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CORRELATED EQUILIBRIUM AND NASH
EQUILIBRIUM AS AN OBSERVER’S ASSESSMENT OF

THE GAME

JOHN HILLAS, ELON KOHLBERG, AND JOHN PRATT

Abstract. Noncooperative games are examined from the point
of view of an outside observer who believes that the players are
rational and that they know at least as much as the observer.
The observer is assumed to be able to observe many instances of
the play of the game; these instances are identical in the sense
that the observer cannot distinguish between the settings in which
different plays occur. If the observer does not believe that he will
be able to offer beneficial advice then he must believe that the
players are playing a correlated equilibrium, though he may not
initially know which correlated equilibrium. If the observer also
believes that, in a certain sense, there is nothing connecting the
players in a particular instance of the game then he must believe
that the correlated equilibrium they are playing is, in fact, a Nash
equilibrium.
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1. Introduction

A classic problem in probability theory concerns an observer making
repeated observations of a phenomenon that he believes to be unchang-
ing, for example, the toss of a coin. Now, as the observer makes more
observations he learns something about the phenomenon, but eventu-
ally he will have learned (almost) everything that it is possible to learn.
From that point the phenomenon will appear to the observer to be
(approximately) an independent sequence of draws from the same dis-
tribution. Thus the observer’s prior belief is that the observations are
independently and identically distributed according to some unknown
“true” probability, about which the observer has some probabilistic
assessment.

De Finetti has given this description a precise meaning. The be-
lief that the phenomenon is unchanging is formalised by saying that
the observer’s assessment is exchangeable. This means that the prior
probability of any sequence of realisations is unchanged if the order of
the sequence is permuted. De Finetti’s Theorem says that an infinite
exchangeable sequence can be represented by a mixture of independent
identically distributed random variables.

In this paper we take a similar approach to the theory of games.
We consider a particular game and imagine a setup where an outside
observer makes repeated observations of the play of this game, under
conditions which he considers identical. In particular, we think of the
plays as taking place in different “rooms,” unrelated to one another,
with the observer looking into the rooms according to an order that he
determines.

Under such a setup, the observer’s prior assessment is exchangeable.
Therefore, after a large number of observations, the plays of the game
will appear to the observer to be independent draws from a fixed dis-
tribution on the players’ choices.

We now further assume that the observer considers the players to be
rational and experienced, and to know at least as much as the observer,
so that, no matter how many observations he, the observer, might make
he will never be in a position to offer a player beneficial advice. We show
that under this assumption the distribution on the players’ choices that
the observer eventually will believe must be a correlated equilibrium.
In particular, it follows that the observer’s prior assessment of a single
play of the game must be a mixture of correlated equilibria, which itself
is a correlated equilibrium.
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Continuing in the same spirit, we ask what additional conditions
would guarantee that the observer’s eventual assessment be not only a
correlated equilibrium, but also a Nash equilibrium.

As Aumann (1987) has forcefully argued, it makes no sense to as-
sume that the observer’s assessment of a one-shot play exhibit mutual
independence of the players’ choices; even if the players’ choices neither
can affect one another nor are affected by a common observation which
is unknown to the observer, still the observer’s assessment may well
exhibit correlation. Thus, as in de Finetti’s Theorem, independence
should be a conclusion rather than an assumption.

The condition we propose is a natural extension of exchangeabil-
ity. We assume that not only must the assessment of the sequence
of the players’ choices remain the same if all the players in one room
are exchanged with all the players in another room, but also that the
assessment must remain the same if only one player from one room
is exchanged with the player in the same role in another room. This
formalises the idea that there is nothing connecting the players in the
same room.

With this stronger condition of separate exchangeability, we show
that the observer’s assessment must be a mixture of independent and
identically distributed random variables, each of which is a Nash equi-
librium.

2. Exchangeability

In this section we give a formal definition of exchangeability and the
limited results concerning exchangeability that we use.

Definition 1. An infinite sequence of random variables {X t}∞t=1 tak-
ing values in some finite set X is exchangeable if for every t and t′ we
may exchange X t and X t′ leaving the other X’s as they were without
changing the joint distribution.

Remark 1. The joint distribution remains the same when any finite
number of X t are permuted, since every finite permutation is a com-
position of pairwise interchanges.

The central result concerning exchangeable processes is the theorem
of de Finetti.

Theorem 1 (de Finetti). Let {X t}∞t=1 be an infinite exchangeable
sequence of random variables taking values in X . Then there is a unique
measure µ on ∆X the space of probability distributions on X such that
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for any T and any sequence x1, . . . , xT with xt ∈ X

P (X1 = x1, . . . , XT = xT ) =

∫ T∏
t=1

p(xt)dµ(p).

This says that if the random variables are exchangeable then the
sequence is a mixture of independent and identically distributed ran-
dom variables, that is the probability of a particular finite sequence of
observations is the same as it would have been had the sequence been
generated by first choosing p according to the distribution µ and then
generating the sequence as independent and identically distributed ran-
dom variables distributed according to p.

An immediate implication of exchangeability is that each of the X t

has the same distribution. Further, this remains true even after we
have observed some of the X t, that is conditional on X t1 , X t2 , . . . all
the remaining X’s are identically distributed. In fact, the converse is
also true and provides another characterisation of exchangeability.

Theorem 2. If, given any finite subset X t1 , X t2 , . . . , X tK all the re-
maining X’s are identically distributed, then the sequence X1, X2, X3,
. . . is exchangeable.

Proof. The hypothesis is that, for every finite subset Z and every X t

and X t′ not in Z, the conditional distributions of X t given Z and X t′

given Z are the same. Multiplying by the probability of Z shows that

(1) (X t, Z) and (X t′ , Z) have the same joint distribution.

To show that the sequence X1, X2, X3, . . . is exchangeable, we must
show that the joint distribution of X1, . . . , XT remains the same when
any pair of X’s are interchanged. Taking the pair to be X1, X2,
we use the notation V ∼ W to mean that (V, X3, X4, . . . , XT ) and
(W, X3, X4, . . . , XT ) have the same joint distribution. The desired con-
clusion then is (X1, X2) ∼ (X2, X1).

By (1) we show this as follows:

(X1, X2) ∼ (XT+1, X2) ∼ (XT+1, X1) ∼ (X2, X1).

Specifically, the first ∼ follows from X t = X1, X t+1 = XT+1, and
Z = (X2, . . . , XT ), and the others are similar. �

The alternative characterisation highlights the distinction between
independence and exchangeability. Independence rules out any learn-
ing. In contrast, exchangeability allows learning about the process
(that is, the distribution of the future Xs), but it does not allow learn-
ing that distinguishes between different instances of the process (that
is, the observer’s distributions on any two future Xs are the same.)
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We now give a formal definition of the concept of separate exchange-
ability1 that we discussed in the Introduction. The idea is that the set
X , the set in which the random variable takes its values has a prod-
uct structure, X = X1 × · · · × XN and that as well as being able to
exchange X t and X t′ without changing the distribution we can also do
this separately for each n.

Definition 2. An infinite sequence of random variables {X t}∞t=1 =
{(X t

1, . . . , X
t
N)}∞t=1 taking values in X = X1 × · · · × XN is separately

exchangeable if, for every n and every t and t′, we may exchange X t
n

and X t′
n leaving the other X’s as they were without changing the joint

distribution.

If the process is separately exchangeable then it is obviously ex-
changeable. We can exchange X t and X t′ by doing so one coordinate
at a time and each time the joint distribution remains unchanged.

In addition, if the process is separately exchangeable then, it is as if
there is “nothing connecting” the random variable X t

n with the random
variable X t

n′ . Just as the fact that there is nothing connecting the
outcome of one coin toss with another does not mean that they are
independent, so here, we cannot say that X t

n and X t
n′ are independent.

However, we do obtain the same kind of conditional independence that
de Finetti’s Theorem gives us for the outcomes of an exchangeable
process.

Theorem 3. Let {(X t
1, . . . , X

t
N)}∞t=1 be an infinite separately ex-

changeable sequence of random variables taking values in X = ×N
n=1Xn.

Then {(X t
1, . . . , X

t
N)}∞t=1 is exchangeable and the distributions p given

in Theorem 1 are product distributions, p(x) =
∏

n pn(xn).

Proof. As we argued above, if the process is separately exchangeable
it is exchangeable. So, by de Finetti’s Theorem it can be viewed as a
mixture of independent and identically distributed random variables.
It is easy to see that, conditional on the value of p, the process remains
separately exchangeable. We can see this by exchanging X t

n and X t′
n

and then conditioning on the tail event that the time averages converge
to a particular p. Since the joint distribution remains unchanged so do
the conditional distributions.

Thus, since, conditional on p, (X t
n, X

t
−n) is independent of (X t′

n , X t′
−n)

it follows that, conditional on p, (X t
n, X

t′
−n) is independent of (X t′

n , X t
−n),

1What we are calling separately exchangeable is the same concept that is intro-
duced in Kohlberg and Reny (1997) under the name coordinate-wise exchangeability.
See pages 299–300 of their paper for a more detailed discussion of this concept.
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and in particular, conditional on p, X t
n is independent of X t

−n. So (with
probability 1 under µ) p is a product distribution. �

3. Preliminary result concerning statistical testing

In this section we prove a result that we shall use later in character-
ising correlated and Nash equilibria. The setup is the following. We
observe an infinite sequence {X t}∞t=1 where at each time t the random
variable X t takes on either the value 0 or the value 1. We assume that
the process is exchangeable. As we have seen above, this implies that
there is some unknown probability p and that, conditional on p, the
X t are independently and identically distributed and that X t = 1 with
probability p.

Let St =
∑t

τ=1 Xτ and p̄t = St/t, that is St is the number of times
that Xτ has taken on the value 1 up through time t and p̄t is the
proportion of times that Xτ has taken on the value 1 up through time t.

A classical problem of statistical inference is to find a testing rule
that will, on the basis of the values of X up to time t and some desired
level of precision ε say whether or not to reject the hypothesis that p
is some particular value, say p0.

A standard solution to this problem is to find a value ε0 such that
if p = p0 then the probability that |p̄t − p0| ≥ ε0 is less than ε and
to accept the hypothesis that p = p0 if |p̄t − p0| < ε0 and to reject it
otherwise. The value of ε0 will typically depend on both the number
of observations t and on the hypothesised value p0. If we wish to reject
the hypothesis that p = p0 as often as possible when p 6= p0 subject to
the constraint that we reject the hypothesis with at most probability ε
when the hypothesis is true then we will choose ε0 as small as possible
subject to this constraint, and, since the distribution of p̄t depends on
both t and p0, so will this optimal value of ε0.

In our application of this kind of idea we shall not be so concerned
to reject the hypothesis as often as possible when it is wrong, but shall,
in other respects, want a bit more from the test.

Firstly, we shall not be testing whether p takes on a particular value,
but rather whether it lies in some region. (This is in some ways similar
to the problem of finding confidence intervals or regions.)

Secondly we shall not be asking simply for a testing rule that for
a particular t rejects with probability at most ε when the hypothesis
is true but rather a sequence of rules, one for each t, such that the
probability of ever rejecting the hypothesis, when it is true, is at most ε.

To deal with the first aspect we would like to require not simply that
the probability that |p̄t − p0| ≥ ε0 be small for a particular value of p0
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but that this probability be small for all values of p0 in the region we are
testing. We solve this problem by strengthening, but simplifying, the
requirement to say that the probability should be small for all values
of p0. That is, we require ε0 to be such that, whatever the value of p0,
the probability that |p̄t − p0| ≥ ε0 is less than ε.

To deal with the second aspect we shall look at testing rules given
by a sequence of εt where we reject the hypothesis that p = p0 after
making t observations if |p̄t − p0| ≥ εt and accept it otherwise.

The following theorem tell us that we can find a testing rule that
will achieve these objectives.

Theorem 4. Let {X t}∞t=1 be a sequence of independent and identi-
cally distributed random variable taking values in {0, 1} with X t = 1
with probability p. Then there is sequence εt ↓ 0 such that for every
ε > 0 there is T such that for every p ∈ [0, 1]

(2) Pp(|p̄t − p| ≥ εt for some t > T ) ≤ ε.

In fact, we prove a sharper result (Theorem 8). Its statement and
proof are given in the Appendix.

Remark 2. For fixed p if we set εt = ε0 for all t then Theorem 4 is
one way of stating the strong law of large numbers. For fixed p, but
with εt as in the theorem, it is a standard extension of the strong law.

Remark 3. Theorem 4 remains true if, rather than taking values in
{0, 1}, X t takes values in some finite set X with p a distribution over X .

The theorem allows us to define a testing rule that satisfies the re-
quirements we laid out above. Up to time T always accept the hypoth-
esis. At time t > T reject the hypothesis if |p̄t − p0| ≥ εt and accept it
otherwise.

4. One-player decision problem or game against Nature

We now consider a slightly more general setting. We consider a set-
ting in which there are a finite set of possible states X and the observer
observes a number of instances of a decision-maker choosing among a
finite set of possible choices S, having known preferences represented
by the expectation of a utility function u : X × S → R. In each in-
stance the observer observes both the realised state and the choice of
the decision maker.

We consider the perspective of an outside observer who has the op-
portunity to observe this situation a large number of times and who
regards each observation as being an observation of the same phenome-
non. Thus he sees different players, with exactly the same preferences,



8 JOHN HILLAS, ELON KOHLBERG, AND JOHN PRATT

facing exactly the same problem. The observer does not know exactly
how Nature’s choice is generated, or how the player makes his choice.
We assume that the observer has some exchangeable prior on how the
history of both Nature’s choices and the players’ choices will unfold
and may, on the basis of his past observations, suggest modifications
to the players’ choices. In fact we restrict the observer to modifications
of the following form.

Definition 3. A modification to the player’s choices is a sequence
of functions m = (m1, m2, . . . ,mt, . . . ) with mt : X t−1 × S → S where
mt(x1, . . . , xt−1, s) is the observer’s recommendation to the player on
seeing him about to play s for the tth time and having seen the states
x1, . . . , xt−1 the previous t− 1 times that the player chose s.

Remark 4. There are potentially other modification rules in which
the modification the observer proposes after seeing the player choose
s for the tth time may depend on the whole history and not just on
what we have observed at the times at which he previously chose s. If
the player had no more information than the observer then this would
be a useful thing for the observer to do. However we do not assume
this, and it may be that the player sees things that the observer does
not. Moreover we want the modification not to do badly against any
exchangeable prior, including ones in which, with positive probability,
this is the case. In this situation if the observer uses observations of
times at which the player chose something other than s he may be
using evidence from situations that the player knows to be irrelevant,
and so offering the player bad advice. In any case if we get a result
that depends on there being no possibility of an improvement using this
kind of modification, the result would also follow from a requirement
that there be no possibility of an improvement using a wider class of
modifications.

Even though we assume that the player is an expected utility max-
imiser we introduce the notation of preference since it makes some of
the arguments more readable. Given a distribution q on X we say that
the player prefers the choice s to the choice s′ given q and write s �q s′

if

Equ(X, s) > Equ(X, s′).

Definition 4. The modification m is said to be ε-good if for any
process obtained as the independent repetition of draws from X × S
with distribution p and any s ∈ S having positive probability under p



CORRELATED AND NASH EQUILIBRIUM 9

(1) if s does not maximise �p(·|s) the modification m will almost
surely choose some s′ that does maximise �p(·|s) for all but a
finite number of the periods in which the player chooses s; and

(2) the modification m will choose some s′ such that s′ �p(·|s) s
for all periods in which it recommends a change from s, with
probability at least 1− ε.

Remark 5. The requirement is that a modification be robust against
all exchangeable priors and not just good against the particular prior
that the observer holds. We know that an exchangeable process is as
if some distribution p on X × S is chosen randomly and then indepen-
dently repeated. Thus if, for any p our modification will work well for
the independent repetition of p, it will work well for any exchangeable
prior.

Remark 6. Condition (2) of Definition 4 can be thought of as saying
two things. If s maximises �p(·|s) there is no s′ that’s better then s
and so the condition requires that the probability that the modifica-
tion ever recommend a change be small. If s does not maximise �p(·|s)
Condition (1) says that eventually the modification will always recom-
mend a change and Condition (2) says that with high probability this
recommended change will always be preferred according to �p(·|s).

Definition 5. For a particular exchangeable prior an ε-good mod-
ification of the player’s choice is said to be an ε-good improvement if
there is some time T such that the modification strictly improves the
expectation under the prior of the player’s expected utility for every
period beyond T .

Theorem 5. If the observer has an exchangeable prior and there
exists ε > 0 such that there is no ε-good improvement of the players’
choices then the observer’s prior must be a mixture of independent rep-
etitions of a random variable with distribution p over X × S such that
for each s ∈ S having positive probability under p, s maximises �p(·|s).

Proof. Denote by ∆X the set of all distributions over X . Let

Bs′s = {q ∈ ∆X | s′ �q s}.
That is, Bs′s is the set of probability distributions over X for which s′

is a strictly better choice than s. This set is relatively open in ∆X .
Now, given ε > 0 define the modification as follows: Choose T as in

the generalisation of Theorem 4 described in Remark 3.
For q̄ ∈ ∆X let

S(q̄, γ) = {q ∈ ∆X | ‖q − q̄‖∞ ≤ γ}.
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We’ll look at modifications m for which mt depends on the history
x1, . . . , xt−1 only through q̄t−1, which gives the empirical proportions
of each value in X for the first t − 1 times that the player chose s.
Consider the modification m where mt(q̄t−1, s) equals one of the choices
that maximises �q̄t−1 if t > T and S(q̄t−1, εt) ⊂ Bs′s for some s′, and
otherwise recommends no change from s.

Suppose s does not maximise �p(·|s). Then p(· | s) ∈ Bs′s for some
s′ and, since Bs′s is open, the strong law of large numbers implies that
with probability 1, there is a T1 such that q̄t−1 is in Bs′s for all t > T1;
also, since εt ↓ 0 there is a T2 such that S(q̄t−1, εt) ⊂ Bs′s for all t > T2;
and finally there is a T3 such that any choice that maximises �q̄t−1 also
maximises �p(·|s). Thus when t is large enough m will recommend a
switch to a choice that maximises �p(·|s). This establishes property (1)
of Definition 4.

Now, if mt(q̄t−1, s) = s′ 6= s and s %p(·|s) s′ then

(i) t > T ,
(ii) S(q̄t−1, εt) ⊂ Bs′s, and
(iii) p(· | s) /∈ Bs′s,

so, from (ii) and (iii), ‖p(· | s)− q̄t‖∞ ≥ εt. Theorem 4 tells us that

P (‖p(· | s)− q̄t‖∞ ≥ εt for some t > T ) ≤ ε.

And this establishes part (2) of Definition 4.
Finally we need to show that if, for the observer’s assessment, there

is a positive measure of p which put positive probability on s which
do not maximise �p(·|s), we can find T ′ such that from T ′ onward the
modification will strictly increase the expected payoff of the player,
according to the observer’s assessment. But this follows from what we
have already shown, since for any t > T there is a positive probability
that the history will be such that the modification will recommend a
change. �

Remark 7. We have made no attempt in the proof to find the best
modification. The modification we define is, in some respects, quite
poor. For example, we wait a long time before even recommending
against strictly dominated strategies.

Remark 8. Notice that we do not simply hand over the choice of
strategy to the observer. The observer “sees” what the player intends
to play and then recommends to the player whether to go ahead or to
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play something else. Consider the following problem.

Sunny Raining

T 2 0

M 0 1

B 0 0

Suppose that over a very long series of observations the observer sees
(T, Sunny) in 0.49 of the observations, (M, Raining) in 0.49 of the ob-
servations, (B, Sunny) in 0.01 of the observations, and (B, Raining) in
0.01 of the observations. Clearly the player is not behaving optimally.

Nevertheless, an outside observer could not, by himself, do better
than the player. What the outside observer could do is suggest an
improvement to the player. If he saw the player intending to play
either T or M he would tell the player to go ahead, while if he saw the
player intending to play B he would recommend that he switch to T
instead.

Notice that the distribution p(· | s) over Nature’s choice is p(· | T ) =
(1, 0), p(· | M) = (0, 1), and p(· | B) = (1/2, 1/2). Now T maximises
the player’s expected utility against p(· | T ) and M maximises his
expected utility against p(· | M). However B does not maximise his
expected utility against p(· | B), and the observer can offer a profitable
modification on seeing B.

5. Correlated Equilibrium

In this section we take an approach to the theory of games similar
to the approach we developed in the previous section. We consider
an observer of a potentially infinite number of plays of the game. We
think of the players as experienced and rational and assume that this
is commonly known among the players. We think of the observer as
knowing no more, and quite possibly less, than the players, and as
knowing this. Under these circumstances, it seems unreasonable for the
observer to believe that he can offer any player beneficial advice, that is,
recommend an assuredly beneficial departure from the strategy that the
player intends to use. We shall show that, when these assumptions are
made precise in a natural way, the observer’s probabilistic assessment
of how the game is played must constitute a correlated equilibrium.

If we take the observer’s belief to be that he can never give advice
that is beneficial according to his own probabilistic assessment of how
the game is being played, then his belief in correlated equilibrium is
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immediate. Indeed, if an assessment is such that no player has a prof-
itable deviation conditional on his own choice, then the assessment is
a correlated equilibrium by definition.

As in the previous section, we explore a less egocentric, more de-
manding interpretation of the concept of beneficial advice. In particu-
lar, we do not assume that the observer will offer advice just because
it is good in his own probabilistic assessment. Rather, we assume that
he will offer advice only if it would be good in all assessments, that
is, in the eyes of every observer with exactly the same knowledge as
his. Of course, if he is considering only one play of the game, he
could then offer only very limited advice, such as to avoid dominated
strategies. We assume instead that the observer can view a large num-
ber of plays of the game that are, to him, identical. This does not
imply that the plays are independent from his perspective, but only
that they are exchangeable, and so the observer’s assessment is that
the observations are independently, identically distributed according to
an unknown “true” distribution p about which the observer has some
probabilistic assessment.

Now suppose the observer gives advice based on his previous ob-
servations of the game and what he sees a player about to do in the
current game. Can he offer advice that would be good regardless of his
prior? It would appear that he can offer little more than he could offer
in the case of a single game. We therefore relax the requirement just
a little and ask: could an observer offer advice that would, whatever
the exchangeable prior, with a probability arbitrarily close to 1, never
suggest harmful modifications, and with positive probability, suggest
improving modifications from some time onward, where “harmful” and
“improving” refer to the player’s expected payoff under p? We show
that if the observer believes that he cannot offer any player such ad-
vice, then he must believe that the players are choosing optimally with
respect to p at every play, that is, their play is a correlated equilib-
rium based on the “true” p. In the limit, the observer will learn the
“true” correlated equilibrium. At each play along the way, his assess-
ment of the future is a mixture of independent repetitions of correlated
equilibria based on his current distribution for p. Since a mixture of
correlated equilibria is itself a correlated equilibrium, his assessment at
each play is also a correlated equilibrium. His assessment may change
as he makes additional observations, but it must always be a correlated
equilibrium.

We now flesh out this rather informal analysis and make it more ex-
plicit. In the previous section we considered a simple decision-making
problem and defined what we meant by an ε-good improvement. We
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then showed how to construct such an improvement. We now consider
the game theoretic problem and show how to define a similar ε-good
modification rule in that setting, how to construct such a modifica-
tion, and when such an ε-good modification rule will be an ε-good
improvement. We use the result of the previous section to show that
the modification we construct is ε-good, and that if there is no ε-good
improvement then the observer must believe that the players are play-
ing a correlated equilibrium, though he may not initially know which
correlated equilibrium they are playing.

Consider a game G = (N, S, u) where N = {1, . . . , n, . . . , N} is the
set of players, S = S1 × · · · × Sn × · · · × SN with Sn the set of pure
strategies of Player n, and u = (u1, . . . , un, . . . , uN) with un : S → R
the payoff function of Player n.

Definition 6. A distribution p over S constitutes a correlated equi-
librium if for each player n it imputes positive marginal probability
only to such pure strategies, sn, as are best responses against the dis-
tribution on the others’ pure strategies obtained by conditioning on sn.

Suppose there is some observer who observes an infinite sequence of
plays of the game, observing in period t the realised strategy st ∈ S.
We assume that the observer has some prior over the sequence of plays
that he will see and that this prior is exchangeable.

The observer contemplates advising the players. We ask: what must
have been the observer’s assessment if he did not expect to be able to
offer profitable advice. As in the previous section, we ask a bit more of
his advice. We require not simply that his advice be good if his prior
is correct, but that it not be bad even if his prior is incorrect. Thus we
define a modification to a player’s strategy as follows.

Definition 7. A modification to Player n’s strategy is a sequence
of functions m = (m1, m2, . . . ,mt, . . . ) with mt : St−1 × Sn → Sn

where mt(s1, . . . , st−1, sn) is the observer’s recommendation to Player n
on seeing him about to play sn for the tth time and having seen the
strategy profiles s1, . . . , st−1 the previous t − 1 times that Player n
chose sn.

Remark 9. The comments we made in Remarks 4 and 8 remain
relevant. The observer does not take over from the player. Rather
he looks over the player’s shoulder, sees what the player is about to
play, and then recommends to the player whether to go ahead or to play
something else. Further, we could make the modification suggested by
the observer when he sees the player about to take a particular choice
depend on all the observations rather than only those in which he had
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previously made that choice, but against some priors this could be quite
bad.

That is, the observer observes the past up until the period in which
he observes Player n making a particular choice for the tth time. On
the basis of what has happened in the t − 1 times in the past that he
has observed Player n making this choice he then decides whether to
advise Player n to do something other than his intended action.

Since the observer’s prior is exchangeable it means that he has a
probability distribution that is the same as if there had been an initial
random choice and that the realisations then, conditional on this ini-
tial choice, were independently and identically distributed. We do not
require robustness against all possible other priors, but only against
other exchangeable ones. Thus, after the initial randomisation, the
plays will be independently and identically distributed draws over the
space S from some distribution p.

Definition 8. A modification to Player n’s strategy m is said to
be ε-good if for any process obtained as the independent repetition
of draws from S with distribution p and any s ∈ Sn having positive
probability under p

(1) if s does not maximise Player n’s expected utility against p(· | s)
the modification m will almost surely choose some strategy that
does maximise Player n’s expected utility against p(· | s) for all
but a finite number of the periods in which Player n chooses s;
and

(2) the modification m will choose some better strategy against
p(· | s) for all periods in which it recommends a change from s
with probability at least 1− ε.

Definition 9. For a particular exchangeable prior an ε-good mod-
ification of a player’s strategy is said to be an ε-good improvement if
there is some time T such that the modification strictly improves the
expectation under the prior of that player’s expected utility for every
period beyond T .

Remark 10. From the perspective of the observer thinking about
advising Player n, we are in exactly the situation of the previous section
with Sn playing the role of S and S−n the role of X .

Theorem 6. If the observer has an exchangeable prior and there
exists some ε > 0 such that there is no ε-good improvement of any
player’s strategy then the observer’s assessment is a mixture of inde-
pendent and identically distributed correlated equilibria.
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Proof. The result follows immediately from Theorem 5 on observing
that, for each player n, the conditions of Theorem 5 are met with
S = Sn and X = S−n. �

Corollary 1. The observer’s assessment of any individual play of
the game is a correlated equilibrium.

Proof. The set of correlated equilibria is convex. (Aumann, 1974) �

6. Nash Equilibrium

We now give a similar characterisation of Nash equilibrium. In many
circumstances it makes completely good sense that the outcome of a
game will be a correlated equilibrium rather than a Nash equilibrium.
Thus we should not expect that the assumptions involved in charac-
terising Nash equilibrium should be compelling. Rather than being
compelling assumptions they are the conditions that identify when a
correlated equilibrium will be a Nash equilibrium.

Nash equilibria are typically defined in terms of the mixed strategies
of the players. Let us denote by Σn the set of mixed strategies of
Player n, that is the set of all probability distributions over Sn. We
give the standard definition of Nash equilibria in a slightly nonstandard
way, though we are not the first to give the definition in this form.

Definition 10. A profile of mixed strategies (σ1, . . . , σN) in Σ =
Σ1×· · ·×ΣN is a Nash equilibrium if the distribution over S generated
by the independent product of σ1, . . . , σN is a correlated equilibrium.

This definition emphasises that a Nash equilibrium may be viewed as
a correlated equilibrium in which the players’ strategy choices are prob-
abilistically independent. We do not regard correlated equilibria that
are not Nash equilibria as necessarily unreasonable. Such equilibria
make perfectly good sense when there is, at least implicitly, something
connecting the players. For example, two players may have observed
some correlated signals. If we wish to rule out such equilibria, we must
rule out such connections between the players. In our setting we do
this by assuming that the observer views the process as separately ex-
changeable in the sense that the probability he attaches to an arbitrary
finite history is unchanged if the choices of a single player at two dif-
ferent times are switched. An equivalent condition, an analogue in this
setting to Theorem 2, is that, given any finite set of plays by all players
but one, and any subset of that player’s choices, his remaining choices
are identically distributed. In this case, as we saw in Theorem 3, not
only are the plays independently identically distributed according to
an unknown “true” distribution p, but also the players’ choices on each
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play are independent, that is, p is the product of the players’ individual
distributions. It follows that, if the observer believes that he cannot
offer any player beneficial advice and views the process as separately
exchangeable, then the “true” correlated equilibrium that the observer
eventually learns must be a Nash equilibrium, and his assessment must
be a mixture of independent repetitions of Nash equilibria.

Theorem 7. If the observer has a separately exchangeable prior and
there is no ε-good improvement of any player’s strategy then the ob-
server’s assessment must be a mixture of independent and identically
distributed Nash equilibria.

Proof. The result follows directly from Theorems 3 and 6. �

7. Conclusion

We have examined the concepts of correlated equilibrium and Nash
Equilibrium by considering the perspective of an observer of an arbi-
trarily large number of observations of the game. We argued that it
was reasonable to think of the observer’s prior on these observations
as being exchangeable, and that it then followed that, if the observer
did not ever expect to be in a position to offer beneficial advice, his
prior would necessarily put weight only on correlated equilibria. If,
in addition, the observer’s prior was separately exchangeable then his
prior would necessarily put weight only on Nash equilibria.

While we find the assumption that the observer’s prior be exchange-
able is quite compelling our condition for Nash equilibrium, which we
term, separate exchangeability, is considerably less so. This is as it
should be. There are circumstances in which correlated equilibria that
are not independent are quite reasonable. Rather, separate exchange-
ability is a natural implication of the idea that there is nothing con-
necting the player in a particular role with the other players in the
particular game he is playing. This may or may not, depending on the
context, be a reasonable assumption. We show that when this assump-
tion is satisfied the observer will believe that the players are playing a
Nash equilibrium, though he may not initially know which one.

In Hillas, Kohlberg, and Pratt (2007) we develop very similar ideas in
an explicitly epistemic setting. In that setting it is possible to compare
our conditions with those used by Aumann and Brandenburger (1995).
Theirs are in some sense minimal, and are to that extent preferable.
They do not however contain the conditions of Aumann (1974, 1987),
replacing some part of those with the conditions that they use to obtain
independence. Our work more clearly separates the conditions that
imply correlated equilibrium and the additional ones that imply that
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the correlated equilibrium exhibits independence across the choices of
the different players, and is therefore a Nash equilibrium.

In everything we have done we have simply made assumptions about
the view of the observer, and our results give properties of his prob-
abilistic assessment. We have said nothing about what the players
actually do. One might, somewhat trivially, say that if we assume also
that the observer is correct in his assessment, then the players will
actually be playing equilibria.
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Appendix. A Statistical Result

Here we prove a considerably sharper version of Theorem 4 above.

Theorem 8. For all δ ∈ (0, 1
2
) and ε > 0, there is T such that for

all p ∈ [0, 1] and t > T ,

Pp(|p̄τ − p| ≥ τ−δ for some τ > t) ≤ εe−t1−2δ−ε

.

In other words, after some time T , the last τ such that |p̄τ−p| ≥ τ−δ

is stochastically smaller for every p than x1/(1−2δ−ε) where x has the
standard exponential distribution.

Before proving this we prove two preliminary lemmas.

Lemma 1. For all ε > 0,

Pp(p̄
τ − p ≤ −ε) ≤ A

ε

(pq

τ

) 1
2
e−ε2τ/2p,

where A is a constant, not depending on the other parameters, and
q = 1− p.

Proof. By Pratt (1968, equation 7.7), for 0 ≤ s ≤ τp− 1
2
,

(3)

Pp(p̄
τ ≤ s

τ
) =

1

−z
√

2π
e−

1
2
z2G+R

(
τp− s− 1

2

τp− s + p
· τ − s + 1

τ − s

)
1

1 + θz−2

where 0 ≤ θ ≤ 1, R is a sum of Stirling-formula remainders, z =
(s + 1

2
− τp)(τpq)−

1
2 is the usual “half-corrected” standardised deviate,

and

(4) G = 1 + qg

(
s + 1

2

τp

)
+ pg

(
τ − s + 1

2

τq

)
where

g(x) =


1−x2+2x log x

(1−x)2
if x > 0, x 6= 1

1 if x = 0

0 if x = 1.

The last two factors of equation (3) are easily shown to be at most 1.
R has a finite upper bound, say ρ. Peizer and Pratt (1968, Section
10) show that g(x) = −g(1/x) and g is continuous, strictly decreasing,
and convex. In particular, therefore, G ≥ 1 − p = q in equation (4).
For s/τ = p − ε, we have −z = ε(τ/pq)1/2 and Lemma 2 follows with
A = 1√

2π
eρ. �

Lemma 2. For all ε > 0,

Pp(|p̄τ − p| ≥ ε) ≤ A

ε
√

τ
e−ε2τ/2,
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where A is the same constant as in Lemma 1.

Proof. Interchanging p and q on the right hand side in Lemma 2 gives
an upper bound for Pp(p̄

τ − p ≥ ε) and hence

(5) Pp(|p̄τ − p| ≥ ε) ≤ A

ε

(pq

τ

) 1
2
(
e−ε2τ/2p + e−ε2τ/2q

)
.

Since pq ≤ 1
4

and p ≤ 1, q ≤ 1, Lemma 3 follows. �

Proof of Theorem 8. By Lemma 2, with ε = τ−δ,

Pp(|p̄τ − p| ≥ τ−δ for some τ > t) ≤
∞∑

τ=t+1

A

τ
1
2
−δ

e−
1
2
τ1−2δ

≤
∫ ∞

t

Axδ− 1
2 e−

1
2
x1−2δ

dx

=

∫ ∞

1
2
t1−2δ

2A

1− 2δ
(2y)

1
1−2δ

− 3
2 e−ydy

{
by the substitution

y = 1
2
x1−2δ

=
A2a

1− 2δ
Γ(a, 1

2
t1−2δ)


where a = 1

1−2δ
− 1

2
and

Γ(a, x) =
∫ ∞

x
ya−1e−ydy

is the incomplete Gamma function

∼ A2a

1− 2δ

(
1
2
t1−2δ

)a−1
e−

1
2
t1−2δ

as t →∞

=
2A

1− 2δ
t3δ− 1

2 e−
1
2
t1−2δ

.

The asymptotic result used in the second last step is standard. It
follows, for example, from Peizer and Pratt (1968, equation 9.5), which
also contains other references. Theorem 8 follows. �

Remark 11. The essential features of Lemma 2 are that the right
hand side is independent of p and summable in τ . Lemma 1, of course,
gives tighter bounds and equation (3) still tighter, but they depend on
p. The strong law of large numbers already tells us that p̄τ → p with
probability 1 and the law of the iterated logarithm gives the asymptotic
magnitude of p̄τ−p, but Theorem 8, though less tight, provides specific
bounds on tail probabilities uniformly in p, which our purposes require
and usual proofs do not provide.
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Remark 12. R = R1(τ) − R(s) − R(τ − s) where R1 and R are
remainders in the two forms of Stirling’s formula, namely,

τ ! =
√

2πτ τ+ 1
2 e−τ+R1(τ)

=
√

2π(τ + 1
2
)τ+ 1

2 e−τ− 1
2
+R(τ).

Feller (1950, pages 44 and 50) shows that R1(τ) ≤ 1
12τ

and R(τ) ≥
− 1

24(τ+ 1
2
)
. Since R1(1) = 1− 1

2
log(2π) ≈ .0811 and −R(0) = 1

2
log π −

1
2
≈ .0724 and −R(1) = 1

2
log(3π) + log(3

2
)− 3

2
≈ .0271, it follows that

for 0 ≤ s,

R ≤ ρ = R1(1)−R(0)−R(1) = 1
2
log

(
3π

2

)
+ log

3

2
− 1 ≈ .1806,

and

A =
1√
2π

eρ =
3
√

3

4e
≈ .4779.

Remark 13. Using the fact that either p or q is at most a half in the
proof of Lemma 3 would replace the right hand side by

A

2ε
√

τ

(
e−ε2τ/2 + e−ε2τ

)
which is asymptotically smaller by a factor of a half. This improvement
would not affect the exponential rate in Theorem 8, however.


