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Abstract

In this paper we address the question of learning in a two-sided matching mechanism

that utilizes the deferred acceptance algorithm. We consider a repeated matching game

where at each period agents observe their match and have the opportunity to revise

their strategy (i.e., the preference list they will submit to the mechanism). We focus in

this paper on better-reply dynamics. To this end, we first provide a characterization

of better-replies and a comprehensive description of the dominance relation between

strategies. Better-replies are shown to have a simple structure and can be decomposed

into four types of changes. We then present a simple better-reply dynamics with myopic

and boundedly rational agents and identify conditions that ensure that limit outcomes

are outcome equivalent to the outcome obtained when agents play their dominant

strategies. Better-reply dynamics may not converge, but if they do converge, then the

limit strategy profiles constitute a subset of the Nash equilibria of the stage game.

JEL codes C72, D41.

Keywords: Better-reply dynamics, Deferred Acceptance, two-sided matching.

1 Introduction

Mechanism design theory usually assumes that agents know the mechanism they face and

have enough cognitive resources to respond optimally to the incentives and constrains that
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are imposed by the designer. In practice this may not be the case. Agents may not have

access to a clear and detailed description of the mechanism, and/or may have difficulties

in finding their best choices. Whether agents are able to learn their optimal strategies

under a mechanism is thus of paramount importance when implementing mechanisms in

real-life settings. It is therefore surprising that the issue of learning in mechanism design

has not been a focus of the recent theoretical literature.1 This paper addresses this research

question by considering a mechanism that is increasingly used in real-life settings, namely

the mechanism built upon Gale and Shapley’s (1963) Deferred Acceptance (DA) algorithm

for two-sided matching markets.

A real-life uses of the DA algorithm (or its variants) now abound. For example, the entry

market for medical interns in the US, school admission in several US cities, academic hiring

in France or college admission in Hungary all use this algorithm. In some cases the DA

algorithm was chosen because of its theoretical properties —e.g., school choice in Boston—

and in other cases the choice was “accidental” —e.g., medical interns in the US until 1997.2

Although those markets use (almost) the same algorithm, they often differ in the way the

mechanism is presented to market participants. For instance, parents in Boston are given a

precise description of the algorithm, while job candidates in the French academic job market

have little knowledge of the algorithm used to match candidates and departments.3

The DA algorithm is a multistep process that works as follows: There is a side of the

market that makes match proposals, and the other side either rejects or accepts the proposals

they receive. We keep with the tradition in the matching literature, calling the proposing

side men and the accepting side women. In the DA algorithm, each man makes an offer to

one woman at a time (i.e., one per step). At each step of the algorithm a woman can hold

at most one offer. Thus, she has to choose between the offer received in the given round and

the offer she holds from the previous step. One of the attractive features of this algorithm

is that it naturally describes a direct mechanism, in which each agent submits to a central

clearinghouse, a preference list over potential partners to match with. The final matching

is then computed using the DA algorithm with those preference lists as the input. The

preference lists of men indicate in which order the algorithm should make offers to women,

and the preference lists of women indicate which offers are to be held or rejected.

1Most of the work on learning and mechanism design have been undertaken by the computer science (e.g.,

Balcan et al. (2005)) or by the experimental literatures (e.g., Healy (2006)).
2See Roth and Peranson (1999).
3In fact, the French administration does not directly utilize the DA algorithm but an algorithm that is

outcome equivalent — see Iehlé and Haeringer (2010).
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In line with well-known results, the dominant strategy for the proposing side is to list

the true preferences. However, with limited information about the applied mechanism, or

because of bounded rationality, fully informed participants may not correctly respond to the

incentives they face, even when being recommended to be truthful (if such recommendations

are made). This is because in spite of the relative simplicity of the DA mechanism, the

existence of a dominant strategy for the proposing side is not straightforward. Moreover,

understanding what outcome a given strategy profile leads to is somewhat difficult.4 This

is a reason for concern because participants with little or a wrong understanding of the

mechanism may try to strategize and thus affect market outcomes. It is then crucial to know

(i) whether agents can learn how to play and converge to some sort of stable behavior, and

(ii) the type of outcome we obtain in the long run.

In a two-sided matching market an “equilibrium” is often better described by the notion

of stability, that is, a matching between the agents from both sides of the market where

no agents who are not matched together would both prefer to be matched to one another.5

In the presence of frictions (e.g., the existence of a deadline to make transactions or the

absence of monetary transactions), stability becomes one of the most important properties

sought in matching markets. Roth (1991) showed that matching markets that do not produce

stable matchings tend to perform worse or simply collapse whereas markets that produce

stable matchings do not experience failures.6 In the context of matching markets with strong

frictions, the DA algorithm is now considered to be a serious contender, as it always produces

a stable matching.7 The mechanism built upon the DA algorithm has strong appealing

properties. First, as we just intuited, the DA algorithm produces a stable matching with

respect to the submitted preferences. It is also the most preferred stable matching by all

men among all stable matchings. Second, and not less interesting from the mechanism design

perspective, it is a (weakly) dominant strategy for men to submit their true preferences. One

drawback, however, is that women may have an incentive to manipulate the mechanism by

reporting false preferences — Dubins and Freedman (1981), Roth (1982).

To streamline our analysis of learning in matching games we shall consider the simplest

4Note, however, that from a computational point of view the DA algorithm is very simple (and polyno-

mial).
5Stability also requires that matching is individually rational.
6McKinney, Niederle and Roth (2005) show that centralized matching markets that utilize Gale and

Shapley’s Deferred Acceptance are not always immune to market failure.
7This is true for “classic” matching markets. Many-to-one markets where there are complementarities

between agents constitute an example where the existence of stable matchings is not guaranteed — see Roth

and Sotomayor (1990).
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matching environment and use the insights of the game theoretic literature on learning. More

precisely, we shall consider a one-to-one matching market with strict preferences between men

and women, and assume that agents repeatedly play this matching mechanism.8 Throughout

this paper, our focus will be the proposing side of the matching mechanism. That is, we

shall assume that only the individuals on the proposing side face strategic choices. Agents

on the other side of the market are simply assumed to always submit their true preferences.

This case fits the so-called school choice problem well, where the proposing side are students’

parents and the other side are schools.9 Of course, in real-life settings agents often do not

participate repeatedly in a matching game. We argue however that a repeated setting can

be understood as a proxy for social learning. For instance, parents participating in a school

choice program usually seek information from their acquaintances who participated in the

past and who have similar preferences. While we assume that the same population with

the same (true) preferences repeatedly plays a matching game, the constraints we impose on

the updating behavior can dispense with this assumption. That is, we shall consider that

agents in our model only know their true preferences, the preferences they submitted in the

previous period, and the identity of the partners they were matched with. In other words,

an agent updating in our model may well think that other agents’ preferences are changed

or that some agents were replaced by new ones with different preferences.

