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1. Introduction

Patents are intended to enhance private investment in R&D through the

monopoly power they grant to the innovator over the commercial exploita-

tion of her invention. Generally, innovations are sequentially linked. For

instance, the invention of the radio would have been impossible without the

previous discovery of electromagnetic waves. This sequential nature of in-

novation introduces the issue of how to divide the revenues of the sequence

of innovations among the different innovators. Suppose that two innovations

may be introduced sequentially (the second innovation cannot be introduced

until the first one has been introduced). If a patent is granted to the first

innovator, she may obtain a claim over part of the revenues of the second

innovator. The policy maker is confronted with an important trade-off: if the

patent covering the first innovation is strong, it may imply that the second

innovation becomes unprofitable. On the other hand, if the patent is weak,

it may provide low incentives to introduce the first innovation.

This problem has been studied in depth by the literature on sequential

innovation, pioneered by Scotchmer (1991). Usually, this literature analyzed

the optimal division of profits between two sequential innovators. But what

happens when each innovation builds on several prior inventions? Going back

to the case of radio, it was not only electromagnetic waves that radio was

based upon, but also high-frequency alternator, high-frequency transmission

arc, magnetic amplifier, the crystal detector, diode and triode valves, direc-

tional aerial, etc. In the words of Edwin Armstrong (inventor of FM radio)

“it was absolutely impossible to manufacture any kind of workable apparatus

without using practically all of the inventions which were then known”.

In this paper, we extend the literature on sequential innovation by ana-

lyzing the case in which patents generate cumulative claims on subsequent

innovations. If the number of claims is large, innovators may face a patent

thicket and may be threatened by the possibility of hold up, namely the pos-

sibility that a socially desirable innovation fails to be performed due to the

2



lack of agreement with previous inventors Shapiro (2001).

Patent thickets are pervasive in hi-tech industries, like software, hard-

ware, biotechnology and electronics. For example, in the 1980s IBM ac-

cused Sun Microsystems of infringing some of its 10,000 software patents

(http://www.forbes.com/asap/2002/0624/044.html); development of golden

rice required access to 40 patented products and processes (Graff et al., 2003);

and there are 39 patent families “potentially relevant in developing a malaria

vaccine from MSP-1” (Commision on Intellectual Property Rights, 2002).

When a patent thicket arises the innovator must pay license fees on many

patented previous discoveries, which may lead to low innovation. Heller and

Eisenberg (1998) were the first to suggest that a reduction in innovation

activity would have stemmed from what Heller (1998) defines the tragedy

of the anticommons. This phenomenon arises when too many agents have

rights of exclusion over a common, scarce resource, and as a consequence

the common resource is under-utilized, in clear duality with the tragedy

of the commons. In our case, the anticommons could arise if too many

patentees have exclusive claims on separate components of the state-of-the-

art technology, placing an obstacle to future research. In this paper we

build a model to analyze whether anticommons in sequential innovation is a

theoretical possibility.

Abstracting from transaction costs, or the possibility that one or more

patentees refuse to license their idea therefore blocking innovation, anticom-

mons are similar to complementary monopoly: many monopolistic input

providers selling their inputs to a final good producer. The problem of com-

plementary monopoly was first analyzed by Cournot (1838). He modeled

a competitive producer of brass who has to use copper and zinc as perfect

complement inputs in production. He showed that, when the inputs are sold

by two different monopolists, the total cost of producing brass is higher than

when the two inputs are sold by the same monopolist. Sonnenschein (1968)

showed that complementary monopoly is equivalent to duopoly in quantity
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with homogeneous goods, and Bergstrom (1978) generalized this result to a

general number n of inputs and any degree of complementarity among them.

Recently Shapiro (2001) and Lerner and Tirole (2004) applied the instru-

ments of complementary monopoly to the analysis of patent pools. Their

results reinforced the results on complementary monopoly: patent pools (or

equivalently a single monopolist owning all the patented inputs) reduces the

cost of innovation when patents are complements, and it increases it when

they are substitutes. Boldrin and Levine (2005) and Llanes and Trento (2009)

also made use of complementary monopoly to show that, as the number of

complementary patents increases, the probability that a future innovation is

profitable goes to zero.

All these papers, while making important contributions, present static

models. In other words, the first innovation has been already invented, so

patents and patent pools only affect the profitability of introducing a second

innovation. This introduces an important asymmetry between previous and

future innovations. We believe that adding a dynamic dimension is an impor-

tant step towards a better understanding of the mechanism of anticommons

in sequential innovation.

Developing a dynamic model is important for several reasons. First, it

will eliminate any bias stemming from the asymmetric treatment of old and

new ideas. Second, patent policy will affect not only current but also future

innovative activity. Third, it will allow us to analyze the problem of assigning

resources to promote innovations with low commercial value (basic research).

Fourth, some of the previous findings in the literature will be affected by the

introduction of the temporal dimension, and new issues will arise precisely

because of this modification.

We present a dynamic model to study the division of profit when each

innovation builds on several prior inventions. There is a sequence of innova-

tions n = 1, 2, . . .. Innovation n cannot be introduced until innovation n− 1

has been introduced. Each innovation has a commercial value (the profit it
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generates as a final good), which is random and private information of the

innovator, and a deterministic cost of R&D to be developed.

