeth return regressions.

Also in untabulated results, we produced IV-estimates of expected log returns using

annual financial data, using the previous year’s log ROE as an instrument for the current
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year’s log ROE. The patterns of change, from OLS to IV, in the annual-data-estimated

coefficients and implied parameters are similar to those using quarterly data. For exam-

ple, the IV-estimation generally increases the spreads in the distributions of the estimated

coefficients, especially the coefficient on roei,t. Moreover, regression-based tests of these

annual-data-based IV-estimated proxies continue to exhibit significant return predictabil-

ity up to 3-years ahead, with all slope coefficients being significantly different from 0 at

the 1% level; however, as was the case with quarterly data, the magnitudes of the coeffi-

cients are uniformly generally lower than their OLS-based counterparts reported in Table

6.

Overall, our model does not appear to be very sensitive to estimation in annual

(rather than quarterly) increments in terms of producing proxies of expected returns

that exhibit significant firm-level return predictability. Nevertheless, the quarterly-based

estimates outperform the annual-based estimates across all holding period horizons in

both regression-based tests as well as portfolio sorts.

4.4 Expected Net Returns and Comparison to Factor Model

Estimates

Our above analyses show that the model produces proxies of expected log returns that

exhibit strong cross-sectional properties and are robust to different empirical implemen-

tations. In this subsection we extend the above analyses to adapt our log-based model to

produce proxies of expected net (or simple) returns. Specifically, we supplement equation

(12) with the following equation,

nri,t+1 = Aeβ0+β1bmi,t+β2roei,t − 1 + ηnri,t+1, (19)
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relating expected net returns (Aeβ0+β1bmi,t+β2roei,t−1) to expected log returns and realized

net returns (nri,t+1). The intuition for this functional form for expected net returns

follows from log-returns that are conditionally normal. In this case, expected returns are

multiplicatively related (through conditional log-return variances) to the exponential of

expected log-returns. The A parameter represents this multiplicative relation.

Here, the un-expected returns (ηnri,t+1) are assumed to be mean 0 white noise with

finite second moments. The parameters can be estimated using constrained two-equation

nonlinear seemingly unrelated regressions (SUR), combining equations (12) and (20) and

constraining the coefficients (β0, β1, β2) to be the same across the two equations. We esti-

mate this system recursively using quarterly data, and all other aspects of the estimation

are identical to the baseline results.

Table 7, Panel A reports distributional summary statistics on the estimated coeffi-

cients and implied model parameters following the format of Table 1, Panel A. While

most parameter estimates are similar to those produced by our baseline results, the coef-

ficients on roei,t and the implied persistence parameter of expected ROE are attenuated

relative to the baseline results of Table 1. Moreover, on average (at the median), expected

gross returns are 3.46% (3.34%) higher than expected log returns, translating to proxies

of expected quarterly returns that are 2.89% (2.91%) at the mean (median) or 12.07%

(12.16%) annualized.

Turning to performance assessment, we report in Panel B, Table 7 regression-based

tests similar to those of Table 3, but we replace realized log returns with realized net

returns and proxies of expected log returns with proxies of expected net returns. These

results indicate that the model-implied proxies of expected holding period net returns

significantly predict the cross section of future net returns up to three years ahead.19

The coefficients on 3-, 12-, 24-, and 36-month expected net returns are 0.5973 (0.5986),

19For simplicity, we apply the same A coefficient to convert expected log returns at different horizons
to expected net returns.
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0.4361 (0.4997), 0.4129 (0.4748), and 0.3856 (0.4368), respectively, for the specifications

without (with) industry fixed effects. Similar to our baseline results, not only are these

coefficients economically significant, but they are also uniformly statistically significant

at the 1% level; also similar to the baseline results is the attenuation in the magnitudes

of the slope coefficients as the holding period lengthens.

We also compare these estimates of expected returns to those derived from three

standard factor models: CAPM, the Fama and French (1993) three-factor model, and a

four-factor model which augments the three-factor model with a momentum factor [the

UMD factor obtained from Ken French’s data library (Fama and French, 1996)]. At the

end of each calendar quarter t we estimate the expected one-quarter ahead returns as

Êt[nri,t+1] = rft+1 +
J∑
j=1

γ̂iÊt[fj,t] (20)

for each factor model (with J = 1, 3, 4 factors), where γ̂i are the estimated factor sensi-

tivities, estimated in time-series for each firm using monthly stock and factors’ returns

over the 60 months prior to the forecast date. Expected quarterly factor returns are

estimated based on the trailing average 60-month factor returns multiplied by three. We

compound monthly risk-free rates from the Ken French’s factor returns data to obtain

quarterly risk-free rates.

Table 8, Panel A (B) reports the regression-based (portfolio-sort-based) return tests

of Table 3 (4), but replace realized log returns with realized net returns and compare

the performance of the model-implied proxies of expected quarterly returns to the factor-

based proxies (“CAPM”, “FF3”, and “FF4” for the one-, three-, and four-factor models,

respectively). The analyses are conducted for the subset of firm-year-quarter observations

with non-missing values for all four proxies.

We find that the model-implied proxies dramatically outperform the factor-based
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proxies in their cross-sectional predictive ability. Panel A’s regression-based tests reveal

that the model-implied proxies of expected quarterly returns is the only one with positive

and significant slope coefficient: the specification without (with) fixed effects produced a

slope coefficient of 0.5620 (0.5577), similar to those reported in Table 7 which uses a larger

sample. In fact, the factor-based proxies uniformly produced negative slope coefficients

that, with the exception of the CAPM in the specification without fixed effects, are

statistically significant at the 10% level.