While our approach in this paper is theoretical, it is our contention that our learning

model should take into account the specificities of a matching game. First, an important as-

pect of a matching mechanism is that strategies consist of orderings. Consequently, strategy

sets are large. While the presence of large strategy sets is not a real issue in most games, it

makes our task challenging here because it is difficult (if not impossible) to reduce strategic

choice to that of a parameter. The size of the strategy sets also implies that approaches

based on statistics about the performance of past actions, e.g., reinforcement learning (Roth

and Erev (1995)), are not well suited to our context. Second, and an equally important

aspect of a matching mechanism is the frequency of play. Most centralized markets operate

once a year. It is therefore natural to consider Cournot type dynamics, i.e., situations where

at each period many (if not all) agents update their strategies at the same time. Hence, we

8All our results easily carry out to more complex environments such as school choice —see Abdulkadiroğlu

and Sönmez (2003).
9Schools in a school choice problem are not agents per se, but rather perceived as “goods to be consumed,”

and schools’ “preferences” (needed to run the algorithm) are in fact exogenous rankings of students imposed

by the authorities built, for instance, upon students’ grades, social characteristics (distance to school, presence

of siblings in the school, etc.)

4



will need to address whether dynamics with simultaneous updating converge. In this paper

we focus on better-reply dynamics. As we shall see, better-replies in a matching game are

not very demanding, and have a strong intuitive interpretation. In particular, an attractive

feature of our approach is that better-replies do not necessitate knowing the strategy profile

of the other players.

Models of learning in games are often presented as equilibrium selection devices, and this

question does not lose its importance here. Indeed, although the game we study admits,

for each man, a weakly dominant strategy, Haeringer and Klijn (2009) showed that in fact

it admits many Nash equilibria. In particular, any stable matching can be sustained as an

equilibrium outcome.10 Thus, we need to verify whether simple dynamics lead to a Nash

equilibrium. If so, the second and perhaps more important question is whether in the limit

individuals play their dominant strategy (or at least whether the limit profile is outcome

equivalent to the dominant strategy profile).

We first characterize the better-replies in a matching game. Better-replies can be de-

scribed by a combination of four types of changes: reshuffle below, reshuffle above, move-up

and move-down. Reshuffling below (resp. above) consist of changing the relative order of

the agents that are declared less preferred (resp. more preferred) than the current matched

partner. For instance, if an individual submitted the preference list a, b, c, d, e (in this order)

and is matched to, say c, then submitting the list b, a, c, d, e is a reshuffling above change (and

the list a, b, c, e, d is a reshuffling below). Moving-down consists of declaring less preferred

than the current match an individual that was declared more preferred than the current

match but truly less preferred. For instance, if an individual submitted the list a, b, c, d, e

and is matched to c and truly prefers c to, say b, then the list a, c, b, d, e is a move-down.

It is important to note that we do not specify where below c the individual b is moved. A

move-up is a converse: if there is an individual that is truly preferred to the current match

but declared less preferred, then moving him above is a move-up. We show that, holding

the strategy of other agents fixed, only a move-up can improve the outcome of an agent.

That is, moving-down and reshuffling (below or above) have no impact on the outcome (for

the individual changing). When individuals do not know the strategy profile of the other

individuals, these changes uniquely characterize the better-replies.

We then consider a dynamic model of repeated matching where at each period individuals

use a better-reply to update their strategies. Our main results are the following: When we

10In fact, the set of stable matchings is usually a strict subset of the set of equilibrium outcomes —see

Haeringer and Klijn (2009).
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consider only move-ups, convergence of the better-reply dynamics is guaranteed. There may

be multiple limit outcomes, but each of them coincides with a stable matching. When move-

downs are also allowed, then the dynamic process can cycle. However, if it does not cycle

then the limit outcome is unique and correspond to the man-optimal matching.

In Section 2 we present the model. In Section 3 we characterize the better-replies and in

Section 4 we consider the better-reply dynamics.

2 Framework

The market consists of two finite disjoint sets: the men, M = {1, . . . ,m}, and the women,

W = {1, . . . , w}. Each man m ∈M is endowed with a strict preference relation Pm over the

set W ∪ {m}.
Similarly, each woman w ∈ W has a strict preference relation Pw over M ∪ {w}. We

denote by P = (Pv)v∈M∪W a profile of preferences, and use the usual notation P−v to denote

the profile P\Pv. We denote by Pv the set of all preference relations of individual v ∈M∪W ,

and by P the set of all preference profiles. For a preference profile Pv ∈ Pv, let Rv denote

the weak preference relation associated with Pv. Similarly, for a preference profile P ∈ P , R

denotes the weak preference profile associated with P . Given a set of men G ⊆M ∪W , PG

and RG denote the profile of strict and weak preferences restricted to individuals in G.

A matching is a one-to-one mapping µ : M ∪W →M ∪W such that

• For each man m ∈M , µ(m) ∈ W ∪ {m}.

• For each woman w ∈ W , µ(w) ∈M ∪ {w}.

• For each agent v ∈M ∪W , µ(µ(v)) = v.

Given a set G ⊂M and a matching µ we denote by µ(G) the set of individuals to whom

the members of G are matched, i.e., µ(G) = {v ∈ G ∪W : µ(m) = v for some m ∈ G}.
A matching µ is individually rational if for each v ∈M ∪W , µ(v)Rvv. Given a preference

profile P , IR(P ) denotes the set of individually rational matchings with respect to P . A

matching µ is blocked by a pair (m,w) if wPmµ(m) and mPwµ(w). A matching µ is stable

if it is individually rational and it is not blocked by any pair (m,w) ∈ M ×W . Given a

preference profile P we denote by S(P ) the set of stable matchings.

It is well known that for any (strict) preference profile P the set of stable matchings is

nonempty (Gale and Shapley, 1962). A stable matching can be obtained using Gale and
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Shapley’s deferred acceptance (DA) algorithm. Their algorithm, with men making proposals

to women, works as follows:

Step 1: Each man m proposes to his most preferred woman among the ones that are acceptable

for him. If there is no such woman, then the man is matched to himself.

Each woman declines all but her most preferred man among the men who proposed to

this woman and are acceptable to it (if any).

Step k, k ≥ 2: Each man who has been declined in the previous step proposes to his most

preferred woman among the women that have not yet declined him and are acceptable

for him. If there is no such woman, then the man is matched to himself.

Each woman declines all but her most preferred man among the men who proposed

to this woman and are acceptable to it and the man it did not decline in the previous

step (if any).

The algorithm stops when every man is either matched to a woman or to himself. Given

a preference profile P , we denote by ϕ(P ) the man-optimal stable matching, i.e., matching

obtained by the DA algorithm we just described.

In the reminder of the paper, P ∗ denotes the true preference profile and µ∗ the man-

optimal stable matching under the true preferences. Together, the set of men and women,

the true preference profile P ∗, the set of all preference profiles P and the DA algorithm defines

a strategic form game, that we denote Γ(M,W,P ∗), where the set of players is M ∪W , the

set of strategies of player v is Pv, outcomes are given by ϕ and are evaluated by players using

their true preferences.

