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Abstract

We consider one-to-one matching markets in which agents can either be matched as pairs or
remain single. In these so-called roommate markets agents are consumers and resources at
the same time. We investigate two new properties that capture the effect a newcomer has on
incumbent agents. Competition sensitivity focuses on the newcomer as additional consumer
and requires that some incumbents will suffer if competition is caused by a newcomer. Resource
sensitivity focuses on the newcomer as additional resource and requires that this is beneficial for
some incumbents. For solvable roommate markets, we provide the first characterizations of the
core using either competition or resource sensitivity. On the domain of all roommate markets,
we obtain two associated impossibility results.
JEL classification: C78, D63.
Keywords: Core, Matching, Competition Sensitivity, Resource Sensitivity, Roommate Market.

∗B. Klaus thanks the Netherlands Organisation for Scientific Research (NWO) for its support under grant VIDI-
452-06-013. I also wish to thank Burak Can, Elena Molis, Manabu Toda, and two anonymous referees for their
valuable comments and interesting discussions.
†Harvard Business School, Baker Library |Bloomberg Center 437, Soldier Field, Boston, MA 02163, USA; e-mail:

bklaus@hbs.edu

1



1 Introduction

We consider one-to-one matching markets in which agents can either be matched as pairs or remain
single. These markets are known as roommate markets and they include as special cases the well-
known marriage markets (Gale and Shapley, 1962; Roth and Sotomayor, 1990). As simple as the
roommate model may be, it is of conceptual importance as it lies in the intersection of network and
coalition formation models1 (for surveys and current research of network and coalition formation
see Demange and Wooders, 2004; Jackson, 2008).

Loosely speaking, in these discrete markets the commodities to be traded are the agents them-
selves. Thus, agents are consumers and resources at the same time. We investigate two new
properties that capture the effect a newcomer has on incumbent agents: competition and resource
sensitivity. Competition sensitivity focuses on the newcomer as additional consumer and requires
that some incumbents will suffer if competition is caused because the newcomer initiates new
trades. Resource sensitivity focuses on the newcomer as additional resource and requires that some
incumbents will benefit if there are new trades, i.e., the extra resource is consumed.

For marriage markets, both properties are closely related to population monotonicity, a soli-
darity property that requires that additional agents affect the incumbents in a similar way (either
all incumbents are weakly better off or all incumbents are weakly worse off). Because of the
polarization of interests that occurs in marriage markets, two specific versions of population mono-
tonicity exist: own-side and other-side population monotonicity (Toda, 2006, indroduced the first
of these specifications).2 We show that in marriage markets, essentially own-side population mono-
tonicity implies competition sensitivity (Lemma 1) and other-side population monotonicity implies
resource sensitivity (Lemma 2). Our main results are two characterizations of the core by unanim-
ity3, Maskin monotonicity4, and either competition or resource sensitivity for solvable roommate
markets (Theorem 1) and two associated impossibility results on the general domain (Theorem 2).

Theorem 1 presents the first characterizations of the core for solvable roommate markets. One
of Toda’s (2006, Theorem 3.1) results can be interpreted as a corollary (Corollary 1) of our results.5

More importantly, Theorem 1 demonstrates that it is not really a solidarity property (population
monotonicity) that is at work in Toda’s (2006) characterization of the core for marriage markets,
but that it is the competition sensitivity aspect that is captured as well. Our results also imply a
new characterization of the core for marriage markets (Corollary 2): a solution ϕ satisfies unanimity,
Maskin monotonicity, and other-side population monotonicity if and only if it equals the core.

1In a “roommate network” situation each agent is allowed or able to form only one link and in a “roommate
coalition” situation only coalitions of size one or two can be formed.

2Own-side population monotonicity : if additional men (women) enter the market, then all incumbent men (women)
are weakly worse off.

Other-side population monotonicity : if additional men (women) enter the market, then all incumbent women (men)
are weakly better off.

3Unanimity : if a unanimously best matching exists, then it is chosen.
4Maskin monotonicity : if a matching is chosen in one market, then it is also chosen in a market that results from a

Maskin monotonic transformation (which essentially means that the matching improved in the ranking of all agents).
5Can and Klaus (2008) consider Toda’s (2006) results that involve the additional property of consistency. So far,

they have some partial results that indicate that Toda’s “consistency results” do not extend to the domain of feasible
roommate markets (e.g., Toda, 2006, Lemma 3.4 does not extend to the domain of solvable roommate markets).
Hence, the analysis of consistency together with the population sensitivity properties introduced here is not a simple
addition or extension of this article.
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2 Roommate Markets

2.1 The Model

Gale and Shapley (1962, Example 3) introduced the very simple and appealing roommate markets
as follows: “An even number of boys wish to divide up into pairs of roommates.” A very common
extension of this problem is to allow also for odd numbers of agents and to consider the formation
of pairs and singletons (rooms can be occupied either by one or by two agents). In addition, we
will extend the problem to variable sets of agents, e.g., because the allocation of dormitory rooms
at a university occurs every year for different sets of students.

Let N be the set of potential agents6 and N be the set of all non-empty finite subsets of N, i.e.,
N = {N ⊆ N | ∞ > |N | > 0}. For N ∈ N , L(N) denotes the set of all linear orders over N .7 For
i ∈ N , we interpret Ri ∈ L(N) as agent i’s preferences over sharing a room with any of the agents
in N\{i} and having a room for himself; e.g., Ri : j, k, i, l means that i would first like to share a
room with j, then with k, and then i would prefer to stay alone rather than sharing the room with
l. If j Pi i then agent i finds agent j acceptable and if i Pi j then agent i finds agent j unacceptable.
RN =

∏
N L(N) denotes the set of all preference profiles of agents in N (over agents in N). A

roommate market consists of a set of agents N ∈ N and their preferences R ∈ RN and is denoted
by (N,R). A marriage market (Gale and Shapley, 1962) is a roommate market (N,R) such that
N is the union of two disjoint sets M and W , and each agent in M (respectively W ) prefers being
single to being matched with any other agent in M (respectively W ).

A matching µ for roommate market (N,R) is a function µ : N → N of order two, i.e., for all
i ∈ N , µ(µ(i)) = i. Thus, at any matching µ, the set of agents is partitioned into pairs of agents
who share a room and singletons (agents who do not share a room). Agent µ(i) is agent i’s match
(if µ(i) = i then i is matched to himself or single). For S ⊆ N , we denote by µ(S) the set of agents
that are matched to agents in S, i.e., µ(S) = {i ∈ N | µ−1(i) ∈ S}. We denote the set of matchings
for roommate market (N,R) by M(N,R) (even though this set does not depend on preferences
R). If it is clear which roommate market (N,R) we refer to, matchings are assumed to be elements
of M(N,R). We use the same notation for preferences over agents and matchings: for all agents
i ∈ N and matchings µ, µ′, µ Ri µ′ if and only if µ(i)Ri µ′(i).

In the sequel, we will consider three domains of roommate problems: the domain of all roommate
markets, the domain of so-called solvable roommate markets (Definition 5), and the domain of
marriage markets. To avoid notational complexity when introducing solutions and their properties,
we will use the generic domain of roommate markets D.

A solution ϕ on D is a correspondence that associates with each roommate market (N,R) ∈ D a
nonempty subset of matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆M(N,R) ∈ D and ϕ(N,R) 6= ∅.

6Only Lemma 3, Theorems 1 (a), 2 (a), and Corollary 1 depend on the set of potential agents to be infinite.
Propositions 1, 2, Lemmas 1, 2, 4, 5, 6, 7, Theorems 1 (b), 2 (b), and Corollary 2 are also valid for a finite set of
potential agents.

7A linear order over N is a binary relation R̄ that satisfies antisymmetry (for all i, j ∈ N , if i R̄ j and j R̄ i, then
i = j), transitivity (for all i, j, k ∈ N , if i R̄ j and j R̄ k, then i R̄ k), and comparability (for all i, j ∈ N , i R̄ j or j R̄ i).
By P̄ we denote the asymmetric part of R̄. Hence, given i, j ∈ N , i P̄ j means that i is strictly preferred to j; i R̄ j
means that i P̄ j or i = j and that i is weakly preferred to j.
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2.2 Basic Properties and the Core

We first introduce a voluntary participation condition based on the idea that no agent can be forced
to share a room.

Definition 1. Individual Rationality
A matching µ is individually rational for roommate market (N,R) if for all i ∈ N , µ(i) Ri i.
IR(N,R) denotes the set of all individually rational matchings for roommate market (N,R). A
solution ϕ on D is individually rational if it only assigns individually rational matchings, i.e., for
all (N,R) ∈ D, ϕ(N,R) ⊆ IR(N,R).

