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Local R&D Strategies of Multi-location Firms: The Role of Internal Linkages 

 

ABSTRACT 

 

This study looks at the role of firms' internal linkages in highly competitive technology clusters, 

where much of the world’s R&D takes place. The leading players in these clusters are multi-

location firms that organize and integrate knowledge across sites worldwide. Strong internal links 

across locations allow these firms to leverage knowledge for competitive advantage without risking 

critical knowledge outflow to competitors. We examine whether multi-location firms increase 

internal ties when they face appropriability risks from direct competitors. Our empirical analysis of 

the global semiconductor industry shows that when leading firms co-locate with direct market 

competitors, innovations tend to be quickly internalized, and are more likely to involve 

collaboration across locations, particularly with inventors from the firm’s primary R & D site. Our 

results suggest that R&D dynamics in clusters are heavily influenced by multi-location firms with 

innovative links across locations, and that future research on technology innovation in clusters 

should account for these links. 
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1. Introduction 

Firms co-locate in technology clusters for many reasons.  These clusters -- geographic 

concentrations of firms and other institutions engaging in closely related R&D activities -- might attract 

firms using the unique advantages of a location, such as proximity to research universities, favorable 

government policies, and an abundance of human capital. In other cases, clustered firms emerge as 

spinoffs of existing companies in the cluster. In fact, most innovation in technology-driven industries 

occurs in technology clusters. 

Meanwhile, clusters are often characterized by “vigorous competition among locally-based rivals” 

(Porter 1998), which could compromise a firm's competitive advantage. Because much knowledge is 

tacit, effective knowledge transfer often requires frequent interpersonal interactions, which are more 

likely to happen with geographic proximity (Jaffe et al. 1993; Audretsch and Feldman 1996). 

Technological clusters also facilitate labor mobility (Almeida and Kogut 1999), an additional mechanism 

of knowledge flow across organizations. Firms and the R& D community at large benefit from the 

knowledge inflows that mobility and informal interactions bring, but unintended knowledge outflows to 

competitors can erode the competitive edge of industry leaders. 

What enables firms to benefit from location-specific advantages without endangering their 

technological edge? We address this question by focusing on an important factor in cluster dynamics: the 

leading players in technology clusters are often geographically dispersed organizations with R&D at 

multiple locations. Large multi-location firms are known for their ability to mobilize and integrate 

knowledge on a global basis (Bartlett and Ghoshal 1990). Thus, to understand R&D dynamics in a 

cluster, we must recognize that a firm located in a particular cluster may also be part of an extended 

network, with its operation strategically integrated across multiple locations and multiple business lines. 

The innovation strategy of IBM in Cambridge, Massachusetts, for example, is intricately linked with the 

company’s eight other R&D labs and hundreds of facilities worldwide. 

Previous studies show that internal linkages across a firm’s geographically dispersed units can 

improve knowledge absorption and integration (Gupta and Govindarajan 2000). Strong linkages across a 
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firm, as evidenced by the collaboration of inventors across distance, increase the absorption of external 

knowledge at dispersed locations (Lahiri 2003), facilitate the transfer of local knowledge back to the 

parent firm (Zhou and Frost 2002), and improve the overall quality of innovation (Singh 2007).  

Less attention has been paid to the role of internal linkages in the appropriability of knowledge. 

Since specialized and co-specialized complementary assets are critical to the commercialization of an 

innovation (Teece 1986), firms can minimize their losses from knowledge outflow to competitors by 

strategically increasing the interdependence among their global network of subsidiaries (Feinberg and 

Gupta 2009). Local imitators without a similar integration mechanism would be unable to make use of 

any knowledge gained. Studying multinational firms’ R&D activities in countries with weak intellectual 

property rights (IPR) protection, Zhao (2006) argues that a firm can utilize its internal organization to 

substitute for the weak external institutions. When a firm’s R&D network spans multiple locations, at 

each location it can develop technologies that closely relate to the firm’s internal resources residing 

elsewhere around the world. As long as the innovating firm can integrate the locally developed 

knowledge more efficiently than potential imitators, it can take advantage of the low cost in weak IPR 

countries and still gain from innovation. This is in line with the disaggregation strategy suggested by 

Liebeskind (1996) as a mechanism to protect against knowledge outflows. Sanna-Randaccio and 

Veugelers (2002) develop a theoretical model suggesting that firms would locate in clusters where 

competitors are present only if they have internal organizational structures to tightly control the 

innovations generated there. A well-integrated organization with strong internal linkages may also detect 

and absorb internal innovations more efficiently, thus increasing their lead-time over competitors -- 

another important mechanism of appropriability (Levin et al. 1987; Cohen et al. 2000). 

The multi-dimensional relationships among local entities (Cohen 1995, 230) allow us to separate 

appropriability incentives from learning incentives among multi-location firms. Firms in a technological 

cluster may share similar technological backgrounds or even engage in patent races, but they do not 

necessarily compete in the same product market. Industry-specific market information and other 

complementary resources reduce the risks associated with knowledge exchanges, allowing symbiotic 
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relationships to develop. If internal linkages are purely mechanisms of knowledge integration, we should 

observe more internal linkages in regions with greater learning opportunities, e.g., with more neighboring 

firms in the same technological fields. If internal linkages serve as a hedge against knowledge outflows, 

they should be used more extensively when neighboring firms share the product market.  

Examining the global semiconductor industry from 1998 to 2001, we find supportive evidence for 

both the learning mechanism and the appropriability mechanism of internal linkages, with much stronger 

results for the latter. Specifically, when surrounded by direct competitors, the technology leaders in a 

cluster favor technologies that can be quickly developed internally, and more of their R&D projects 

involve researchers from other locations, particularly from primary R&D sites. With comprehensive 

analysis of the competitive environment, this study extends the findings of Zhao (2006) and suggests that 

internal linkages across a firm protect firm knowledge from appropriation not only in weak IPR countries, 

but also in risky competitive environments in general. In other words, internal linkages are one of the 

dynamic capabilities that enable firms to embrace opportunities in technology clusters (Teece et al. 1997). 

The rest of the paper is organized as follows. Literature review and theory development are in the 

next section, followed by the description of data sources and empirical design in Section 3. The empirical 

results and robustness tests are presented in Section 4. Section 5 concludes. 