We say that a preference relation Pm weakly dominates the preference relation P ′m if, for

any profile P−m, man m is always at least as well off with Pm as with P ′m,

ϕ(Pm, P−m)(m)R∗mϕ(P ′m, P−m)(m) .

Theorem 1 (Dubins and Freedman (1981), Roth (1982)) In the game Γ(M,W,P ∗),

for each man m ∈M , the preference P ∗m weakly dominates any other preference Pm ∈ Pm.

It is well known however, that as soon as S(P ∗) is not singleton then for at least one

woman w ∈ W the strategy P ∗w is not a weakly dominant strategy.
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3 Comparing strategies

In order to build our learning model we need first to characterize better-replies in a matching

game, or — said differently — we need to understand how to compare strategies This step is

even more necessary since most of the matching literature has ignored other strategies than

a weakly dominant one — the truthful preferences.

Since being truthful is a weakly dominant strategy, one may intuit that the “closer” we

are to the true preferences the better; and, hence, that for a man m a better-reply with

respect to some strategy profile Pm is any preference P ′m that is “closer” to P ∗m than is Pm.

As we shall see in Section 3.1, a notion of distance between preferences is in fact not related

to the concept of better-replies but rather that of dominance.

3.1 Dominance relations

To determine whether Pm or P ′m is closer to P ∗m, we need a metric to compare preferences. A

common and natural way to do so is by considering the so-called Kemeny distance (Kemeny,

1959), which consists of comparing the number of pairs of alternatives that are ranked

differently between Pm and P ∗m to determine the distance between Pm and P ∗m. This in

turn allows us to see whether the distance between Pm and P ∗m is smaller or larger than the

distance between P ′m and P ∗m. In our context, it is more useful to consider a related concept,

which we call Kemeny set.

Definition 1 Given a preference relation P ∗v , the Kemeny set of the preference relation Pv

with respect to P ∗v is the set of all pairs (v, v′) that are not ordered identically in Pv and P ∗v .

K(Pv, P
∗
v ) = {(v, v′) : vPvv

′ and v′P ∗v v}

It is readily verified that the Kemeny distance between the preferences Pv and P ∗v is the

cardinality of the Kemeny set.

We are now ready to state the main result of this section: For each man m ∈ M , if the

Kemeny set of a preference ordering Pm is a subset of the Kemeny set of another preference

ordering P ′m, then for any profile of preferences of the other men and of the women, the

strategy Pm weakly dominates the strategy P ′m.

Assumption 1 (Market thickness) There are at least as many women as men.

We need the market thickness assumption only for expositional convenience. The results

provided in the paper would not change qualitatively in absence of this assumption.
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Theorem 2 Assume that there are at least as many men as women and that each man

only use strategies that consist of always declaring all his acceptable women as acceptable.

Then a preference ordering Pm dominates another preference ordering P ′m if, and only if,

K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m).11

The proof of Theorem 2 is in the Appendix. An immediate consequence of Theorem 2

is that we can order preference orderings when comparing their Kemeny sets. Note however

that this ordering is not complete, since it is possible for two preference orderings Pm and

P ′m that neither K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m) nor K(P ′m, P

∗
m) ⊂ K(Pm, P

∗
m) holds.

This characterization can be, for instance, useful in data analysis to measure how far

agents are from their true preferences.

3.2 Better replies

It is clear that if for a man m a strategy Pm dominates another strategy P ′m then Pm is

obviously a better reply than P ′m to any strategy profile P−m. In this section we offer a

characterization of better-reply that will show that the converse may not be true.

Recall that we denote m’s true preferences by P ∗m. The reported preferences, Pm may

but do not need to be truthful.

Definition 2 P ′m is a better reply than Pm to P−m if

ϕ(P ′m, P−m)R∗mϕ(Pm, P−m) ,

Suppose that a man m who submitted a preference list Pm and is matched to some

individual v. Consider a different preference list, P ′m, for this man. For any Pm and P ′m

which list the same set of women, P ′m is achievable by making one or more changes from

among the four types,12

(i) Changing ranking of an individual v′ ∈ W ∪ {m} originally below v, to a different

position still below v (i.e., reshuffling below).

(ii) Changing ranking of a woman originally above v, to a different position still above v

(i.e., reshuffling above).

11These assumptions on the strategies and the number of men is for expositional convenience. Haeringer

and Ha laburda (2011) show how this theorem extends to other environments and with less assumptions.
12In the game Γ is m is matched to some v under Pm then all the individuals ranked strictly above v in

Pm are necessarily women, while this not be true for the individuals ranked below v.
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(iii) Changing ranking of a an individual v′ ∈ W ∪ {m} originally below v to a position

above v (i.e., move up).

(iv) Changing ranking of a woman originally above v to a position below v (i.e., move

down).

We show below how the matching ϕ is affected by each type of change in the ranking. In

particular, we show that some of the change types have no bearing on which individual the

man m is matched to under ϕ.

Notice that under the DA algorithm as soon as a man is matched to his final partner he

is never asked again to propose to a lower ranked individual. That is, the relative ranking of

the individuals that are ranked below his match in his submitted list is irrelevant. So, if all

mean re-arrange the relative ranking of the individuals that are ranked below their match

(but keeping all these individuals still ranked below their match), then the final matching is

the same.

Observation 1 Let P and P ′ such that for each man m, the preferences Pm and P ′m re-

stricted to the individuals preferred to ϕ(P )(m) coincide. Then ϕ(P ) = ϕ(P ′).

The next proposition states that the a property similar to Observation 1 also holds if all

(or some) men change the relative ranking of the women ranked above their current match.

Let U(Pm, ϕ(P )(m)) denotes the set of all women ranked above ϕ(P )(m) in ranking Pm.

Proposition 1 Let P and P ′ such that for each man m, U(Pm, ϕ(P )(m)) = U(P ′m, ϕ(P )(m)).

Then ϕ(P ) = ϕ(P ′).

Proof Let P 1 = (P ′m1
, P−m1) and µ1 = ϕ(P 1). Since ϕ is strategy-proof µ1R1

m1
µ. Suppose

that µ1(m) 6= µ(m). So, µ1P 1
m1
µ and thus µ1Pm1µ, which contradicts the strategy-proofness

of ϕ. Hence, µ1(m) = µ(m).

Also, notice that µ ∈ S(P 1). So, µ1R1
Mµ, where R1

M means that µ′ is weakly preferred

to µ by all men m ∈ M . Since only man m1 changed his (declared) preferences between

P and P 1, and since µ1(m) = µ(m), µ1RMµ. Suppose that there exists a man m̂ such

that µ1Pm̂µ. By the Blocking Lemma13 there exists a pair (m,w) such that (m,w) block µ1

under P . If m 6= m1, then (m,w) also block µ1 under P 1, a contradiction. So, m = m1, i.e.,

wPm1µ
1(m1). Since µ1(m) = µ(m) it follows that wP 1

m1
µ1(m1). So, (m1, w) block µ1 under

P 1, a contradiction. Hence, µRMµ
1, and thus µ1 = µ.