These findings are corroborated by the portfolio-sort-based tests of Panel B, which

shows the model-implied proxies of expected quarterly returns to be the only one that

produces quantile portfolio spreads that are positive and significant. We find that the

spread between the top and bottom decile portfolios in average market-adjusted (size-

adjusted) returns is 5.38% (4.49%), translating to annualized returns of 23.32% (19.21%)

and similar to those produced by the model-implied proxies of expected log returns, and is

statistically significant at the 1% (1%) level. In contrast, CAPM-based proxies produced

quantile portfolio average market-adjusted and size-adjusted spreads that are negative but

are statistically no different from 0 at the 10% level, whereas the three-factor (four-factor)

model based proxies produced spreads that are negative and statistically significant at

the 10% (1%) level.

The findings of Table 8 suggest that though CAPM is an elegant theory of firm-level

expected rates of returns, its empirical implementation fails to exhibit any meaning-

ful predictive ability for the cross section of future returns. The empirically-motivated

multi-factor models, while they appear to explain returns in-sample, also fails to exhibit

predictive ability out-of-sample. Our proxy of firm-level expected returns is derived from

a simple present value model that is parsimonious, easy to implement, and exhibits sig-

nificant ability to predict the cross section of future returns. It can therefore be viewed

as a simple and practical alternative to the factor-based models for obtaining firm-level
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expected returns.

4.5 Supplemental Analyses: Aggregate Level Evidence

Though the main focus of the paper is on the cross-sectional properties of the firm-level

estimates of expected returns implied by BM and ROE, in this subsection we investigate

how the model performs in capturing the time-series variations in aggregate conditions.

4.5.1 Expected Returns and the State of the Economy

We begin by examining whether, for a representative firm, our proxies of expected

returns track economic conditions. Following standard economic theory (e.g., Sharpe,

1964; Merton, 1973), we expect conditional risk premiums, and therefore the conditional

expected rates of returns, to be elevated during times of uncertainty.

Figure 2 shows, for each quarter in our forecast period (i.e., 1986Q1 until 2013Q3) and

for a “representative” firm in our sample, the annualized conditional expected holding

period returns over all horizons up to 30-years (the “expected return curve”). We con-

struct this surface following equation (8) using the median estimated parameters, bmi,t,

and roei,t available at the end of each quarter.20

This surface exhibits several important characteristics about the evolution of expected

holding period returns. First, our estimates show that for the median firm, conditional

on survival, the expected annualized holding period returns tend to increase with the

holding period horizon, producing a positive-sloping expected returns curve for most pe-

riods. Second, during of periods of economic distress (e.g., the three recessions from 1990

to 2009), short-horizon expected returns become high relative to long-horizon expected

20To transform expected log returns into expected returns, we assume that stock returns are condi-
tionally log normal and add one-half the variance of log stock returns to the estimate of expected log
returns. We take the median of the firm-level variance in historical log returns, using historical returns
data from the same period over which the model parameters and the expected log returns are estimated,
over the set of firms with at least 30 quarters of returns data.
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returns and the slope of expected returns curve becomes less positive. Third, the dif-

ference between long-horizon expected returns are most pronounced times of economic

expansion.

To see these patterns more clearly, Figure 3 plots the differences between the long-

and short-horizon end of the expected returns curve across our sample period. We plot

two rate spreads in the top and bottom panels of the figure, respectively: ten-year less

three-month ahead spreads in annualized expected returns and thirty-year less three-

month ahead spreads in annualized expected returns. As reference, we also include these

spreads in risk-free rates and highlight US economic recessions, as defined by the National

Bureau of Economic Research, in red to better identify the behavior of the spreads during

economic downturns or times of high uncertainty.21

Consistent with the three-dimensional surface, this figure — in particular the bottom

panel which plots the spread between the annualized expected thirty-year and three-

month returns — shows that the spread between long- and short-term conditional ex-

pected returns on average are positive but less positive during recessionary times. To-

gether, the patterns seen in Figures 2 and 3 are consistent with the economic intuition

that when there is a high level of uncertainty or risk in the economy, the cost of financing

a new project or issuing new equity in the short-term is high relative to waiting until

economic conditions improve. In times of expansion or growth (e.g., the mid-2000’s), on

the other hand, the spreads between long- and short-term expected returns become more

positive, implying that issuing new equity would be relatively cheaper in the short-run

and one would rationally expect increased equity issuance during these times.

We note that the generally upward-sloping nature of the conditional expected returns

curves in part reflects the modeling assumption that, in the long run, bmi,t is expected

to converge to 0. Since the bmi,t for a representative firm in our sample is negative (i.e.,

21Risk-free rates taken from the St. Louis Fed’s treasury constant maturity rate series. If risk-free
rates are missing for a certain maturity, they are interpolated using a cubic spline.
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market value of equity is larger than book value of equity), for such a firm, all else equal,

the unconditional expected return should be higher than the conditional short-horizon

expected return under the model. While we do not believe that the convergence of market

with book in steady state is an unrealistic assumption — in fact this is congruent with

perfect mark-to-market accounting — we acknowledge that if bmi,t could be expected to

converge to a non-zero constant, our estimates of long-run unconditional expected returns

could be biased. However, to the extent that such a bias is relatively stable over time

for the median firm, we can interpret the changes in the difference between the long-

horizon and short-horizon annualized expected returns as tracking changes in economic

conditions.

Together, the patterns illustrated in Figures 2 and 3 show that, for the median firm,

the dynamics of our model-implied proxies of expected returns track economic conditions

in a manner consistent with economic theory.

4.5.2 Predicting Market-Level Returns

Our final test investigates the model’s ability to generate predictors of aggregate

returns. While this is not the main focus of the present paper, we pursue this line of

exploratory analysis for two reasons. First, a good model of expected returns should, in

principle, produce proxies that can predict future returns both in the cross section and

in time series. We are not aware of such a model or forecaster in the existing literature

and believe that this is an important subject of research in this area. Second, much

of the finance literature has been focused on the time-series variation in market-level

returns, both explaining them in-sample as well as predicting them out-of-sample (see,

e.g., Welch and Goyal, 2008; Campbell and Thompson, 2008). In particular, there is a

growing literature focusing on exploiting present value relations to identify expectations

for aggregate returns, whereas we exploit present value relations to identify firm-level
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expected returns.