Remark 1. Individual Rationality and Marriage Markets
An individually rational matching for a marriage market respects the partition of agents into two
types and never matches two men or two women. Hence, we embed marriage markets into our
roommate market framework by an assumption on preferences (same sex agents are unacceptable)
and individual rationality to ensure that no two agents of the same sex are matched. 4

Next, we introduce the well-known condition of Pareto optimality and the weaker condition of
unanimity.

Definition 2. Pareto Optimality
A matching µ is Pareto optimal for roommate market (N,R) if there is no other matching µ′ ∈
M(N,R) such that for all i ∈ N , µ′Ri µ and for some j ∈ N , µ′ Pj µ. PO(N,R) denotes the set of
all Pareto optimal matchings for roommate market (N,R). A solution ϕ on D is Pareto optimal if
it only assigns Pareto optimal matchings, i.e., for all (N,R) ∈ D, ϕ(N,R) ⊆ PO(N,R).

Definition 3. Unanimity
Let (N,R) be a roommate market and µ be such that for all i, j ∈ N , µ(i) Ri j. Then, µ is the
unanimously best matching for (N,R). A solution ϕ on D is unanimous if it assigns the unanimously
best matching whenever it exists, i.e., for all roommate markets (N,R) ∈ D with a unanimously
best matching µ, ϕ(N,R) = {µ}.

Throughout the article we could also use a somewhat weaker version of unanimity: a solution ϕ
is weakly unanimous if it chooses the unanimously best matching whenever it exists and is complete
(no agent is single). We define weak unanimity and show how the relevant proofs (the proofs of
Lemmas 3 and 4) should be adjusted in Appendix C. Note that Pareto optimality implies unanimity
and that unanimity implies weak unanimity.

The next property requires that two agents who are “mutually best agents” are always matched
with each others.

Definition 4. Mutually Best
Let (N,R) be a roommate market and i, j ∈ N [possibly i = j] such that for all k ∈ N , i Rj k
and j Ri k. Then, i and j are mutually best agents for (N,R). A solution ϕ on D is mutually best
if it only assigns matchings at which all mutually best agents are matched, i.e., for all roommate
markets (N,R) ∈ D, for all mutually best agents i and j, and for all µ ∈ ϕ(N,R), µ(i) = j.

Note that mutually best implies unanimity and that Pareto optimality and mutually best are
logically unrelated.
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Examples of solutions are immediately implied by two of the properties: define IR (respectively
PO) as correspondences that assign to each roommate market the set of individually rational
(respectively Pareto optimal) matchings.

Next, we define stability for roommate markets. A matching µ is blocked by a pair {i, j} ⊆ N
[possibly i = j] if j Pi µ(i) and i Pj µ(j). If {i, j} blocks µ, then {i, j} is called a blocking pair for
µ. Note that a matching is individually rational if there is no blocking pair {i, j} with i = j.

Definition 5. Stability and Solvability
A matching µ is stable for roommate market (N,R) if there is no blocking pair for µ. S(N,R)
denotes the set of all stable matchings for roommate market (N,R). A roommate market is solvable
if stable matchings exist, i.e., (N,R) is solvable if and only if S(N,R) 6= ∅. Furthermore, on the
domain of solvable roommate markets, a solution ϕ is stable if it only assigns stable matchings, i.e.,
for all (N,R) such that S(N,R) 6= ∅, ϕ(N,R) ⊆ S(N,R).

Another well-known concept for matching problems is the core.

Definition 6. Core
A matching is in the (strict or strong) core if no coalition of agents can improve their wel-
fare by rematching among themselves. For roommate market (N,R), core(N,R) = {µ ∈
M(N,R) | there exists no S ⊆ N and no µ′ ∈M(N,R) such that µ′(S) = S, for all i ∈ S, µ′(i)Ri
µ(i), and for some j ∈ S, µ′(j) Pj µ(j)}.

Similarly as in other matching models (e.g., marriage markets and college admissions markets),
the core equals the set of stable matchings, i.e., for all (N,R), core(N,R) = S(N,R). Hence,
the core is a solution on the domain of solvable roommate markets, but not on the domain of all
roommate markets. Gale and Shapley (1962) showed that all marriage markets are solvable and
gave an example of an unsolvable roommate market (Gale and Shapley, 1962, Example 3).

Finally, we introduce Maskin monotonicity (Maskin, 1999): if a matching is chosen in one room-
mate market, then it is also chosen in a roommate market that results from a Maskin monotonic
transformation, which essentially means that the matching (weakly) improved in the preference
ranking of all agents.

Let (N,R) be a roommate market. Then, for any agent i ∈ N and matching µ ∈ M(N,R),
the lower contour set of Ri at µ is Li(Ri, µ) := {µ′ ∈ M(N,R) | µ Ri µ′}. For preference profiles
R,R′ ∈ RN and matching µ ∈M(N,R), R′ is a Maskin monotonic transformation of R at µ if for
all i ∈ N , Li(Ri, µ) ⊆ Li(R′i, µ).

Definition 7. Maskin Monotonicity
A solution ϕ on D is Maskin monotonic if for all roommate markets (N,R) ∈ D, (N,R′) ∈ D, and
all µ ∈ ϕ(N,R) such that R′ is a Maskin monotonic transformation of R at µ, µ ∈ ϕ(N,R′).

Maskin monotonicity is one of the key concepts in implementation theory. However, here we
focus on Maskin monotonicity as a desirable property in itself.

Proposition 1. On the domain of solvable roommate markets, the core satisfies individual ratio-
nality, Pareto optimality, unanimity, mutually best, stability, and Maskin monotonicity.

Proof. It is easily checked that the core satisfies individual rationality, Pareto optimality, unanimity,
mutually best, and stability. Sönmez’s (1996) Proposition 1 applies to the domain of solvable
roommate markets and it therefore shows that the core is Maskin monotonic.
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2.3 Variable Population Properties

The next properties we consider concern population changes. More specifically, consider the change
of a roommate market (N,R) when one new agent, a newcomer n ∈ N\N , shows up. Then, the
new set of agents is N ′ = N ∪ {n} and (N ′, R′), R′ ∈ RN ′ , is an extension of (N,R) if agents in N
extend their preferences to include n, i.e.,

(i) for all i ∈ N ′, R′i ∈ L(N ′) and

(ii) for all j, k, l ∈ N , j Rl k if and only if j R′l k.

Note that R ∈ RN is the restriction of R′ ∈ RN ′ to N . We also denote the restriction of R′ to N
by R′|N .

Adding an agent n might be a positive or a negative change for any of the incumbents in N because
it might mean

a negative change with more competition or

a positive change with more resources.

Before we capture both effects in two new properties called competition and resource sensitivity,
we make a short excursion to the definition of population monotonicity for marriage markets. This
property goes back to Thomson (1983), who also presents a survey of population monotonicity in
various economic models (Thomson, 1995).

Population Monotonicity: When a change in the population is exogenous, it would be unfair
if the agents who were not responsible for this change were treated unequally. Population mono-
tonicity represents this idea of solidarity. However, for marriage markets this would mean that if a
newcomer enters (e.g., a man) men and women are all affected in the same way (all weakly better
off or all weakly worse off).

This might not be a natural condition for marriage markets because of a certain polarization
imbedded in the market: a man might be considered good news for women (more choice), but
bad news for men (more competition). Therefore, for marriage markets we can formulate two
population monotonicity conditions that take the polarization aspect into account. The first one
was introduced by Toda (2006) and we will refer to it as own-side population monotonicity: a
solution ϕ is own-side population monotonic if for any marriage market (M ∪W,R), if additional
men [women] enter the market such that the new marriage market equals (M ′∪W,R′) [(M∪W ′, R′)],
then – because of the possible negative effect of the extra competition – all men in M [women in
W ] weakly prefer ϕ(M ∪W,R) to ϕ(M ′ ∪W,R′) [ϕ(M ∪W ′, R′)].