13The Blocking Lemma is a standard result in the literature, and we restate it in the Appendix (see

Lemma 6).
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Notice that in this argument, we do not employ any element of the lower-contour set.

Therefore, µ1 = µ for any order of preferences in the lower-contour set.

It suffices now to repeat the same reasoning with the profiles P 2 = (P ′m1
, P ′m2

, P−m1,m2),

P 3 = (P ′m1
, P ′m2

, P ′m3
, P−m1,m2,m3), etc. until we attain the profile P ′ to obtain the desired

result. �

Proposition 1 implies that reshuffling below and reshuffling above do not affect the match-

ing outcome. And therefore such changes do not constitute a better reply. Now, we look

into the impact of the other two possible changes: move up and move down. Recall that a

woman is moved down when she was declared more preferred than v in Pm, and in P ′m she is

declared less preferred than v. Observe that — provided the other men do not change their

submitted preference lists — any change of this type alone is inconsequential. That is, as

Lemma 1 states, if m only moved down some women, then it is easy to see that he remains

matched to the same individual.

Lemma 1 Let P and let µ = ϕ(P ). Let P ′m be such that for some woman w ranked above

µ(m) in Pm, wPmµ(m), this woman is moved down below µ(m) in P ′m, µ(m)P ′mw. And

otherwise P ′m is the same as Pm. Preferences for all other agents stay the same P ′−m = P−m.

Let µ′ = ϕ(P ′). Then µ′(m) = µ(m).

We omit the formal proof of Lemma 1 because the argument is straightforward: Since

DA is strategy-proof the man cannot end up being matched to a woman ranked higher in

the submitted preference list. Since the previous matching is still stable once the man has

changed his preferences the result follows.

Therefore, if other men do not change their submitted preferences, only the change

involving a move up may lead to a better outcome for man m. Recall that a woman is

moved up when she was declared less preferred than v in Pm, and in P ′m she is declared more

preferred than v. However, moving up may constitute a better or a worse reply. This is

because, as Lemma 2 states, if the man moves a woman w above his current match v, he is

either matched with w or with the same v. If he moves up a truly less preferred woman, i.e.,

vP ∗mw, he risks being worse off.

Lemma 2 Let P and let µ = ϕ(P ). Let P ′m such that for some woman w such that µ(m)Pmw

this woman is moved up above µ(m), wP ′mµ(m). And otherwise P ′m is the same as Pm.

Preferences for all other agents stay the same P ′−m = P−m. Let µ′ = ϕ(P ′). Then either

µ′(m) = µ(m) or µ′(m) = w.

11



Proof Let µ(m) = v and µ′(m) = v′. If v = v′ then we are done. Suppose then that

v 6= v′ and assume that v′ 6= w. Then, vPmv
′ if, and only if, vP ′mv

′. This contradicts

the strategyproofness of ϕ (if P ′m were the true preferences declaring Pm strictly pays off).

Similarly v′Pmv (and thus v′P ′mv) also violates strategyproofness of ϕ. So, v′ = w. �

Notice that Lemma 2 easily extends to the case when a man moves up several women

(or moves up himself), in which case he will be either matched to the same individual or to

one of the invidividuals he moved up.14

Therefore, the only possible way for man m to affect is outcome is by moving up a truly

preferred woman. This is the only type of change that can constitute a better reply. Other

types of changes — reshuffling below and above, as well as moves down — do not change

the match. Moving up a truly less preferred woman may either make the man worse off or

leave his match unchanged.

It is important to notice that a better reply is not necessarily equivalent to choosing

dominating strategy. To see this, suppose that a man changes his submitted list from Pm

to P ′m by moving up a woman, say, w, above his current match, say, v. This implies that

the pair (v, w) was in the Kemeny set K(Pm, P
∗
m) and this pair is not in the set K(P ′m, P

∗
m).

However, since we do not specify where is w in the preference list P ′m, it may well be the

case that we have w declared preferred to some woman w′ under P ′m, while it is the contrary

under Pm and P ∗m. In other words, if P ′m is a better reply to P ′m is may not be the case that

P ′m dominates Pm.

We say that Pm is a best reply to P−m if there does not exists a better reply to P−m than

Pm.

Definition 3 P ′m is a best reply against P−m if and only if

@P ′′m such that ϕ(P ′′m, P−m)P ∗mϕ(P ′m, P−m).

In the reminder of the paper, we assume that the man does not know the reported

preferences of other agents, P−m, while changing his rankings. However, it is useful to

compare our results to a benchmark case where the man m knows the strategies of other

players.

If the strategies of other players, P−m, are known, a sufficient condition for a strategy to

be best reply is that all women less preferred than ϕ(P ∗m, P−m)(m) are listed below in m’s

preference ranking. It is not a necessary condition. A necessary condition would require

14This Lemma is in fact simply strating that ϕ is strongly monotonic —see Moulin (1988).
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that only those less preferred women have to be listed below ϕ(P ∗m, P−m)(m) that could

be matched to m if m listed them above ϕ(P ∗m, P−m)(m). Notice that a best reply is not

unique. In fact, there is a whole set of best replies. They all yield the same match for m:

ϕ(P ∗m, P−m)(m).

Without knowing the strategies of other player, a man m does not know ϕ(P ∗m, P−m)(m).

In the following section we investigeate the case when the preferences of other agents are not

known to m.

3.3 Other Agents’ Strategies Unknown

Our approach to learning in the matching game assumes — we believe somewhat realistically

— that men do not know other agents’ submitted preferences. Moreover, we also assume that

they are not fully aware of the mechanism providing the match. They gain the information by

trial-and-error. They observe only their own match and the preference list they submitted.

In other words, we shall assume that for a man who submitted the preference list Pm and

is matched to ϕ(Pm, P−m)(m), the other men’s and women’s submitted preferences could be

any preference P ′m such that ϕ(Pm, P
′
−m)(m) = ϕ(Pm, P−m)(m).

In this section, we investigate characteristics of better and best reply when the strategies

of other agents are unknown. In such a case, each man needs to depend on his expectations

when deciding on his strategy.

Assumption 2 For any man m ∈M , m does not know P−m.

We assume such beliefs of m where any preference profile of other agents, P−m, can occur

with some positive probability.

Suppose P−m is fixed, even if unknown to m. However, man m observes ϕ(Pm, P−m)(m) =

v, i.e., his own match given the preference he submitted, Pm, and P−m. We show that strategy

Pm is a best reply to P−m if all women truly preferred to v by m are listed above v, i.e.,

∀w (wP ∗mv =⇒ wPmv). Moreover, if Pm is a best reply to P−m, then v = ϕ(P ∗m, P−m).

Thus, listing true preferences is a special case of best reply.

To show this property of best reply, we first need to establish certain properties of better

replies in expected terms.