To assess our model’s ability to generate predictors of aggregate returns, we esti-

mate equation (12) using future market log returns (equal-weighted CRSP index) and

the cross-sectional average bm and roe. Following our approach in estimating firm-level

expected returns, we make recursive out-of-sample forecasts on a quarterly basis by ap-

plying historically estimated coefficients, using all historical data and starting in 1986Q1,

to the average bm and roe observed at the end of each calendar quarter. Given the lim-

ited number of observations in this time series (i.e., 112 data points, with forecasts from

1986Q1 to 2013Q3), we use robust linear regressions to mitigate the influence of outliers.

We assess the performance of this simple forecasters in the context of existing alter-

natives in the literature. Most relevant is the recent state-of-the-art forecaster proposed

by Kelly and Pruitt (2013) [henceforth “K&P (2013)”], who filter for expectations of

aggregate returns using the cross section of bm ratios. Not only does their model perform

well in-sample, but their forecaster performs remarkably well out-of-sample, unlike many

previously studied predictors that perform well only in-sample (Welch and Goyal, 2008).

For example, filtering from the bm ratios of the 100 size and value-sorted portfolios of

U.S. stocks from Fama and French (1993), K&P (2013) report predictability of monthly

(annual) returns that is significant at the 5% (1%) level and an out-of-sample predic-

tive R2 of 1.1% (8.28%). Thus, for comparison, we adapt their methodology to predict

quarterly aggregate returns, using the 100 size and value-sorted portfolios.22

Following prior literature and K&P (2013), we conduct out-of-sample inference with

the “encompassing” forecast test, using the ENC-NEW test statistic proposed by Clark

and McCracken (2001). This test statistic is commonly used in the forecasting liter-

ature to test the null that two predictors provide the same out-of-sample forecasting

22Following their paper, in constructing the predictor we use a training sample spanning 1930 to 1980
and perform recursive out-of-sample forecasts, which are made again at the end of every calendar quarter
for consistency.
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performance; in particular, it is used to test one forecaster against a naive predictor:

the historical mean of the target series. Panel A, Table 9 reports the test statistics’

significance levels obtained from Clark and McCracken (2000), where the critical val-

ues for the 0.01, 0.05, and 0.10 levels are provided. The notation “< x” indicates the

smallest significance level for which the ENC-NEW statistic exceeds the critical value.

We also report the forecast fit by computing the out-of-sample predictive R2, defined as

R2
os = 1−

∑T
t=1(rt−r̂t)2∑T
t=1(rt−r̄t)2

for each forecaster {r̂t}T1 and r̄τ is the historical average estimated

through τ − 1.

We find that our simple aggregate predictor exhibits modest ability to predict aggre-

gate returns: with an ENC-NEW statistic, it is significant at the 1% level and an R2
os

of 0.62%. Given its simplicity, we were surprised by this modest performance. In com-

parison the K&P (2013) forecaster performs quite well in predicting aggregate returns,

producing an ENC-NEW statistic that is significant at the 1% level and an R2
os of 4.78%.

This performance is very consistent with those documented in their paper.

The relatively better performance of the K&P (2013) forecaster is perhaps not sur-

prising, and could stem from two sources. First, this forecaster is the outcome of a more

sophisticated filtering technology. Second, the implementation of this forecaster uses sub-

stantially greater data than we do. Whereas their approach uses annual financials going

back to 1930s, ours uses quarterly financial statements which are only available since the

end of 1970.23

To assess the impact of having more limited data on the relative performance of these

alternative forecasters, we test the performance of a version of the K&P (2013) predictor

that is estimated using the same training sample period as our predictor, spanning 1971Q1

to 1985Q4. Our results, reported in column (3) of Panel A suggest that the limited data

23K&P (2013) approach uses mixed frequencies, combining annual data on book values with monthly
data on market values, whereas we match the frequencies of accounting data and market values. In other
words, we observe and measure bm and roe with the same frequency as updates of financials, which
better maps to the dynamics of our model.
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substantially impacts K&P (2013) forecaster’s predictive ability. While the ENC-NEW

statistic continues to be significant at the 5% level, the R2
os is substantially reduced and

slightly smaller than those we produce.

We also produce return regression results in Panel B, and find qualitatively similar

evidence. The slope coefficient is economically and statistically more significant (1.3518

and significant at the 5% level) and the R2 larger (5.2%) for the K&P (2013) forecaster

using full data than those produced by our model: a slope coefficient of 0.4936, sta-

tistically significant at the 10% level, and an R2 of 3.2%. However, the variant of the

K&P (2013) forecaster of quarterly data trained on post-1970 data exhibits performance

that is more similar to our simple forecaster: it produces a slope coefficient of 0.4512,

statistically insignificant at the 10% level, and an R2 of 1.3%.

In summary, we find that this model produces a forecaster with modest predictive

ability of aggregate returns, which is surprising given the limited data and lends support

to the model overall. The analysis above also suggests that, as more quarterly financial

statements become available, the performance of this simple aggregate predictor could be

expected to improve. Together, these results lead to a sanguine assessment of the model.

Not only does it produce proxies that exhibit strong cross-sectional properties, but we

also document some modest ability to extract information in the time series as well. To

our knowledge there does not exist alternative models of expected returns that performs

well on both of these dimensions.

5 Conclusion

Expected holding period returns are critical in guiding capital allocation decisions.

When firm-level expected returns are time-varying — in particular when they revert to

different means and with differential speed — the rank ordering of expected holding period
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returns can differ significantly across different horizons. Naive estimates of expected

holding period returns can therefore lead investors to significantly misallocate capital.

We provide a novel and relatively simple methodology to obtain expected holding

period returns over arbitrary horizons, and document that our proxies predict the cross-

section of future returns up to three years into the future. We also document that the

model-implied proxies track economic conditions in the aggregate and exhibit modest

ability to predict aggregate returns. This is a first model exhibiting predictive ability in

both the cross section and in time series.

Our work contributes to empirical studies devoted to developing the estimation and

understanding the behavior of expected returns, and provides a practical tool that can be

used to analyze investment choices of different horizons. We believe the in-depth explo-

ration of the significance of time-varying expected returns to be an important endeavor

for future research in investments and valuation. Future work in this area might adapt

this paper’s model to incorporate analysts’ or other earnings forecasts to improve the

quality and accuracy of the model’s expected return measures.
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Appendix

A Log-Linearization

We begin with the definitions of gross realized returns and ROE, where the latter

relies on the clean surplus relation (i.e., Bi,t+1 = Bi,t + Ei,t+1 −Di,t+1):

Ri,t+1 =
Si,t+1 +Di,t+1

Si,t
, (A.1)

ROEi,t+1 =
Bi,t+1 +Di,t+1

Bi,t

, (A.2)

where Bi,t and Si,t are the book value and market value per share of equity at the end of

period t, respectively, and Di,t+1 and Ei,t+1 are the dividends and net income per share

of equity paid or earned from the end of period t to the end of period t+ 1.

(A.1) and (A.2) lead to the following definition for the book-to-market ratio for firm

i,

Bi,t

Si,t
=
ROE−1

i,t+1(Bi,t+1 +Di,t+1)

R−1
i,t+1(Si,t+1 +Di,t+1)

. (A.3)

Taking logs on both sides of (A.3), the log book-to-market ratio (bmi,t) can be written

as

bmit = ri,t+1 − roei,t+1 + ln (Bi,t+1 +Di,t+1)− ln (Si,t+1 +Di,t+1) (A.4)

where ri,t+1 = ln (Ri,t+1) and roei,t+1 = ln (ROEi,t+1).

Following Vuolteenaho (2002) (see also Callen and Segal, 2004; Easton and Monahan,

2005; Callen, 2009), we use a Taylor expansion around a combination of average log

dividend-to-book and log dividend-to-price to relate the bmi,t as a linear function of

bmi,t+1, ri,t+1, and roei,t+1.
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Adding and subtracting bmi,t+1 to (A.4), we obtain

bmi,t = bmi,t+1 + ri,t+1 − roei,t+1 + ln
(
1 + edi,t+1−bi,t+1

)
− ln

(
1 + edi,t+1−si,t+1

)
(A.5)

where di,t+1, bi,t+1, and si,t+1 are log dividends, book value per share, and price per share,

respectively.

First order Taylor expansion of the log functions around some point y that is a convex

combination of the average log dividend-to-book and log dividend-to-price ratios yields:

ln
(
1 + edit+1−bit+1

)
≈ ln (y) +

ey

1− ey
(dit+1 − bit+1 − y) , and

ln
(
1 + edit+1−sit+1

)
≈ ln (y) +

ey

1− ey
(dit+1 − sit+1 − y) ,

simplifying (A.5) to:

bmit =

(
1

1− ey

)
︸ ︷︷ ︸

k1

bmit+1 + rit+1 − roeit+1.

Solving for log returns yields:

ri,t+1 = bmi,t − k1bmi,t+1 + roei,t+1. (A.6)

It is also convenient to express this equation as a sum of future values; iterating

forward results in:

bmi,t = kT1 bmi,t+T +
T∑
j=1

kj−1
1 (ri,t+j − roei,t+j). (A.7)

Taking conditional expectations and letting T →∞ gives:

bmi,t =
∞∑
j=1

kj−1
1 {Et (ri,t+j)− Et (roei,t+j)} . (A.8)
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B Stock Prices

To derive the stock price equation (6), conditional expectations for some time t + j

of log ROE and log returns are required. Letting hi,t ≡ Et (roei,t+1) and µi,t ≡ Et (ri,t+1)

follow AR(1) processes with persistence parameters ωi and κi, respectively, and mean

µi,t, the conditional expectations for some time t+ j for log ROE and log returns are:

Et (roei,t+i) = µi + ωj−1
i (hi,t − µi), and (A.9)

Et (ri,t+j) = µi + κj−1
i (µi,t − µi). (A.10)

Applying (A.9) and (A.10) to (A.8) yields equation (6).

bmi,t =
∞∑
j=1

kj−1
1 (µi + κj−1

i (µi,t − µi)− µi − ωj−1(ht,i − µi))

=
1

1− κik1

(µi,t − µi)−
1

1− ωik1

(ht,i − µi). (A.11)

C Expected Return Curves

Define the expected return from time t to time t+ T as:

Et

(
T∑
j=1

ri,t+i

)
= Et

(
T∑
j=1

µi,t+j−1

)
, (A.12)

where µi,t+j−1 = µi + κj−1
i (µi,t − µi).

Then, the cumulative expected returns are given by:

Et

(
T∑
j=1

ri,t+i

)
= µiT + (µi,t − µi)

T∑
j=1

κj−1
i = µiT + (µi,t − µi)

κTi − 1

κi − 1
. (A.13)
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Fig. 1. Out-of-Sample Tests across Sample Split Dates.

Figure 1 plots robustness tests of main results by varying the initial burn-in period of our
expected return proxy estimation. We vary the cut-off for the initial training sample from
1981Q1 to 1999Q4, and report results from out-of-sample tests. The first row reports regression-
based tests of Table 3; the second and third rows report decile portfolio spreads of Table 4, and
include results from within-industry decile portfolios in the right-hand-side column. 43
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Fig. 2. Expected Return Curves

Figure 2 plots annualized expected returns estimated using equation (9) plus 0.5 times the
historical stock return variance. The estimated expected returns are based on sample median
estimated parameter values, estimated using historical data, and median log BM ratio and log
ROE in each quarter.
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Fig. 3. Expected Rate of Return and Risk-Free Rate Spreads

Figure 3 plots annualized expected returns estimated using equation (9) plus 0.5 times the
historical stock return variance along with US treasury rates downloaded from the US Federal
Reserve. The estimated expected returns are based on sample median estimated parameter
values, estimated using historical data, and median log BM ratio and log ROE in each quarter.
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Table 1. Summary Statistics of Model Parameters

Table 1 reports summary statistics for the estimated coefficients on bmt and roet of equation
(12) as well as the implied parameters of the model. The coefficients are estimated by pooled
OLS within industry and on a quarterly basis—at the end of March, June, September, and
December each year—using the most recent publicly available financial data on book values
and earnings to avoid look-ahead bias. The estimation pools all firms within the same Fama
and French (1997) 48 industry classification across time, with a burn-in of 60 quarters of data
for a given industry. κ and ω represent the quarterly persistence estimates for expected log
return on market value and book value of equity, respectively, where the persistence parameters
are winsorized at 0.9999. µ is the long-run expected return on the market value of equity. Panel
A reports the distributional summary statistics for the estimated coefficients across industries
and time, Panel B the time-series median estimated coefficients and implied model parameters
for each industry.