We formalize a somewhat weaker version of own-side population monotonicity by restricting
population changes to one agent at a time. Consistent with Toda’s (2006) choice of extending
preferences over matchings to sets of matchings, we apply the pessimistic view of comparing sets
of matchings throughout this article.8

8Agents are pessimistic and always assume that the worst matching will be realized, i.e., given two sets of matchings
A and B, an agent will compare the worst matching in A to the worst matching in B. Thus, if agent i weakly prefers
A to B, then for all µ ∈ A there exists µ′ ∈ B such that µ Ri µ

′.
As already noted by Toda (2006), using an optimistic set comparison, i.e., comparing the best matchings, will not

give the same results and using a standard set comparison that compares best to best and worst to worst matchings
(see Barberà et al., 2004) will not change the results.
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Definition 8. Own-Side Population Monotonicity for Marriage Markets
On the domain of marriage markets, a solution ϕ is own-side population monotonic if the following
holds. Let (N,R) be a marriage market and assume that (N ′, R′), N ′ = N ∪{n}, is an extension of
(N,R) and the newcomer n is a man [woman]. Then, for all µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′, R′)
such that (∗) for all men m ∈ N , µ(m)R′m µ′(m) [for all women w ∈ N , µ(w)R′w µ

′(w)].9

By the strictness of preferences, (∗) means that if the newcomer is a man [woman], then every
man [woman] who is matched differently is strictly worse off, i.e., for all men m ∈ N , either
µ(m) = µ′(m) or µ(m) P ′m µ′(m) [for all women w ∈ N , either µ(w) = µ′(w) or µ(w) P ′w µ

′(w)].
Hence, if a man m [woman w] has a new mate at µ′, then he [she] is worse off. Without specifying
whether the newcomer is a man or a woman, own-side population monotonicity implies that if
m,w ∈ N are newly matched at µ′, then at least one of them is worse off (if the newcomer is a
man, then man m is worse off and if the newcomer is a woman, then woman w is worse off). This
latter requirement that if two incumbents are newly matched at µ′, then one of them suffers from
the increased competition by the newcomer and is worse off, can be formulated as a new property,
namely competition sensitivity. This property requires that the solution is sensitive to competition,
which is a different requirement than the solidarity aspect that own-side population monotonicity
reflects.

Definition 9. Competition Sensitivity
A solution ϕ on D is competition sensitive if the following holds. Let (N,R) ∈ D be a roommate
market and assume that (N ′, R′) ∈ D, N ′ = N ∪ {n}, is an extension of (N,R). Then, for all
µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′, R′) such that for all i, j ∈ N [possibly i = j] that are newly
matched at µ′ at least one is worse off, i.e., if i, j ∈ N , µ(i) 6= j, and µ′(i) = j, then µ(i)P ′i µ

′(i) or
µ(j) P ′j µ

′(j).

On the domain of marriage markets, competition sensitivity is essentially a weaker property than
own-side population monotonicity (individual rationality is added to ensure that no two agents of
the same sex are matched, see Remark 1).

Lemma 1. Own-Side Population Monotonicity ⇒ Competition Sensitivity
On the domain of marriage markets, individual rationality and own-side population monotonicity
imply competition sensitivity.

Proof. Let ϕ be a solution on the domain of marriage markets that is individually rational and
own-side population monotonic. Let (N,R) be a marriage market and assume that (N ′, R′), N ′ =
N ∪{n}, is an extension of (N,R). Without loss of generality assume that n is a man. By own-side
population monotonicity, for all µ ∈ ϕ(N,R) there exists µ′ ∈ ϕ(N ′, R′) such that for all men
m ∈ N , either µ(m) = µ′(m) or µ(m) P ′m µ′(m). Let i, j ∈ N , µ(i) 6= j, and µ′(i) = j. If i 6= j,
then the pair {i, j} consists of one man and one woman. Without loss of generality assume that i
is the man and j the woman. Thus, by own-side population monotonicity, µ(i) P ′i µ

′(i). If i = j,
then, by individual rationality, µ(i) P ′i µ

′(i).10 Hence, ϕ is competition sensitive.

In the following example we demonstrate that for marriage markets, competition sensitivity is
indeed a weaker condition than own-side population monotonicity.

9Equivalently, and conforming with Toda (2006), (∗) for all men m ∈ N , µ(m) Rm µ′(m) [for all women w ∈ N ,
µ(w)Rw µ′(w)].

10If i is a man, this latter implication would also be implied by own-side population monotonicity. However, if i is
a woman, this concluding argument cannot be made solely by using own-side population monotonicity.
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Example 1. Assume, without loss of generality, that there exist women w1, w2 ∈ N and men
m1,m2 ∈ N such that w1 < m1 and m2 < w2. Solution ϕ̄ uses two important stable matchings that
always exist for marriage markets: the man- and the woman-optimal stable matching (obtainable
by applying the deferred acceptance algorithm, cf., Gale and Shapley, 1962). We define ϕ̄ as follows.
For all marriage markets (N,R), if the agent with the largest index is a man, then ϕ̄ assigns the
man-optimal stable matching and otherwise ϕ̄ assigns the woman-optimal stable matching. Solution
ϕ̄ is individually rational and competition sensitive (see Proposition 2), but it violates own-side
population-monotonicity (see Appendix A). �

Next we introduce other-side population monotonicity for marriage markets: a solution ϕ is
other-side population monotonic if for any marriage market (M ∪W,R), if additional men [women]
enter the market such that the new marriage market equals (M ′ ∪W,R′) [(M ∪W ′, R′)], then –
because of the possible positive effect of the extra matching opportunities or resources – all women
in W [men in M ] weakly prefer ϕ(M ′ ∪W,R′) [ϕ(M ∪W ′, R′)] to ϕ(M ∪W,R).

Again, we formalize a somewhat weaker version of other-side population monotonicity by re-
stricting population changes to one agent at a time.

Definition 10. Other-Side Population Monotonicity for Marriage Markets
On the domain of marriage markets, a solution ϕ is other-side population monotonic if the following
holds. Let (N,R) be a marriage market and assume that (N ′, R′), N ′ = N ∪{n}, is an extension of
(N,R) and the newcomer n is a man [woman]. Then, for all µ′ ∈ ϕ(N ′, R′) there exists µ ∈ ϕ(N,R)
such that (∗∗) for all women w ∈ N , µ′(w)R′w µ(w) [for all men m ∈ N , µ′(m)R′m µ(m)].

By the strictness of preferences, (∗∗) means that if the newcomer is a man [woman], then
every woman [man] who is matched differently is strictly better off, i.e., for all women w ∈ N ,
either µ′(w) = µ(w) or µ′(w)P ′w µ(w) [for all men m ∈ N , either µ′(m) = µ(m) or µ′(m)P ′m µ(m)].
Hence, if a woman w [man m] is unmatched from her mate at µ, then she [he] is better off. Without
specifying whether the newcomer is a man or a woman, other-side population monotonicity implies
that if m,w ∈ N are not matched anymore at µ′, then at least one of them is better off (if the
newcomer is a man, then woman w is better off and if the newcomer is a woman, then man m is
better off). This latter requirement that if two incumbents were unmatched at µ′, then one of them
benefits from the increase of resources by the newcomer and is better off, can be formulated as a
new property, namely resource sensitivity. This property requires that the solution is sensitive to
an increase in resources, which is a different requirement than the solidarity aspect that other-side
population monotonicity reflects.

Definition 11. Resource Sensitivity
A solution ϕ on D is resource sensitive if the following holds. Let (N,R) ∈ D be a roommate market
and assume that (N ′, R′) ∈ D, N ′ = N ∪{n}, is an extension of (N,R). Then, for all µ′ ∈ ϕ(N ′, R′)
there exists µ ∈ ϕ(N,R) such that for all i, j ∈ N [possibly i = j] that were matched at µ at least
one is better off, i.e., if i, j ∈ N , µ(i) = j, and µ′(i) 6= j, then µ′(i) P ′i µ(i) or µ′(j) P ′j µ(j).

On the domain of marriage markets, resource sensitivity is essentially a weaker property than
other-side population monotonicity (individual rationality is added to ensure that no two agents of
the same sex are matched, see Remark 1).

Lemma 2. Other-Side Population Monotonicity ⇒ Resource Sensitivity
On the domain of marriage markets, individual rationality and other-side population monotonicity
imply resource sensitivity.
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Proof. Let ϕ be a solution on the domain of marriage markets that is individually rational and
other-side population monotonic. Let (N,R) be a marriage market and assume that (N ′, R′),
N ′ = N ∪ {n}, is an extension of (N,R). Without loss of generality assume that n is a man. By
other-side population monotonicity, for all µ′ ∈ ϕ(N ′, R′) there exists µ ∈ ϕ(N,R) such that for
all women w ∈ N , either µ′(w) = µ(w) or µ′(w) P ′w µ(w). Let i, j ∈ N , µ(i) = j, and µ′(i) 6= j. If
i 6= j, then the pair {i, j} consists of one man and one woman. Without loss of generality assume
that i is the man and j the woman. Thus, by other-side population monotonicity, µ′(j) P ′j µ(j). If
i = j , then by individual rationality, µ′(i) P ′i µ(i).11 Hence, ϕ is resource sensitive.