Our model provides a good description of the innovation process in sev-

eral industries. For example, in the software industry the first programs were

written from scratch, and therefore built on little prior knowledge. As more

and more programs were developed, they progresively became more depen-

dent on technologies introduced by the first programs. According to Garfinkel

et al. (1991), nowadays software programs contain thousands of mathemati-

cal algorithms and techniques, which may be patented by the innovators who

developed them. Similar examples can be found in other hi-tech industries.

Formally, our model is a multi-stage game in discrete time with uncertain

end. Interestingly, the probability of reaching the next period is determined

endogenously. Our theoretical contribution is to present a simple dynamic

model that can obtain closed form solutions for the sequence of probabilities

of innovation. The equilibrium concept we use is Subgame Perfect Equilib-

rium with Markovian Strategies (Markov Perfect Equilibrium).

We are interested in determining equilibrium dynamics under three sce-

narios: patents, no patents and patent pools. The novel aspect of our model

is that patents generate cumulative claims on the sequence of innovations.

Patents affect the innovator in two ways: on one hand, the innovator has to

pay licensing fees to all previous inventors, but on the other hand, she will

collect licensing revenues from all subsequent innovators, in case they decide

to innovate. Therefore, it is not clear what is the net effect of patents on

innovation as the sequence of innovations progresses.

We find that with patents, innovation becomes harder and harder with

more complex innovations. The probability of innovation goes to 0 as n→∞.

The probability of innovation is higher than in the static case, but not enough

to stop the tragedy of the anticommons from happening.

In the no patents case, on the other hand, the probability of innovation

is constant and depends on the degree of appropriability of the commercial
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value of the innovation in the final goods sector. The no patents case will

provide higher innovation than the patents case unless the innovator can

appropriate a very small fraction of the value of the innovation.

When ideas are protected by patents, the formation of a patent pool

increases the probability of innovation for all innovations. Interestingly, the

probability of innovation with a pool is constant and higher than what it

would be in the static case. This result strengthens the findings of Shapiro

(2001), Lerner and Tirole (2004), and Llanes and Trento (2009) for static

models. The comparison between the pool and the no patents case depends

once again on the degree of appropriability of the value of the innovation in

the latter case.

We present two additional findings which are new to the literature of

patent pools. First, the patent pool outcome can be replicated by a scheme

in which each innovator buys all patent rights from the preceding innovator,

instead of paying only for the permission to use the idea (innovator 1 sells

all the rights over innovation 1 to innovator 2, who sells all the rights over

innovations 1 and 2 to innovator 3 and so on). This means that the complete

sale of patent rights will generate higher innovation than licensing. However,

this scheme may be difficult to implement when the nature of innovations is

difficult to describe ex-ante, in which case patent pools would be easier to

enforce. Second, we find that pools are dynamically unstable: the temptation

to remain outside the pool increases as the sequence of innovations advances.

This means that early innovators have more incentives to enter the pool than

later innovators.

We find the optimal innovation policy that maximizes the expected wel-

fare of the sequence of innovations. We find that innovation is suboptimal

in the three policy regimes. In the no patents regime, there is a dynamic

externality: innovators do not take into account the impact of their decision

on the technological possibilities of future innovators. In the two other pol-

icy regimes, the inefficiency stems from asymmetric information and market
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power: patent holders do not know the exact value of the innovation, but

they know its probability distribution. This generates a downward sloping

expected demand for the use of their ideas, and market power implies a price

for old ideas above marginal cost.

It is interesting to analyze the second best innovation policy, implemented

through transfers between innovators when the patent office does not know

the value of the innovations. In this case, we find that patents are larger

than these transfers, and therefore the patent regime cannot even attain the

second best. Finally, we extend the basic model to analyze what happens

when the sequence of innovations does not stop after an innovation fails, and

to analyze the optimal patent policy when patents have finite length.

Our paper is related to Hopenhayn et al. (2006), which also presents a

model of cumulative innovation with asymmetric information. However, the

focus of that paper is different. In their paper innovations are substitutes:

the introduction of a new product automatically implies the disappearance

of old versions in the market. Patents block the introduction of subsequent

innovations for the duration of the patent. The question they study is how to

allocate monopoly power in the final goods market to successive innovations.

A trade-off arises because the promise of property rights to the first innovator

limits what can be offered to the second innovator. In our paper, innovations

are complementary: all prior inventions are necessary to introduce a new idea.

We study what is the effect of intellectual property rights on the pricing of old

ideas. The problem is that granting too many rights on sequential innovations

implies an increase in licensing fees, potentially hindering innovation as a

consequence. Therefore, the two papers offer complementary analysis of the

process of sequential innovation when the value of innovations is private

information.
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2. Innovation with patents

There is a sequence of innovations n = 1, 2, . . .. Innovation n cannot be

introduced until innovation n− 1 has been introduced. Formally, the model

is a multi-stage game with uncertain end. At each stage, an innovator may

introduce an innovation. If the innovation is performed, the game continues

and further innovations may be introduced. If the innovation fails to be

performed, the game ends and no other innovation can be introduced (we

will relax this assumption in Section 10). We will see that the probability

that the game continues is determined endogenously.

The innovation process is deterministic. At stage n, the innovator may

introduce the new idea by incurring in an R&D cost of ε. The new idea is

based on n−1 previous ideas. These previous ideas are protected by patents,

which means that the innovator has to pay licensing fees to the n−1 previous

innovators (patent holders), in case she wants to introduce the innovation.

The cost of innovation is the sum of the cost of R&D and the licensing fees

paid to patent holders.

The innovation process reflects the fact that usually earlier innovations

do not have a solid background to build upon, while as the market comes to

maturity further innovations are more and more indebted to previous ones.

