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Coupled Search Processes: 

Why is it so difficult to find that organizational design matters? 
 
 

Abstract: 
 
Organizational design affects performance via coupled search processes. At low frequency, 
managers search for appropriate organizational designs. At higher frequency, managers use 
designs to search for high-performing operational choices. The two searches are coupled: 
organizational design molds the choice among operational alternatives, and performance 
feedback from operational choices shapes design. Our simulation model shows how coupled 
search processes can dramatically obscure the true impact of design on performance, confounding 
empirical research. We identify research strategies for tackling this difficulty; discuss population-
level advantages of coupled search processes; and highlight implications for analogous coupled 
search processes that shape networks, cognition, and capabilities. 
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Organizational performance is often driven by coupled search processes that operate at different time 

scales. Consider, for instance, the impact of a firm’s formal organizational design on its economic 

performance. Intermittently, at a relatively low frequency, managers search for an effective set of design 

choices: an allocation of decision rights, an incentive system, a system of information collection and flow, 

and so forth. Such choices tend to be stable over time, persisting for years. These design choices have a 

profound effect, because they shape a second, higher-frequency search process: the process of making 

day-to-day operational choices concerning pricing, sales calls, production levels, shipping, procurement, 

etc. Such operational choices have large and immediate impacts on the costs a firm incurs and the buyer 

value it creates. The outcomes of the low-frequency search for an organizational design mold the high-

frequency search for operational choices, which in turn shape economic performance.  

Coupled search processes like these are common. At a low frequency, a firm searches for partners and 

develops its position in a network of allied firms; at a faster cadence, the position influences the firm’s 

ability to tap into knowledge and to search for innovation (Ahuja, 2000). At a slow pace, managers 

develop cognitive frames – images of their competitive environment and their place in it; more rapidly, 

these frames shape their search for a strategy (Gavetti and Levinthal, 2000). A firm’s resource allocation 

process, evolving slowly, molds the firm’s deployment of its resources, which has a near-term impact on 

its behavior and success in the marketplace (Bower, 1970). A firm’s long-run investment in dynamic 

capabilities may determine its ability to reconfigure resources, which then have a short-run influence on 

performance (Teece, Pisano and Shuen, 1997). Gradually, a nation might develop and adapt its legal 

Constitution; the Constitution then guides the formation of policies and laws at a faster pace, and those 

policies and laws – not the Constitution – have the direct impact on the country’s prosperity (North and 

Weingast, 1989; Glaeser et al., 2004). 

An enduring goal of organizational research is to examine the low-frequency objects of search and to 

isolate their (indirect) impact on performance. How, for instance, do formal organizational design 

choices, a firm’s position in an alliance network, managers’ cognitive frames, characteristics of the 

resource allocation process, or dynamic capabilities affect organizational performance? How do 
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Constitutional provisions influence national prosperity? Clearly, such questions are of first-order interest 

to students of organizations. In this paper, we show that to address these questions, researchers must grasp 

the consequences of the two-level, asynchronous search processes that stand between the low-frequency 

objects and performance. An understanding promises two related benefits. First, it can shed light on the 

mixed results that have plagued past research. For instance, empirical studies of the relationship between 

organizational design and performance have resulted in a vexingly large number of ambiguous findings 

despite strong theoretical arguments that such a relationship should exist (Donaldson, 2001). Why are 

clean results so hard to obtain? What forces dampen relationships that should, in theory, exist? Second, an 

understanding can guide empirical work by identifying research settings in which those dampening forces 

are particularly prevalent or muted. 

The arguments we make below apply to a wide variety of organizational contexts. For the sake of 

concreteness, however, we focus on the challenge of organizational design. Specifically, we develop an 

agent-based simulation model in which firms are engaged in a two-level search process: a search for how 

to configure a particular aspect of organizational design (the degree of information flow between 

hierarchical levels) and, subject to the chosen design, a search for a configuration of concrete activities 

that directly determine performance. Examination of this multi-level search process identifies two 

mechanisms that compress performance differences among firms with different design choices and 

thereby make the design/performance relationship difficult to observe. The first mechanism is a survivor 

effect. To retain a design that typically produces poor performance, a firm must be faring relatively well 

in the search for effective activities. Thus, firms that persist with “poor” designs must have levels of 

performance that are much higher than the typical level for that design. The second mechanism is a 

wrong-attribution effect. Firms that attain high-performing configurations of decisions with a “good” 

design can subsequently experiment with other designs. If one observes firms during such an 

experimentation stage, one might wrongly attribute current performance to the firm’s current design, even 

though the firm’s current design had little to do with the firm’s current performance. In addition to 

identifying factors that dampen the design/performance relationship, we pinpoint the settings in which 
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those factors are likely to loom especially large. In particular, we show that dampening is far worse in 

static settings than in dynamic settings. Our concluding section generalizes these findings to questions 

other than the relationship between organizational design and economic performance. 

 

PRIOR LITERATURE AND PROPOSITIONS  
 

Like many of the coupled search processes mentioned above, the process related to organizational 

design has produced a mixed literature. On the one hand, theoretical work gives us strong reasons to 

expect organizational design to have a meaningful impact on performance. On the other, that impact has 

been difficult to detect empirically. We consider the reasons that design should affect patterns in 

performance; the mixed empirical results; and prior explanations for the mixed results. 

 
Expected Impact 

An organization’s design is “the sum total of the ways in which it divides its labor into distinct tasks 

and then achieves coordination among them” (Mintzberg, 1979: 2). Empirical work has focused primarily 

on formal aspects of design, such as the allocation of decision rights, the flow of information and 

material, reporting relationships, decision-making processes, and incentive systems; it has paid less 

attention to informal components such as social networks, corporate culture, and norms. The notion that 

the formal design of an organization’s work affects its performance dates back at least to the work of 

Taylor (1911) and Fayol (1916 [1949]) on the scientific organization of labor. While Taylor emphasized 

that organization could boost performance by codifying and spreading efficient practices, later authors 

highlighted other causal links between organization and performance. Barnard (1938: 256), for instance, 

argued that organizational design could influence performance by affecting coordination among workers 

– essential since “the quality of coordination is the crucial factor in the survival of organization.” In 

contrast, Galbraith (1973) saw organizations as information processors; well-designed organizations 

would process information in the manner demanded by environmental conditions and would thrive as a 

result. Agency theorists from Jensen and Meckling (1976) argued that organizational design, especially 
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the structure of incentives, would influence performance by affecting the motivation of actors to exert 

effort rather than shirk. Formal design might also shape the informal design and social conditions of a 

workplace, thereby affecting performance (Nadler and Tushman, 1997). Regardless of the causal path, a 

dominant theme in prior literature is: 

 
PROPOSITION 1: Appropriate organizational designs are associated with high relative performance. 

 
Two aspects of this proposition deserve attention. First, a great deal of the literature in this stream of 

work has emphasized how the definition of “appropriate” design is contingent upon environmental 

conditions. Appropriate design may hinge, for instance, on the degree of environmental uncertainty 

(Lawrence and Lorsch, 1967), the pace of change (Burns and Stalker, 1961), or the nature of a firm’s 

technology (Woodward, 1965). Second, whether organizational design acts on performance via efficient 

work practices, coordination, information processing, or motivation, the effect of design is indirect: it 

affects performance by shaping operational actions and decisions that, in turn, influence profitability. 

Thus we can envision two coupled search processes at work simultaneously, with the search for a good 

design molding the search for operational actions and decisions. Of the two search processes, the search 

for an appropriate design is likely to unfold at a slower pace, reflecting the inertia of organizations’ 

structural features (Hannan and Freeman, 1977). 

Two streams of prior research – on organizational learning (e.g., March and Simon, 1958) and 

organizational ecology (Hannan and Freeman, 1989) – have examined how the search for appropriate 

design will influence the relative prevalence of different designs among a population of firms. Within the 

organizational learning paradigm, it is postulated that managers within firms actively search for designs 

that are appropriate. Search is triggered by firms’ performing under their aspiration level, which may 

capture either some absolute level of desired performance or some level relative to that of competitors 

(Cyert and March, 1963). The search process herds firms toward appropriate designs, leading to “a 

substantive prediction of equilibrium whereby the advantaged forms should prevail (often referred to in 

the sociological literature as isomorphism)” (Carroll and Harrison, 1994: 722). March and Olsen (1989) 
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have referred to the assumption of convergence of firms onto an appropriate form as “historical 

efficiency.” 

While the organizational learning paradigm emphasizes firm change as the driving force towards 

historical efficiency, the organizational ecology paradigm stresses the role that births and deaths of firms 

play in shaping the diversity of organizational forms. Two key mechanisms are assumed to influence 

births and deaths, legitimation and competition, both of which are density-dependent. While the assumed 

drivers behind changes in the distribution of forms within a population are different, the dynamics 

produced by ecological reasoning also tend to point to a gradual move of a population of firms towards 

more appropriate designs. In either case, historical efficiency would imply: 

 
PROPOSITION 2: Over time within a population of firms, appropriate designs become more frequent 

than inappropriate designs. 
 
 

Mixed Evidence 

Despite the strong and diverse theoretical arguments for Propositions 1 and 2, empirical support for 

them has been difficult to obtain. Dalton et al. published a critical review of the evidence in 1980, 

arguably the time at which researcher interest in this arena peaked. