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Abstract.  Conditions one might impose on fair allocation procedures are introduced.  Nondiscrimination 
requires that agents share an item in proportion to their entitlements if they receive nothing else.  The 
“price” procedures of Pratt (2007), including the Nash bargaining procedure, satisfy this.  Other 
prominent efficient procedures do not.  In two-agent problems, reducing the feasible set between the 
solution and one agent’s maximum point increases the utility cost to that agent of providing any given 
utility gain to the other and is equivalent to decreasing the dispersion of the latter’s values for the items 
he does not receive without changing their total.  One-agent monotonicity requires that such a change 
should not hurt the first agent, limited monotonicity that the solution should not change.  For prices, the 
former implies convexity in the smaller of the two valuations, the latter linearity.  In either case, the 
price is at least their average and hence spiteful. 
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1.  Introduction and summary 
 We consider allocation and bargaining problems and introduce conditions that one might expect 
fair procedures to satisfy.  The first condition, “nondiscrimination,” applies to allocation.  In the simplest 
case it asserts that, if two agents with equal entitlements receive probability shares of the same item and 
no chance of any other, then their shares should be equal.  It is a very special case of envy-free and 
hence is satisfied by what we shall call here “price procedures,” which are defined below and by Pratt 
(2007) and include the Nash bargaining procedure.  It is not satisfied by other prominent efficient 
procedures, however.  Symmetric problems with just two items and an even number of agents provide a 
striking example.  Furthermore, envy-free completely determines the solution in such problems, and 
nearly determines it in many other problems with just two items.  It does not do so, however, in 
problems with just two items and two agents.  Indeed, when one agent is indifferent between the two 
items, these problems afford a natural way to assess a price function.  The bounds on a price function 
implied by a finite number of such assessments are easily derived but disappointingly weak.  The 
convexity implied by a monotonicity condition introduced below strengthens them considerably but still 
leaves much to smoothing. 
 The remaining conditions we consider apply to two agents and arbitrary feasible sets.  They are 
weakenings of the Kalai-Smorodinsky (1975) monotonicity axiom, which asserts that, if the feasible set 
is enlarged without changing either agent’s maximum utility, neither agent should lose.  Suppose instead 
that the feasible set is enlarged only on one side of the solution in joint utility space, that is, between the 
solution and one agent’s maximum point.  (In allocation problems with additive utilities, this region 
corresponds to the items allocated to the other agent.)  “Limited monotonicity” asserts that neither agent 
should lose, or equivalently, the allocation should not change.  “One-agent monotonicity” asserts that 
the first agent should not lose.  The following example motivates these definitions.  Suppose one agent 
receives two items whose values (utilities) to him are equal and to the other are unequal, say c and d.  
How should the allocation change if c and d are replaced by their average?  The replacement reduces the 
feasible region and increases the utility cost to the first agent of providing any given utility gain to the 
second, while c + d is the second agent’s foregone utility in both cases, and how it is divided between 
the two items in question does not matter to either agent.  One might think, then, that the allocation 
should not change, or at least the first agent should not lose.  These are limited monotonicity and one-
agent monotonicity respectively.  As this example suggests, enlarging the feasible region over part of the 
frontier is equivalent to increasing the dispersion of one agent’s values for the corresponding items 
without changing their total.  (We assume throughout that an agent’s utility for an allocation is the sum 
of his values for the items he receives.) 
 For price procedures, limited monotonicity implies that the price of an item is a linear 
combination of the two agents’ valuations, while one-agent monotonicity implies that the price is 
convex in the smaller valuation when the larger is fixed.  In either case, uniqueness implies that the price 
is at least the average of the two valuations.  Hence a price procedure that satisfies even the one-agent  
monotonicity condition cannot satisfy also the “no spite” condition that an agent should not be penalized 
for receiving an item no one else wants.  For equal entitlements and a differentiable frontier, limited 
monotonicity and no-spite together imply that at any efficient solution, the slope of the frontier equals 
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minus the ratio of the two agents’ utilities foregone, or equivalently, on the tangent to the frontier at the 
solution, the solution is midway between the point where one agent receives his maximum and the point 
where the other does.  This alone sometimes determines the solution.  Similar results hold for any 
entitlements and frontiers.  
 Section 2 introduces nondiscrimination.  Results for two items appear in Section 3, for two 
agents in Section 4.  The Appendix defines the procedures mentioned here and quotes the results of Pratt 
(2007) used, with one correction.  The idea of the price procedures, roughly, is to scale the agents’ utility 
functions so that the market clears with the agents’ purchases proportional to their entitlements when the 
price of each item is a specified increasing function of its two highest scaled values x and y of the form 
f(x, y) = xg(y/x) where 0 ≤ y ≤ f(x, y) ≤ x.  For such a procedure to be unique, it is necessary that g(w)/√w 
be weakly decreasing in w and sufficient that it be strictly decreasing.  Borderline cases are special and 
not needed in this paper. 
  