Each idea has a commercial value vn, which represents the revenues ob-

tained by selling the new product in the final goods market. In order to

concentrate on the effects of patents on innovation activity, we will assume

that the innovator is a perfect price discriminator in the final goods market,

which means that the commercial value of the innovation is equal to the

social surplus generated by the new product.

The value of the innovation is private information of the innovator. Paten-

tees only know that vn is drawn from a uniform distribution between 0 and

1, with cumulative distribution function F (vn) = vn.

The new idea will be protected by a patent of infinite length, which means

that the innovator can request licensing fees from all subsequent innovators
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(we will relax this assumption in Section 11). The total revenues of the inno-

vation equal the commercial value of the innovation plus the future licensing

revenues.

The timing of the game within each stage is the following: (i) the n − 1

patent holders set licensing fees pin, (ii) Nature extracts a value for vn from

distribution F (vn), (iii) the innovator decides whether to innovate (In = 1)

or not (In = 0).

At each stage, patent holders only care about maximizing the expected

future licensing revenues. Let J in denote the expected future licensing rev-

enues of innovator i at stage n, given that stage n has been reached. Then,

J in = Prn p
i
n + Prn Prn+1 p

i
n+1 + . . . (1)

=
∞∑
m=n

pim

m∏
k=n

Prk,

where Prn is the probability that the nth innovation is introduced, given that

all prior innovations have been introduced. Notice that the probabilities Prn

work as intertemporal discount factors, which arise endogenoulsy from the

specification of the model.

J in can also be expressed in a recursive way:

J in = Prn (pin + J in+1), (2)

This means that with probability Prn the innovation is performed, and the

patent holder gets the licensing fee from the innovator plus the continuation

value of her expected licensing revenues.

The innovator’s payoff is In(vn + Jnn+1 − cn − ε), where cn =
∑n−1

i=1 p
i
n is

the sum of licensing fees paid to previous innovators.

We will focus on Markov strategies. A strategy for player i specifies

an action conditioned on the state, where actions are prices and the state

is simply the number of previous innovations introduced. The equilibrium
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concept is Markov Perfect Equilibrium.

Perfectness implies that future prices will be determined in following sub-

games, as the result of a Nash equilibrium. Thus, players understand that no

action taken today can influence future prices and probabilities. Current ac-

tions only affect the probability that the following stage is reached, through

the effect of current prices on the probability of innovation. We have just

proved the following lemma:

Lemma 1. J im for m > n does not depend on any action taken at stage n.

The game is solved recursively. The solution to the innovator’s problem is

straightforward. Given vn and cn, the innovator forecasts Jnn+1, and decides

to innovate (In = 1) if the revenues from the innovation exceed the cost of

innovation:

In =

{
1 if vn + Jnn+1 ≥ cn + ε,

0 otherwise,
(3)

which implies that the probability of innovation is Prn = 1 + Jnn+1 − cn − ε.
At stage n, patent holders want to maximize their expected licensing

revenues from stage n onwards. They know their decisions do not affect J in+1

(they can only affect the probability that stage n+ 1 is reached), and decide

a licensing fee pin, taking the decision of the other patent holders as given.

The patent holder’s problem is:

max
pin

J in = Prn (pin + J in+1), (4)

which leads to a price equal to pin = (1− ε)/n.

Imposing symmetry, pin = pn and J in = Jn for all i. Replacing prices and

probability in Jn, we get Jn =
(

1−ε
n

+ Jn+1

)2
. Rearranging this equation,

Jn+1 =
√
Jn− 1−ε

n
, which is a decreasing sequence, converging to 0 as n→∞.

The sequence of probabilities of innovation is:

Prn+1 =

(
Prn −

1− ε
n

)1/2

, (5)
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which is also a decreasing sequence converging to 0 as n → ∞. This means

that innovation gets harder and harder with more complex innovations (those

that are based on more previous innovations).

The probability of innovation decreases with complexity because patent

holders do not take into account cross-price effects: patent holder i set the

price of her patent by equating the marginal revenue and the marginal cost

of increasing her license fee. The marginal revenue is simply the additional

revenue in case the new innovation is performed. The marginal cost is the re-

duction in expected demand, and depends on the fact that - since all patents

are essential for the new innovation - increasing the price of patent i de-

creases the probability of innovation. As a matter of fact, increasing the

price of patent i reduces the expected demand for all other inputs, but this

effect does not enter the marginal cost for patent holder i. This generates

the anticommons effect that closely resembles the tragedy of the commons:

patent holders ignore this cross-price effects and set a price that is higher

than the price they would set if they coordinated (see section 4).

In practice the anticommons can be interpreted as a combination of co-

ordination failure and market power. Each patent produces a claim over

part of the revenues generated by subsequent innovations. Since each patent

is essential, and patent holders do not take into account cross-price effects,

they set a license fee that is too high. As the number of claims increases, the

coordination problem gets worse, until eventually the new innovator is left

with negative expected profits with probability one.

3. Innovation without patents

Suppose that a policy reform completely removes patents. This change

has two effects on innovation. First, the revenues of the innovator in the

final goods sector will decrease as a result of imitation. Specifically, assume

that the innovator can only appropriate a fraction φ ∈ [0, 1] of the consumer

surplus generated by the innovation. Second, innovators will not pay licensing
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fees to previous innovators, nor will they charge for the use of their ideas in

subsequent innovations. Therefore, cn = 0 and Jn = 0 in the previous model.