Panel A: Overall Parameter Estimates

Regression Coefficients Implied Parameters
Statistic Cons bm roe κ ω µ

P5 -0.0177 0.0126 0.1101 0.9674 0.7811 -0.0270
P25 -0.0009 0.0196 0.1908 0.9776 0.8955 -0.0002
Mean 0.0074 0.0263 0.2695 0.9834 0.9036 0.0099
Median 0.0091 0.0251 0.2323 0.9847 0.9244 0.0127
P75 0.0173 0.0322 0.3240 0.9903 0.9391 0.0257
P95 0.0280 0.0423 0.4072 0.9973 0.9584 0.0356
Std 0.0141 0.0098 0.1591 0.0096 0.0616 0.0189

Panel B: Industry Specific Coefficients

Regression Coefficients Implied Parameters
Industry Cons bm roe κ ω µ

Aero 0.0180 0.0328 0.2819 0.9770 0.9032 0.0257
Agric 0.0000 0.0181 0.1898 0.9919 0.9240 0.0000
Autos 0.0052 0.0388 0.3674 0.9709 0.9282 0.0085
Banks -0.0049 0.0246 1.1294 0.9852 0.9873 0.0174
Beer 0.0194 0.0256 0.3238 0.9842 0.9375 0.0297
BldMt 0.0039 0.0274 0.3594 0.9825 0.9411 0.0061
Books 0.0234 0.0157 0.1623 0.9942 0.9170 0.0270
Boxes 0.0037 0.0164 0.2599 0.9936 0.9577 0.0067
BusSv 0.0138 0.0260 0.2025 0.9839 0.8927 0.0163
Chems 0.0247 0.0286 0.1565 0.9812 0.8599 0.0286
Chips 0.0170 0.0376 0.1594 0.9721 0.8135 0.0203
Clths -0.0078 0.0278 0.2958 0.9820 0.9247 -0.0112
Cnstr -0.0178 0.0187 0.4029 0.9912 0.9587 -0.0296
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Table 1. Summary Statistics of Model Parameters

Panel B: Industry Specific Coefficients [Continued]

Regression Coefficients Implied Parameters
Industry Cons bm roe κ ω µ

Coal 0.0208 0.0236 0.2906 0.9863 0.9337 0.0311
Comps 0.0044 0.0308 0.1388 0.9789 0.8241 0.0051
Drugs 0.0282 0.0232 0.0498 0.9867 0.6931 0.0301
ElcEq 0.0133 0.0243 0.1965 0.9856 0.8964 0.0186
Enrgy 0.0028 0.0240 0.2206 0.9859 0.9067 0.0036
FabPr -0.0002 0.0381 0.4083 0.9716 0.9164 -0.0004
Fin 0.0103 0.0123 0.1297 0.9976 0.9226 0.0117
Food 0.0167 0.0260 0.3496 0.9839 0.9384 0.0256
Fun -0.0075 0.0216 0.2537 0.9883 0.9250 -0.0102
Gold -0.0262 0.0031 0.0934 0.9999 0.9815 -0.0289
Guns 0.0136 0.0185 0.2257 0.9914 0.9293 0.0180
Hlth 0.0036 0.0240 0.2137 0.9859 0.9151 0.0045
Hshld 0.0034 0.0230 0.2784 0.9869 0.9315 0.0046
Insur 0.0159 0.0132 0.2300 0.9968 0.9494 0.0206
LabEq 0.0276 0.0396 0.1373 0.9701 0.7897 0.0316
Mach 0.0122 0.0315 0.2201 0.9783 0.8799 0.0157
Meals -0.0050 0.0231 0.3248 0.9868 0.9466 -0.0072
MedEq 0.0238 0.0320 0.1115 0.9778 0.7764 0.0266
Mines 0.0113 0.0455 0.1912 0.9641 0.8256 0.0138
Misc -0.0054 0.0354 0.1093 0.9743 0.7485 -0.0060
Paper 0.0129 0.0268 0.4052 0.9830 0.9515 0.0257
PerSv -0.0067 0.0206 0.2311 0.9893 0.9242 -0.0087
RlEst -0.0154 0.0161 0.2857 0.9939 0.9567 -0.0208
Rtail 0.0026 0.0222 0.3523 0.9876 0.9468 0.0039
Rubbe 0.0108 0.0437 0.2284 0.9660 0.8487 0.0164
Ships 0.0109 0.0545 0.2159 0.9550 0.8134 0.0134
Smoke 0.0297 0.0173 0.3157 0.9926 0.9325 0.0359
Soda 0.0243 0.0355 0.4028 0.9742 0.9312 0.0412
Steel -0.0001 0.0170 0.2077 0.9929 0.9175 -0.0001
Telcm 0.0312 0.0106 0.1499 0.9994 0.9450 0.0363
Toys -0.0174 0.0199 0.2335 0.9900 0.9301 -0.0234
Trans 0.0079 0.0269 0.3153 0.9829 0.9262 0.0119
Txtls -0.0198 0.0293 0.4905 0.9805 0.9492 -0.0384
Util 0.0241 0.0367 0.3122 0.9730 0.9062 0.0351
Whlsl -0.0029 0.0352 0.3269 0.9745 0.9200 -0.0051
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Table 2. Summary Statistics of Expected Returns