2. Theoretical Analysis 

2.1 Technology Clusters and Multi-Location Firms 

According to Porter (1998), clusters are a prominent feature in the landscape of every advanced 

economy. Starting with seminal work by Marshall (1920), researches have shown that firms in an industry 

cluster benefit from knowledge outflows to competitors, access to specialized labor, and access to 

specialized intermediate inputs. Among the various activities along the value chain, R&D activities 

benefit the most from knowledge transfer between competitors, and thus show the highest level of 

concentration (Audretsch and Feldman 1996; Alcácer 2006). Geographic proximity enables frequent 

interpersonal interactions through existing social networks (Almeida and Kogut 1999) and local 
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institutions (Gilson 1999; Stuart and Sorenson 2003), which facilitate the transfer of tacit knowledge in 

technology clusters.  

Knowledge, however, flows in both directions. Knowledge flowing into the firm (knowledge 

inflow) is likely to make R&D investments more productive, and thus raise the incentives to invest in it, 

but knowledge flowing out of the firm (knowledge outflow) may hinder the firm’s ability to appropriate 

value from its own innovations, thus lowering its incentive to conduct R&D in clusters (Furman et al. 

2006). In particular, losing knowledge to nearby competitors erodes the competitive advantage held by 

leading firms. Firms can move away from clusters to protect their cutting-edge technologies (Shaver and 

Flyer 2000), but this option may not be sustainable or desirable for two reasons. First, even if a leading 

firm decides to locate apart, it has little control over the subsequent location decisions of competitors or 

the emergence of new firms. To the extent that other firms have incentive to cluster around industry 

leaders, geographic distance offers only temporary protection against knowledge outflow. Second, there 

may be crucial resources in the cluster that the firm relies on, such as the talent pool from a local 

university. Relocation would seriously compromise the firm’s long-term competitiveness in the industry. 

Hence, protecting innovations from nearby competitors is a strategic consideration leading firms can’t 

avoid. 

One feature that industry leaders can take advantage of is their geographically dispersed, yet closely 

integrated, innovation networks. The literature of technology clusters traditionally treats all local entities 

as stand-alone organizations. As a result, interactions among local competitors have been examined 

without much consideration of firms’ extended organization. At the same time, most of the leading firms 

in high-tech industries are large firms with R&D activities in multiple locations – if not countries. As 

emphasized by Pisano (2006), an industry’s methods of appropriation are created by the strategic 

decisions of firms in that industry. Hence, the strategic allocation and integration of R&D activities by 

multi-location firms will have important implications for firms’ interactions in technology clusters.  
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2.2 Internal Linkages and Knowledge Appropriation 

Researchers have long recognized firms’ internal linkages as effective mechanisms of knowledge 

absorption and integration. By establishing interactions across divisions, intra-firm ties facilitate the 

accumulation and integration of knowledge (Bartlett and Ghoshal 1990; Kogut and Zander 1993). 

Empirical evidence shows that strong internal linkages – evidenced by collaboration among inventors 

across distances – are conducive to the absorption of external knowledge (Lahiri 2003) and the 

knowledge flow from foreign subsidiaries to the parent companies (Zhou and Frost 2002). Furthermore, 

such linkages also affect innovation quality. Singh (2007) shows that geographic dispersion of R&D, 

once accompanied by sufficient cross-regional ties among researchers from different R&D units, is 

associated with an improvement in innovation quality.  

In this study, we argue that internal linkages also help firms extract maximum value from their 

innovations by facilitating learning and knowledge integration. Local innovations can be quickly 

leveraged by other parts of the firm, leading to stronger competitive position in the product market. 

Knowledge assets are cumulative in nature (Dierickx and Cool 1989), and most products are the result of 

a long sequence of technological improvements (Vickers 1986). "Because the knowledge embedded in 

technological innovations is often tacit, the potential value, the potential value of an innovation is not 

always straightforward to outsiders (Arora et al. 2001). The innovating firm, with its hands-on experience 

in the R&D process and comprehensive understanding of the context, is able to develop its innovation 

without first completing a costly learning process (Mansfield et.al. 1981). If a firm can build on its new 

technologies more efficiently than potential imitators, it may gain crucial lead-time for value 

appropriation (Cohen et al. 2000). 

Second, strong internal linkages also lead to higher interdependence between the local unit and 

firms’ organizational expertise, creating knowledge that is hard to replicate by local competitors. Because 

specialized and co-specialized complementary assets are critical to the successful commercialization of an 

innovation (Teece 1986; Anand and Galetovic 2004), firms can minimize the risk of knowledge outflows 

by strategically increasing internal linkages. On the one hand, the firm-specific nature of corporate R&D 
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leads to heterogeneity in R&D applications and increases the appropriability of R&D returns (Helfat 

1994). On the other hand, technologies generated by local subsidiaries are less attractive to neighboring 

firms if these competitors don’t also have access to complementary information residing outside the 

cluster (Zhao and Islam 2006). Rajan and Zingales (2001) also show the importance of interdependence in 

knowledge appropriation. Using a theoretical model, they explain why flat hierarchies – in which all 

division managers are required to collaborate with a central unit at the top – are ubiquitous in human 

capital-intensive industries such as legal and consulting services. Because of the intangible nature of firm 

resources, property rights protection is difficult to enforce. Yet, if the firm can increase everyone’s 

dependence on the center office by controlling access to certain key resources, the risk of expropriation is 

greatly reduced. Similarly, Liebeskind (1996) points out that disaggregating tasks gives firms an 

advantage in knowledge protection, especially when reinforced by spatial isolation. In other words, the 

risk of knowledge outflows is reduced if the divisions of a firm are highly dependent upon each other.  

Based on the above discussion, we argue that firms will appropriate the most value from R&D in 

technology clusters when they internalize their innovations better and faster than nearby competitors – 

thereby reducing the damage of knowledge outflow and gaining important lead time over competitors. 

Moreover, the importance of such strategies increases with the intensity of local competition. In the next 

section, we will explicitly test the application of two internalization mechanisms in highly competitive 

technology clusters. 

3. Empirical Design 

3.1 Sample 

Our empirical setting is the worldwide semiconductor industry from 1998 to 2001. We choose this 

industry for several reasons. First, innovation is a key factor for success in semiconductors. Firms invest 

relentlessly in R&D to introduce new products and improve production processes (Stuart 2000). 