At each stage: (i) nature extracts a value of the innovation vn, and (ii)

the innovator decides to innovate or not. The innovator will innovate if

φ vn ≥ ε and will not innovate otherwise. Thus, the probability of innovation

is constant and equal to 1 − ε/φ if φ > ε. If φ ≤ ε, then the probability of

innovation is zero.

4. Patent pools

In this section we analyze what happens when licensing fees are set coop-

eratively by a collective institution like a patent pool. At each stage, the pool

maximizes the future expected revenues of current patent holders. The pool

will set a symmetric price for all current patent holders. Once an innovation

is performed, the innovator becomes a member of the pool in all subsequent

stages. In the first stage there is no pool because no innovation has been

introduced (the pool plays from stage 2 onwards).

The probability of innovation is Prn = 1 + Jn+1 − (n− 1)pn − ε, and the

pool’s problem is

max
pn

Jn = Prn (pn + Jn+1). (6)

The difference with respect to the non-cooperative case is that the pool rec-

ognizes cross-price effects, and therefore is encouraged to set lower prices

than in the no-pool case.

A higher Jn+1 fosters innovation in two ways. First, it increases the future

revenues of the innovator. Second, it encourages the pool to set a lower

price, because it increases the loss of current patent holders if the sequence

of innovations is stopped.

The equilibrium price is pn = 1−ε
2(n−1)

− n−2
2(n−1)

Jn+1, which is equal to the

price a pool would set in a static model (see section 8.1) minus an additional

term arising from the pool’s concern of keeping future revenues.
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The probability of innovation becomes Prn = 1−ε
2

+ n
2
Jn+1. Introducing

price and probability in Jn, we get

Jn =
1

n− 1

(
1− ε

2
+
n

2
Jn+1

)2

. (7)

This is a first order non-linear difference equation. Jn is decreasing in n and

converges to 0 as n→∞.

The sequence in terms of probabilities is

Prn =
1− ε

2
+

1

2
Pr2

n+1. (8)

which is a constant sequence such that Prn = 1−
√
ε for n ≥ 2. To determine

Pr1 we need J2, which is equal to (1−
√
ε)2. Then, Pr1 = min{1, 2(1−

√
ε)}.

5. Comparison

Figure 1 shows the evolution of the probability of innovation in the three

cases studied above: infinitely lived patents, no patents and patent pool.

The cost of R&D is ε = 0.2 and we consider φ = 1 (full appropriation) and

φ = 0.3 (the innovator appropriates 30% of the social surplus generated by

the new product) for the no patents case.

Comparing the patent and no-patent cases, we can see that patents in-

crease the probability of the first innovations but decrease the probability of

further innovations. The number of innovations for which patents increase

the probability depends on φ. For example, when φ = 1, patents only in-

crease the probability of the first innovation. Nevertheless, even when φ = 0.3

the probability increases only for the first two innovations. For patents to

increase the probability of several innovations, it is necessary that φ is very

small and close to ε (i.e. when there is very little appropriability without

patents).

When ideas are protected by patents, the formation of a patent pool in-
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creases the probability of innovation. Figure 1 shows that the probability of

innovation with patent pools is always larger than the patents case. More-

over, with a pool the probability of innovation does not go to zero as n→∞.

The comparison with the no patents case depends on ε and φ. If φ is low,

a patent pool increases the probability of all innovations. When φ is high,

the pool increases the probability of the first innovation, and decreases the

probability of all posterior innovations.

Figure 1: Comparison of equilibria.

6. Complete sale of patent rights

The tragedy of the anticommons stems from fragmented ownership of

complementary patents. In this case, the probability of innovation decreases

as more innovations are introduced, converging to 0 as n → ∞. The for-

mation of a patent pool would alleviate this problem by concentrating all

pricing decisions on one entity. In this section, we discuss a possible alterna-

tive solution, which is to enforce the sale of complete patent rights, instead

of allowing the sale of individual access rights through licensing fees. These
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patent rights, in turn, can be resold to other innovators. In this case, innova-

tor 1 would sell the complete patent rights over innovation 1 to innovator 2

for a price ℘1. Innovator 2 then would sell the patent rights on innovations 1

and 2 to innovator 3 for a price ℘2, and so on. We will show that this mech-

anism eliminates the coordination failure at the basis of the anticommons,

and that it replicates the innovation outcome under a patent pool.

The cost of innovation n becomes ε + ℘n−1, its expected revenues vn +

Prn+1℘n, and the probability that innovation n is performed Prn = 1− ε−
℘n−1+Prn+1℘n. At stage n, innovator n−1 solves the following maximization

problem:

max
℘n−1

Jsn = Prn ℘n−1 (9)

where Jsn represent expected revenues of selling the n − 1 patent rights to

innovator n.

Solving the maximization problem yields a price for patent rights ℘n−1 =
1−ε
2

+ 1
2
Jsn+1, and a sequence of probabilities of innovation Prn = 1−ε

2
+

1
2
Pr2

n+1 exactly as in the patent pool case. As before, the sequence is Pr1 =

min{1, 2(1−
√
ε)}, and Prn = 1−

√
ε for n ≥ 2.

An alternative policy arrangement leading to the same result would be

the following: restoring the possibility of licensing access rights, but at the

same time allowing subsequent competition between the licensee and the

original licensor. In this case, if innovator n licenses the use of innovation n

to innovator n + 1, then innovator n + 2 can license the use of innovation n

from innovators n and n+1. Under this policy arrangement, innovator n will

only get positive revenues from the licensing of her innovation to innovator

n + 1, because at stage n + 1 she is a monopolist. After that, she will face

competition from other innovators, and Bertrand competition will imply a

licensing fee equal to zero.

These schemes may be difficult to implement when the nature of inno-

vations is difficult to describe ex-ante. For example, when selling the rights

over innovation n to innovator n + 1, it is difficult to describe what innova-
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tion n+ 2 may be. In this case, complete contracts may be difficult to write,

making patent pools easier to enforce.

7. Endogenous patent pool formation

In section 4 we have assumed that all innovators, after innovating, au-

tomatically join the patent pool. Let us now endogeneize this choice, by

analyzing the incentives for innovator n to join the pool. In particular let us

compare the expected revenues from joining the pool (Jn from section 4) with

the expected revenues from setting the price of her patent non-cooperatively

(Jon).

We start with the non-cooperative choice. For expositional clarity let

us refer to the patent pool members as insiders and to the non-cooperative

member as the outsider. The pool maximizes the expected revenues of the

insiders:

max
pin

J in = Prn (pin + J in+1) (10)

where pin is the cooperative price of any insider’s patent, and Prn = 1 +

J in+1− (n−2)pin−pon− ε, with pon denoting the price of the outsider’s patent.

On the other hand, the outsider maximizes:

max
pon

Jon = Prn (pon + Jon+1). (11)

From first order conditions we know that Jon = (n − 2)J in, meaning that

if there is one outsider it is convenient to be her. Now let us compare the

expected revenues from not joining the pool (Jon) to the expected revenues of

joining the pool given that everybody else is in the pool (Jn from section 4).

In equilibrium, deviating from the pool produces and expected revenue of

Jon = (3−
√

1 + 8ε)/4, which is constant and only depend on the R&D cost

ε. If, on the other hand, innovator n decides to join the pool together with

the n− 1 previous innovators, her expected revenue is Jn = (1− ε)2/(n− 1)

which is decreasing in n. This is because the patent pool maximizes the
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joint profits, thus keeping total cost of innovating constant. This constant

amount must be divided among an increasing number of insiders, therefore

the expected revenue of an insider is decreasing in n. Figure 2 shows the

gains from deviating from the pool, that is the difference between Jon and Jn,

as a function of n. For n ≥ 4 it is convenient for the innovator to set her

price non-cooperatively.

Figure 2: Gains from not joining the patent pool.

Patent pools can improve innovation activity, but are dynamically unsta-

ble. Early innovators have more incentives to enter the pool than subsequent

innovators. This might explain why governments in some cases have to en-

force the creation of patent pools, as the US government did in the radio and

aircraft cases for example.

8. Socially optimal innovation

The relevant measure of welfare is the expected social value generated by

the sequence of innovations. The social value of an innovation is equal to the

increase in consumer surplus minus the cost of the resources spent in R&D.

Therefore, at stage n, the social value generated is vn − ε if an innovation is

performed, and 0 otherwise. Let W be the expected social value. Then,

W =
∞∑
n=1

E(vn − ε / In = 1)Pr(In = 1) + E(0 / In = 0)Pr(In = 0)
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=
∞∑
n=1

E(vn − ε / In = 1)
n∏

m=1

Prm

=
∞∑
n=1

∫ 1

wn

vn − ε
1− wn

dvn

n∏
m=1

(1− wm)

=
∞∑
n=1

(
1 + wn − 2ε

2

) n∏
m=1

(1− wm), (12)

where wn is the smallest vn such that the innovation is performed. In the cases

studied above, wn = ε/φ when there are no patents and wn = cn + ε− Jn+1

with patents or patent pools.

Suppose now that the decision of whether to innovate or not is taken by

a centralized agency or social planner. The social planner has to determine

{wn}∞n=1, namely what is the minimum value of vn she would require to

perform the innovation at stage n. The planner may decide to perform an

innovation even when the realization of vn is less than ε, if the expected gain

from future innovations exceeds the current loss in terms of welfare.

Proposition 1 (Socially optimal innovation). In order to maximize expected

social welfare, the innovation should be performed at stage n if and only if

vn ≥ w∗n, where

w∗n =

{
0 if ε ≤ E(vn) = 1/2,

√
2 ε− 1 if ε > E(vn) = 1/2.

(13)

Proof. Because previous decisions are irrelevant once a stage is reached, the

social planner’s problem at stage n is exactly the same as the problem at

stage n+ 1, which means that wn = w for all n. The social planner wants to

maximize

W =
∞∑
n=1

(
1 + w − 2 ε

2

)
(1− w)n (14)
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=

(
1 + w − 2 ε

2

)
1− w
w

The first order condition is −(1+w2−2 ε)/(2w2) ≤ 0, with equality if w ≥ 0.

The value that equates the first order condition, w∗ =
√

2 ε− 1, makes sense

only when ε ≥ 1/2. On the other hand, when w → 0, the first order condition

converges to sign (2 ε− 1)∞, which means that w∗ = 0 only if ε < 1/2.

Figure 3: Socially optimal innovation.

Proposition 1 implies that innovation will be suboptimal in the three cases

studied above, unless ε = 0. There are three reasons why this is so: dynamic

externalities, market power and asymmetric information.

The dynamic externality is best described by analyzing the no patents

case. Without patents, the innovator will perform the innovation when

vn ≥ ε/φ. Given that w∗n ≤ ε, the innovator may decide not to perform

an innovation when it is socially optimal to do so, even if φ = 1. There is a

dynamic externality: the innovator ignores the effect of her decision on the

technological possibilities of future innovators. This effect is well known in

the literature of sequential innovation (Scotchmer, 1991; Hopenhayn et al.,

2006), and is similar to the one found in the literature of moral hazard in
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teams (see for example Holmstrom, 1982), where each agent internalizes only

his reward from the effort exerted.

With respect to the patents and patent pool cases, the inefficiency arises

from a different source: market power and asymmetric information. Because

patentees care about the stream of future licensing revenues, they internalize

the effect of today’s decision on future innovation. However, asymmetric in-

formation implies a downward sloping expected demand for old innovations,

and market power implies inefficient pricing of patents, which leads to subop-

timal innovation. As the number of holders of rights on innovation increases,

the inefficiency due to market power increases.

Figure 4: Comparison of expected welfare.

8.1. Static versus dynamic incentives

Previous models of complementary monopoly, sequential innovation and

patent pools were static (Shapiro, 2001; Lerner and Tirole, 2004; Boldrin and

Levine, 2005; Llanes and Trento, 2009). It is interesting to ask what changes

when we add the dynamic dimension.

To see what happens in the static case, assume only one innovation is

being considered. The innovation uses n − 1 old ideas, which have already
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been invented. If the innovation is performed, the innovator obtains a value v

from a uniform distribution between 0 and 1, and incurs in a cost ε of R&D.

The probability of innovation is Pr = 1− ε− cn, with patents or patent pool

and Pr = 1− ε/φ without patents.

With patents, the patent holder’s problem is to maximize Pr pi, the equi-

librium price is 1−ε
n

and the probability of innovation is 1−ε
n

. We have shown

that in the dynamic model, the probability is 1−ε
n

+Jn+1, with Jn+1 > 0. This

extra term arises because the innovator gets licensing revenues from future

innovators. Dynamic incentives imply a higher probability of innovation, but

the increase is not enough to prevent the probability from converging to 0 as

n→∞.

A patent pool would consider cross-price effects, which would lead to a

price of 1−ε
2 (n−1)

and a probability of innovation of 1−ε
2

. The probability of the

corresponding dynamic model is 1−ε
2

+ (n − 1)Jn, with Jn+1 > 0. In this

case, the extra term arises not only due to the future licensing revenues of

the innovator, but also because the pool is concerned with keeping the future

licensing revenues of current patent holders.

With respect to the no patents case, the profit-maximizing decision is

the same as in the dynamic case. This means that innovators will perform

the innovation if φ vn ≥ ε, which leads to a probability of Pr = 1 − ε/φ.

However, in the dynamic case innovation is suboptimal even when φ = 1,

which contrast with the static case, where innovation is socially optimal

because there is no intertemporal link between innovations and therefore

there is no externality.

9. Dynamic externalities and optimal transfers

In the previous section we have shown that sequential innovation is sub-

optimal because of the presence of dynamic externalities and asymmetric

information. Without patents, current innovators do not take into account

the effect of their decisions on the innovation possibilities of future inno-
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vators. The solution to this problem would require intertemporal transfers

between innovators. Patents provide a way to transfer resources from fu-

ture innovators to current innovators, but we have shown that with patents,

market power leads to high licensing fees for old innovations, and therefore

to low innovation. In this section we ask how close can the government get

to the social optimum when it does not have information on the value of

innovations (second best analysis).

To do this, we will use a simplified 2-period version of the general model.

In the first period, innovator 1 has the option of introducing an innovation

with value v1 and cost ε. If innovator 1 decides to perform the innovation,

in the second period, innovator 2 can introduce an innovation with value v2

and cost ε. Innovator 1 does not know v2.

To determine the social optimum, we have to assume the social planner

knows v1 at stage 1, and v2 at stage 2. It is likely to think that the government

would have reduced information on vn, but assuming the social planner does

not know vn would imply that innovation decisions without patents give

higher welfare than the social optimum, which does not make sense. Later

we will analyze government policy, and we will assume that the government

does not know vn.

9.1. First best

Let us begin by finding the optimal innovation policy in this 2-stage

model. At stage 2 the value and cost of the first innovation are sunk. There-

fore, the second innovation should be performed if v2 ≥ ε, and should not be

performed otherwise. Consider now the first innovation. The social planner

will introduce this innovation if

v1 + Pr(v2 ≥ ε)E(v2 − ε/v2 ≥ ε) ≥ ε, (15)

v1 + (1− ε)
(

1− ε
2

)
≥ ε.
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which leads to a probability of innovation Pr∗1 = min{1, (1−ε)(3−ε)
2

}.
Without patents, the probability of introducing the second innovation is

Pr2 = 1 − ε, which is optimal. However, the probability of introducing the

first innovation is also Pr1 = 1− ε, which is less than optimal. The reason is

the same as in Section 8: the first innovator does not take into account the

effect of her decision on the innovation possibilities of the second innovator.

With patents, innovator 1 sets a licensing fee p1 to try to extract part

of the surplus of innovator 2 (in this 2-period model, the patent and patent

pool cases are the same). The probability of innovation of innovator 2 is

Pr2 = 1− ε− p1. Innovator 1 maximizes:

max
p1

v1 − ε+ (1− ε− p1) p1, (16)

which leads to a price p1 = (1 − ε)/2. The probabilities of innovation are

Pr1 = min{1, (1−ε)(5−ε)
4

} and Pr2 = (1− ε)/2, so Pr1 ≤ Pr∗1 and Pr2 < Pr∗2.

This is due to the combined effects of asymmetric information and market

power.

Therefore, the 2-period model presents a simplified version of the general

model but still allows to capture the externality and asymmetric information

problems.

9.2. Second best: optimal transfers

One way to correct the dynamic externality would be to allow for transfers

from future innovators to current innovators. We have seen that patents fail

to convey appropriate incentives because of asymmetric information. In this

subsection we analyze what is the optimal transfer a government should set

to maximize expected welfare when it does not have information on the value

of innovations, and we compare it with that of the patents case.

Assume that the government does not know v1 nor v2. In this case, the

government cannot make the transfer depend on the realization of v2, and it

will be impossible to reach the optimum. The best the government can do is
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to set a transfer equal to t if innovator 2 innovates, and 0 otherwise.

In this case, innovator 1 will innovate if v1 + Pr2 t ≥ ε, and innovator

2 will innovate if v2 ≥ ε + t. The government wants to maximize expected

welfare:

W = Pr1

(
E(v1 − ε/v1 + Pr2 t ≥ ε) + Pr2E(v2 − ε/v2 ≥ ε+ t)

)
(17)

=
1

2
(1− ε)(2− ε− t)(1− ε+ t(1− t− ε)).

Solving this problem we get that the second best transfer with asymmetric

information is:

t∗ =
3− 2ε−

√
6− 6ε+ ε2

3
, (18)

where t∗ < p1. Therefore, even if the government does not know v2, it will

set a lower transfer than the licensing fee of innovator 1 with patents. This

is due to the combined effects of asymmetric information and market power

with patents.

10. Ongoing innovation

In this section we analyze what happens if the sequence of innovations

does not stop after one innovation fails to be performed. There is a sequence

of innovations n = 1, 2, . . ., just as before, but now there can be many trials

until an innovation is successful.

Innovator n, j is the jth innovator trying to introduce innovation n (j− 1

previous innovators tried to introduce innovation n without success). The

innovator has to pay licensing fees to n − 1 patentees (the n − 1 previous

successful innovators), and obtains a draw vnj from the same distribution

as before. If the revenues from the innovation are higher than the cost,

innovator n, j will introduce the innovation, and in the next stage, innovator

n + 1, 1 will try to introduce innovation n + 1. If revenues are lower than

cost, innovator n, j fails to introduce innovation n, which will then be tried
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by innovator n, j+1 in the following stage. This innovator will face the same

n − 1 patent holders and will have a new draw of the value of innovation

vn,j+1.

For this model, we need to be more specific about the time dimension.

Specifically, assume that stages correspond to time periods. At each period

only one trial for one innovation is performed. The discount factor of inno-

vator and patent holders is β. At stage n + j the game is summarized by a

state {n, j}.
Let J inj be the expected future licensing revenues of patentee i at trial j

of innovation n, given that stage n + j has been reached under state {n, j}.
Expressed in a recursive way:

J inj = Prnj (pinj + βJ in+1,1) + (1− Prnj)βJ in,j+1, (19)

where Prnj is the probability that innovation n is introduced in trial j. With

probability Prnj, the patent holder gets the price pinj plus the continua-

tion value of J of the first trial of the next innovation, J in+1,1, appropriately

discounted by β. With probability 1−Prnj, the innovation will not be intro-

duced and the patent holder gets the continuation value of J corresponding

to the next trial of the current innovation.

The profit of the innovator is Inj (vnj + βJn+1,1 − cnj − ε).
Just as before, subgame perfection implies that the patent holders take

J in+1,1 and J in,j+1 as given when deciding pinj. The profit maximizing price is

pinj = (1−ε+βJ in,j+1)/n. In a symmetric equilibrium, pinj = pn and J inj = Jn

for all i, j.

Replacing in the probability of innovation, we get Prn = 1−ε
n

+ βJn+1 −
n−1
n
βJn, and introducing in the expression for J inj:

Jn =
1

1− β

(
1− ε
n

+ βJn+1 −
n− 1

n
βJn

)2

. (20)
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Rearranging this expression:

Jn+1 =
1

β

(√
(1− β)Jn −

1− ε
n

)
+
n− 1

n
Jn, (21)

which is a decreasing sequence converging to 0 as n→∞.

The sequence in terms of probabilities is:

Prn+1 =
1− β
β

(
Prn +

n− 1

n

β

1− β
Pr2

n −
1− ε
n

)1/2

, (22)

which is also a decreasing sequence converging to 0 as n → ∞. Therefore,

the main conclusions of the basic model still hold under when innovation

does not stop when a single innovation fails.

11. Finite patents

In this section we analyze what happens if patents have finite length. Each

stage corresponds to one period and only one innovation is attempted at each

period. If the innovator decides to introduce the innovation, she obtains a

patent for L periods. This means that the innovator has to pay patents for

L previous innovations, but also charges licenses to L future innovators.

The main difficulty of the present analysis is that now the identity of the

patent holders matters. The price and future expected licensing revenues

will be different for different patent holders, depending on how long will it

take for her patent to expire.

The innovator will introduce the innovation if the revenues from innova-

tion are larger than the cost:

vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥
n−1∑
i=n−L

pin + ε, (23)
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which means that the probability of innovation is

Prn = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε. (24)

The L current patent holders differ in their objective functions. Let J in be

the future expected revenues of patent holder i at stage n, given that stage

n has been reached. Then,

J in = Prn(pin + J in+1). (25)

The patent holder charging a license for the last time is patent holder

n−L, so Jn−Ln+1 = 0. The patent of n−L+ 1, on the other hand, will last for

one more period, so Jn−L+1
n+1 = Prn+1 p

n−L+1
n+1 . In this way, we can construct

the future expected revenues of the L patent holders.

The profit maximization problem is

max
pin

J in = Prn(pin + J in+1). (26)

The first order condition is −pin − J in+1 + Prn = 0, so pin + J in+1 = Prn

and J in = Pr2
n for all i. This also implies that pn−Ln = Prn.

We are interested in stationary equilibria, which means that Prn = Pr

for all n. This, together with the first order condition, implies that pin =

Pr(1−Pr) for i ≥ n−L. Replacing in the probability of innovation, we get:

Pr = 1 +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk −
n−1∑
i=n−L

pin − ε

= 1 +
L−1∑
m=1

Pr(1− Pr)Prm + PrPrL − (L− 1)Pr(1− Pr)− Pr − ε.(27)
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Solving for Pr, we get:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε

2L
(28)

which is the stationary equilibrium probability of innovation.

Figure 5 shows the probability of innovation as a function of the patent

length for ε = 0.2. We can see that the probability of innovation decreases

with L, which means that patents hurt more than benefit the innovator. This

is because the innovator has to pay licenses that are certain to the patent

holders, but the future licensing revenues are uncertain, as they depend on

future innovations being performed.

It is also interesting to see that Pr → 0 when L → ∞ and Pr → 1 − ε
when L → 0, which correspond to the previously analyzed patents and no

patents cases (with φ = 1).

Figure 5: Probability of innovation and patent length.

11.1. Revenues depend on patent length

We have assumed that the revenues from selling the new product in the

final goods market are independent of patent length. In this subsection we

analyze what happens when we relax this assumption. Assume the revenues

of the innovator are φ(L) vn, with φ′(L) ≥ 0, φ′′(L) ≤ 0, limL→0 φ(L) = φ
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and limL→∞ φ(L) = 1. Here, φ is the fraction of social surplus the innovator

would appropriate without any patent protection, due to trade secrets or first

mover advantages.

In this case, the innovator will innovate if

φ(L) vn +
n+L∑

m=n+1

pnm

m∏
k=n+1

Prk ≥ ε+
n−1∑
i=n−L

pin. (29)

Applying a similar procedure as that of the previous case, we obtain the

probability of innovation in the stationary equilibrium:

Pr =
L+ 1−

√
(L− 1)2 + 4Lε/φ(L)

2L
. (30)

The effect of patent length on the probability of innovation depends on

the functional form of φ(L). Let φ(L) = 1 − 1−φ
(L+1)γ

, where γ measures the

speed at which revenues grow when L increases. Figure 6a shows that when

φ is more concave (γ = 1), the probability of innovation first increases and

then decreases with patent length. The optimal length is positive and finite

(in this case L = 1). Figure 6b shows that for a lower degree of concavity of

φ(L) it is optimal to completely remove patents. Therefore, the results do

not change significantly when the revenues in the final goods sector depend

on patent length.

12. Conclusion

In this paper we build a dynamic model where accumulation of patents

generates an increasing number of claims on cumulative innovation. The

model is intended to reproduce the central feature of innovation activity

in hi-tech industries: new products are more complex than old products,

because they build on a larger stock of previously accumulated knowledge.

We study the policy that maximizes expected social welfare and com-

pare it with the outcome of three patent policy regimes: patents, patent
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(a) φ = 0.2, ε = 0.1, γ = 1. (b) φ = 0.2, ε = 0.1, γ = 0.1.

Figure 6: Probability of innovation as a function of patent length.

pools and no patents. We find that, even abstracting from the monopolistic

inefficiencies of patents, none of these policies attains the optimum.

With patents, the innovator has to pay an increasing number of license

fees to previous innovator. Asymmetric information on the value of the inno-

vation and uncoordinated market power of licensor create an anticommons

effect that reduces the incentives to innovate as innovation becomes more

complex. The anticommons effect is weaker than in the static case, but it

is still strong enough to drive the probability of innovation to zero as the

number of licenses grows large. Enforcing a patent pool solves the lack of

coordination but not the asymmetric information problem. As a result the

outcome of patent pools is more desirable but still it does not achieve the

first best. Eliminating patent protection solves the two problems but intro-

duce a non-internalized externality: previous innovations set the foundations

for future innovations. Therefore it might be the case that the social cost of

one innovation is higher than its instantaneous social value (the social value

the innovation creates per se), and yet the innovation is socially desirable

because it allows the development of further innovations. This is the typical

problem faced by basic research.

Then we study alternative solutions to the anticommons: (i) the com-

plete sale of patent rights of each innovator to the next one, and (ii) the
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possibility that the licensee compete with the original licensor. Both alter-

natives exactly replicate the sequence of innovations under the patent pool

regime. Another interesting result of the paper is that patent pools are dy-

namically unstable, as the incentives to remain outside the pool increase as

the sequence of innovations progresses.

We also find that the outcome of these three policy arrangements does

not even attain the second best. The second best is achievable by means

of government transfers, assuming that the government does not know the

value of the innovation.

This paper shows that patent protection may be the wrong way to provide

incentives to innovation in complex industries like electronics, software and

hardware. Enforcing patent pools or eliminating patent protection would

improve welfare, but still would not reach the social optimum. We hope

this paper will contribute to future research on the design of an optimal

innovation policy.
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