Table 2, Panel A [B] reports the time-series average of quarterly cross-sectional distributional
summary statistics for the estimated expected log return proxies [realized log returns] at various
horizons: 1-, 4-, 8-, and 12-quarters ahead (1Q–, 4Q–, 8Q–, and 12Q–Ahead, respectively) as
well as long-term (LT) expected returns. The last two columns of Panel A report time-series
averages of the quarterly distributional summary statistics for the spreads between LT (annual-
ized) and 1Q-Ahead (annualized) as well as spreads between 12Q- and 1Q-Ahead (annualized)
expected log returns; the last column of Panel B reports summary statistics for the spreads
between 12Q- and 1Q-Ahead (annualized) realized log returns. Expected returns proxies at the
various horizons are computed based on equation (9) using the estimated coefficients and the
implied model parameters of equation (12).

Panel A: Expected log return proxies

1Q– 4Q– 8Q– 12Q– Long– LT–1Q 12Q–1Q
Stat Ahead Ahead Ahead Ahead Term Diff Diff

P5 -0.0776 -0.2996 -0.5728 -0.8216 -0.0695 -0.3541 -0.0225
P25 -0.0193 -0.0740 -0.1401 -0.1997 -0.0018 -0.0164 -0.0007
Mean -0.0070 -0.0257 -0.0460 -0.0616 0.0061 0.0509 0.0073
Median 0.0000 0.0016 0.0067 0.0144 0.0133 0.0498 0.0041
P75 0.0163 0.0649 0.1289 0.1913 0.0236 0.1331 0.0134
P95 0.0392 0.1528 0.2981 0.4388 0.0530 0.3989 0.0437
StdDev 0.0426 0.1651 0.3178 0.4597 0.0380 0.2474 0.0233

Panel B: Realized log returns

1Q– 4Q– 8Q– 12Q– 12Q–1Q
Stat Ahead Ahead Ahead Ahead Diff

P5 -0.4649 -1.1193 -1.7852 -2.3006 -1.6395
P25 -0.1329 -0.2858 -0.4197 -0.5173 -0.5139
Mean -0.0156 -0.0598 -0.1116 -0.1478 0.0230
Median 0.0045 0.0287 0.0639 0.0995 0.0002
P75 0.1274 0.2751 0.4026 0.5043 0.5147
P95 0.3841 0.7465 0.9965 1.1719 1.6948
StdDev 0.3114 0.6635 0.9629 1.1805 1.2106
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Table 3. Return Regressions

Table 3 reports the results of regressions of future realized stock returns, rt+T , on expected return proxies, Et[rt+T ], where T
corresponds to 3-, 12-, 24-, or 36-months ahead (3M, 12M, 24M, and 36M, respectively). Columns (5)–(8) include Fama and French
(1997) 48 industry fixed effects. Standard errors are two-way cluster robust, clustering by firm and year-quarter, and are reported
below the coefficient estimates in parentheses. Levels of significance are indicated by *, **, and *** for 10%, 5%, and 1%, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

3M 12M 24M 36M 3M 12M 24M 36M

Ê[ri,t+1] 0.8555*** 0.7162*** 0.5954*** 0.5244*** 0.8342*** 0.6852*** 0.5606*** 0.4904***
(0.092) (0.055) (0.036) (0.027) (0.074) (0.046) (0.031) (0.025)

Cons -0.0062 -0.0288 -0.0611** -0.0857*** 0.0081 0.0293 0.0657* 0.1013*
(0.011) (0.021) (0.027) (0.031) (0.012) (0.026) (0.040) (0.055)

N 550,320 538,694 522,872 506,734 550,320 538,694 522,872 506,734
FE No No No No Yes Yes Yes Yes

Adj R2 0.0120 0.0284 0.0361 0.0403 0.0126 0.0306 0.0405 0.0467
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Table 4. Future Stock Returns Sorted on Expected Return Estimates

Table 4 reports the average 3-, 12-, 24-, and 36-months ahead (3M, 12M, 24M, and 36M, respectively) log gross returns (market-

adjusted and size-adjusted) for each quintile of our model-estimated expected returns proxy, where quintile portfolios are constructed

for each year-quarter from 1986Q1 to 2013Q3. The last four rows report, respectively, the average quintile spread in log gross returns

between the 5th and 1st quintiles, the average decile spread in log gross returns between the 10th and 1st deciles, the average quintile

spread in returns between the 5th and 1st quintiles, and the average decile spread in returns between the 10th and 1st deciles. All

quintile and decile spreads are significantly different from 0 at the 1% level.

Mkt-Adj Log Returns Size-Adj Log Returns

Quantile 3M 12M 24M 36M 3M 12M 24M 36M N
1 -0.0864 -0.3078 -0.4321 -0.4358 -0.0895 -0.3049 -0.4209 -0.4341 112,048
2 -0.0331 -0.1432 -0.2327 -0.2401 -0.0359 -0.1522 -0.2345 -0.2488 112,103
3 -0.0234 -0.1007 -0.1709 -0.1752 -0.0272 -0.1118 -0.1740 -0.1806 112,096
4 -0.0136 -0.0708 -0.1219 -0.1263 -0.0192 -0.0881 -0.1319 -0.1436 112,103
5 -0.0075 -0.0587 -0.1024 -0.0877 -0.0154 -0.0874 -0.1170 -0.1070 112,142

5-1 Spread 0.0790 0.2491 0.3297 0.3481 0.0741 0.2175 0.3039 0.3271
10-1 Spread 0.1094 0.3286 0.4240 0.4483 0.1040 0.2923 0.3982 0.4407

5-1 Spread (Returns) 0.0389 0.1109 0.2305 0.3551 0.0359 0.0998 0.2069 0.3163
10-1 Spread (Returns) 0.0548 0.1542 0.3044 0.4632 0.0517 0.1437 0.2811 0.4219
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Table 5. IV Estimation Results

Table 5, Panel A reports summary statistics for the estimated coefficients on bmt and roet of equation (12) as well as the implied
parameters of the model, similar to Table 1. The coefficients are estimated by pooled IV using the last quarter’s log return on equity,
roet−1, as the instrument for the current quarter’s log return on equity, roet. The fifth column reports summary statistics on the
first-stage F -statistic (F ) from the IV estimation. All other aspects of the estimation are the same as in Table 1. Panel B reports
the return regression tests of Table 3 using the IV-estimated expected return proxies. Standard errors are two-way cluster robust
(firm and year-quarter), and levels of significance are indicated by *, **, and *** for 10%, 5%, and 1%, respectively.