Solution ϕ̄ (Example 1) also demonstrates that for marriage markets, resource sensitivity is
indeed a weaker condition than other-side population monotonicity: solution ϕ̄ is individually ra-
tional and resource sensitive (see Proposition 2), but it violates other-side population monotonicity
(see Appendix A).

Proposition 2. On the domain of solvable roommate markets, any stable solution satisfies compe-
tition and resource sensitivity. In particular, the core satisfies competition and resource sensitivity.

Proof. Let ϕ be a stable solution on the domain of solvable roommate markets. Let (N,R) be a
solvable roommate market and assume that (N ′, R′), N ′ = N ∪ {n}, is an extension of (N,R) that
is solvable.
Competition Sensitivity: Assume that ϕ is not competition sensitive, i.e., there exist µ ∈ ϕ(N,R),
µ′ ∈ ϕ(N ′, R′), and i, j ∈ N such that µ′(i) = j, µ(i) 6= j, µ′(i) P ′i µ(i), and µ′(j) P ′j µ(j). Thus,
j Pi µ(i) and i Pj µ(j). Hence, {i, j} is a blocking pair for µ; contradicting µ ∈ ϕ(N,R) ⊆ S(N,R).
Resource Sensitivity: Assume that ϕ is not resource sensitive, i.e., there exist µ ∈ ϕ(N,R), µ′ ∈
ϕ(N ′, R′), and i, j ∈ N such that µ(i) = j, µ′(i) 6= j, µ(i)P ′i µ

′(i), and µ(j)P ′j µ
′(j). Thus, jP ′i µ

′(i),
and i P ′j µ

′(j). Hence, {i, j} is a blocking pair for µ′; contradicting µ′ ∈ ϕ(N ′, R′) ⊆ S(N ′, R′).

Remark 2. A Straightforward Extension of Population Monotonicity?
One might also consider the following “straightforward” extension of the two population mono-
tonicity properties from marriage to roommate markets.

A solution ϕ on D is “own-side population monotonic (?)” if for all roommate markets
(N,R) ∈ D, all newcomers n such that (N ′, R′) ∈ D is the roommate market obtained, all agents
in N that find the newcomer n unacceptable weakly prefer ϕ(N,R) to ϕ(N ′, R′).

A solution ϕ on D is “other-side population monotonic (?)” if for all roommate markets
(N,R) ∈ D, all newcomers n such that (N ′, R′) ∈ D is the roommate market obtained, all agents
in N that find the newcomer n acceptable weakly prefer ϕ(N ′, R′) to ϕ(N,R).

Note that since “same sex partner’s” are assumed to be unacceptable for marriage markets,
on the domain of marriage markets, own-side population monotonic (?) implies own-side popula-
tion monotonic and other-side population monotonic (?) implies other-side population monotonic.
The problem with this simple generalization of population monotonicity to the general domain of
roommate markets is that it is not clear which interesting solutions satisfy it: in Appendix B we
demonstrate that for the general domain of roommate markets, no solution satisfying Pareto opti-
mality and mutually best satisfies the straightforward population monotonicity extension discussed
here. 4

11If i is a woman, this latter implication would also be implied by other-side population monotonicity. However, if
i is a man, this concluding argument cannot be made solely by using other-side population monotonicity.

9



3 Results

The following preference transformations will be used frequently in subsequent proofs.
Let i, j ∈ N [possibly i = j] and Ri ∈ L(N). Then, Rji ∈ L(N) is obtained from Ri by making

j the best match without changing the order over agents in N \ {j}, i.e., Rji is such that for all
k ∈ N , j Rji k and for all l,m ∈ N \ {j}, l Rji m if and only if l Ri m.

Let i ∈ N , j /∈ N , N ′ = N ∪ {j}, and Ri ∈ L(N). Then, Rji ∈ L(N ′) is obtained from Ri by
making the newcomer j the best match without changing the order over agents in N , i.e., Rji is
such that for all k ∈ N , j P ji k and for all l,m ∈ N , l Rji m if and only if l Ri m.

3.1 Relations between Properties

Lemma 3.

(a) On the domain of solvable roommate markets, unanimity, Maskin monotonicity, and compe-
tition sensitivity imply mutually best.

(b) On the domain of all roommate markets, unanimity, Maskin monotonicity, and competition
sensitivity imply mutually best.

Lemma 3 holds without using Maskin monotonicity. However, the proof without Maskin mono-
tonicity is more involved (the problem without Maskin monotonicity occurs in the proof of Lemma 3
(a) where in each step the solvability of the constructed roommate market has to be guaranteed).
Here we present the proof of Lemma 3 using Maskin monotonicity. In Appendix C we prove a
stronger version of Lemma 3 using only weak unanimity and competition sensitivity. There, we
also illustrate the complication that occurs without Maskin monotonicity in the following proof by
means of an example.

Proof. Let ϕ be a solution on (a) the domain of solvable roommate markets or (b) the domain of
all roommate markets that satisfies unanimity, Maskin monotonicity, and competition sensitivity,
but not mutually best. Thus, there exists a (solvable) roommate market (N,R) and a matching
µ ∈ ϕ(N,R) such that for two agents i and j that are mutually best, µ(i) 6= j.

We define R̃ ∈ RN as follows. For any k ∈ N \ {i, j} we define R̃k ∈ L(N) by moving µ(k) on
top of agent k’s preferences, i.e., for all k ∈ N \ {i, j}, R̃k = R

µ(k)
k . Let R̃i = Ri and R̃j = Rj .

Note that (N, R̃) is solvable12 and that R̃ is a Maskin monotonic transformation of R at µ. Hence,
by Maskin monotonicity, µ ∈ ϕ(N, R̃). Without loss of generality assume that µ(i) ∈ N \ {i} or
µ(j) ∈ N \ {j} (otherwise set (N̂ , R̂) = (N, R̃), µ̂ = µ, and move to the last paragraph of the
proof).

If µ(i) ∈ N \{i}, consider the extension (N̄ , R̄) of (N, R̃) that is obtained by adding a newcomer
k̄ such that µ(i) and k̄ are mutually best and k̄ is unacceptable for all other agents l ∈ N \ {µ(i)},
i.e., N̄ = N ∪ {k̄} and R̄ ∈ RN̄ is such that R̄µ(i) = R̃k̄µ(i), for all k ∈ N̄ , µ(i) R̄k̄ k, and for all

l ∈ N \ {µ(i)}, l P̄l k̄. Note that (N̄ , R̄) is solvable.13 By competition sensitivity, for µ ∈ ϕ(N, R̃),
12Roommate market (N, R̃) has a unique core allocation that matches agent i with agent j and all agents in

N \ {i, j, µ(i), µ(j)} according to µ – agent(s) µ(i) and µ(j) are either single or, if mutually acceptable, matched with
each other.

13Roommate market (N̄ , R̄) has a unique core allocation that matches agent i with agent j, agent µ(i) with agent
k̄, and all agents in N̄ \ {i, j, µ(i), k̄, µ(j)} according to µ – agent µ(j) is single.
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there exists µ̄ ∈ ϕ(N̄ , R̄) such that for all i′, j′ ∈ N [possibly i′ = j′] that are newly matched at
µ̄ at least one is worse off. Hence, there exists µ̄ ∈ ϕ(N̄ , R̄) such that µ̄(i) 6= j. If µ(i) = i set
(N̄ , R̄) = (N, R̃) and µ̄ = µ.

If µ(j) ∈ N \{j}, consider the extension (N̂ , R̂) of (N̄ , R̄) that is obtained by adding a newcomer
k̂ such that µ(j) and k̂ are mutually best and k̂ is unacceptable for all other agents l ∈ N̄ \ {µ(j)},
i.e., N̂ = N̄ ∪ {k̂} and R̂ ∈ RN̂ is such that R̂µ(j) = R̄k̂µ(j), for all k ∈ N̂ , µ(j) R̂k̂ k, and for all

l ∈ N̄ \ {µ(j)}, l P̂l k̂. Note that (N̂ , R̂) is solvable.14 By competition sensitivity, for µ̄ ∈ ϕ(N̄ , R̄),
there exists µ̂ ∈ ϕ(N̂ , R̂) such that for all i′, j′ ∈ N [possibly i′ = j′] that are newly matched at
µ̂ at least one is worse off. Hence, there exists µ̂ ∈ ϕ(N̂ , R̂) such that µ̂(i) 6= j. If µ(j) = j set
(N̂ , R̂) = (N̄ , R̄) and µ̂ = µ̄.