Moreover, semiconductor firms routinely patent their innovations, and patent data have been used to trace 

the traits and geographic distribution of innovation. Second, the benefit of knowledge transfer between 
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firms has been shown to drive agglomeration in the industry (Saxenian 1994; Fleming et al. 2006). High 

levels of geographic concentration also suggest that semiconductor firms have already developed 

strategies to manage knowledge outflows. Third, this is a truly global industry: leading firms operate at 

multiple locations around the world, and there are significant differences between firms in terms of 

product markets, R&D portfolios, positions in the value chain, and geographic locations. Firms range 

from industry giants that participate in activities throughout the value chain to small enterprises that 

specialize in design (known as fabless) or testing, and from large multinational firms to small local firms. 

Other players, such as universities, national laboratories, and firms from other industries (e.g., aerospace 

and chemicals) also conduct active R&D in semiconductors. Such heterogeneity allows us to identify the 

effect of different competitive environments on firms’ appropriability strategies and allocation of R&D 

projects.    

We build our dataset from four sources. First, we identify innovating firms using patent data from 

the Derwent World Patent Index (DWPI), a well-recognized dataset that encompasses more than 30 

million patent documents from 41 patent-issuing authorities worldwide, and we rely on Derwent’s 

technological classification1

Many of these patents are linked to the same innovation, with exactly the same inventors, assignees 

and abstracts. Multiple patents per innovation can occur either because patents are filed in multiple 

countries or because an application in a given country spins out multiple patents. For example, 16% of 

patents granted by the U.S. Patent and Trademark Office (USPTO) in our sample are duplicates. Thus, we 

 to obtain the universe of semiconductor patents. Patent data include 

innovations that occur outside of the R&D facilities, thus are more inclusive than the number of labs or 

the amount of R&D spending. Information from semiconductor patents applied between 1998 and 2001, 

and granted between 2001 and 2004, results in a sample of 60,880 patents.  

                                                 

1  DWPI applies a consistent classification system to all patents. Classes used in this study are U11 (semiconductor 

materials and processes), U12 (discrete devices), U13 (integrated circuits) and U14 (memories, film and hybrid 

circuits). For more details, see http://scientific.thomson.com/support/patents/dwpiref/reftools/classification. 
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follow Gittelman and Kogut (2003) and use families of patents as our unit of analysis. Each family 

encompasses patents granted in all countries that are identical in terms of technology, inventors, and 

locations, and differ only in the scope of their claims. The final sample consists of 23,675 patent families2

We supplement this initial sample with directories of semiconductor plants, fabless companies, and 

institutions behind scientific publications. Information about plants comes from the quarterly datasets of 

the World Fab Watch provided by the Strategic Marketing Association, from 1998 to 2001. The datasets 

encompass manufacturing facilities for a wide range of products: memories, microprocessors, generic and 

specific chips, etc. Information on fabless companies is obtained from the Gartner Group’s annual 

Directory of Fabless Semiconductor Companies for the same period. To assess the scientific activities in 

the local community, we extract from ISI Web of Knowledge all journal publications in the sample period 

that use “semiconductor” or “semiconductors” as part of their keywords. These four data sources provide 

a comprehensive map of the industry at multiple levels: innovation (23,675 patent families), production 

(974 plants), research (26,581 scientific publications), and development (549 fabless companies).   

 

whose assignees are American and foreign firms, universities, and government- and industry-sponsored 

research labs. For the 300 patent families with more than one assignee, all assignees (and not only the first 

one) are considered. Patents granted in the U.S. represent 46% of all the patent family members, followed 

by those in Europe (17%), Japan and Korea (7% each), and Taiwan (6%). 

Because we treat every multi-unit firm as an integral entity, and because internal organization is a 

central concept of this study, we put extra effort into identifying the ultimate parent for every entity in our 

sample. First, for each year, we match the patent assignees, plants and fabless companies to firms in the 

corresponding Directory of Corporate Affiliations (DCA), an annual database that records corporate 

ownership for more than 200,000 private and public firms worldwide. Second, for organizations not 

identified in DCA, we search the Dun and Bradstreet Million Dollar Database to obtain affiliation 

information. Finally, we check affiliation changes through SDC Platinum, company websites, and various 
                                                 

2  Besides patents, these families also include 29,491 patent-related documents such as PCTs. 
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industry publications. The above steps map the 4,125 assignees in the sample to 2,217 unique 

organizations.  Fabless firms and manufacturing firms that do not own patents add 721 additional 

organizations to our sample. 

While we use data for all organizations to characterize local environments, our analysis of R&D 

strategies focuses on 16 innovating firms, or the top 1% of the industry in terms of patent output 3

3.2 Cluster Definition  

. The 

reason for focusing on these firms is that most of the semiconductor industry has the typical features of an 

oligopoly industry, where the top 1% of firms represent 50% of the patent output and 40% of the plants 

operating in this period. With the cost of developing new chips and building new manufacturing plants 

running into the billions, there is a clear divide between industry leaders and everyone else – and the gap 

is getting larger, according to IC Insights. Therefore, semiconductor industry leaders should have 

qualitatively different innovation strategies than the thousands of industry followers. The composition of 

the sample is similar to those in previous studies of the semiconductor industry (Stuart and Podolny 1996; 

Henisz and Macher 2004; Ziedonis 2004). As part of our robustness checks, we replicate our analyses 

using two alternative samples – composed of the top 5% and 10% of firms in terms of patent families – 

and obtain similar results. 

Defining technology clusters is a crucial element of our empirical setup. Instead of relying upon 

predetermined administrative boundaries, such as states or metropolitan areas, we apply a mathematical 

algorithm that uses latitude and longitude data to identify technological clusters. We do this for two 

reasons. First, there is no single administrative unit defined across all countries. We have to either focus 

on a specific country (e.g., the U.S.), which fails to capture important features of global firms, or use a 

mix of different geographic units (e.g., states in the U.S., prefectures in Japan, and provinces in Europe), 

which may create unexpected country biases. Second, technological clusters do not necessarily follow 

                                                 

3 The 16 firms are AMD, Intel, IBM, Texas Instruments, Hitachi, Matsushita, NEC, Siemens (including Infineon), 

Toshiba, Mitsubishi, Samsung, Micron, Fujitsu, TSMC, Hyundai, and STMicroelectronics. 



- 10 - 

predetermined administrative boundaries, which is clear after a quick inspection of inventor locations in, 

for example, the northeastern U.S. or central Japan. One administrative unit may encompass multiple 

clusters, while one technological cluster may expand across several administrative lines.  