Panel A: Overall Parameter Estimates

Regression Coefficients Implied Parameters
Cons bm roe F κ ω µ

P5 -0.0202 0.0048 0.1265 77.18 0.9516 0.8695 -0.0713
P25 -0.0061 0.0171 0.3270 346.50 0.9744 0.9377 -0.0075
Mean 0.0036 0.0275 0.6038 1555.04 0.9815 0.9498 0.0080
Median 0.0045 0.0269 0.5303 742.01 0.9830 0.9628 0.0133
P75 0.0124 0.0353 0.7759 1780.20 0.9929 0.9804 0.0287
P95 0.0272 0.0580 1.3875 4891.45 0.9999 0.9999 0.0758
Std 0.0154 0.0163 0.4148 2861.71 0.0151 0.0653 0.0693

Panel B: Return Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

3M 12M 24M 36M 3M 12M 24M 36M

Ê[ri,t+1] 0.6102*** 0.5006*** 0.4056*** 0.3485*** 0.5866*** 0.4742*** 0.3791*** 0.3231***
(0.069) 0.000 (0.025) (0.019) (0.059) (0.034) (0.022) (0.016)

Cons -0.0074 -0.0331 -0.0683** -0.0951*** 0.0107 0.0384 0.0820** 0.1248**
(0.011) (0.021) (0.027) (0.031) (0.012) (0.025) (0.040) (0.055)

N 550,320 538,694 522,872 506,734 550,320 538,694 522,872 506,734
FE No No No No Yes Yes Yes Yes

Adj R2 0.0126 0.0288 0.0351 0.0377 0.0134 0.0319 0.0410 0.045951



Table 6. Annual Data OLS Estimation Results

Table 6, Panel A reports summary statistics for the estimated coefficients on bmt and roet of equation (12) as well as the implied
parameters of the model, similar to Table 1. The coefficients are estimated by pooled OLS within industry and on an annual basis, at
the end of June of each year, using the most recent publicly available financial data on book values and earnings to avoid look-ahead
bias. The estimation pools all firms within the same Fama and French (1997) 48 industry classification across time, with a burn-in
of 15 years of data for a given industry. Panel B reports the return regression tests of Table 3 using the annually estimated expected
return proxies. Standard errors are two-way cluster robust (firm and year), and levels of significance are indicated by *, **, and ***
for 10%, 5%, and 1%, respectively.

Panel A: Overall Parameter Estimates

Regression Coefficients Implied Parameters
Cons bm roe κ ω µ

P5 -0.0430 0.0282 0.1415 0.8590 0.5704 -0.0627
P25 0.0021 0.0630 0.2217 0.8982 0.7165 0.0097
Mean 0.0407 0.0865 0.3148 0.9227 0.7721 0.0572
Median 0.0477 0.0799 0.2743 0.9294 0.7861 0.0674
P75 0.0725 0.1108 0.3692 0.9464 0.8449 0.1075
P95 0.1274 0.1496 0.5986 0.9816 0.9292 0.1713
Std 0.0514 0.0379 0.1590 0.0383 0.1092 0.0743

Panel B: Return Regressions

(1) (2) (3) (4) (5) (6)

12M 24M 36M 12M 24M 36M

Ê[ri,t+1] 0.5832*** 0.5132*** 0.4620*** 0.5450*** 0.4729*** 0.4234***
(0.091) (0.067) (0.047) (0.086) (0.063) (0.044)

Cons -0.0064 -0.0131 -0.0149 0.0458 0.0960* 0.1458**
(0.029) (0.041) (0.049) (0.040) (0.054) (0.067)

N 173,802 170,044 166,257 173,802 170,044 166,257
FE No No No Yes Yes Yes

Adj R2 0.0158 0.0220 0.0261 0.0174 0.0250 0.0308
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Table 7. Expected Returns Estimates

Table 7, Panel A reports summary statistics for the estimated coefficients and the implied model parameters of equations (12) and
(20), similar to Table 1. The coefficients are estimated using seemingly unrelated regressions, run recursively, within industry, and
at the end of March, June, September, and December each year, using the most recent publicly available financial data on book
values and earnings to avoid look-ahead bias. The estimation pools all firms within the same Fama and French (1997) 48 industry
classification across time, with a burn-in of 15 years of data for a given industry. Panel B reports the return regression tests of Table
3 using the quarterly estimated expected net return proxies. Standard errors are two-way cluster robust (firm and year-quarter),
and levels of significance are indicated by *, **, and *** for 10%, 5%, and 1%, respectively.