Suppose now that the man only makes changes of one type. It follows directly from

the results in the previous section that if the change is either type of reshuffling or a move

down, then his match remains unchanged with certainty (so also in expected terms). When,

however, the man moves up a woman or several women, it affects his match in expected
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terms. If he only moves up truly less preferred women, it constitutes a strictly worse reply

in expected terms. If he only moves up truly more preferred women, it constitutes a strictly

better reply in expected terms. If the man moves several women out of which some are truly

less and some are truly more preferred, the result is ambiguous.

However, if a man contemplates moving up a subset of women G such that some of them

are truly more and some of them are truly less preferred, he is strictly better off in expected

terms, to move up only the subset G′ ⊂ G where all women are truly more preferred.

This is because, by Lemma 2, when m moves up a (truly) less preferred woman he may

be matched to her. Since he does not know the preferences of other agents, and believes

that any preference profile of other agents, P−m, can occur with some positive probability,

such a move-up makes him strictly worse off in expected terms. Conversely, moving up a

truly more preferred woman makes m better off in expected terms. Therefore, it constitutes

a better reply (in expected terms).

Proposition 2 Suppose that other agents’ preferences P−m are fixed, but not known. Sup-

pose that P ′m is a better reply (in expected terms) than Pm to P−m. Then it must be that P ′m

was created from Pm by moving up a set of truly more preferred women, i.e., there exists a

set of women G such that for all w ∈ G, µ(m)Pmw, wP ∗mµ(m) and wP ′mµ(m).

Note that the relative order of women in G may change between Pm and P ′m and may

not be related to their relative order in P ∗m.

Suppose first that we allow for only one woman’s (relative) ranking in m’s preferences to

change. Then moving up a more preferred woman is a necessary and sufficient condition for

P ′m to be a better reply than Pm in expected terms.

However, when we allow for ranking of multiple women to change between Pm and P ′m,

it is no longer the case. Moving up some (truly) more preferred women is still a necessary

condition for a better reply. But it is no longer sufficient. When both (truly) less preferred

and more preferred women are moved up, the result is ambiguous. This because any of those

women could be matched to m under such P ′m, which could result in a better or in a worse

match.

Suppose that we restrict that only truly more preferred women are moved up, and no

less-preferred women. Then it is a sufficient condition for a better reply, but not a necessary

one.

Nonetheless, from the necessary condition for a better reply stated in Proposition 2, we

can derive a characterization of a best reply.
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Corollary 1 Suppose that other agents’ preferences P−m are fixed, but not known. Pm is

a best reply to P−m if and only if all women that are truly more preferred to µ(m) are also

listed above µ(m) in Pm, i.e., ∀w(wP ∗mµ(m) =⇒ wPmµ(m)), and the relative ranking in

P ′m of all these women is the same as in the true preferences P ∗m

Corollary 1 follows directly from Proposition 2: The only way to create a better reply

to P−m than Pm is to move up truly preferred women. But if there are no truly preferred

women listed blow µ(m), there does not exist a better reply to P−m than Pm. Thus, Pm is

a best reply.

3.4 Simulteneous Rankings Updating

In this section suppose that multiple men change their rankings. Clearly, if multiple men

only reshuffle below, the matching does not change. It is also the case when multiple men

reshuffle above. Notice that if m only “moves down” and reshuffling then µ′(m) = µ(m).

Lemma 3 Let P and let µ = ϕ(P ). Let M̃ ⊂M and P ′ be a profile such that for each man

m ∈ M̃ , U(P ′m, µ(m)) ⊆ U(P ′m, µ(m)), and P ′m = Pm for each man m /∈ M̃ . Let µ′ = ϕ(P ′).

Then µ′RM̃µ and there is at least one man m ∈ M̃ such that µ′(m) = µ(m).

Proof Notice first that µ ∈ S(P ′), for any blocking pair under P ′ is also a blocking

pair under P and if µ /∈ IR(P ′) then obviously µ /∈ IR(P ). So, µ′RMµ and thus µ′RM̃µ.

If µ′(m) 6= µ(m) for each m ∈ M̃ , then µ′PM̃µ. But this contradicts the fact that ϕ is

group-strategyproof. �

Lemma 4 Let M̃ ⊂M be the set of men who move up one (or more) women. Then the men

in M\M̃ may end up worse off, better off or unchanged (according to submitted preferences).

Proof We prove the statement by constructing examples.

In the examples below all women are acceptable to all men, and all men are acceptable to

all women. Moreover, all women have the same preferences (stated and true):

Pwi
: m1, m2, m3 for i = 1, 2, 3 .

Example: Passive men are better off

Suppose that all men submit the same preferences

Pmi
: w1, w2 , w3 for i = 1, 2, 3 .
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In the stable matching, according to Pwi
and Pmi

, i = 1, 2, 3, mi is matched with wi.

Now, suppose that m1 (and only him) changes his submitted preferences to P ′m1
: w3, w2, w2,

i.e., moves up w3. The stable matching according to the new preferences matches m1 with

w3, m2 with w1, and m3 with w2. Both passive men are better of according to their submitted

preferences Pm2 and Pm3 .

Example: Passive men are worse off or unchanged Suppose that men submit following

preferences

Pm1 : w2, w3, w1

Pm2 : w1, w2, w3

Pm3 : w1, w2, w3 .

The stable matching assigns m1 and w2, m2 and w1 and w3 and m3.

Now, suppose that m1 (and only him) changes his submitted preferences to Pm1 : w1, w2, w3,

i.e., moves up w1. The stable matching under the new preferences assigns mi with wi for

i = 1, 2, 3. Man m2 is strictly worse off, while m3 is matched to the same woman. �

4 Repeated matching

From now on we fix men and womens’ preferences and, the profile P ∗ will be referred to the

true preference profile. The game we shall consider consists of a repeated matching game

between men. Women are assumed to play truthfully. At each period t ≥ 1, . . . , men have to

submit a preference relation P t
M over potential mates. For each period t the outcome given

P t
M is ϕ(P t

M , PW ). To avoid cumbersome notation we shall sometimes denote the matching

ϕ(P t
M , PW ) simply by µt.

For now we shall consider better-reply dynamics only, but considering two cases. In one

case, men can only better-reply by doing “move-ups”, and in the other case men can better-

reply by doing “move-ups” and “move-downs”. The case when men do only “move-downs”

is easily discarded. Indeed, consider any profile P 0 where all men list a different woman as

their top choice. So, the matching µ0 is such that each man is matched to his top choice and

thus have no opportunity to make a “move-down” at t = 1. We also discard “reshuffling”

in the updating process. It will be clear from our analysis that adding reshuffling to the

updating process will considerably weaken our convergence results (and thus add little to

our analysis of better-reply dynamics).
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Traditional learning models of better-reply dynamics consider situations in which at each

period only one player updates his strategy. On of the main reasons for this assumption

is that players are assumed to be boundedly rational and thus may not necessarily be able

to compute a better-reply (let alone a best-reply). Better-reply dynamics then naturally

emerge from a “trial-and-error” dynamic. At each period, one player has the opportunity to

try a new strategy. If this strategy yields a higher payoff, i.e., it is a better-reply, then the

player adopts this new strategy, and goes back to his previous strategy otherwise. Clearly,

in matching game, such as school choice, the assumption that only one player updates his

strategy at each period is difficult to sustain. We then need to consider dynamics where

more than one player can update his strategy at each period. For the moment, we shall

focus however on the case where only one man can update his strategy, and discuss later in

the section the case when several men can update their strategy at the same time.

Our first result is about the convergence when only move-ups are allowed.

Proposition 3 Let P 0 be any preference profile and suppose that at each period only one

man updates his strategy and only “move-ups” are allowed. Then there exists t∗ < ∞ such

that for all t > t∗, µt = µt∗ and µt∗ ∈ S(P ∗M , PW ).

Proposition 3 states two things. First, a move-up-only dynamic necessarily converge, and

the limit outcome is a stable matching. This shows then that a simple dynamic process as

this one is a first refinement of the the Nash equilibrium. Indeed, Haeringer and Klijn (2009)

showed that the set of Nash equilibrium outcomes includes but nor may necessarily coincide

with the set of stable matchings.

Proof We first show that the dynamics converge. To this end, suppose we have a better-

reply cycle involving two or more men. let m be one of these men, and let P 1
m, P

2
m, . . . , P

T
m

(with P T
m = P 1

m) be the preference orderings submitted by m that belong to the cycle.

So, for instance, P 2
m is a better-reply of m with respect to P 1

m against the profile P−m

extracted from the cycle. That is, the cycle consists of a sequence of profiles, P 1, P 2, . . . and

there is some t such that P t = (P 1
m, P−m) and P t+1 = (P 1

m, P−m).

Let vk be the individual (a woman or m himself) that has been moved up between P 1
m

and P 2
m, and let vh = µ1(m), i.e., m’s match. So,

vkP
∗
mvh .

At some point (before T ), say, t1, we should obtain again vhP
t1
m vk. That is, vh has been
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moved up. It is necessarily with respect to µt1(m) = v1, so,

vkP
∗
mvhP

∗
mv1 .

Notice that at t1 we have v1P
t1
m vh and vhP

t1+1
m v1. So, there is a step t2 in the cycle where v1

is moved up (above vh). If v1 is moved up it has to be above µt2(m) = v2. So we have

vkP
∗
mvhP

∗
mv1P

∗
mv2 .

It suffices to continue the argument (with individuals v3, v4, etc.) to deduce that the only

possibility to obtain after some periods the preference ordering P 1
m is to have an infinite

number of woman, which is impossible. So, the dynamic process necessarily converge to

some profile P t∗ .

We now show that the limit outcome is necessarily stable with respect to the true prefer-

ence profile (P ∗M , PW ). Let µ = µt∗ . Suppose first that there is a man m such that mP ∗mµ(m).

Notice that we necessarily have µ(m)P t∗
mm, so man m can still update his strategy at t∗, a

contradiction. Suppose now that there is a pair (m,w) that blocks µ, i.e., mPwµ(w) and

wP ∗mµ(m). So, we have wP t∗
mµ(m). Hence, it must be that µ(w)Pwm, a contradiction. So,

µ ∈ S(P ∗M , PW ). �

Notice that the convergence result of Proposition 3 is still valid when we consider only

move-downs. However, as we commented before, the limit matchings may not necessarily be

stable matchings. If we consider move ups and move downs, the dynamics properties differ

substantially. First, as the following example shows, even if we consider that at each period

only one man updates his submitted preferences, the dynamic may cycle.

Example 1 Consider three men and three women, mi, wi, i = 1, 2, 3. Let the women’s

preferences be

Pw1 : m1,m2,m3

Pw2 : m2,m3,m1

Pw3 : m3,m1,m2

Consider the following preference lists for the men:

Um1 : w3, w2, w1 Dm1 : w2, w1, w3

Um2 : w1, w3, w2 Dm2 : w3, w2, w1

Um3 : w2, w1, w3 Dm3 : w1, w3, w2
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The following sequence of strategy profiles constitutes a cycle where at each step the man

changing his strategy is better-replying to the current strategy profile:

(Dm1 , Dm2 , Um3),

(Um1 , Dm2 , Um3),

(Um1 , Dm2 , Dm3),

(Um1 , Um2 , Dm3),

(Dm1 , Um2 , Dm3),

(Dm1 , Um2 , Um3),

(Dm1 , Dm2 , Um3), . . .

Although better-reply dynamics may cycle, we can easily show, however, that whenever

they do converge the limit matching is always the same.

Proposition 4 Let P 0 be any preference profile and suppose that at each period men update

their strategy by better-replying (i.e., move ups and downs are allowed). If there exists t∗ <∞
such that for all t > t∗, µt = µt∗ then µt∗ = µ∗M .

Proof Suppose the dynamic converge to PM and let µ be the limit matching—i.e., µ =

ϕ(P, PW ). Let

M+ = {m ∈M : µP ∗mµM},

M◦ = {m ∈M : µ(m) = µM(m)},

M− = {m ∈M : µMP
∗
mµ}.

Suppose M+ 6= ∅. By the blocking Lemma, there exists m /∈ M+ and w ∈ µ(M+)

such that wP ∗mµ(m) and mPwµ(w). So, wPmµ(m) —for otherwise m could update again

his revealed preferences. It follows that m made an offer to w and this offer was rejected.

Hence, µ(w)Pwm, which contradicts mPwµ(w). So, M+ = ∅.
Suppose M− 6= ∅. So, µMRMµ, and µM(M−) = µ(M−) —because M+ = ∅. By

the Blocking Lemma, there exists m ∈ M− and w ∈ µ(M) such that mPwµM(w) and

wPmµM(m) = µ(m). Since µ is the limit matching, wP ∗mµM(m). So, µM /∈ S(P ∗), a

contradiction. Hence, M− 6= ∅, and thus M◦ = M , i.e., µ = µM . �

We turn now to the case where several men update their submitted preferences at the

same time. When only one man can update his submitted preferences at a time, a better-

reply makes necessarily the man who updates his strategy weakly better off. In this case
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no man will want to revert to his previous strategy. If simultaneous updating occurs, if all

the updating men end up worse off then they may want to revert to their previous strategy,

which in turn may create a cycle. Here again we observe differences between the case when

only move-ups are allowed and when both move-ups and move-downs are permitted.

The next result shows that move-ups only dynamics retain their convergence properties

when simultaneous updating occurs, i.e., there is at least one man (among those who have

updated) who will not wish to revert to the strategy used before updating.

Lemma 5 Let P ′M 6= PM , and let M̃ = {m ∈ M : P ′m 6= Pm}. Suppose that for each

man m ∈ M̃ , P ′m is a move-up of Pm. Then there exists at least one man m ∈ M̃ such that

µ′Rmµ.

Proof Let PM and P ′M satisfy the conditions of the Lemma and suppose that for all men

m ∈ M̃ , µP ∗mµ
′. For each man m such that Pm 6= P ′m, let Cm be the set of individuals that

have been moved-up between Pm and P ′m.

Since DA is group-strategy proof for the men there exists a least one man m̃ ∈ M̃ such

that µ′R′m̃µ. Since for each man m ∈ M̃ , µP ∗mµ
′, µ′(m) /∈ Cm. So, µ′R′m̃µ implies µ′Pm̃µ.

Hence, by the blocking lemma we have µ′ /∈ S(P ).

Since µ′ /∈ S(P ), either µ′ /∈ IR(P ) or there is a pair (m,w) such that wPmµ
′(m)

and mPwµ
′(w). Suppose first that µ′ /∈ IR(P ), i.e., there exists an individual v such that

vPvµ
′(v). Clearly, v ∈ M̃ , for otherwise we would have µ′ /∈ IR(P ′)—because P ′v = Pv for

v /∈ M̃ . Since µ′(m) /∈ Cm, mPmµ
′ implies mP ′mµ

′. Hence, µ′ /∈ IR(P ′), contradiction.

Hence, there exists a blocking pair (m,w). Again, m ∈ M̃ , for otherwise (m,w) would also

block µ′ under P ′. Since µ′(m) /∈ Cm, wPmµ
′ implies wP ′mµ

′, i.e., (m,w) also block µ′ under

P ′, a contradiction. Hence, µ′ ∈ S(P ). This is a contradiction, the desired result. �

As the following example shows, the previous result no longer holds under simultaneous

updating when both move-ups and move-downs are allowed.

Example 2 Consider a market with four men and women, whose true preferences are de-

picted below.

P ∗m1
P ∗m2

P ∗m3
P ∗m4

Pw1 Pw2 Pw3 Pw4

w3 w1 w2 w3 m3 m1 m2 m4

w4 w2 w3 w1 m2 m4 m3 m3

w1 w3 w1 w2 m1 m3 m1 m1

w2 w4 w4 w4 m4 m2 m4 m2
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Let P be the following preference profile. Men 1 and 4 submit their true preferences,

man 2 submits the preference Pm2 : w4, w3, w1, w2 and man 3 submits the preference Pm3 :

w3, w2, w1, w4. With the profile P men 2 and 3 are matched to women 3 and 2, respectively.

Observe that m2 truly prefers w1 and w2 to his match, w3. So a better reply for m2 is

P ′m2
: w1, w4, w3, w2. As for m3, w3 is less preferred than w2, so a better reply for m3 is

P ′m3
: w2, w1, w3, w4. Let P ′ = (P ∗m1

, P ′m2
, P ′m3

P ∗m4
). Under the profile P ′ men 2 and 3 are

matched to women 4 and 1, respectively. That is, both men are strictly worse off under P ′

than under P .

5 Conclusion

When considering a preference revelation mechanism with boundedly rational agents or

with agents that do not have a perfect knowledge (or understanding) of the mechanism

they have to play, the question of whether agents can learn how to play optimally the

mechanism is an important one. In this paper we consider the problem of learning in a simple

two-sided matching model and focus our attention on the game-theoretic properties of the

game obtained when the Deferred Acceptance algorithm is used to match individuals (rather

than aiming at a more realistic model of learning). In this context, looking at better-reply

dynamics is a natural choice. While better-reply have in the end a very simple structure, the

convergence results we obtain cast some doubts on the robustness of the Deferred Acceptance

game in a learning environment. Indeed, we found that for simple updating rules (move ups

only) the better reply dynamics always converge, but not necessarily to the man-optimal

matching (although it does converge to a stable matching). As for richer better replies

(move ups and move downs), the limit outcome are more promising, although the converge

is not guaranteed.
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Appendix

Lemma 6 (Blocking Lemma, Gale and Sotomayor, 1985)) Let µ be any individually

rational matching and let W ◦ be the set of all workers who prefer µ to µW . If W ◦ is nonempty,

there is a pair (f, w) satisfying w ∈ W\W ◦ and f ∈ µ(W ◦) that blocks µ.

Consider two preference orderings Pv and P ′v, and suppose that we wish to “reach” the

preference P ′v starting from the preference Pv. Clearly, it may well be the case that we need

to rearrange the position of many alternatives to connect Pv and P ′v. In these manipulations,

some alternatives may be re-ranked higher while other alternatives may be re-ranked lower.

The next Lemma states that if Pv and P ′v are two preference orderings such that Pv’s

Kemeny set (with respect to some preference ordering P ∗v ) is a subset of P ′v’s Kemeny set

then we can find a sequence of preference orderings such that starting from P ′v we can reach

Pv in a finite number of steps where each step consists of moving up in the ordering just one

alternative.

Lemma 7 Let Pv, P
′
v and P ∗v be such that K(Pv, P

∗
v ) ⊂ K(P ′v, P

∗
v ). Then there exists a finite

chain of preference orderings P 1
v , . . . , P

k
v such that

(i) P 1
v = P ′v, P k

v = Pv;

(ii) K(P h
v , P

∗
v ) ⊃ K(P h+1

v , P ∗v ), h = 1, . . . k − 1;

(iii) For each h, h = 1, . . . , k − 1, there is v such that for each v′, v′′ 6= v, v′P h
v v
′′ if, and

only if, v′P h+1
v v′′ and there is v′ such that v′P h

v v and vP h+1
v v′.

Proof Let Pv, P
′
v and P ∗v such that K(Pv, P

∗
v ) ⊂ K(P ′v, P

∗
v ). Compare Pv and P ′v start-

ing from the most preferred alternatives and go down in the preferences until there is an

alternative v̄ in Pv that has not the same rank in Pv and P ′v. Let v̂ be the alternative that

ranks just above v̄ in Pv. That is, for the most preferred alternatives up to v̂ the preference

orderings Pv and P ′v coincide. Construct the profile P 2
v from P ′v in the following manner. For

each v′, v′′ 6= v̄, v′P 2
v v
′′ if, and only if, v′P ′vv

′′, and let v̂P 2
v v̄ such that there is no v′ for which

v̂P 2
v v
′P 2

v v̄, i.e., alternative v̄ is moved up just below v̂.

We claim that K(Pv, P
∗
v ) ⊆ K(P 2

v , P
∗
v ) ⊆ K(P ′v, P

∗
v ). To see this, observe that for each

pair (v′, v′′) such that v̄ 6= v′, v′′, (v′, v′′) ∈ K(P 2
v , P

∗
v ) if, and only if, (v′, v′′) ∈ K(P ′v, P

∗
v ).