In this study, we define clusters by the actual distribution of inventor locations, following a three-step 

approach. First, we identify the location of each element in the sample (i.e., a patent inventor, plant, 

fabless company, or scientific publication), and match the locations to two comprehensive sources of 

geographic names. For U.S. locations, we obtain latitude and longitude information for all 38,261 

locations in the country from the Geographic Names Information System (GNIS) of the U.S. Geological 

Survey. For foreign locations, we use the Geonet Names Server (GNS) of the National Geospatial 

Intelligence Agency. Besides its wide coverage of 5.5 million location names worldwide, the GNS dataset 

uses phonetic variations to capture spellings from a different alphabet (as in Asian countries) and from an 

alphabet with extra characters (as in Scandinavian and Slavic countries). Ambiguous matches are checked 

manually by native residents from various countries and areas. As a result, we are able to assign latitudes 

and longitudes to 38,926 out of the 38,952 foreign locations in the original sample. 

In the second step, we develop a mathematical algorithm to identify geographic clusters using the 

latitude and longitude information. Clusters are defined not only by the geographic distance among 

locations – as in many other traditional clustering methods – but also by the variations in inventor density 

in neighboring areas. For example, a rapid decrease in density may signal the end of a cluster, and a 

continuous level of inventor density may signal a long or irregularly shaped cluster. Accordingly, the 

algorithm assigns two locations to the same cluster if there is a continuity of high-density locations 

between them, despite their geographic distance. In contrast, two locations separated by a stretch of low-

density areas may be identified as two distinct clusters, even if they aren’t far apart. Our clustering 

algorithm offers the additional advantage of having the number of clusters emerge naturally from the data, 

instead of being set arbitrarily ex ante. This method produces 304 geographic units. 

Finally, plants, fabless companies, and publications are assigned to the geographic units defined 

from the patent data. In most cases, they fall within an existing geographic unit. For each location that 
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falls out of all existing units, we calculate its shortest distance to them. The location is considered part of 

the closest cluster if the minimum distance is less than 15 miles4. Otherwise, the unassigned locations are 

again clustered with the same algorithms as we use for the patent locations. For the main sample, 6 and 28 

geographic units were added by fabless and plant data, respectively5

3.3 Dependent Variables 

. 

3.3.2 Internalized Value 

A key concept in this study is the extent to which an innovation creates value for the innovating 

firm. While there is no direct measure of value, technologies highly dependent on internal resources are 

more likely to be utilized and further developed within the firm. Trajtenberg et al. (1997) propose self-

citations, defined as “the percentage of citing patents issued to the same assignee as that of the originating 

patent,” to measure the “fraction of the benefits captured by the original inventor.”  Hall et al. (2005) also 

suggest that citations to patents belonging to the same firm represent internalized knowledge transfers, 

bolstering the firm’s competitive advantage. Hence, we use forward self-citations as a proxy for the value 

new technologies bring a firm. Specifically, we define the variable self_citationp as the number of self-

citations among all citations received by patent family p; citations to a patent family sums citations by all 

its members. Because we are interested in firms as integrated organizations, any citations among affiliated 

organizations are considered self-citations.  

A common critique of citation-based measurements is the unknown nature and extent of citations 

imposed by patent examiners (Jaffe et al. 2000). Recent research reveals that examiner citations account 

for 66% of all citations in an average patent, which may bias empirical tests (Alcacer and Gittelman 2006; 

Sampat 2009). To avoid this problem, our main models are estimated using citations listed by inventors 

                                                 

4  We also tried 20, 25, and 30 miles, with very similar outcomes. 

5  Note that the geographic units identified are not necessarily technology clusters, which are units with high 

innovation densities. For convenience, we use “cluster” and “geographic unit” interchangeably whenever there is 

no concern of confusion. The analysis is replicated with a hierarchical clustering algorithm in robustness checks. 
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only. In our sample, about 30% of the patent families that receive at least one inventor citation also have 

at least one self-citation. The number is 38% when both inventor and examiner citations are considered. 

For robustness checks, we also repeat our analysis using all citations to a patent regardless of their source. 

Note that the citation measures capture both the intensity and speed of citations. As our observation 

window ends in December 2006, any citations that occur after that date are not included in the sample. 

Hence, if we observe a large number of citations on a patent, it is either because the patent is widely cited 

in general or because the citations occur fast enough to be captured in the short observation window. In 

either case, a high self-citation ratio suggests that the innovating firm internalized the focal technology. 

Geographically dispersed R&D in a multi-location firm makes it more difficult for local 

competitors to access the technology know-how residing in the firm's other subsidiaries, thus reducing 

knowledge outflow (Sanna-Randaccio and Veugelers 2002). Assigning R&D projects to teams spanning 

multiple clusters can create links within the organization that not only enhance appropriability, but also 

facilitate the transfer of local know-how throughout the organization (Lahiri 2003). Thus, we define 

cross_clusterict as the number of patent families per firm-cluster-year for which the inventors are from at 

least two different clusters. 

Furthermore, we differentiate the firms’ primary R&D sites – locations where firms conduct most 

of their R&D – from their peripheral R&D facilities. We then identify cross-cluster links that involve only 

the primary R & D site, and those connecting peripheral locations. As shown in Table 1, the average 

number of cross-cluster links per firm-cluster-year is 4.4. Cross-cluster teams involving primary R & D 

sites are more common than teams linking peripheral locations (1.65 vs. 1.38).  

3.4 Independent Variables 

We follow two dimensions – technology space and product market – to characterize the competitive 

environment at the cluster-year level. Along the technology space, competitors are defined generically as 

organizations that innovate in the semiconductor field. The variable innovators represents the number of 

unique assignees with semiconductor patents in a given cluster-year. We then classify assignees into two 

groups: innovators_profit and innovators_nonprofit to capture the number of for-profit and nonprofit 
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assignees, respectively. In addition, we use the status information on patent applications6

Along the second dimension, competitors are defined as firms that share the same product-market. 

For every focal firm in our sample, we rely on Hoover’s Online to identify its industry (four-digit SICs), 

market segments within semiconductors

 to further 

classify for-profit assignees into small or large entities, thus creating the variables small_innovators and 

large_innovators. In the case of nonprofits assignees, we manually classify them into three groups: 

universities (universities), government agencies (govt_innovators), and other nonprofits such as research 

centers sponsored by industry associations (other_nonprofit).  