Panel A: Overall Parameter Estimates

Regression Coefficients Implied Parameters

Cons bm roe A κ ω µ Ê[Ri,t+1]

P5 -0.0171 0.0114 0.0016 1.0169 0.9531 0.3703 -0.0199 0.0075
P25 -0.0007 0.0256 0.0497 1.0248 0.9700 0.6593 -0.0008 0.0228
Mean 0.0101 0.0330 0.1258 1.0346 0.9767 0.7230 0.0116 0.0289
Median 0.0115 0.0314 0.0871 1.0334 0.9784 0.7595 0.0124 0.0291
P75 0.0207 0.0397 0.1498 1.0426 0.9842 0.8366 0.0247 0.0338
P95 0.0346 0.0564 0.4241 1.0563 0.9986 0.9552 0.0409 0.0452
Std 0.0155 0.0136 0.1458 0.0126 0.0135 0.1865 0.0193 0.0081

Panel B: Return Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

3M 12M 24M 36M 3M 12M 24M 36M

Ê[ri,t+1] 0.5973*** 0.4361*** 0.4129*** 0.3856*** 0.5986*** 0.4997*** 0.4748*** 0.4368***
(0.084) (0.058) (0.047) (0.037) (0.089) (0.056) (0.049) (0.043)

Cons 0.0173 0.1372*** 0.2679*** 0.3882*** 0.0217* 0.1243*** 0.2658*** 0.4240***
(0.011) (0.023) (0.029) (0.036) (0.011) (0.026) (0.050) (0.076)

N 550,320 538,694 522,872 506,734 550,320 538,694 522,872 506,734
FE No No No No Yes Yes Yes Yes

Adj R2 0.0030 0.0040 0.0051 0.0056 0.0034 0.0063 0.0077 0.0081
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Table 8. Comparison with Factor Model Based Estimates

Table 8, Panel A reports the return regression tests of Table 3, comparing the proxies of expected quarterly returns from estimating
equations (12) and (20) to the proxies of expected quarterly returns from CAPM, Fama and French (1993) three-factor model,
and the three-factor model augmented by the UMD momentum factor (Fama and French, 1996). Factor returns are obtained
from Ken French’s data library. Coefficients are obtained from pooled regressions of one-quarter ahead realized returns on ex ante
proxies of expected quarterly returns. Standard errors are two-way cluster robust (firm and year-quarter). Panel B reports the
portfolio sort tests of Table 4 by forming quarterly quintile and decile portfolios of the four alternative expected returns proxies.
OLS standard errors are used in significance tests. For both panels, analyses are conducted for the subset of firm year-quarter
non-missing observations across all four proxies, and levels of significance are indicated by *, **, and *** for 10%, 5%, and 1%,
respectively.

Panel A: Return Regressions

(1) (2) (3) (4) (5) (6) (7) (8)
Lyle-Wang CAPM FF3 FF4 Lyle-Wang CAPM FF3 FF4

Ê[ri,t+1] 0.5620*** -0.7034 -0.6133** -0.5240*** 0.5577*** -0.7463* -0.6057** -0.5159***
(0.082) (0.437) (0.252) (0.197) (0.088) (0.439) (0.253) (0.196)

Cons 0.0209** 0.0572*** 0.0564*** 0.0525*** 0.0230** 0.0609*** 0.0616*** 0.0573***
(0.011) (0.015) (0.014) (0.013) (0.011) (0.016) (0.014) (0.013)

N 485,222 485,222 485,222 485,222 485,222 485,222 485,222 485,222
FE No No No No Yes Yes Yes Yes

Adj R2 0.0027 0.0030 0.0031 0.0031 0.0032 0.0040 0.0037 0.0036

Panel B: Portfolio Sorts

Mkt-Adj Returns Size-Adj Returns

Quantile Lyle-Wang CAPM FF3 FF4 Lyle-Wang CAPM FF3 FF4 N
1 -0.0067 0.0163 0.0195 0.0207 -0.0101 0.0110 0.0121 0.0128 98,693
2 0.0033 0.0156 0.0120 0.0123 -0.0001 0.0094 0.0061 0.0064 98,745
3 0.0084 0.0118 0.0096 0.0083 0.0039 0.0064 0.0040 0.0028 98,735
4 0.0150 0.0047 0.0062 0.0059 0.0086 -0.0006 0.0011 0.0012 98,745
5 0.0310 -0.0012 0.0032 0.0031 0.0201 -0.0060 -0.0010 -0.0012 98,784

5-1 Spread 0.0377*** -0.0175 -0.0164* -0.0176** 0.0302*** -0.0170 -0.0131* -0.0140**
10-1 Spread 0.0538*** -0.0143 -0.0197* -0.0207** 0.0449*** -0.0146 -0.0155* -0.0160**
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Table 9. Market-Level Prediction

Table 9, Panel A reports Clark and McCracken (2001) significance levels [p(CM)] and out-of-
sample R2 (R2

os) produced by our aggregate predictor and two versions of the forecaster proposed
by Kelly and Pruitt (2013) [“K&P (2013)”]. All three predictors form expected returns from
1986Q1 to 2013Q3. The notation “< x” indicates the smallest significance level for which the
ENC-NEW statistic, testing a given predictor against the historical mean of the target series,
exceeds the critical value, and are obtained from Clark and McCracken (2000). Column (2)
considers a version of K&P (2013)’s forecaster, adapted to forecast quarterly returns, using
quarterly returns from 1930–2013 and a 50-year training sample ending in 1980; column (3)
considers a variant of this forecaster but using quarterly returns from 1971–2013 with a 15-year

training sample ending in 1986. Out-of-sample R2 is defined as R2
os = 1 −

∑T
t=1(rt−r̂t)2∑T
t=1(rt−r̄t)2

for

each forecaster {r̂t}T1 and r̄t is the historical average estimated through t− 1. Panel B reports
univariate return regressions of 1-quarter ahead log returns on expected log return proxies.
Levels of significance are indicated by *, **, and *** for 10%, 5%, and 1%, respectively.

Panel A: Clark and McCracken (2001) p-Values and Out-of-Sample R2

(1) (2) (3)
Lyle-Wang K&P (2013) K&P (2013)

1930–2013 Data 1971–2013 Data

p(CM) < 0.01 < 0.01 < 0.05
R2
os 0.62% 4.78% 0.53%

Panel B: Return Regressions

(1) (2) (3)
Lyle-Wang K&P (2013) K&P (2013)

1930–2013 Data 1971–2013 Data

Ê[ri,t+1] 0.4936* 1.3518** 0.4512
(0.260) (0.555) (0.375)

Cons 0.0096 -0.0209 0.0128
(0.014) (0.022) (0.016)

N 111 111 111
R2 0.032 0.052 0.013
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