2.  Nondiscrimination 
 For any allocation problem, fairness would seem to require at least the following condition. 

Nondiscrimination axiom: If two agents receive shares of the same item and no other, their shares 
should be proportional to their entitlements. 

 Envy-free is clearly much stronger.  Price procedures are envy-free and hence nondiscriminatory, 
but other notable procedures are not even nondiscriminatory, as the following theorem states. 

Theorem 1.  Price procedures, including the Nash procedure, satisfy the nondiscrimination axiom.  The 
equipartite (Adjusted Winner, equal-proportion-of-potential), discrete Raiffa, and KMP procedures, do 
not. 

 A particularly striking example of discrimination occurs in symmetric situations with equal 
entitlements.  Thus, in Table 1, item 1 is shared between the two agents who prefer it under all the 
procedures shown, as symmetry demands, but the one who prefers it more gets the smaller share under 
the equipartite, discrete Raiffa, and KMP procedures.  Though Agent 1 prefers item 1 by a factor of 10, 
he receives a significantly smaller share of it than Agent 2, who prefers it by a factor of only 2.  This is 
not just unfair, it is positively perverse. 

Table 1.  Discriminatory procedures 
                                                shares                                           
       values          equipartite  discrete Raiffa        KMP 
  item 1 item 2  item 1 item 2  item 1 item 2  item 1 item 2 
Agent 1 10 1  11/26    0  0.45    0  0.40    0 
Agent 2 2 1  15/26    0  0.55    0  0.60    0 
Agent 3 1 2     0 15/26     0 0.55     0 0.60 
Agent 4 1 10     0 11/26     0 0.45     0 0.40 
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3.  Sharing two items fairly among any number of individuals 
 Assume now that n agents are to share two items probabilistically, the agents' utilities are 
additive, and all agents desire both items.  Generalizing Table 1, we see that in symmetric problems with 
equal entitlements, two items, and an even number of agents none of whom are indifferent between the 
two, all efficient nondiscriminatory procedures agree and share each item equally among the agents who 
prefer it.  As background to further analysis, we observe that: 

Theorem 2.  An allocation of two items is efficient if and only if all agents whose valuations for item 1 
relative to item 2 exceed some critical value receive shares of item 1 only, while all agents whose 
relative valuations fall below this critical value receive shares of item 2 only.  Agents at the critical 
value, if any, may receive shares of both items. 

 Now suppose the agents have equal entitlements.  If an efficient allocation is nondiscriminatory, 
then all agents on the same side of the critical value must receive equal shares.  If an efficient allocation 
is envy-free, then not only is it nondiscriminatory, but also which agents share item 1 only is 
determined, and similarly for item 2.  Furthermore, the shares in the two items of the agents at the 
critical value are limited to a non-convex quadrilateral region determined by four inequalities expressing 
the requirements that they should neither envy nor be envied by the agents just below and just above the 
critical value.  Price procedures are envy-free in all additive allocation problems and hence they agree 
here except at the critical value, where they may differ.  The equipartite, discrete Raiffa, and KMP 
procedures are discriminatory in general, as noted above, and hence not envy free.  The case of only two 
types of agents is a trivial exception, and the only one at least for the equipartite procedure. 
 Pratt (2007, Example 4.1) suggests a way of assessing a price function based on assessing what 
would be fair in situations with two items and two agents, one of whom is indifferent between the two 
items.  To obtain the whole price function in this way without further assumptions would, however, 
require an assessment for every degree of preference by the other agent.  Let g(w) be the price of an item 
worth 1 to one agent and w < 1 to another.  What can one do with a finite number of assessed values, say 
g(wi) for 0 < w1 < w2 <…< wm < 1?  The uniqueness condition implies that g(wi)/√wi must be decreasing 
in i, and of course g(wi) must be increasing in i.  Given such values g(wi), upper and lower bounds on the 
whole price function are easily developed from the conditions that g(w)/√w be decreasing and g(w) 
increasing in w.  Specifically, for all i, g(wi)(w/wi)1/2 is a lower bound on g(w) for w < wi and an upper 
bound for w > wi, and these bounds are tight where they lie between g(wi−1) and g(wi+1).  Elsewhere in 
the interval (wi−1, wi) the lower bound is g(wi−1) and the upper bound is g(wi).  These bounds can be 
approached arbitrarily closely, but their graphs have horizontal steps.  If g is convex with g′(1) ≤ ½, 
which is stronger than g(w)/√w decreasing, then the piecewise linear bounds obtained in the usual way 
are tighter.  In either case, a suitable smoothness condition would greatly narrow them.  Finding and 
justifying such a condition is an open problem. 
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4.  Monotonicity conditions for two agents 
 We start with an example.  Suppose two agents are to share three items, which they value as in 
Table 2.  Assume 0 ≤ c ≤ d ≤ 1.  The efficient frontier is generated by giving A either a share of item 1, 
or item 1 and a share of item 2, or items 1 and 2 and a share (possibly 0) of item 3.  Since items 1 and 2 
together are worth no more to either agent than item 3, fairness dictates restricting consideration to the 
last case.  Suppose, then, that A receives items 1 and 2 while the two agents share item 3.  Since B's 
utility for items 1 and 2, the items denied him, is c + d, he doesn't care how this total is divided between 
them.  A cares still less.  It might be argued therefore that their shares of item 3 should depend only on c 
+ d.  We call this condition limited monotonicity. 

Table 2.  Two agents share three items 
              values                         shares                
  item 1 item 2 item 3  item 1 item 2 item 3  expenditures 
Agent A      1      1      2       1      1      α  2α + g(c) + g(d) 
Agent B      c      d      2       0      0   1 − α  2(1 − α) 
prices     g(c)    g(d)      2 

 For a price procedure with price function g, the market clears with equal weights on A and B and  
 α = ½ − [g(c) + g(d)]/4. (1) 
Then limited monotonicity requires that α depend only on c + d.  This is equivalent to requiring that g be 
linear.  It follows that the price of an item with scaled values u and v is f(u, v) = pu + (1 − p)v with ½ ≤ p 
≤ 1, the constraints on p being necessary and sufficient for uniqueness (by Corollary A2 in the 
Appendix).  Thus all price procedures that satisfy the condition are spiteful, the least spiteful being the 
simple average of the two highest values, which still charges an agent at least half his value for an item 
no matter how little other agents value it, indeed, even if they consider it worthless. 
 Notice that the frontier is piecewise linear with vertices where A’s utility is 0, 1, 2, or 4.  The 
slope of the first (left) piece is −c, of the second is −d, and of the third is −1.  As c and d change with c + 
d fixed, the vertex V1 where A’s utility is 1 goes up and down but the other vertices are fixed.  If, for 
example, c decreases and d increases by an equal amount, then V1 rises and the feasible region expands.  
Specifically, the frontier corresponding to items allocated to A moves up, reducing or leaving unchanged 
the utility cost to A of providing any given utility gain to B.  It might be argued that B should not lose by 
such a change, and hence, in the example, α should not increase.  We call this condition one-agent 
monotonicity.  It is weaker than limited monotonicity.  In the example above, it is equivalent to the 
condition that the price function g be convex, and we shall prove that the price must again be at least the 
average of the two highest values.  (We remark in passing that when c = d, Table 2 becomes equivalent 
to the situation in the last paragraph of Section 3.) 
 These conditions generalize immediately to arbitrary two-agent “bargaining” problems, that is, 
arbitrary convex, closed (finite) feasible sets in two dimensions.  One-agent monotonicity requires that 
if the feasible set is enlarged (frontier increased) between the solution and one agent’s maximum point 
(without changing the maximum), that agent should not lose.  Limited monotonicity requires that 
neither agent should lose by such an enlargement, or equivalently, the solution should not change.  Full 
(Kalai-Smorodinsky) monotonicity requires that, if the feasible set is enlarged in any way without 
changing either agent’s maximum utility, neither agent should lose.  Clearly the first is weaker than the 
second and the second than the third. 
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 For price procedures we have: 

Theorem 3.  In two-agent additive allocation problems, a price procedure satisfies one-agent 
monotonicity if and only if the price function is convex, and limited monotonicity if and only if the price 
function is linear.  In either case, the price is at least the average of the two highest scaled valuations, 
and this price function satisfies both conditions. 

Proof.  The only ifs are proved in the course of the discussion above.  The ifs are proved in the 
Appendix.  The last sentence of the theorem can be proved by means of Theorems 2 and 3 of Pratt 
(2007), quoted in the Appendix, and the fact that if g is a convex (or linear) function on [0, 1] such that 
g(w)/√w is decreasing and g(1) = 1, then g(w) ≥ (1 + w)/2.  ■ 
 As the example at the beginning of this section suggests, monotonicity is related to dispersion.  
Note first that, for two agents, every bargaining set can be approximated arbitrarily closely by the 
bargaining set of an additive allocation problem where one agent has equal values for all items, as 
follows.  Assume for convenience and without loss of generality that A’s utility is scaled so that its 
range over the feasible set is [0, 1].  Let there be m items, each of value 1/m to A.  Let v(u) be B’s utility 
at the efficient point where A’s utility is u and let B’s value for item i be bi = v((i–1)/m) − v(i/m).  Then 
bi ≤ bi+1 by concavity of v, and Σj≤ibj = v(0) – v(i/m).  Thus the frontier of the additive allocation problem 
with these values agrees with v at i/m and is piecewise linear between them.  Defining “increased 
dispersion” by second-order dominance, we have: 

Theorem 4.  In a two-agent additive allocation problem, increasing the efficient frontier over an interval 
is equivalent to increasing the dispersion of one agent’s values in that interval without changing their 
mean. 

Proof.  Since v(0) – v(i/m) is the sum of the bj to the left of i/m, the frontier is a piecewise linear 
approximation to the integrated quantile function of the bi, inverted and displaced vertically by v(0).  
Increasing the frontier over an interval is therefore equivalent to decreasing the integrated quantile 
function in an interval.  By an argument like that in Machina and Pratt (1997, Section 3), this is 
equivalent to increasing the integrated cumulative function over the same interval, and hence to 
increasing the dispersion in that interval without changing the mean.  ■ 
 In the context of additive allocation problems, one-agent monotonicity requires that increasing 
the dispersion of one agent’s values for items he does not receive should not hurt that agent; limited 
monotonicity requires that the solution should not change.  It is assumed throughout that the total of the 
first agent’s values does not change and that their ratios to the second agent’s values remain smaller for 
the items he does not receive than for the items he receives. 
 What follows from limited monotonicity and no spite alone? 

Theorem 5.  In a two-agent allocation or bargaining problem, if an efficient solution satisfies the limited 
monotonicity and no-spite conditions, then the slope of the frontier at the solution equals minus the ratio 
of the two agents’ utilities foregone times the ratio of their entitlements.  Specifically, if the agents have 
utilities u and v and the frontier is given by v(u) and the solution is (u0, v0), then v′(u0) = −ρ(vmax − 
v0)/(umax – u0) where umax and vmax are the maximum feasible values of u and v and ρ is the ratio of the 
entitlement of the agent with utility v to that of the agent with utility u.  If v′(u0) does not exist, then it is 
replaced by the interval between the lower and upper derivatives and = by ∍ (includes). 
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Proof.  By limited monotonicity, the solution does not change when the feasible region is enlarged as far 
as the tangent to the frontier at the solution.  No spite then implies that the solution is the same as that 
for the triangular region bounded by the tangent and the lines u = u1 and v = v1 where (u1, vmax) and 
(umax, v1) are the intersections of the tangent with the lines v = vmax and u = umax.  This is equivalent to a 
problem where the agents share a single item worth umax – u1 to one and vmax – v1 to the other.  In this 
problem, their shares must be proportional to their entitlements.  Therefore the solution is ρ times as far 
from (u1 , vmax) as from (umax, v1).  In particular, (v0 – v1) = ρ(vmax – v0).  Since (v0 – v1)/(u0 – umax) = 
v′(u0) or lies between the lower and upper derivatives of v(u) at u0, the conclusion follows.  ■ 
 To obtain a feeling for the implications of Theorem 5, consider a feasible region whose frontier 
is given by the hyperbola (umax − u)(vmax − v) = 1 between two points L and R, say, with L to the left of 
R.  To the left of L, let the frontier be the tangent to this hyperbola at L, and similarly to the right of R.  
Then every point on the frontier between L and R satisfies the condition of Theorem 5, since v′ = −(vmax 
− v)/(umax − u).  If the frontier between L and R is replaced by an inscribed polygon, then the vertices 
and one point on each side of the polygon satisfy the condition.  On the other hand, if (umax − u)(vmax − 
v) is unimodal on the frontier, then the condition is satisfied only at its maximum. 
 
5.  Conclusion 
 Pitfalls lurk in the field of fair division.  Not all conditions one might hope for can be satisfied 
simultaneously.  However, some apparently plausible and widely proposed axioms and procedures have 
consequences whose undesirability clearly goes far beyond what can be excused in this way. 
 