By construction, there now exists a unanimously best matching ν for (N̂ , R̂): ν matches agent i
with agent j, agent µ(i) with agent k̄ (if µ(i) ∈ N \{i}), agent µ(j) with agent k̂ (if µ(j) ∈ N \{j}),
and all agents in N̂ \ {i, j, µ(i), k̄, µ(j), k̂} according to µ. Hence, by unanimity, ϕ(N̂ , R̂) = {ν},
contradicting µ̂ ∈ ϕ(N̂ , R̂).

Lemma 4.

(a) On the domain of solvable roommate markets, unanimity, Maskin monotonicity, and resource
sensitivity imply mutually best.

(b) On the domain of all roommate markets, unanimity, Maskin monotonicity, and resource
sensitivity imply mutually best.

It is an open question whether Lemma 4 holds on the domain of solvable roommate mar-
kets without using Maskin monotonicity. We discuss the reason why the proof strategy used to
strengthen Lemma 3 by dropping Maskin monotonicity will not work for Lemma 4 in Appendix C.
Interestingly, this illustrates that competition and resource sensitivity are not as symmetric as our
main results suggest. In Appendix C we also illustrate the complication that occurs without Maskin
monotonicity in the following proof by means of an example.

Proof. Let ϕ be a solution on (a) the domain of solvable roommate markets or (b) the domain
of all roommate markets that satisfies unanimity, Maskin monotonicity, and resource sensitivity,
but not mutually best. Thus, there exists a (solvable) roommate market (N,R) and a matching
µ ∈ ϕ(N,R) such that agents i and j are mutually best and µ(i) 6= j.

We define R̃ ∈ RN as follows. For any k ∈ N \ {i, j} we define R̃k ∈ L(N) by moving µ(k) on
top of agent k’s preferences, i.e., for all k ∈ N \{i, j}, R̃k = R

µ(k)
k . Let R̃i = Ri and R̃j = Rj . Note

that (N, R̃) is solvable12 and that R̃ is a Maskin monotonic transformation of R at µ. Hence, by
Maskin monotonicity, µ ∈ ϕ(N, R̃).

Let N̄ = [N \{µ(i), µ(j)}]∪{i, j} and define R̄ ∈ RN̄ as the reduction of R̃ to N̄ , i.e., R̄ = R̃|N̄ .
There exists a unanimously best matching ν̄ for (N̄ , R̄): ν̄ matches agent i with agent j and all
agents in N̄ \{i, j} according to µ. Hence, by unanimity, ϕ(N̄ , R̄) = {ν̄}. Without loss of generality
assume that µ(i) ∈ N \ {i} or µ(j) ∈ N \ {j} (otherwise (N̄ , R̄) = (N, R̃) and ϕ(N̄ , R̄) = {ν̄}
contradicts µ ∈ ϕ(N, R̃)).

14Roommate market (N̂ , R̂) has a unique core allocation that matches agent i with agent j, agent µ(i) with agent
k̄, agent µ(j) with agent k̂, and all agents in N̂ \ {i, j, µ(i), k̄, µ(j), k̂} according to µ.
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If µ(i) ∈ N \{i}, consider the extension (N̂ , R̂) of (N̄ , R̄) such that N̂ = N̄∪{µ(i)} and R̂ ∈ RN̂
is the reduction of R̃ to N̂ , i.e., R̂ = R̃|N̂ . Note that (N̂ , R̂) is solvable.15 By resource sensitivity,

for all µ̂ ∈ ϕ(N̂ , R̂) there exists µ̄ ∈ ϕ(N̄ , R̄) such that for all i′, j′ ∈ N̄ [possibly i′ = j′] that were
matched at µ̄ at least one is better off. Since ϕ(N̄ , R̄) = {ν̄} was unanimously best and no agent
k ∈ N̄ prefers the newcomer µ(i) to his match ν̄(k), by resource sensitivity, ϕ(N̂ , R̂) = {ν̂} where
ν̂ is such that for all k ∈ N̄ , ν̂(k) = ν̄(k) and ν̂(µ(i)) = µ(i).

If µ(j) ∈ N \ {j}, consider the extension (N, R̃) of (N̂ , R̂). Recall that (N, R̃) is solvable. By
resource sensitivity, for all µ̃ ∈ ϕ(N, R̃) there exists µ̂ ∈ ϕ(N̂ , R̂) such that for all i′, j′ ∈ N̂ [possibly
i′ = j′] that were matched at µ̂ at least one is better off. Since agents i and j are mutually best and
ϕ(N̂ , R̂) = {ν̂} with ν̂(i) = j, by resource sensitivity, for all µ̃ ∈ ϕ(N, R̃), µ̃(i) = j; contradicting
µ ∈ ϕ(N, R̃).

Lemma 5.

(a) On the domain of solvable roommate markets, mutually best and Maskin monotonicity imply
individual rationality.

(b) On the domain of all roommate markets, mutually best and Maskin monotonicity imply indi-
vidual rationality.

Proof. Let ϕ be a solution on (a) the domain of solvable roommate markets or (b) the domain of
all roommate markets that satisfies mutually best and Maskin monotonicity, but not individual
rationality. Thus, there exists a (solvable) roommate market (N,R), a matching µ ∈ ϕ(N,R), and
an agent i ∈ N such that i Pi µ(i).

We define R̃ ∈ RN by moving i on top of agent i’s preferences and, for any j 6= i, by moving
µ(j) on top of agent j’s preferences, i.e., R̃i = Rii and for all j ∈ N \ {i}, R̃j = R

µ(j)
j . Note that

(N, R̃) is solvable16 and that R̃ is a Maskin monotonic transformation of R at µ. Hence, by Maskin
monotonicity, µ ∈ ϕ(N, R̃). Let µ̃ be the matching obtained from µ by unmatching agents i and
µ(i). By mutually best, ϕ(N, R̃) = {µ̃}. Since µ̃ 6= µ this is a contradiction to µ ∈ ϕ(N, R̃).

3.2 Two Characterizations of the Core and two Impossibilities

Lemma 6.

(a) On the domain of solvable roommate markets, if a solution ϕ is mutually best and Maskin
monotonic, then it is a subsolution of the core, i.e., for all roommate markets (N,R),
ϕ(N,R) ⊆ core(N,R).

(b) On the domain of all roommate markets, no solution ϕ is mutually best and Maskin mono-
tonic.

Proof. Let ϕ be a solution on (a) the domain of solvable roommate markets or (b) the domain of all
roommate markets that satisfies mutually best and Maskin monotonicity. By Lemma 5, ϕ satisfies
individual rationality.

15Roommate market (N̂ , R̂) has a unique core allocation that matches agent i with agent j and all agents in
N̂ \ {i, j, µ(i)} according to µ – agent µ(i) is single.

16Roommate market (N, R̃) has a unique core allocation that matches all agents in N \ {i, µ(i)} according to µ –
agents i and µ(i) are single.
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To prove (a), suppose that there exists a solvable roommate market (N,R) such that ϕ(N,R) *
core(N,R). To prove (b), let (N,R) be an unsolvable roommate market. In both cases there exists
a matching µ ∈ ϕ(N,R) with a blocking pair {i, j} for µ. By individual rationality, i 6= j.

We define R̃ ∈ RN by moving j on top of agent i’s preferences, by moving i on top of agent
j’s preferences and, for any k ∈ N \ {i, j}, by moving µ(k) on top of agent k’s preferences, i.e.,
R̃i = Rji , R̃j = Rij , and for all k ∈ N \{i, j}, R̃k = R

µ(k)
k . Note that (N, R̃) is solvable17 and that R̃

is a Maskin monotonic transformation of R at µ. Hence, by Maskin monotonicity, µ ∈ ϕ(N, R̃). By
mutually best, for all µ̃ ∈ ϕ(N, R̃), µ̃(i) = j. Since µ(i) 6= j this is a contradiction to µ ∈ ϕ(N, R̃).

For (a) this proves that ϕ(N,R) ⊆ core(N,R) and for (b) this proves that mutually best and
Maskin monotonicity are not compatible on the general domain of roommate markets.

Lemma 7. On the domain of solvable roommate markets, there exists no Maskin monotonic strict
subsolution of the core.

Proof. Sönmez’s (1996) Theorem 1 applies to the domain of solvable roommate markets and it
therefore shows that if a rule ϕ is Pareto optimal, individually rational, and Maskin monotonic,
then it is a supersolution of the core, i.e., for all solvable roommate markets (N,R), ϕ(N,R) ⊇
core(N,R). Thus, since any subsolution of the core satisfies Pareto optimality and individual
rationality, there exists no Maskin monotonic strict subsolution of the core on the domain of
solvable roommate markets.