Also, for each pair (v′, v′′) such that v̄ ∈ {v′, v′′}, (v′, v′′) ∈ K(P 2
v , P

∗
v ) if, and only if,

(v′, v′′) ∈ K(Pv, P
∗
v ). Suppose now that there exists a pair (v′, v′′) where v̄ 6= v′, v′′ such that

(v′, v′′) /∈ K(P 2
v , P

∗
v ) yet (v′, v′′) ∈ K(Pv, P

∗
v ). So, (v′, v′′) /∈ K(P ′v, P

∗
v ), which contradicts
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K(Pv, P
∗
v ) ⊂ K(P ′v, P

∗
v ). Hence, K(Pv, P

∗
v ) ⊆ K(P 2

v , P
∗
v ). Suppose now that there exists a

pair (v′, v′′) where v̄ ∈ {v′, v′′} such that (v′, v′′) /∈ K(P ′v, P
∗
v ) yet (v′, v′′) ∈ K(P 2

v , P
∗
v ). This

latter implies that (v′, v′′) ∈ K(Pv, P
∗
v ), which again contradicts contradicts K(Pv, P

∗
v ) ⊂

K(P ′v, P
∗
v ). Hence, K(P 2

v , P
∗
v ) ⊆ K(P ′v, P

∗
v ). If P 2

v = Pv then we are done. Otherwise,

construct P 3
v from P 2

v in the same way P 2
v was constructed from P ′v, and keep doing so until

we reach some P k
v such that P k

v = Pv. Since there is a finite number of alternatives this

procedure eventually stops. �

Theorem 3 For any man m ∈M , let P ∗m, Pm and P ′m be preference relations over W ∪{m}.
Then for any P−m, ϕ(Pm, P−m)R∗mϕ(P ′m, P−m) if, and only if, K(Pm, P

∗
m) ⊂ K(P ′m, P

∗
m).

Proof Let Pm and P ′m be such that for any P−m, ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). So, Pm 6=
P ′m, and thus there exists at lest one pair v, v′ such that vPmv

′ and v′P ′mv. Notice that all such

pairs (v, v′) necessarily belong to either K(Pm, P
∗
m) or K(P ′m, P

∗
m).15 Consider any such pair

(v, v′). So it suffices to show that (v, v′) ∈ K(P ′m, P
∗
m). To begin with, we claim that there

exists a profile P−m such that ϕ(Pm, P−m)(m) = v and ϕ(P ′m, P−m)(m) = v′. An example of

such a profile is the following. For each ŵ such that either ŵPmv or ŵP ′mv
′ pick a man m̂

such that ŵ is m̂’s most preferred partner in Pm̂, and m̂ is ŵ’s most preferred partner in Pŵ.

Let m be v and v′’s most favourite partner according to Pv and Pv′ , respectively. It is easy

to see that for any profile P−m following these specficiations we have ϕ(Pm, P−m)(m) = v

and ϕ(P ′m, P−m)(m) = v′. Since Pm dominates P ′m, it follows that vP ∗mv
′, and thus (v, v′) /∈

K(Pm, P
∗
m) and (v, v′) ∈ K(P ′m, P

∗
m), the desired result.

Let Pm and P ′m be such that K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m). Using Lemma 7 it suffices to

assume that P and P ′ differ only by one alternative, say v. That is, for each v′, v′′ 6= v,

v′Pv′′ if, and only if v′P ′v′′, and v ranks higher in P than in P ′. Consider any profile

P−m. Observe that if alternative v is ranked below alternative ϕ(P ′m, P−m)(m) in both Pm

and P ′m then ϕ(P ′m, P−m) and ϕ(Pm, P−m) coincide. So, in this case we obviously have

ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). Similarly, if v is ranked above ϕ(P ′m, P−m)(m) in P ′m, we also

have ϕ(P ′m, P−m) = ϕ(Pm, P−m) and thus ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). In other words, the

only possibility for m to change his match between Pm and P ′m is when ϕ(P ′m, P−m)(m) is

ranked above v in P ′m but ranked below v in Pm. We claim that in this case ϕ(Pm, P−m)(m) ∈
{ϕ(P ′m, P−m)(m), v}. To see this, suppose that ϕ(Pm, P−m)(m) /∈ {ϕ(P ′m, P−m)(m), v}. No-

tice first that by strategy-proofness, ϕ(Pm, P−m)Rmϕ(P ′m, P−m), and thus ϕ(Pm, P−m)Pmϕ(P ′m, P−m) —

15Indeed, if (v, v′) ∈ K(Pm, P ∗m) ∩K(P ′m, P ∗m) or (v, v′) /∈ K(Pm, P ∗m) ∪K(P ′m, P ∗m), then vPmv′ if, and

only if, vP ′mv′.
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because ϕ(Pm, P−m)(m) 6= ϕ(P ′m, P−m)(m). Since for each v′, v′′ 6= v, v′Pmv
′′ if, and only if,

v′P ′mv
′′, ϕ(Pm, P−m)(m) 6= v implies

ϕ(Pm, P−m)P ′mϕ(P ′m, P−m).

This contradicts the strategy-proofness of ϕ, so ϕ(Pm, P−m)(m) ∈ {ϕ(Pm, P−m)(m), v}. If

ϕ(Pm, P−m)(m) = ϕ(P ′m, P−m)(m), then we obviously have ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). Sup-

pose then that ϕ(Pm, P−m)(m) = v. Recall that vPmϕ(P ′m, P−m) and ϕ(P ′m, P−m)P ′mv, and

K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m). So, vP ∗mϕ(P ′m, P−m)v. It follows that ϕ(Pm, P−m)(m)P ∗mϕ(P ′m, P−m),

the desired result. �
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[7] Haeringer, G. and H. Ha laburda (2011) “Robust Strategyproofness.” mimeo.

[8] Haeringer, G. and F. Klijn (2009) “Constrained School Choice.” Journal of Economic

Theory, 144, 1921–1947.

[9] Healy, J. H (2006) “Learning dynamics for mechanism design: An experimental com-

parison of public goods mechanisms.” Journal of Economic Theory, 129, 114–149.

[10] McKinney, C. N., M. Niederle and A. E. Roth (2005) “The collapse of a medical labor

clearinghouse (and why such failures are rare),” American Economic Review, 95, 878–

889.

[11] Pathak, P. A. and T. Sönmez (2008) “Comparing Mechanisms by their Vulnerability to

Manipulation” mimeo.

[12] Roth, A.E. (1982b) “The Economics of Matching: Stability and Efficiency,” Mathemat-

ics of Operations Research, 92, 617–628.

[13] Moulin, H. (1988) Axioms for Cooperative Decision Making. Econometric Society Mono-

graph Series. New York: Cambridge University Press.

25



[14] Roth, A.E. (1991) “A Natural Experiment in the Organization of Entry Level Labor

Markets: Regional Markets for New Physicians and Surgeons in the UK,” American

Economic Review, 81, 415–440.

[15] Roth, A. E. (2008) “What have we learned from Market Design?,” Economic Journal

118, 285–310.

[16] Roth, A. E. and I. Erev (1995) “Learning in Extensive-Form Games: Experimental

Data and Simple Dynamic Models in the Inter- mediate Term,” Games and Economic

Behavior, 8, 164–212.

[17] Roth, A. E. and E. Peranson (1999) “The Redesign of the Matching Market for Amer-

ican Physicians: Some Engineering Aspects of Economic Design,” American Economic

Review 89, 748–780.

[18] Roth, A. E. and M. A. O. Sotomayor (1990) Two-Sided Matching: A Study in Game-

Theoretic Modeling and Analysis. Econometric Society Monograph Series. New York:

Cambridge University Press.

26


