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A B S T R A C T

The health effects of ‘‘dirty’’ (fossil fuel driven) energy production are difficult to measure accurately due
to the endogeneity of fuel choice. We exploit an electricity policy in Colombia that generates a price-based
trigger for the use of thermal energy sources. Comparing municipalities near high versus low capacity plants,
we first document that the activation of this trigger – which increased thermal energy production – led to
significantly higher local pollution levels. This change increased cardiovascular-related ER mortality by 56%
and respiratory-related morbidity by 9%. Our results translate to a cost of 996 million USD in terms of lives
lost and higher healthcare costs.
1. Introduction

Governments around the world are faced with the choice of invest-
ing in clean or dirty energy. Global climate conferences often bring to
light the complicated and controversial nature of these decisions (Mc-
Grath, 2021; Cursino and Falkner, 2021; de la Garza, 2021). It is
clear that leaders perceive an inherent conflict between the reduc-
tion of dirty energy production and the promotion of other national
interests (Rowlatt and Gerken, 2021; Geall, 2021; Hawkins, 2021).

This paper seeks to shed light on the tradeoff between clean and
dirty energy by estimating the health costs of fossil fuel based energy
production. This is a difficult task because the choice of fuel and the
amount of power generated in a given region is typically endogenous,
determined by a host of factors (including the preferences of the local
population) which are also correlated with drivers of population health.
Previous work has dealt with this endogeneity problem by exploiting
exogenous shocks to power generation, including power plant closures,
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(J. Tamayo).
1 This is a key distinction between this study and Ordoñez (2020), which aims to estimate the effect of PM 10 on health outcomes in the same setting. Also

relying on the fact that thermal generation ramps up when hydropower is expensive, Ordoñez (2020) uses national river flows interacted with thermal power
capacity as instruments for pollution levels. Because we are interested in identifying the effect of a policy lever, and for additional reasons described in Section 4.2,
we choose to adopt a reduced form rather than an instrumental variables approach.

expansions, and worker strikes (Ransom and Pope, 1995; Severnini,
2017; Beach and Hanlon, 2018; Yang and Chou, 2018; Clay et al., 2021;
Luechinger, 2014; Lavaine and Neidell, 2017). In this paper, we take
advantage of a unique Colombian electricity pricing policy, in which
an increase in thermal generation is triggered whenever the wholesale
electricity price exceeds a pre-determined scarcity price. Our goal is
to estimate how this ramp-up of thermal generation affects population
health.

Though closely related to the large body of work documenting the
negative effects of pollution on various health outcomes (e.g., Chay and
Greenstone, 2003, Currie and Neidell, 2005, Jayachandran, 2009, Cur-
rie et al., 2014, and the studies cited in the previous paragraph), the
research question of this study is distinct. Unlike these papers, which
typically aim to recover the causal effect of a change in pollution
levels, we are interested in the reduced form effect of fossil fuel based
energy generation on health, which we argue is the policy relevant
question of interest. A policymaker typically will have various policy
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levers that can be used to switch from dirty to clean energy but will
have less control over the amount of pollution actually emitted and,
importantly, the exposure of the population to this pollution increase.
Differences in the behavioral responses of individuals and the spatial
distribution of a population will lead to different changes in pollution
exposure in response to the same increase in pollutant emissions. From
a government’s perspective, therefore, the key question of interest is
how health is affected by a policy that changes the generation fuel
mix.1 The possibility of mitigation and avoidance behavior, which
may vary by socioeconomic status or other (unobservable) population
characteristics, means that the policy parameter of interest is not
easily recovered from estimates of the pollution effects of electricity
generation and the health effects of pollution emissions.

Another important contribution of this study is its focus on Colom-
bia: the vast majority of papers that exploit exogenous shocks to power
generation has focused on the United States (Ransom and Pope, 1995;
Severnini, 2017; Beach and Hanlon, 2018; Yang and Chou, 2018; Clay
et al., 2021) or other high-income countries (Luechinger, 2014; Lavaine
and Neidell, 2017). Recently, evidence from lower income countries has
begun to emerge, focusing primarily on coal plants in India (Gupta and
Spears, 2017; Barrows et al., 2021; Datt et al., 2021). Evidence from
outside this setting is still very limited (Cesur et al., 2017; Ordoñez,
2020).

Estimates from lower income countries are important because the
majority of the predicted increase in energy consumption is expected
to come from non-OECD countries (US EIA, 2021), whose energy
source choices will therefore be globally important. It is unclear how
generalizable the evidence from rich countries will be. We might expect
the health effects of fossil fuels in lower-income countries to be larger
due to higher pollution levels (and potential non-linearity in the effects
of pollution), lower health levels, and lower quality healthcare systems.
On the other hand, fossil fuel generation may have less of an impact
on health due to competing risks: there are other (potentially more
important) drivers of mortality in lower income countries.

As mentioned above, we take advantage of an electricity pricing
policy in Colombia, where the majority of electricity is generated by
hydroelectric plants. On days when the wholesale electricity price
exceeds a pre-determined level, thermal plants (which include coal,
natural gas, diesel, and other liquid fuels) ramp up their generation.
This typically happens because of very low rainfall restricting the
supply of hydroelectricity.

Using daily data on electricity prices and generation, we are able
identify ‘‘scarcity days’’ as days when the wholesale price exceeds
the scarcity price. Simply comparing health outcomes on scarcity and
non-scarcity days would be unlikely to provide unbiased estimates of
the health effects of thermal generation for two reasons. First, high
wholesale prices are driven by demand and supply factors. If a scarcity
day is triggered due to high demand for electricity, it would be difficult
to separate the effects of increased thermal generation from the effects
of the factors that drive electricity demand. A similar argument could
be made for supply-side factors (in this case, primarily low rainfall),
though we control flexibly for rainfall in our regressions. Second, the
health data we use exhibits large day-to-day fluctuations in the ex-
tent of under-reporting, with particularly high under-reporting during
the scarcity period (due to factors completely unrelated to electricity
generation, as we discuss later). For these reasons, we make use of
cross-sectional variation in addition to the scarcity day comparison to
ensure that we are isolating the effect of the higher thermal generation
that occurs on scarcity days.

Specifically, we characterize municipalities based on the average
capacity of thermal power plants in their vicinity and categorize them
into ‘‘high capacity’’ and ‘‘low capacity’’ municipalities by splitting at
the median. Thermal plants with greater capacity are able to generate
more electricity and therefore more pollution. This implies that munici-
palities near high capacity plants should be exposed to greater increases
2

in pollution on a scarcity day, a hypothesis we are able to confirm w
empirically.2 That is, we regress various pollutant measurements on
location fixed effects, time fixed effects, weather controls, and our main
variable of interest: an interaction between a high capacity and scarcity
day indicator. We document significantly larger increases in PM 2.5,
PM 10, SO2, and CO on scarcity days in high capacity compared to low
capacity municipalities. Estimates of the interaction term correspond to
a 36% increase relative to mean PM 2.5, 16% for PM 10, and 25% for
SO2.

Having documented that the interaction between high capacity and
scarcity is a significant driver of pollution levels, we then use the same
specification to estimate the effects of increased thermal generation on
health outcomes. Existing work on the effect of power generation on
health has almost exclusively focused on infant mortality and infant
health as the outcomes of interest, but we are able to study a rich
set of health outcomes. We have access to daily morbidity counts
(specifically, the number of people who visited a health facility) by
diagnosis code, as well as daily emergency room (ER) mortality counts
by diagnosis code. We have data on all ages and can examine our
outcomes (respiratory and cardiovascular morbidity and mortality)
separately for infants, children, adults, and the elderly.

We find that respiratory morbidity increases significantly more for
high capacity compared to low capacity municipalities on scarcity days;
the magnitude of the interaction coefficient is 9% relative to the mean.
This increase is accompanied by an increase in respiratory costs equal
to 10% of the mean. We also find statistically significant and large
effects on cardiovascular ER mortality, equivalent to 56% of the mean.
These mortality effects are driven by the elderly.

Our main specification controls for municipality, date, and state-
by-year fixed effects, along with flexible functions of temperature,
precipitation and wind speed. In addition, we show that our results are
not driven by geographic differences between high and low capacity
municipalities (like altitude). Our results are also robust to allowing
for different weather coefficients, month effects, and linear time trends
across high and low municipalities. Back-of-the-envelope calculations
reveal that, in terms of healthcare costs and lost lives, the cost of the
scarcity period for the high capacity municipalities in our study was
996 million dollars (in 2015 USD).

2. Background

Colombia relies primarily on hydroelectric power, which generated
over 70% of the country’s electricity from 2000–2015 (McRae and
Wolak, 2016). Almost all of the remaining electricity is generated by
thermal power plants, which in Colombia’s case include coal, natural
gas, diesel, and other liquid fuels (see Appendix Figure A1 for the
composition of total generation by technology for our sample period).

Colombia’s dependence on hydropower can be problematic during
times of low rainfall, as evidenced by the year of electricity rationing
brought on by the El Niño event of 1992 (McRae and Wolak, 2019).
Reforms that were largely motivated by this event eventually led to
the development of the unique market structure and policy framework
which provide us with the source of exogenous variation in fuel choice
that we use to estimate the health costs of thermal energy.

Colombia’s electricity market consists of a wholesale market (where
wholesale electricity prices are determined daily), a retail market
(where end users pay regulated prices for the electricity they consume),
and a capacity market (where capacity payments made to generators
are determined by auctions every few years). These capacity payments
are paid to power plants even when they are not generating electricity.
Generators that receive these payments are ‘‘obligated’’ to increase their
generation whenever the wholesale market price exceeds a regulated
‘‘scarcity price’’. Specifically, whenever this happens, these generators

2 This is consistent with the fact that plant capacity is highly correlated
ith excess capacity, as we show in Figure A4.
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Fig. 1. Prices and Thermal Generation. Notes: Gray shaded areas denote scarcity days. Thermal generation is the total electricity generated across all thermal power plants.
must pay the difference between the wholesale price and the scarcity
price, multiplied by their assigned generation capacity. This provides
a financial incentive for generators to produce at least up to their
assigned capacity, as they will end up charging the wholesale price,
paying the difference between the scarcity price, and receiving the
scarcity price (McRae and Wolak, 2019).

Panel A of Fig. 1 plots the daily wholesale market price (solid
line) and scarcity price (dashed line) during our study period, 2011 to
2017. The gray shaded regions mark days on which the wholesale price
exceeded the scarcity price, which we refer to as ‘‘scarcity days’’. The
primary scarcity period during these years took place between 2015
and 2016, caused by another El Niño event.

Panel B of Fig. 1 confirms that thermal plants do indeed increase
generation during scarcity days. The gray dashed line, which represents
total thermal electricity generation, jumps up during the scarcity period
shaded in gray (when the difference between the wholesale and scarcity
price exceeds zero). Appendix Figure A1 shows this increase is driven
by several types of dirty energy (diesel, coal, and other liquid fuels),
as well as natural gas, which is cleaner. While we would not expect
large increases in pollution due to the increase in natural gas generation
(which went from 19% of total generation prior to the scarcity period
to 27% during the scarcity period), there could be substantial pollution
effects driven by the increased diesel generation (which went from 1%
to 9% of total generation), coal generation (9% to 10%) and generation
3

from other thermal sources (less than 1% to 3%). It is also clear
from Appendix Figure A1 that generation from hydroelectric plants
decreased during this period, indicating a shift away from renewable
to thermal electricity sources during the scarcity period.

In this paper, we investigate what happens to pollution levels and,
subsequently, health outcomes during these scarcity periods. Impor-
tantly, the increase in thermal generation that takes place on scarcity
days is triggered by a pricing rule, rather than endogenous factors –
like institutional quality, economic or political conditions, or techno-
logical improvements – that typically drive fuel choice decisions across
countries and regions over time.

Motivated by the large body of work documenting links between air
pollution and measures of respiratory and cardiovascular health specif-
ically (Brunekreef and Holgate, 2002), we focus on these two disease
categories in our analysis. Different pollutants affect health through dif-
ferent channels, but negative effects on respiratory health are generally
driven by causing oxidative stress, inflammatory responses, and adverse
changes in lung function (Kurt et al., 2016). Oxidative stress and
inflammatory responses can also negatively affect the cardiovascular
system, and some pollutants (PM 2.5) are fine enough to cross into the
bloodstream, directly affecting the cardiovascular system (Brook et al.,
2004, 2010).
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Table 1
Summary statistics.

All years Pre-2015

All High capacity Low capacity Difference
(1) (2) (3) (4)

Thermal Generation (GWh) 2.40 3.31 1.40 1.91***
(2.54) (3.00) (1.48) (0.12)

Respiratory morbidity (per 100,000) 22.79 22.68 23.62 −0.94
(34.58) (32.97) (36.51) (1.34)

Cardiovascular morbidity (per 100,000) 33.35 31.90 30.35 1.55
(44.73) (44.24) (42.16) (1.58)

Respiratory cost (per person) 9.29 9.14 9.59 −0.45
(14.24) (14.21) (14.60) (0.60)

Cardiovascular cost (per person) 15.63 15.47 14.45 1.02
(26.06) (26.19) (24.99) (0.96)

Respiratory ER mortality (per 100,000) 0.03 0.03 0.04 −0.011
(0.55) (0.37) (0.47) (0.019)

Cardiovascular ER mortality (per 100,000) 0.01 0.01 0.01 −0.001
(0.45) (0.33) (0.41) (0.0022)

Number of Health Facilities 110.51 107.28 105.09 2.19
(275.75) (317.18) (184.91) (21.38)

Municipality Population 48,830 57,975 37,859 20,117
(350,882) (460,453) (151,198) (28,704)

Municipality Share Children (0–14) 0.29 0.29 0.29 0.003
(0.04) (0.04) (0.04) (0.003)

Municipality Share Prime-age Adults (15–64) 0.62 0.62 0.62 −0.003
(0.03) (0.03) (0.03) (0.003)

Municipality Share Elderly (65 or more) 0.09 0.09 0.09 −0.001
(0.03) (0.03) (0.03) (0.03)

Municipality GDP 642.82 837.02 445.86 391.20
(5962.20) (8226.56) (1698.45) (498.20)

Municipality Educational Attainment 7.30 7.22 7.38 −0.16*
(1.10) (1.05) (1.14) (0.092)

Municipality Wind Speed (m/s) 2.32 2.66 2.41 0.25***
(1.35) (1.66) (1.49) (0.06)

Municipality Rainfall (mm) 3.57 3.92 3.53 0.39***
(5.28) (5.64) (5.16) (0.12)

Municipality Temperature (C) 11.23 12.41 11.14 1.27***
(3.80) (4.44) (3.19) (0.24)

Municipality Altitude 1,418.04 1,255.23 1,578.01 −322.80***
(1,333.51) (903.14) (1,634.75) (110.80)

Observations 1,449,819 417,846 410,541 828,387

Notes: Sample spans the years 2011–2017 and restricts to municipalities located within 100 kilometers of a thermal power plant. Unit of
observation is a municipality-day.
3. Data

Drawing from several data sources, we construct a municipality-
day-level panel spanning the years 2011 to 2017. We first restrict to
municipalities that are close enough to a thermal power plant to be
affected by changes in thermal generation. Using public information
on power plant locations, we identify and restrict our main sample
to municipalities located within 100 kilometers (calculated using the
municipality’s geographic centroid) of a thermal power plant. These
municipalities are represented by the shaded regions in Appendix Fig-
ure A2.3 A 100 kilometer cutoff balances representativeness with the
eed to focus on municipalities that are close enough to be affected
y a power plant. The resulting sample includes more than 70% of
olombia’s population (567 municipalities). We also show robustness
o a 120 kilometer cutoff, which includes 83% of the population.

.1. Electricity generation

Our information about thermal power plants and electricity prices
omes from the Colombian market operator XM. As mentioned above,

3 Because Colombia is divided by two large mountain ranges, a municipality
hat is physically close to a power plant may be very unlikely to be affected
y it if it is on the opposite side of a mountain range. Therefore, when imple-
enting the 100 kilometer cutoff, as with all cutoffs used in the remainder of

he paper, we exclude any areas that are not in the same natural region (of
4

hich Colombia has six) as the point of interest.
we have daily spot prices and scarcity prices, which allow us to identify
a scarcity day as any day when the spot price exceeds the scarcity price.
Scarcity days account for 8% of the sample period.

This data source is what we use to split municipalities into two
groups based on the capacity, or maximum generation potential, of
their nearby power plants. Specifically, we calculate the inverse-dista-
nce weighted average capacity of power plants within 100 kilometers
of each municipality, and split the sample at the median. 50.4% of
municipalities are considered high capacity according to this definition.

In Table 1, we report summary statistics for the full sample in
column 1 and compare high and low capacity municipalities in the
remaining columns. Specifically, we restrict to years prior to 2015
(i.e., before the first major scarcity event took place), and report
summary statistics for high capacity municipalities in column 2, low
capacity municipalities in column 3, and the difference between the
two groups in column 4. The first row of Table 1 reports average daily
thermal power generation for each municipality. This is a weighted
average of the electricity generated by all plants within 100 kilometers,
weighting each value by the inverse of the distance between that
thermal plant and the municipality (scaled so that weights sum to 1).
As expected, average electricity generation is significantly higher in
high capacity municipalities (more than double the generation of low
capacity municipalities).

3.2. Health outcomes

We obtain morbidity and mortality measures from the Integrated
Information System for Social Protection (SISPRO), which contains the
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Individual Register of Health Services (RIPS). The RIPS collects detailed
information about medical consultations, ER visits, hospitalizations,
and medical procedures that take place in any Colombian health service
institution. This allows us to calculate, for each municipality-day, the
number of patients and total costs, broken down by the ICD-10 diag-
nosis code assigned to the visit.4 We use these ICD-10 codes to identify
espiratory (J00–J99) and cardiovascular (I00-I99) conditions.

Although the RIPS data only captures illness among people who
isit a health facility, we argue it is still a useful measure of population
orbidity. Due to high insurance rates in Colombia, this measure cap-

ures a large share of people who are sick. According to Camacho and
ejía (2017), 70% of Demographic and Health Survey respondents who

eeded health treatments actually visited a health facility. Increases in
ur morbidity measures will be driven by increases in the number of
eople who are sick at all, as well as the share of people whose illness
s severe enough for them to seek out formal healthcare.

Another feature to note about the RIPS is that there is likely to be
ubstantial underreporting. As Appendix Figure A3 shows, there are
arge month-to-month fluctuations in the number of health facilities
hat report to the RIPS. These fluctuations are unlikely to be solely
riven by fluctuations in the number of health facilities that receive any
atients and likely represent some measurement error. Of particular
oncern is the sharp drop that occurs at the end of 2015, which is
uring the main scarcity period in our study. This drop coincides with
and was likely caused by) the liquidation of one of the public health
nsurance providers, which generated substantial chaos in the health-
are system (Ministerio de Salud y Protección Social, 2015; Barbosa and
onsalve S., 2017). This data issue is one reason why our empirical

trategy relies on both cross-sectional and time variation, not just on a
omparison between scarcity and normal days.

Table 1 reports daily morbidity for respiratory and cardiovascular
iseases, measured as daily patient counts per 100,000 municipality
esidents. Morbidity, cost, and mortality outcomes are similar across
igh and low capacity municipalities prior to 2015. The number of
ealth facilities reporting to the RIPS in each municipality (by month),
hich is included as a control variable in our later analysis, is also
alanced across the two groups.

.3. Municipality characteristics

We obtain other municipality-level characteristics from the National
dministrative Department of Statistics (DANE), which we report in
able 1. Population size, age composition, and municipality GDP are
imilar across high and low capacity areas. Educational attainment is
lightly higher for high capacity municipalities and this difference is
tatistically significant at the 10% level, though small in magnitude
amounting to about 2% of the mean).

We also have weather information from Colombia’s Institute of
ydrology, Meteorology and Environmental Studies (IDEAM). This

nformation contains daily measures of wind speed, rainfall, and tem-
erature from 303 measurement stations. We assign weather variables
o municipalities using inverse-distance weighting within a 100 kilome-
er radius.5 We also obtain average municipality altitude from Instituto
eográfico Agustín Codazzi (IGAC). Table 1 shows that high and low
apacity municipalities do appear to have significantly different ge-
graphic characteristics, which could reflect systematically different
ocation decisions of high and low capacity plants.

4 We are also able to further disaggregate by age, which we use in parts of
ur analysis.

5 When we examine pollution as an outcome variable, we assign weather
ariables to pollution stations using the same inverse-distance weighting
rocedure.
5

t

3.4. Pollution

We use information on pollution levels from Colombia’s Air Quality
Information Subsystem (SISAIRE). These data contain measures of PM
2.5, PM 10, SO2, CO, NO2, and O3 by hour from 127 measurement
stations. We report summary statistics for these pollution measures (at
the station-day-level, for the entire 2011–2017 period) in Appendix
Table A1.

4. Empirical strategy

Our goal is to measure the effects of thermal generation on
municipality-level health. To do this, we use scarcity days – days on
which the scarcity price exceeds the wholesale price – as a source of
quasi-experimental variation. Scarcity days trigger increased electricity
generation at thermal power plants (which in Colombia include dirty
energy sources as well as natural gas). In this section, we first examine
the relationship between scarcity days and pollution, across high and
low capacity areas, and use these findings to motivate our empirical
specification. We then describe the regression specifications for our
main analysis, in which we estimate the effects of thermal generation
on various health outcomes.

4.1. Pollution and scarcity days

We begin by investigating how switching to thermal generation
affects pollution levels, using scarcity days a source of exogenous
variation.6 Though scarcity days are defined by a rule-based trigger,
simply comparing pollution levels on scarcity and non-scarcity days
would likely fail to identify the causal effect of switching to thermal
generation. Scarcity days tend to occur when rainfall is very low,
for example, and controlling for precipitation could be an incomplete
solution depending on the nature of the non-linearities in the rela-
tionship between pollution and weather. Scarcity days are also more
likely to occur when the demand for electricity is high, which could
be correlated with our outcomes of interest. In general, comparing
scarcity to non-scarcity days would not allow us to control for any
day-specific effects, which could be important if scarcity days coincide
with other events that are correlated with pollution levels (or, for our
later analysis, the quality of our health outcome data — for reasons
described in Section 3.2).

We therefore leverage variation across space as well as over time.
We exploit the fact that power plants with higher unused capacity
will increase their electricity generation more on a scarcity day, com-
pared to power plants with less unused capacity. Scarcity days should
therefore result in larger increases in pollution in areas near a plant
with high excess capacity. To test this, we estimate the following
specification:

𝑃𝑠𝑡 = 𝛿1High Capacity𝑠 × Scarcity𝑡 + 𝛿2𝑋𝑠𝑡 + 𝜂𝑠 + 𝛾𝑡 + 𝜖𝑠𝑡. (1)

𝑃𝑠𝑡 represents average pollution (either PM 2.5, PM 10, SO2, CO, NO2,
or O3) at measurement station 𝑠 on day 𝑡 and Scarcity𝑡 is a scarcity
ay dummy variable. High Capacity𝑠 is an indicator equal to 1 if the
verage capacity of power plants within 100 kilometers of station 𝑠 is
bove the median. We create this indicator using total capacity and
ot unused capacity because unused capacity varies day-to-day (and is
riven by potentially endogenous factors). Moreover, the correlation
etween total capacity and unused capacity is high (0.72), as we
llustrate graphically in Figure A4. The vector 𝑋𝑠𝑡 includes state-by-
ear fixed effects and cubic functions of rainfall, temperature, and

6 Note that ‘‘switching’’ is at the region level as opposed to the plant level —
t refers to an increase in generation at thermal plants along with a reduction
t hydroelectric plants, as opposed to a single plant switching from thermal
o hydroelectric generation.
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Table 2
The impact of thermal generation on pollution levels.

(1) (2) (3) (4) (5) (6)
PM2.5 PM10 SO2 CO NO2 O3

Scarcity Day × High 7.22*** 6.99** 2.42** 75.7 0.36 −1.63
Capacity (1.37) (3.22) (1.00) (61.3) (1.96) (1.81)

Observations 26635 65129 30905 27950 25326 48810
Mean of DV 20.1 43.7 9.87 966.1 27.1 24.3

Notes: Standard errors (clustered at station level) in parentheses. *𝑝 < 0.1, **𝑝 < 0.05, ***𝑝 < 0.01. All regressions control for station fixed
effects, date fixed effects, state-by-year fixed effects, and cubic functions of temperature, precipitation, and wind speed. Sample restricted to
stations within 100 kilometers of a thermal power plant.
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ind speed (generated as an inverse-distance weighted average of all
eather stations within 100 kilometers of pollution station 𝑠).

We are interested in 𝛿1, the coefficient on the interaction between
the high capacity and scarcity day indicator. This captures the differ-
ential effect of a scarcity day in a high capacity compared to a low
capacity area, which we interpret as the causal effect of switching to
thermal generation. Because 𝜂𝑠 controls for any location-specific un-
observables and 𝛾𝑡 controls for any day-specific effects, the identifying
assumption is that the difference in pollution levels between high and
low capacity areas would have remained the same on scarcity days if
thermal power plant generation had not been triggered.

Table 2 reports the regression results from Eq. (1), using PM 2.5, PM
10, SO2, CO, NO2, and O3 as dependent variables. The interaction term
is positive and significant for PM 2.5, PM 10, and SO2, which means
the increase in these pollutants on a scarcity day is significantly larger
in high capacity areas. The estimates correspond to a 36% increase
relative to mean PM 2.5, 16% increase relative to mean PM 10, and
25% increase relative to mean SO2.

The interaction term (High Capacity𝑠 × Scarcity𝑡) is a significant
driver of changes in pollution that are large in magnitude. As we discuss
in the next sub-section, we use this variable as the independent variable
of interest in our main analysis.

4.2. Estimating the effects of thermal generation

We use the specification below to estimate the reduced-form effects
of dirty energy on municipality-level morbidity, health costs, and mor-
tality. Because the scarcity-by-high-capacity interaction drives changes
in more than one type of pollutant, we use a reduced form approach
instead of an instrumental variables strategy (where we would essen-
tially have only one instrument for multiple endogenous variables).
A reduced form approach is also preferred because there are only
127 pollution monitor locations, not evenly distributed across the 567
municipalities in our sample.

For municipality 𝑗 on date 𝑡, we estimate
𝑡+2
∑

𝑘=𝑡
𝑌𝑗𝑘 = 𝛽1High Capacity𝑗 × Scarcity𝑡 + 𝛽2𝑋𝑗𝑡 + 𝜂𝑗 + 𝛾𝑡 + 𝜖𝑗𝑡, (2)

where 𝑌𝑗𝑡 represents either morbidity rates, costs, or mortality rates
(respiratory and cardiovascular). Like Deryugina et al. (2019), we use
a three-day sum as our outcome variable to capture delayed effects
(pollution on a given day affecting health the following day(s) instead
of the same day) and to avoid picking up short-run displacement
effects (pollution resulting in earlier health visits or deaths without
actually increasing total counts). The vector 𝑋𝑗𝑡 includes state-by-year
ixed effects, the number of health facilities reporting to the RIPS in
unicipality 𝑗 in the month of time 𝑡, and cubic functions of rainfall,

emperature, and wind speed (generated as inverse-distance weighted
verages of all weather stations within 100 kilometers of municipality
).

The main coefficient of interest is 𝛽1, which we interpret as the
ffect of thermal electricity generation on 𝑌𝑗𝑡. Again, because of the
nclusion of municipality (𝜂𝑗) and day fixed effects (𝛾𝑡), identification
omes from any differential changes in outcomes on scarcity days,
6

g

cross high and low capacity municipalities. Table 1 shows that high
apacity and low capacity municipalities are similar in terms of health
utcomes, demographics, and socioeconomic status (in the years prior
o the first scarcity period in our analysis). This provides support for our
dentifying assumption: that the gap in health outcomes across high and
ow capacity municipalities would have remained constant on scarcity
ays if thermal electricity generation had not been ramped up.7 We
ote, however, that high and low capacity municipalities do differ in
erms of geographic characteristics (as shown in Table 1). We therefore
un several robustness tests to ensure that these differences are not
esponsible for any differential trends in outcomes during the scarcity
eriod.

. Results

We begin by examining the effects of thermal electricity generation
n morbidity, measured using the three-day total number of patients
per 100,000 municipality residents) categorized under a particular
isease category. In column 1 of Table 3, there is a positive and
ignificant coefficient on the interaction between scarcity day and high
apacity. Switching to thermal generation increases the number of res-
iratory disease patients by 9% – approximately 6 additional patients
er 100,000 residents. Column 2 reveals a positive but statistically
nsignificant coefficient for cardiovascular morbidity. Three-day total
osts from respiratory disease increase by approximately 2.7 pesos per
erson (10% of the average cost) as a result of switching to thermal
ower generation (column 3). As with morbidity, the coefficient on
ardiovascular costs is positive but statistically insignificant.

In addition to morbidity and costs, we also investigate whether ther-
al generation increases mortality. The RIPS data only record mortality

or ER visits, which we use to calculate the three-day total of respiratory
nd cardiovascular ER deaths (per 100,000 people in a municipality).
hile there is no significant effect on respiratory mortality (column

), column 6 shows that thermal generation increases cardiovascular
R mortality by 56% (0.023 deaths per 100,000 residents).

Table 4 explores heterogeneity by age. We define the following age
ategories: infants (under 1), children (between 1 and 14), youth and
dults (between 15 and 64), and the elderly (65 or older). We calculate
ur morbidity and mortality outcomes for each age category and repeat
ur main regressions for each of these age groups.

Column 1 of Table 4 shows that those aged 15 and older are driving
he effects on respiratory morbidity, with the coefficients for these
roups representing about a 9%–10% increase relative to the mean.
ffects on respiratory costs exhibit a similar age pattern. On the other
and, in column 6, the cardiovascular mortality effects are driven by
he elderly, with an effect size of 87% relative to the mean.

7 Note that this is assumption would be less likely to hold if we used
istance from thermal plant as our source of cross-sectional variation. Mu-
icipalities that are more than 100 km from a thermal plant are significantly
ifferent in terms of morbidity, mortality, and socioeconomic status, and could
ave responded differently to the chaos in the healthcare system coinciding
ith the 2015 scarcity period, which is why we do not use them as a control

roup in our analysis.
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Table 3
The impact of thermal generation on morbidity, costs, and mortality.

Morbidity per 100,000 Costs per person Mortality per 100,000

Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

Scarcity Day × High 6.25** 0.99 2.70*** 2.64 0.025 0.023*
Capacity (2.77) (3.52) (0.95) (1.60) (0.034) (0.012)

Observations 1448685 1448685 1448685 1448685 1448685 1448685
Dep. Var. Mean 68.41 100.1 27.87 46.93 0.0976 0.0408

Notes: Standard errors (clustered at municipality level) in parentheses. *𝑝 < 0.1, **𝑝 < 0.05, ***𝑝 < 0.01. All outcome variables are three-day
totals. All regressions control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of health facilities reporting
to the RIPS, and cubic functions of temperature, precipitation, and wind speed. Sample restricted to municipalities within 100 kilometers of a
thermal power plant.
Table 4
The impact of thermal generation on morbidity, costs, and mortality, by age.

Morbidity per 100,000 Costs per person Mortality per 100,000

Resp. Cardio. Resp. Cardio. Resp. Cardio.
(1) (2) (3) (4) (5) (6)

A. Infants (Less than 1 year old)
Scarcity Day × High Capacity 9.93 1.13 2.74 −0.084 −0.064 0.0086

(10.5) (0.90) (2.46) (0.63) (0.40) (0.014)
Dep. Var. Mean 206.7 3.470 50.07 2.447 0.808 0.0138

B. Children (Ages 1–14)
Scarcity Day × High Capacity 6.94 0.82** 1.56 0.25 0.063 −0.0010

(4.48) (0.32) (1.06) (0.16) (0.066) (0.0012)
Dep. Var. Mean 96.39 2.373 30.26 1.286 0.147 0.00151

C. Youth/Adults (Ages 15–59)
Scarcity Day × High Capacity 4.13** 0.26 0.94** 1.18 0.014 −0.0023

(1.82) (1.74) (0.44) (0.97) (0.018) (0.0058)
Dep. Var. Mean 41.01 54.56 13.22 26.41 0.0421 0.0157

D. Elderly (Over 60 years old)
Scarcity Day × High Capacity 10.8** −0.32 3.71** 10.8 0.050 0.20**

(5.31) (19.3) (1.68) (10.00) (0.047) (0.079)
Dep. Var. Mean 120.3 536.2 44.84 260.5 0.180 0.230
Observations 1448685 1448685 1448685 1448685 1448685 1448685

Notes: Standard errors (clustered at municipality level) in parentheses. *𝑝 < 0.1, **𝑝 < 0.05, ***𝑝 < 0.01. All outcome variables are three-day totals. All regressions
control for municipality fixed effects, date fixed effects, state-by-year fixed effects, number of health facilities reporting to the RIPS, and cubic functions of
temperature, precipitation, and wind speed.
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We explore how these effects vary by municipality-level socioe-
onomic status in Table A2. To proxy for socioeconomic status, we
alculate the average education level for each municipality using data
rom 2011. We repeat our analysis separately for municipalities with
verage education below and above the municipality-level median.
oefficient estimates are larger for the low education group in the res-
iratory morbidity and cardiovascular mortality regressions, while the
pposite is true for the remaining outcome variables. The differences
etween the groups are not statistically significant.

.1. Robustness checks

Our main identifying assumption is that high and low municipalities
ould have seen similar changes in pollution and health during the

carcity period if the increase in thermal generation had not been
riggered. One concern is that high and low municipalities differ in
eographic characteristics like altitude, rainfall, and temperature (as
hown in Table 1), and it could be the case that these underlying differ-
nces generated diverging trends in outcomes during the El Niño event.
o account for this possibility, we add interactions between the scarcity
ay dummy and municipality altitude, average temperature (pre-2015),
nd average rainfall (pre-2015). The results reported in panel A of Table
3 reveal that our results are robust to the inclusion of these controls.
ext, in panel B of Table A3, we allow for weather variables to have
ifferent effects in high and low capacity municipalities. This helps
nsure our coefficient estimates are not being driven by differential
esponses to the El Niño event (specifically, the accompanying changes
n weather) responsible for the scarcity period in our study. In panel
, we allow for different seasonal trends for high and low capacity
7

unicipalities (by controlling for group-specific month fixed effects).
n panel C, we allow for different quadratic trends for high capacity
nd low capacity municipalities. None of these additional controls
ubstantially alter coefficient estimates.

Next, we conduct a falsification test, using morbidity, costs, and
ortality from external causes (ICD-10 codes V00-Y99, which include

ccidents) as our outcomes of interest. If our results above were driven
y changes in health-seeking behavior as opposed to changes in health
evels, we would expect to see a significant coefficient on our inter-
ction term of interest in these regressions. Appendix Table A4 re-
eals no significant effects of the scarcity by high capacity interaction,
uggesting this is not the case.

We also examine whether there are any significant changes in
he gap between high and low capacity municipalities during the
eek before and after a scarcity period. Table A5 repeats our original

egression and adds two additional interaction terms: high capacity
nteracted with an indicator for the week before a scarcity period, and
igh capacity interacted with an indicator for the week after a scarcity
eriod. The former should yield statistically insignificant coefficients
f it is indeed the pollution generated on scarcity days that is driving
ur effects. The latter will reveal any persistent effects of the pollution
ncreases.

Across all columns of Table A5, the scarcity day interactions are sim-
lar in magnitude to our baseline estimates, and the interactions with
he week-before indicator are all small and statistically insignificant,
roviding further support for the validity of our empirical strategy.
he coefficients on the week-after interaction term are all larger in
agnitude. In the regression on cardiovascular mortality, it is sta-

istically significant and even larger in magnitude than the scarcity
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a
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day interaction term (column 6). The pollution increases on scarcity
days appear to continue to affect cardiovascular mortality even after
the scarcity period is over, perhaps indicating that it takes some time
(and perhaps continued exposure) for the health effects of increased
pollution to translate into higher mortality.

We also run event study regressions for outcomes significantly
affected by the switch to thermal generation (respiratory morbidity,
respiratory costs, and cardiovascular mortality). Summarized in Figure
A5, these regressions yield similar conclusions. The outcome variables
are single-day morbidity or mortality counts (per 100,000 residents).
The main regressors of interest are interactions between indicators for
every quarter and the high capacity interaction (leaving the quarter just
before the main scarcity period as our omitted category). We report the
results for all outcomes for which significant coefficients were reported
in Table 3. Red dots represent quarters in which a scarcity day took
place, while blue crosses represent all other months.

For respiratory morbidity (in panel A), the blue crosses display a
relatively flat pattern prior to the first scarcity day; the majority of
coefficients are small and statistically insignificant. On the other hand,
the red dots are positive and statistically significant throughout most of
the 2015–2016 scarcity period. Interestingly, coefficients remain posi-
tive (and in most cases statistically significant) until the end of 2016,
suggesting some persistence in the effects of the pollution increases
during the scarcity period. The results for respiratory costs (panel B)
show similar patterns: positive and significant coefficients during the
scarcity period.

The results for cardiovascular mortality are less precisely estimated.
Like in the other panels, the blue coefficients reveal no pre-trends.
The first red scarcity dot (in quarter 2 of 2015) is higher than the
previous period, though it is not statistically significant. Similarly, two
of the three quarters of the longer scarcity period are positive (but
insignificant). The last coefficient the largest in the whole series.8 This
suggests that while the morbidity effects of pollution may be immedi-
ate, prolonged exposure may have been what caused the increases in
mortality.

Finally, we demonstrate the robustness of our results to a 120
kilometer cutoff (Tables A6 and A7).

5.2. Back-of-the-envelope calculations

Using our coefficients estimated above, we use back-of-the-envelope
calculations to estimate the cost of the scarcity period in terms of
increased healthcare costs and lost lives, for high capacity munici-
palities. First, the interaction coefficient of 2.7 pesos per person per
municipality per day in the respiratory cost regression (column 3 of
Table 3) translates into an increase of 3.5 million USD (in 2015 dollars)
for high capacity municipalities throughout the entire scarcity period.9

To calculate mortality costs, we use the ER cardiovascular mortality
coefficient (0.023 deaths per 100,000 people per municipality per day)
and the value of a statistical life calculated specifically for Colombia
by Viscusi and Masterman (2017): 1.228 million 2015 USD. This yields
an estimate of 992.7 million USD (for high capacity municipalities
throughout the entire scarcity period), much larger than the total costs
stemming from increased healthcare utilization. Therefore, our results
translate to a cost of 996 million USD for high capacity municipalities,
which is a conservative estimate of the total cost of the policy because
it ignores any costs experienced by low capacity municipalities.

8 Note that this month includes non-scarcity days at the end of the quarter.
9 This calculation uses an exchange rate of 2745 pesos per 2015 USD, an

verage high capacity municipality population of 57,970, and sums across 212
carcity days and 286 high capacity municipalities.
8

6. Conclusion

This paper takes advantage of a unique electricity policy in Colom-
bia to obtain causal estimates of the health costs of switching to thermal
energy generation. Comparing municipalities near high capacity plants
to those near low capacity plants, on days when a price trigger substan-
tially increases thermal generation, we find that PM 2.5, PM 10, and
SO2 levels increase significantly more in high capacity municipalities.

Using this same regression specification, we estimate the effects of
increased thermal generation on morbidity and mortality outcomes.
Thermal generation increases respiratory morbidity (primarily for those
older than 15) and cardiovascular mortality (primarily for the elderly).
We calculate that, for high capacity municipalities, the entire scarcity
period led to 996 million USD worth of healthcare costs and lost lives.
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