Theorem 1. Two Characterizations of the Core
On the domain of solvable roommate markets,
(a) a solution ϕ satisfies unanimity, Maskin monotonicity, and competition sensitivity if and only

if it equals the core;

(b) a solution ϕ satisfies unanimity, Maskin monotonicity, and resource sensitivity if and only if
it equals the core.

Proof. Let ϕ be a solution on the domain of solvable roommate markets.
By Propositions 1 and 2, the core satisfies all properties listed in the theorem.
(a) Let ϕ satisfy unanimity, Maskin monotonicity, and competition sensitivity. Then, by Lemma 3
(a), ϕ satisfies mutually best.
(b) Let ϕ satisfy unanimity, Maskin monotonicity, and resource sensitivity. Then, by Lemma 4 (a),
ϕ satisfies mutually best.
Thus, ϕ satisfies Maskin monotonicity and mutually best. Hence, by Lemma 6 (a), ϕ is a subsolu-
tion of the core. Since on the domain of solvable roommate markets no Maskin monotonic strict
subsolution of the core exists (Lemma 7), it follows that ϕ = core.

Theorem 2. Two Impossibility Results
On the domain of all roommate markets,
(a) no solution ϕ satisfies unanimity, Maskin monotonicity, and competition sensitivity;

(b) no solution ϕ satisfies unanimity, Maskin monotonicity, and resource sensitivity.

17Roommate market (N, R̃) has a unique core allocation that matches agent i with agent j and all agents in
N \ {i, j, µ(i), µ(j)} according to µ – agent(s) µ(i) and µ(j) are either single or, if mutually acceptable, matched with
each other.
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Proof. Let ϕ be a solution on the domain of all roommate markets.
(a) Let ϕ satisfy unanimity, Maskin monotonicity, and competition sensitivity. Then, by Lemma 3
(b), ϕ satisfies mutually best.
(b) Let ϕ satisfy unanimity, Maskin monotonicity, and resource sensitivity. Then, by Lemma 4 (b),
ϕ satisfies mutually best.
Thus, ϕ satisfies Maskin monotonicity and mutually best; contradicting Lemma 6 (b).

We next show the independence of properties in Theorem 1.

The solution ϕ̃ on the domain of solvable roommate markets that always assigns the matching
at which all agents are single satisfies Maskin monotonicity, competition and resource sensitivity,
but not unanimity.

On the domain of solvable roommate markets, any strict subsolution of the core satisfies unanim-
ity, competition and resource sensitivity (Proposition 2), but not Maskin monotonicity (Lemma 7).

The Pareto solution PO on the domain of solvable roommate markets satisfies unanimity and
Maskin monotonicity, but – as the following two examples demonstrate – neither competition nor
resource sensitivity.

Example 2. The Pareto Solution is not Competition Sensitive
Consider the solvable roommate markets (N,R) and (N ′, R′) such that

N = {1, 2} N ′ = {1, 2, 3}

R1 : 1, 2 R′1 : 1, 2, 3
R2 : 1, 2 R′2 : 3, 1, 2

R′3 : 2, 3, 1

core(N,R) = {µ̄} core(N ′, R′) = {µ′}
µ̄ = (1, 2) µ′ = (1, 3, 2)

Let µ = (2, 1). Then, PO(N,R) = {µ, µ̄} and PO(N ′, R′) = {µ′}. Thus, for µ ∈ PO(N,R) there
exists µ′ ∈ PO(N ′, R′) such that agent 1 is newly self-matched at µ′ and better off. Hence, PO
violates competition sensitivity. �

Example 3. The Pareto Solution is not Resource Sensitive
Consider the solvable roommate markets (N,R) and (N ′, R′) such that

N = {1} N ′ = {1, 2}

R1 : 1 R′1 : 1, 2
R′2 : 1, 2

core(N,R) = {µ} core(N ′, R′) = {µ̄}
µ = (1) µ̄ = (1, 2)

Let µ′ = (2, 1). Then, PO(N,R) = {µ} and PO(N ′, R′) = {µ′, µ̄}. Thus, for µ′ ∈ PO(N ′, R′)
there exists µ ∈ PO(N,R) such that agent 1 was self-matched at µ and is worse off at µ′. Hence,
PO violates resource sensitivity. �
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Finally, we briefly discuss the relation between both sensitivity conditions. Proposition 2 implies
that competition and resource sensitivity are equivalent under stability. The following two solutions
demonstrate that competition and resource sensitivity are logically independent. Let ϕ̂ be the
solution on the domain of solvable roommate markets that always assigns the matching where all
mutually best agents are mates and everybody else is single.

The following solution ϕCS on the domain of solvable roommate markets satisfies competition
sensitivity, but not resource sensitivity. For all solvable roommate markets (N,R),

ϕCS(N,R) =
{
S(N,R) if 1 6∈ N,
ϕ̂(N,R) if 1 ∈ N.

The following solution ϕRS on the domain of solvable roommate markets satisfies resource
sensitivity, but not competition sensitivity. For all solvable roommate markets (N,R),

ϕRS(N,R) =
{
ϕ̂(N,R) if 1 6∈ N,
S(N,R) if 1 ∈ N.

3.3 Marriage Market Results

Because we can easily adjust our proofs for the domain of marriage markets,18 our results imply
one of Toda’s results.

Corollary 1. (Toda, 2006, Theorem 3.1)
On the domain of marriage markets, the core is the unique solution satisfying weak unanimity,
own-side population monotonicity, and Maskin monotonicity.

Finally, our results imply a new characterization of the core for marriage markets.

Corollary 2.
On the domain of marriage markets, the core is the unique solution satisfying weak unanimity,
other-side population monotonicity, and Maskin monotonicity.

18One only has to carefully choose the gender of newcomers in proofs.
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Appendix

A Solution ϕ̄ is not Population Monotonic

Definition 12. Solution ϕ̄ defined on the domain of marriage markets
We denote the single-valued solution that assigns to any marriage market its man-optimal [woman-
optimal] stable matching by ϕM [ϕW ]. Then, for all marriage markets (N,R),

ϕ̄(N,R) =
{
ϕM (N,R) if maxN is a man,
ϕW (N,R) if maxN is a woman.

In order to guarantee that ϕ̄ 6= ϕW [ϕM ], we assume that there exist women w1, w2 ∈ N and men
m1,m2 ∈ N such that w1 < m1 and m2 < w2 (otherwise we relabel the agents in order to define
ϕ̄ 6= ϕW [ϕM ]).

Proposition 3. On the domain of marriage markets, solution ϕ̄ is individually rational, competi-
tion and resource sensitive, but neither own-side nor other-side population monotonic.

Proof. Since ϕ̄ is a stable solution on the domain of marriage markets, it satisfies individual ratio-
nality and both sensitivity conditions (Proposition 2). The following examples demonstrate that ϕ̄
is neither own-side nor other-side population monotonic. Assume that agents 1,2, and 5 are men
and agents 3 and 4 are women and consider roommate markets (N,R) and (N ′, R′) such that

N = {1, 2, 3, 4} N ′ = {1, 2, 3, 4, 5}

R1 : 3, 4, 1, 2 R′1 : 3, 4, 1, 2, 5
R2 : 4, 3, 2, 1 R′2 : 4, 3, 2, 1, 5
R3 : 2, 1, 3, 4 R′3 : 2, 1, 3, 4, 5
R4 : 1, 2, 4, 3 R′4 : 1, 2, 4, 3, 5

R′5 : 5, . . .

ϕ̄(N,R) = {µ̄} ϕ̄(N ′, R′) = {µ′}
µ̄ = (4, 3, 2, 1) µ′ = (3, 4, 1, 2, 5)

At marriage market (N,R) woman 4 determines that the woman-optimal stable matching is chosen
at ϕ̄(N,R) and man 1 is matched to woman 4 – his second choice. At marriage market (N ′, R′),
man 5 causes a switch to the man-optimal stable matching at ϕ̄(N ′, R′) and man 1 is now matched
to woman 3 – his first choice. This is a violation of own-side population monotonicity. On the other
hand, at marriage market (N,R) woman 3 is matched to man 2 – her first choice. At marriage
market (N ′, R′), woman 3 is matched to man 1 – her second choice. This is a violation of other-side
population monotonicity.
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B Straightforward Extensions of Population Monotonicity for
Roommate Markets

Definition 13. Own-Side Population Monotonicity (?)
A solution ϕ on D is own-side population monotonic (?) if the following holds. Let (N,R) ∈ D be
a roommate market and assume that (N ′, R′) ∈ D, N ′ = N ∪ {n}, is an extension of (N,R) and
U(N ′, R′, n) denotes the agents in N that find agent n unacceptable. Then, for all µ ∈ ϕ(N,R)
there exists µ′ ∈ ϕ(N ′, R′) such that for all i ∈ U(N ′, R′, n), µ(i)Ri µ′(i).

Definition 14. Other-Side Population Monotonicity (?)
A solution ϕ on D is other-side population monotonic (?) if the following holds. Let (N,R) ∈ D

be a roommate market and assume that (N ′, R′) ∈ D, N ′ = N ∪ {n}, is an extension of (N,R)
and A(N ′, R′, n) denotes the agents in N that find agent n acceptable. Then, for all µ′ ∈ ϕ(N ′, R′)
there exists µ ∈ ϕ(N,R) such that for all i ∈ A(N ′, R′, n), µ′(i)Ri µ(i).

Proposition 4. On the domain of all roommate markets, no solution ϕ satisfies Pareto optimality,
mutually best, and own-side population monotonicity (?) [other-side population monotonicity (?)].

Proof. Let ϕ be a solution on the domain of all roommate markets that satisfies Pareto optimality
and mutually best. Consider roommate markets (N,R) and (N ′, R′) such that

N = {1, 2, 3} N ′ = {1, 2, 3, 4}

R1 : 2, 1, 3 R′1 : 2, 1, 3, 4
R2 : 3, 1, 2 R′2 : 4, 3, 1, 2
R3 : 2, 3, 1 R′3 : 4, 2, 3, 1

R′4 : 3, 4, . . .

Since ϕ satisfies mutually best, for all µ ∈ ϕ(N,R), µ(2) = 3 and for all µ′ ∈ ϕ(N ′, R′), µ′(3) = 4.
Then, for all µ ∈ ϕ(N,R), µ(1) 6= 2 and by Pareto optimality, µ′(1) = 2. Hence, in contradiction
to own-side population monotonicity (?), agent 1 ∈ U(N ′, R′, 4) always prefers his mate at (N ′, R′)
to that at (N,R). On the other hand, in contradiction to other-side population monotonicity (?),
agent 2 ∈ A(N ′, R′, 4) always prefers his mate at (N,R) to that at (N ′, R′).

C Stronger Versions of Lemmas 3 and 4

The following example illustrates the difficulty we would encounter if we drop Maskin monotonicity
from the proof of Lemma 3.

Example 4. The following two roommate markets (N,R) and (N̄ , R̄) are possible in the proof
of Lemma 3 if no Maskin monotonic transformation is applied in the beginning of the proof (we
assume µ(i) 6= i and µ(j) = j).
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N = {i, µ(i), j, 1, 2, 3} N̄ = N ∪ {k̄}

Ri : j, i, . . . R̄i : j, i, k̄, . . .
Rj : i, j, . . . R̄j : i, j, k̄, . . .
R1 : µ(i), 2, 3, 1, . . . R̄1 : µ(i), 2, 3, 1, k̄, . . .
R2 : 3, 1, 2, . . . R̄2 : 3, 1, 2, k̄, . . .
R3 : 1, 2, 3, . . . R̄3 : 1, 2, 3, k̄, . . .
Rµ(i) : i, 1, µ(i) . . . R̄µ(i) : k̄, i, 1, µ(i), . . .

R̄k̄ : µ(i), k̄, . . .

Note that the roommate market (N,R) is solvable and has a unique core allocation that matches
agent i with agent j, agent µ(i) with agent 1, and agent 2 with agent 3. However, the roommate
market (N̄ , R̄) that resulted by adding newcomer k̄ as in the proof of Lemma 3 is not solvable: at
any stable matching agent i should be matched with agent j and agent µ(i) should be matched
with agent k̄. However, then there exists a “roommate cycle” for the remaining agents 1, 2, and 3
– they can never be matched in a stable way. �

Next, we illustrate the difficulty we would encounter if we drop Maskin monotonicity from the
proof of Lemma 4.

Example 5. The following two roommate markets (N,R) and (N̄ , R̄) are possible in the proof
of Lemma 4 if no Maskin monotonic transformation is applied in the beginning of the proof (we
assume µ(i) 6= i and µ(j) = j).

N = {i, µ(i), j, 1, 2, 3} N̄ = N \ {µ(i)}

Ri : j, i, . . . R̄i : j, i, . . .
Rj : i, j, . . . R̄j : i, j, . . .
R1 : µ(i), 2, 3, 1, . . . R̄1 : 2, 3, 1, . . .
R2 : 3, 1, 2, . . . R̄2 : 3, 1, 2, . . .
R3 : 1, 2, 3, . . . R̄3 : 1, 2, 3, . . .
Rµ(i) : i, 1, µ(i) . . .

Note that the roommate market (N,R) is solvable (see Example 4). However, the roommate market
(N̄ , R̄) that resulted by removing agents µ(i) and µ(j) as in the proof of Lemma 4 is not solvable:
at any stable matching agent i should be matched with agent j and as in Example 4 we are left
with a “roommate cycle” for the remaining agents 1, 2, and 3 – they can never be matched in a
stable way. �

We will use the following weaker unanimity condition to strengthen Lemmas 3 and 4.

Definition 15. Weak Unanimity
Let (N,R) be a roommate market, |N | even, and µ be a complete matching19 such that for all
i, j ∈ N , µ(i) Ri j. Then, µ is the unanimously best complete matching for (N,R). A solution
ϕ on D is weakly unanimous if it chooses the unanimously best complete matching whenever it
exists, i.e., for all roommate markets (N,R) ∈ D with a unanimously best complete matching µ,
ϕ(N,R) = {µ}.

19A matching is complete if it partitions the set of agents into pairs, i.e., it contains no singletons.
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Next, we strengthen Lemma 3 in two ways. First, we replace unanimity by weak unanimity and
second, we drop Maskin monotonicity.

Lemma 3’.

(a) On the domain of solvable roommate markets, weak unanimity and competition sensitivity
imply mutually best.

(b) On the domain of all roommate markets, weak unanimity and competition sensitivity imply
mutually best.

Proof. Let ϕ be a solution on (a) the domain of solvable roommate markets or (b) the domain of
all roommate markets that satisfies weak unanimity and competition sensitivity, but not mutually
best. Thus, there exists a (solvable) roommate market (N,R) and a matching µ ∈ ϕ(N,R) such
that for two agents i and j that are mutually best, µ(i) 6= j.

First, if roommate market (N,R) is solvable, we add newcomers in order to guarantee solvability
in later steps. Thus, if (N,R) is solvable then first go to Step 1 and otherwise go to Step 2
immediately.
Step 1: Guaranteeing Solvability
Assume that roommate market (N,R) is solvable and let µ′ ∈ S(N,R).

Let k1, k2 be such that k1 6= k2 and µ′(k1) = k2. Consider the extension (N1, R1) of (N,R)
that is obtained by adding a newcomer k′1 such that agent k1 immediately prefers k′1 after k2,
agent k′1 finds only agent k1 acceptable, and k′1 is unacceptable for all other agents k ∈ N \ {k1},
i.e., N1 = N ∪ {k′1} and R1 is such that [k2 P

1
k1
k′1 and for no k ∈ N , k2 P

1
k1
k P 1

k1
k′1)] and for

all k ∈ N \ {k1}, k1 P
1
k′1
k′1 P

1
k′1
k and k P 1

k k
′
1. Note that (N1, R1) is solvable.20 By competition

sensitivity, for µ ∈ ϕ(N,R), there exists µ1 ∈ ϕ(N1, R1) such that for all i′, j′ ∈ N [possibly i′ = j′]
that are newly matched at µ1 at least one is worse off. Hence, there exists µ1 ∈ ϕ(N1, R1) such
that µ1(i) 6= j (agents i and j are still mutually best at (N1, R1)).

Next, we consider the extension (N2, R2) of (N1, R1) that is obtained by adding a newcomer
k′2 such that agent k2 immediately prefers k′2 after k1, agent k′2 finds only agent k2 acceptable, and
k′2 is unacceptable for all other agents k ∈ N1 \ {k2}, i.e., N2 = N1 ∪ {k′2} and R2 is such that
[k1 P

2
k2
k′2 and for no k ∈ N1, k1 P

2
k2
k P 2

k2
k′2)] and for all k ∈ N1 \ {k1}, k2 P

2
k′2
k′2 P

2
k′2
k and k P 2

k k
′
2.

Similarly as before it follows that (N2, R2) is solvable and there exists µ2 ∈ ϕ(N2, R2) such that
µ2(i) 6= j (agents i and j are still mutually best at (N2, R2)).