7

We complete the characterization of local innovation environments with three more variables: 

plants_in_cluster, fabless_in_cluster, and publications_in_cluster, which represent the numbers of plants, 

fabless companies and publications per cluster-year. In addition, we use two dummy variables, with_plant 

and with_fabless, to indicate whether a particular firm has plants or fabless units in cluster c and year t. At 

the firm level, we include two variables, patents_semi and patents_total, to capture the number of patents 

that a firm has through year t in semiconductors and in all technological classes, respectively. Our focal 

firms have on average 200 semiconductor patents and 1,295 patents in all technology categories. Table 1 

presents the descriptive statistics for all dependent and independent variables used in the empirical tests. 

, and the names of direct competitors. Then we count the number 

of for-profit assignees in the same industry (in_industry and not_in_industry), in the same market 

segment (in_segment and not_in_segment), or on the list of direct competitors (competitors and 

not_competitors). The self-reported competition data from Hoover's serve our purpose well, since 

managers make strategic moves based upon perceived competition in a technology cluster.  

                                                 

6   The USPTO uses industry-specific parameters such as number of employees and revenues to grant small firm 

status to assignees. For details see http://www.uspto.gov/web/offices/pac/mpep/documents/appxr_1_27.htm. 

7  Hoover’s reports 13 segments under semiconductors, including memory chips and modules, microprocessors, etc.  
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3.4 Methods 

To identify firms’ strategic organization of R&D projects across locations, we compare the 

technologies developed in different local environments, controlling for firm characteristics. Specifically, 

the two dependent variables – self_citation, and cross_cluster – are the two dimensions that characterize 

the appropriability strategies described in the previous section.  

Thus, we estimate two basic equations, one for each dependent variable, in the following form: 

DVict= Cict+ Xict + Yct + ζt +υi + τctry + εict     (2) 

where Cict  is a vector of cluster-specific variables capturing the competitive environment faced by 

firm i in cluster c and year t,  Xict is a vector of firm-specific variables characterizing firm i in cluster c and 

year t, and Yct is a vector of location characteristics in year t. ζt and υi are two sets of dummy variables for 

year and firm fixed effects, respectively. Variations in country-specific intellectual property right regimes 

are controlled by the country dummies τctry, and εict is the error term.  

Note that the analysis for self_citation is conducted at the innovation level  (i.e., patent family), 

while the analysis for cross_cluster is at the firm-cluster level. As self_citation and cross_cluster are both 

count variables, negative binomial models are used for the estimations8

 

.  

4. Empirical Results 

Table 2 presents the results of estimating self_citation, using negative binomial models. Because 

the dependent variable is the number of self-citations received by the focal patent, and the exposure 

variable is the total number of forward citations, we are essentially examining the patent’s self-citation 

ratio. OLS regressions with self-citation ratio as the dependent variable produce very consistent results. 

The total number of innovators in the cluster does not seem to have a significant impact on 

internalization, even if we only consider for-profit innovators. The effect of competition starts to emerge 

when we distinguish large, for-profit innovators from small ones. An increase in the number of 
                                                 

8  The exposure variables are total citations and total patents, respectively. 
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neighboring large firms increases the self-citation ratio, while the opposite is true for neighboring small 

firms. The effect of local competition is more evident when firms compete in the product market than it is 

when firms employ similar technology in different markets. Across various specifications of market 

competition, the coefficient on the number of local competitors is positive and significant. The more 

market competitors there are in a cluster, the more likely firms are to self-cite patents they develop there. 

To the extent that self-citations proxy for internalized value, this finding supports our argument that in 

highly competitive environments, firms are more likely to share technology development across the firm.  

Meanwhile, the presence of nonprofit innovators has little impact on the degree of internalization. 

Without direct market competition, these nonprofit institutions create a more open atmosphere in the local 

cluster. An alternative explanation for this phenomenon is that firms choose to locate in close proximity 

to universities or government laboratories for the purpose of seeking knowledge. Intensive internalization 

may negatively affect the firm’s ability to absorb external information. Not surprisingly, the coefficient of 

patents_semi is positive and significant; the larger the patent pool in the technological domain, the more 

likely that later citations are made to that pool. The coefficient of with_plant is still positive and 

significant, indicating that technologies closely linked to manufacturing processes are more firm-specific.  

Note that the high self-citation ratios in competitive clusters are not due to the low intrinsic value 

(small denominator) of these patents. When running the same regressions with total number of citations 

instead of self-citations as the dependent variable, none of the coefficients associated with competitive 

environments are significant. To further verify this point, we compare the number of self-citations and the 

number of total citations – commonly used as measure of patent quality – across various competitive 

environments. Specifically, we use Hoover’s data on direct market competition to define four quartiles, 

with Quartile 1 indicating the clusters with the highest number of direct competitors and Quartile 4 with 

the lowest number of competitors. As shown in the two panels of Table 3, while there are significant 

differences in self-citations across quartiles – with on average 1.72 self-citations found in clusters with 

most competitors vs. 0.52 self-citations in the least competitive clusters – we find no statistical evidence 

that patent quality varies across quartiles. Together, these findings suggest that firms do change the type 
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of innovation performed depending on local environments. Innovation produced in clusters with a strong 

presence of direct competition is more tightly intertwined with the firm’s internal knowledge base.  

While self-citation ratio is a good proxy for knowledge appropriation by the innovating firm, the 

findings in Table 2 can also be interpreted as learning. Innovating firms are eager to absorb knowledge 

from local competitors, internalize it, and spread it across firm locations. As a result, patents developed in 

highly competitive clusters feature higher self-citations. To argue that the high self-citation ratios in 

highly competitive clusters are a product of knowledge protection rather than a product of learning, we 

must show that citations among competitors are reduced within the cluster. Table 4 illustrates the 

backward citation patterns within and across clusters by various entities. Throughout the three alternative 

definitions of competition, firms cite competitors relatively less within a cluster than across clusters. For 

example, the ratio of competitors' citations to other firm's citations is 1.47 outside the cluster versus 0.87 

within the cluster when competitors are identified at the industry level; 2.5 vs. 1.62 when identified at the 

segment level and 2.09 vs. 1.63 when measured at the self-revealed competitor level. If the positive and 

significant relationship between self-citations and level of competition in a cluster was driven by learning 

opportunities presented by competitors, one would expect that citations to local competitors would be 

higher than citations to remote competitors, or at least that there would be no difference. The figures in 

Table 4 suggest that firms’ internalization strategies in competitive clusters are more likely designed to 

prevent knowledge outflow to competitors.  