Appendix 
 To avoid irrelevant complications, we assume unless stated otherwise that we are dealing with 
allocation problems where all agents have non-negative values for all items, additive utility functions, 
and equal entitlements, though some statements apply to more general feasible sets in the space of joint 
utilities.  We first define the procedures discussed here and then quote some results we need for price 
procedures, including one correction.  Pratt (2007) gives more details, proofs, and references. 
 The Nash procedure maximizes the product of the agents’ utility gains.  It is equivalent to a price 
procedure with price equal to maximum scaled value.  The equipartite procedure chooses the efficient 
point that gives each agent the same proportion of his maximum possible utility gain; if no such point 
exists, we treat the procedure as undefined.  The discrete Raiffa procedure moves first to the point where 
each of the n agents gains a fraction 1/n of his maximum possible gain, recalculates the maximum 
possible gains at the point reached, and repeats until the frontier is reached or approached.  We believe 
the results above would apply to smaller or continuous moves, but have not investigated them.  The 
KMP (Kohlberg-Maschler-Perles) procedure moves in the (unique) direction where the rates at which 
each agent gains utility and loses possible further gain have the same ratio for all agents, stopping when 
the efficient frontier is reached. 
 A price procedure with price function g picks a scaling of each agent’s utility function, and 
sharing probabilities if needed, in such a way that the agents receive allocations of total value 
proportional to their entitlements when: (1) the value (price) of an item is f(x, y) = xg(y/x) where x and y 
are its two highest scaled values and y ≤ x; (2) each item is allocated to the agent or shared among the 
agents with the highest scaled value for it.  Equivalently, for two agents and a general bargaining set, 
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suppose B’s maximum feasible utility is v(u) when A’s utility is u.  The price procedure allocates uλ to A 
and v(uλ) to B after finding a scaling λ of v and a value uλ such that 
 λv′(uλ) = −1  and  ∫≤g(−λv′) = ∫≥λg(−1/(λv′)) (2) 
where the first (second) integral is over the range below (above) uλ. 
 Pratt (2007) gives the following results, numbered as here except for the letter A.  Unfortunately 
Corollary 2 as stated there is wrong as regards the linear case.  For convenience, we restate the entire 
corollary with correction, and replace f(1, w) by g(w).  “Unique” means up to a common scale factor. 

Theorem A2.  If g(w)/√w is strictly decreasing, then the scaling and the agents' expected utilities are 
unique. 
Theorem A3.  If g(w)/√w is not weakly decreasing, then there exist problems with as few as two agents 
and three items where the scaling and the agents' expected utilities are not unique. 
Corollary A2.  With q = 1 − p, the scaling and the agents' expected utilities are unique for f(u, v) = upvq 
if ½ < p ≤ 1; for f(u, v) = pu + qv if ½ ≤ p ≤ 1; for f(u, v) = up(v + εu)q/(1 + ε)q with ε > 0, if (1 − ε)/2 ≤ p 
≤ 1; for f(u, v) = upvq/(1 − ε + εv/u)q with 0 < ε < 1, if p > ½.  They are not always unique for these 
functions if the parameter values are outside the ranges given. 

Details for the proof of Theorem 3.  To prove the ifs, consider the approximation described earlier with 
m items of equal value to A.  Note that increasing the frontier over an interval of A’s utility is equivalent 
to increasing the dispersion of B’s values for the items corresponding to that interval (Theorem 4).  If 
the initial solution allocates these items to A, the total of their prices at the initial scaling will not 
decrease if the price function is convex and will be unchanged if the price function is linear.  If the total 
of the prices is unchanged, the solution will be unchanged.  If the total of the prices increases, then A is 
paying more than B, in which case one expects the solution to change so that A receives less and B 
receives more.  We now prove this. 
 Assume g(w)/√w is decreasing in w, so that the solution is unique (Theorem A2).  We will show 
further that, for smaller λ, the first integral in (2) is less than the second.  Suppose without loss of 
generality that equality holds for λ = 1.  Then for λ < 1, the first equation in (2) implies uλ > 1, since v′ is 
decreasing, and the monotonicity condition implies g(λu) ≥ √λg(u).  Therefore 
 ∫≤g(−λv′) > ∫≤1g(−λv′) ≥ √λ∫≤1g(−v′) = √λ∫≥1g(−1/v′) ≥ ∫≥1λg(−1/(λv′)) > ∫≥λg(−1/(λv′)). (3) 
Now suppose that v is increased in the range [0, uλ].  This is a mean-preserving increase in risk.  If also g 
is convex, then the first integral of (2) and (3) is increased.  It follows by the previous paragraph that the 
solution λ cannot decrease.  Therefore uλ cannot increase, i.e., B cannot lose.  ■ 
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