Note that we add newcomers as described above for all k1, k2 such that k1 6= k2 and µ′(k1) = k2.
This results in a solvable roommate market that for notational convenience we also denote by (N,R).
For this matching market (N,R) there exists a corresponding stable matching µ′ and a matching
µ ∈ ϕ(N,R) such that for two mutually best agents i and j, µ(i) 6= j. The difference between
this roommate market (N,R) and the original market is that now a newcomer who is added in
the sequel will not cause instability because an agent k who is unmatched by the newcomer from
his original stable partner at µ′ can now match in a stable way with the added agent k′ instead of
creating a “roommate cycle” (as in Example 4).

20Roommate market (N1, R1) has at least the stable matching where all agents in N are matched according to µ′

and agent k′1 is single.
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Step 2: Without loss of generality assume that N \ {i, j} = {1, 2, . . . , l}. First, consider the
extension (N1, R1) of (N,R) that is obtained by adding a newcomer k1 such that agents 1 and k1

are mutually best and k1 is unacceptable for all other agents in {2, . . . , l}, i.e., N1 = N ∪ {k1} and
R1 is such that . By competition sensitivity, for µ ∈ ϕ(N,R), there exists µ1 ∈ ϕ(N1, R1) such that
for all i′, j′ ∈ N [possibly i′ = j′] that are newly matched at µ1 at least one is worse off. Hence,
there exists µ1 ∈ ϕ(N1, R1) such that µ1(i) 6= j. Note that the pairs {i, j} and {1, k1} consist of
mutually best agents.

We continue adding newcomers k2, . . . , kl in a similar fashion and end up with a (solvable)
roommate market (N l, Rl) such that there exists µl ∈ ϕ(N l, Rl) with µl(i) 6= j. Note that at
(N l, Rl) we can partition N l in pairs {i, j}, {1, k1}, . . . , {l, kl} of mutually best agents. Hence, a
unanimously best complete matching ν for (N l, Rl) exists: ν matches agent i with agent j, agent 1
with agent k1, etc. Hence, by weak unanimity, ϕ(N l, Rl) = {ν}, contradicting µl ∈ ϕ(N l, Rl).

Finally, we strengthen Lemma 4 by replacing unanimity by weak unanimity. We discuss the
difficulties that occur when dropping Maskin monotonicity after the proof.

Lemma 4’.

(a) On the domain of solvable roommate markets, weak unanimity, Maskin monotonicity, and
resource sensitivity imply mutually best.

(b) On the domain of all roommate markets, weak unanimity, Maskin monotonicity, and resource
sensitivity imply mutually best.

Proof. Let ϕ be a solution on (a) the domain of solvable roommate markets or (b) the domain of
all roommate markets that satisfies weak unanimity, Maskin monotonicity, and resource sensitivity,
but not mutually best. Thus, there exists a (solvable) roommate market (N,R) and a matching
µ ∈ ϕ(N,R) such that agents i and j are mutually best and µ(i) 6= j.

We define R̃ ∈ RN as follows. For any k ∈ N \ {i, j} we define R̃k ∈ L(N) by moving µ(k) on
top of agent k’s preferences, i.e., for all k ∈ N \{i, j}, R̃k = R

µ(k)
k . Let R̃i = Ri and R̃j = Rj . Note

that (N, R̃) is solvable12 and that R̃ is a Maskin monotonic transformation of R at µ. Hence, by
Maskin monotonicity, µ ∈ ϕ(N, R̃), agents i and j are mutually best and µ(i) 6= j.

We ‘partition’ the set N \{µ(i), µ(j)} as follows. First, N̄ contains agents i and j and all pairs of
distinct agents that are matched according to µ, i.e., N̄ = [{i′ ∈ N \{µ(i), µ(j)} | µ(i′) 6= i′}∪{i, j}].
Second, we denote the possibly empty set of remaining agents (who are all single under µ) by
{1, . . . , l}, i.e., {1, . . . , l} = {i′ ∈ N \ {i, j, µ(i), µ(j)} | µ(i′) = i′}.

Consider the restriction R̄ = R̃N̄ . There exists a unanimously best complete matching ν̄ for
(N̄ , R̄): ν̄ matches agent i with agent j and all other agents in N̄ according to µ. Hence, by weak
unanimity, ϕ(N̄ , R̄) = {ν̄}.

Consider the extension (N1, R1) of (N̄ , R̄) that is obtained by adding newcomer 1 such that
N1 = N̄ ∪{1} and R1 = R̃N1 . Note that (N1, R1) is solvable.21 Since ϕ(N̄ , R̄) = {ν̄}, all agents at
ν̄ are mutually best, and no agent in N̄ prefers the newcomer to his match, by resource sensitivity,
ϕ(N1, R1) = {ν1} where ν1 is such that for all i′ ∈ N̄ , ν1(i′) = ν̄(i′) and ν1(1) = 1.

21Roommate market (N1, R1) has a unique core allocation ν1 that matches all agents in N̄ according to ν̄ and
agent 1 is single.
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Let k ∈ {1, . . . , l− 1} and consider the extension (Nk+1, Rk+1) of (Nk, Rk) that is obtained by
adding newcomer k+1 such that Nk+1 = Nk∪{k+1} and Rk+1 = R̃Nk+1 . Note that (Nk+1, Rk+1)
is solvable.22 Since ϕ(Nk, Rk) = {νk}, all agents at νk are mutually best, and no agent in Nk prefers
the newcomer to his match, by resource sensitivity, ϕ(Nk+1, Rk+1) = {νk+1} where νk+1 is such
that for all i′ ∈ Nk, νk+1(i′) = νk(i′) and νk+1(k + 1) = k + 1.

Hence, after adding l newcomers to N̄ , we obtain a solvable roommate market (N l, Rl) such
that N l = N \ {µ(i), µ(j)} and Rl = R̃N l .

If µ(i) ∈ N \ {i}, consider the extension (N l+1, Rl+1) of (N l, Rl) that is obtained by adding
newcomer µ(i) such that N l+1 = N l ∪ {µ(i)} and Rl+1 = R̃N l+1 . Note that (N l+1, Rl+1) is
solvable.23 Since ϕ(N l, Rl) = {νl}, all agents at νl are mutually best, and no agent in N l prefers
the newcomer to his match, by resource sensitivity, ϕ(N l+1, Rl+1) = {νl+1} where νl+1 is such that
for all i′ ∈ N l, νl+1(i′) = νl(i′) and νl+1(µ(i)) = µ(i). If µ(i) = i, set (N l+1, Rl+1) = (N l, Rl) and
νl+1 = νl.

If µ(j) ∈ N \ {j}, consider the extension (N, R̃) of (N l + 1, Rl+1). Recall that (N, R̃) is
solvable. Since ϕ(N l+1, Rl+1) = {νl+1}, agents i and j are mutually best at νl+1, and neither
agent i nor agent j prefers the newcomer to his match, by resource sensitivity, for all µ̃ ∈ ϕ(N, R̃),
µ̃(i) = j; contradicting µ ∈ ϕ(N, R̃) and µ(i) 6= j. If µ(j) = j, then (N, R̃) = (N l+1, Rl+1) and
ϕ(N, R̃) = {νl+1} such that νl+1(i) = j; contradicting µ ∈ ϕ(N, R̃) and µ(i) 6= j.

Finally we would like to comment why dropping Masking monotonicity is more difficult when
resource sensitivity instead of competition sensitivity is used. Analyzing the proofs of Lemmas 3 and
4 we can – loosely speaking – say that competition sensitivity allows us to add agents to a roommate
market and that resource sensitivity allows us to remove agents from a roommate market in order to
obtain a roommate market for which unanimity narrows down the solution to a (weakly) unanimous
matching. While it is always possible to create this unanimous solvable roommate market by adding
extra agents (see Proof of Lemma 3’) it might not be possible to create such a unanimous solvable
roommate market by removing agents one at a time. The following example is a solvable roommate
market from which we cannot remove any agent without destroying solvability.

Example 6. The following two roommate markets (N,R) illustrates the difficulty of dropping
Maskin monotonicity from Lemma 4.

N = {1, 2, 3, 4}

R1 : 2, 3, 4, 1
R2 : 3, 4, 1, 2
R3 : 4, 1, 2, 3
R4 : 1, 2, 3, 4

The unique stable matching for (N,R) matches agents 1 and 3 and agents 2 and 4. Removing any
of the agents creates a “roommate cycle” for the remaining agents and the restricted roommate
market is not solvable. �

22Roommate market (Nk+1, Rk+1) has a unique core allocation νk+1 that matches all agents in Nk according to
νk and agent k + 1 is single.

23Roommate market (N l+1, Rl+1) has a unique core allocation νl+1 that matches all agents in N l according to νl

and agent µ(i) is single.
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