Table 5 shows the regression results of cross_cluster with negative binomial models. Models (1) 

through (5) use the total number of local patents as the exposure variable, so we essentially test the 

percentage of local patents developed by cross-cluster teams. The positive coefficients of 

innovator_profit, in_industry, in_segment and competitors suggest that the presence of competing 

organizations increases the tendency to use cross-cluster teams. As with the analysis of self-citations, the 

number of nonprofit innovators has no effect on the use of cross-cluster teams. 

Most of the results with control variables follow the same pattern as in the previous tables. The 

presence of a plant in the cluster increases the use of cross-cluster teams, probably a reflection of 
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production-related projects that require inputs from local engineers and R&D personnel at the firm’s 

primary R& D site. Note that we add a new control variable, primary_cluster, to indicate whether the 

cluster is the primary R&D site for the firm. One would expect a centralized system to exert more control 

over geographically dispersed innovation by tightly connecting them with a primaryR&D center. As 

expected, the coefficient of primary_cluster is positive and highly significant. 

We further explore cross-cluster links between primary and peripheral locations. Models (6) 

through (10) show the results with a new dependent variable, to_clusterict, which counts the number of 

patents in the non-primary cluster c with at least one inventor located in firm i’s primary cluster. The 

exposure variable used for this estimation is the number of firm i’s cross-cluster patents in cluster c 

(cross_clusterict); hence, we essentially explore the percentage of cross-cluster patents linked to the 

primary cluster. The results are very consistent with previous findings. That is, an increase in the number 

of competitors in the peripheral clusters increases the percentage of cross-cluster links connecting to the 

primary cluster, and this effect is stronger when the competitive environment is measured by product-

market competition. Therefore, we find that local competition increases cross-cluster links, and that the 

increase is due, specifically, to connections with the firms’ primary R & D site.  

4.4 Robustness Checks 

The above findings are consistent with our hypothesis that R&D projects in competitive clusters are 

developed more internally, and are more likely to involve teams spanning multiple locations. Next, we 

conduct a series of robustness tests using alternate samples, variable definitions, and estimation 

techniques. 

First, we re-estimate all models with a different method to define clusters: hierarchical clustering 

with centroid linkages. This method begins with each location as a separate group. Then two clusters with 

the shortest Euclidian distance are combined into one, whose new geographic coordinates are the mean 

longitude and latitude of all locations in the group. This process is repeated until a large hierarchical tree 

is generated that includes all locations. We designate the number of clusters in each region to 

accommodate a wide variation in local densities. This process produces 187 distinct geographic units. The 
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coefficients obtained with the hierarchical clustering method are similar in sign, significance and 

magnitude to those in the previous tables. 

Second, we repeat the analysis on self-citation ratios using both inventor and examiner citations. 

Recent research suggests that high levels of examiner citations are associated with low quality patents 

(Alcácer and Gittelman 2006; Sampat 2009. Therefore, including these citations adds a new set of 

observations – patents whose citations are 100% examiner-imposed – that may represent inferior 

innovations. The results using citations from all sources are similar in magnitude and sign to, but weaker 

in statistical significance than, those in Table 2. 

Finally, we estimate the models with cluster-fixed effects to control for unobservable factors at the 

cluster level. Due to the large number of dummy variables for firms, years, countries, and clusters, some 

models fail to converge. For those models that do converge, which constitute a significant majority, the 

competitive measurements based on product market, especially those related to direct competition, come 

up with coefficients that are statistically significant with the expected signs.  Since any location-specific 

variations are controlled for with the cluster dummies, the results strengthen our belief that firms tailor 

their R&D strategies to their competitive environment. 

5. Conclusion 

While geographic co-location has obvious benefits for firm innovation, it can also have serious 

drawbacks. We explore how firms tap into technology clusters’ rich resources while protecting the value 

of their innovations. Our empirical findings suggest that leading firms organize their R&D activities 

differently when facing local competitors. A multi-location firm may reduce imitation risks by allocating 

less vulnerable projects to clustered areas, by incorporating local innovations quickly into its global 

knowledge base, and by using cross-cluster teams to strengthen control over locally developed 

technologies. We also find that firms’ strategic responses vary depending upon the characteristics of 

nearby organizations. We find strong evidence of strategic behavior when neighboring firms share the 

same product market, but not when they overlap in the technological space.  
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Of course, there remain several limitations in this study. For example, this is a one-industry study 

with 16 focal firms; further analysis with more industry contexts will make the conclusions more 

generalizable. In addition, the self-citation measures we use to capture internalization may also reflect 

firms’ knowledge acquisition strategies. Since the direct market competitors of our focal firms are most 

likely leading innovators, the stronger internal ties we observe among focal firms may simply reflect the 

learning process. Although we used two approaches to rule out this alternative explanation -- using 

distinct measures (the presence of market competitors and technological innovators) to proxy for 

competition effect and learning effect respectively, and looking at within-cluster and across-cluster 

citations to competitors -- it is difficult to tease these out completely. 

Despite these limitations, we believe our study sheds light on important aspects of location and 

innovation strategies. For firms making location decisions, this study shows that highly competitive 

technology clusters are not a forbidden land for industry leaders. Knowledge outflows to competitors 

could threaten a firm’s technological leadership, and may even erode its competitive advantage, but these 

threats shrink when a multinational spreads its R&D efforts strategically across firm locations. The risk of 

exposing certain technologies to local competitors is also low if local competitors lack the capabilities to 

absorb those technologies. Taking it one step further, because the potential for knowledge outflows from 

industry leaders will prompt small firms to cluster nearby, avoiding technology clusters is hardly an 

option for the most technologically advanced. Strategic organization of R&D activities becomes crucial. 

Policy makers eager to nurture local high-tech industries often use various incentives, such as tax 

breaks, to attract firms to conduct R&D locally. At the same time, government has little influence on how 

R&D is actually conducted. With local projects closely intertwined with the firms’ global research 

agenda, the same R&D budget or R&D intensity may generate very different knowledge outflows to the 

local community. It would be interesting for future research to examine the features of local 

environments, such as labor mobility, that facilitate not only R&D investments, but also active learning 

across firm boundaries. 
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This study also points to several avenues for further inquiry. First, although the mechanisms 

explored in this paper are based on multi-location firms, the need to appropriate economic rents from 

proprietary innovation applies to any firm or organization. More research is needed to understand other 

appropriability mechanisms that do not rely specifically on multiple locations. 

Second, the strategies discussed in this study are based on a well-established set of internal routines 

and organizational skills that facilitate the transfer and integration of geographically dispersed knowledge. 

Obviously, not every firm can achieve the strategic allocation of R&D resources with enough efficiency 

or cost effectiveness. Hence, it is important to understand how firm heterogeneity affects the applicability 

of these strategies, and how various internal organizational structures influence firms’ abilities to absorb, 

transfer and protect knowledge in technology clusters. 

Third, our arguments revolve predominantly around competition and have excluded the possibility 

of inter-organizational cooperation. However, there are frequent project collaborations, strategic alliances, 

and industrial associations among semiconductor firms, universities, and other research institutions. 

Cooperative arrangements are even observed between direct market competitors. Such arrangements may 

affect the nature of R&D in a location and the appropriability mechanism at play. 

Finally, in the semiconductor industry, as in many other high-tech industries, R&D is fragmented 

across the value chain and, in some cases, outsourced to specialized firms (Arora et al. 2001). In such 

circumstances, knowledge flow across organizational boundaries is necessary and desirable. Moreover, 

firms’ abilities to allocate resources and exercise strategic internalization are limited once innovation 

moves outside the firm. Therefore, we need to better understand how firms protect and extract value from 

innovations developed within permeable, changing, and diffuse firm boundaries.  
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Table 1. Descriptive Statistics 
    
    Obs. Mean St Dev Min. Max. 
Dependent variables       
  self_citations (inventor) 5,266 1.09 3.20 0 57 
       self_citations (inventor+examiner) 10,204 1.05 2.79 0 63 
  cross_cluster 1,089 4.42 9.23 0 90 
       to_primary 1,089 1.65 4.10 0 57 
Independent variables       
Competition based on technology*       
  innovators 304 5.42 13.58 1 130 
  innovators_profit 304 4.92 12.40 1 124 
       small_innovators 304 0.72 2.98 0 33 
       large_innovators 304 4.20 9.95 1 101 
  innovators_nonprofit 304 0.50 1.44 0 12 
       universities 304 0.29 0.94 0 8 
       govt_innovators 304 0.15 0.59 0 6 
       other_nonprofit 304 0.06 0.24 0 2 
Competition based on prduct market*       
  in_industry 304 1.19 3.75 0 45 
       Not_in_industry 304 4.14 10.46 1 92 
  in_segment 304 1.28 3.48 0 38 
       Not_in_segment 304 4.23 10.14 1 85 
  competitors 304 0.81 1.93 0 14 
       Not_competitors 304 4.61 12.13 1 117 
Cluster variables*       
   Plants_in_cluster 304 2.54 7.92 0 75 
   fabless_in_cluster 304 1.67 13.00 0 211 
   publications_in_cluster 304 21.04 46.31 0 515 
Firm-cluster variables*       
  with_plant 304 0.05 0.21 0 1 
  with_fabless 304 0.00 0.00 0 0 
Firm variables*       
  Plants 16 18.03 8.11 7 36 
  fabless 16 0.19 0.40 0 1 
  patents_total 16 1,295.43 589.72 516 2,702 
  patents_semi 16 199.97 102.96 120 530 
       

* Statistics are based on averages across the years 1998-2000    
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Table 2. Negative Binomial estimates on self-citations 
 
Dependent variable: Self-citations; Exposure variable Total Citations 
  (1) (2) (3) (4) (5) (6) 
plants_in_cluster -0.005 -0.006 -0.014 -0.010 -0.006 -0.007 
  (1.71)† (1.74)† (3.73)** (2.75)** (1.89)† (2.12)* 
fabless_in_cluster -0.001 -0.001 -0.002 -0.003 -0.001 -0.001 
  (0.77) (0.85) (1.90)† (2.07)* (0.94) (0.85) 
publications_in_cluster 0.000 0.000 -0.001 -0.000 0.000 0.000 
  (0.58) (0.68) (1.13) (0.18) (0.77) (0.27) 
with_plant 0.132 0.130 0.185 0.169 0.121 0.134 
  (2.99)** (2.92)** (3.97)** (3.58)** (2.70)** (2.99)** 
with_fabless -0.053 -0.051 -0.159 -0.111 -0.159 -0.077 
  (0.19) (0.18) (0.58) (0.40) (0.56) (0.28) 
patents_total 0.000 0.000 0.000 0.000 0.000 0.000 
  (0.18) (0.17) (0.68) (0.19) (0.25) (0.15) 
patents _semi 0.002 0.002 0.002 0.002 0.002 0.002 
  (7.71)** (7.70)** (8.13)** (7.73)** (7.82)** (7.81)** 
Innovators 0.001       
  (1.05)       
innovators_profit   0.002      
    (1.01)      
     small_innovators    -0.012     
     (3.53)**     
     large_innovators    0.015     
     (4.47)**     
     in_industry     0.028    
      (2.78)**    
     not_in_industry     -0.001    
      (0.25)    
     in_segment      0.006   
       (1.87)†   
     not_in_segment      0.0007   
       (0.40)   
     competitors       0.015 
        (2.06)* 
     not_competitors       0.0008 
        (0.47) 
 innovators_nonprofit   -0.003  -0.003 -0.001 0.002 
    (0.25)  (0.26) (0.10) (0.16) 
     Universities    -0.009     
     (0.76)     
     govt_innovators    0.006     
     (0.18)     
     other_nonprofit    0.103     
     (1.40)     
Constant -17.434 -16.192 -16.903 -17.420 -17.404 -16.167 
  (0.01) (0.03) (0.02) (0.01) (0.01) (0.03) 
Firm fixed effects Y Y Y Y Y Y 
Year fixed effects Y Y Y Y Y Y 
Country fixed effects Y Y Y Y Y Y 
Observations 5,117 5,117 5,117 5,117 5,117 5,117 
Log Likelihood -5776.87 -5776.8 -5765.12 -5773.3 -5775.57 -5775.05 

Absolute value of z statistics in parentheses 
† significant at 10%; * significant at 5%; ** significant at 1% 
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Table 3. Mean tests for citations and self-citations in different competitive environments 
          
 Panel A: Comparing average citations across quartiles of competitive environments 

          
   Quartiles for competitive environment ^   
   1  2  3   

  Ave. citations 3.57  3.25  3.40   

Quartiles for 
competitive 

environment ^ 

2 3.25 -0.320       
   0.367       

3 3.40 -0.168  0.152     
   0.378  0.376     

4 3.20 -0.371  -0.051  -0.203   
   0.388  0.386  0.396   

          
          
          
          
 Panel B: Comparing average self-citations across quartiles of competitive environments 
          
   Quartiles for competitive environment ^   
   1  2  3   

  Ave. citations 1.72  1.09  0.73   

Quartiles for 
competitive 

environment ^ 

2 1.09 -0.625 *       
   0.234       

3 0.73 -0.988 *  -0.363 *     
   0.229  0.250     

4 0.52 -1.200 *  -0.575 *  -0.212   
   0.241  0.261  0.256   

          
 First value corresponds to (row mean-column mean), second value is t-statistic 

 *  5% significance level       

 

^  Competitive environment measured based on direct competitor data from Hoovers. Quantile 1 
corresponds to clusters with the largest number of competitors, quantile 4 to clusters with the 
smallest number of competitors. 
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 Table 4. Citations from competitors: Within clusters vs. outside of clusters 

    
 

  

  

Number of citing 
patents from various 

entities 

Ratio of competitor citations 
over citations of all firms 

  
Outside 
cluster 

Within 
cluster 

Total Outside 
cluster 

Within 
cluster 

Total 

Universities 222 3 225      
Other non-profit organizations 14 3 17    
Government 19 1 20     
          
Competitors in industry 10,789 830 11,619 1.47 0.87 0.58 
Other firms 7,357 958 8,315    
        Total firms 18,401 1,795 20,196     
Competitors in segment 12,196 1,105 13,301 2.05 1.62 0.67 
Other firms 5,950 683 6,633    
        Total firms 18,146 1,788 19,934     
Competitors 12,275 1,107 13,382 2.09 1.63 0.67 
Other firms 5,871 681 6,552    
        Total firms 18,146 1,788 19,934     
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Table 5.  Negative Binomial estimates on cross-cluster links 
  
  
  
  
  
  

Dependent variable Patents with cross-cluster links Cross-cluster links with primary clusters 
Exposure variable Total number of patents All cross-cluster links 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
plants_in_cluster -0.019 -0.019 -0.023 -0.020 -0.023 -0.027 -0.034 -0.033 -0.028 -0.030 
  (4.48)** (4.30)** (5.23)** (4.67)** (5.36)** (4.11)** (4.44)** (4.77)** (4.26)** (4.50)** 
fabless_in_cluster -0.001 -0.001 -0.002 0.000 -0.001 0.0017 0.0011 -0.0003 0.0046 0.0011 
  (0.74) (0.55) (1.34) (0.06) (0.48) (0.66) (0.43) (0.11) (1.82)† (0.43) 
publications_in_cluster 0.002 0.002 0.001 0.002 0.001 0.003 0.002 0.002 0.003 0.003 
  (2.93)** (2.34)* (2.06)* (3.06)** (2.14)* (3.15)** (1.65)† (2.38)* (3.46)** (2.83)** 
with_plant 0.783 0.782 0.789 0.797 0.773 0.783 0.792 0.780 0.808 0.769 
  (9.94)** (9.94)** (10.12)** (10.07)** (9.96)** (7.49)** (7.59)** (7.47)** (7.77)** (7.38)** 
with_fabless -0.064 -0.053 -0.045 -0.056 -0.044 0.580 0.622 0.611 0.819 0.658 
  (0.28) (0.23) (0.20) (0.24) (0.19) (1.50) (1.61) (1.57) (2.10)* (1.69)† 
patents_total -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.001 -0.001 
  (2.90)** (3.04)** (3.01)** (2.94)** (2.80)** (2.40)* (2.58)** (2.47)* (1.91)† (2.41)* 
patents_semi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
  (1.34) (1.36) (1.15) (1.38) (1.50) (2.04)* (1.95)† (1.88)† (2.23)* (2.18)* 
innovators_profit 0.006      0.005      
  (2.18)*      (1.37)      
     small_innovators  0.002      -0.010     
   (0.26)      (1.23)     
     large_innovators  0.007      0.018     
   (1.89)†      (2.59)**     
     in_industry   0.038      0.044    
    (4.06)**      (3.30)**    
     not_in_industry   0.000      0.000    
    (0.05)      (0.03)    
     in_segment    0.009      0.017   
     (2.69)**      (3.72)**   
     not_in_segment    -0.005      -0.029   
     (0.67)      (3.10)**   
     Competitors     0.046     0.034 
      (5.00)**     (2.58)** 
     not_competitors     0.002     0.004 
      (0.91)     (1.02) 
 innovators_nonprofit 0.000  0.011 -0.006 0.007 -0.011  -0.001 -0.040 -0.010 
  (0.03)  (0.70) (0.37) (0.48) (0.43)  (0.03) (1.55) (0.39) 
     Universities  -0.003      -0.031     
   (0.18)      (1.06)     
     govt_innovators  0.044      0.080     
   (1.34)      (1.68)†     
     other_nonprofit  -0.038      -0.0001     
   (0.51)      0.00      
primary_cluster 1.44  1.45  1.44  1.45  1.46        
  (16.13)** (16.15)** (16.29)** (16.19)** (16.50)**       
Constant -0.333 -0.309 -0.319 -0.335 -0.258 -0.197 -0.164 -0.175 -0.215 -0.127 
  (1.09) (1.01) (1.05) (1.10) (0.85) (0.50) (0.42) (0.45) (0.55) (0.32) 
Firm fixed effects Y Y Y Y Y Y Y Y Y Y 
Year fixed effects Y Y Y Y Y Y Y Y Y Y 
Country fixed effects Y Y Y Y Y Y Y Y Y Y 
Observations 1,030 1,030 1,030 1,030 1,030 966 966 966 966 966 
Log Likelihood -2256.02 -2254.66 -2249.54 -2254.95 -2245.82 -1529.49 -1525.79 -1524.96 -1523.95 -1526.85 

Absolute value of z statistics in 
 

 
† significant at 10%; * significant at 5%; ** significant at 1% 
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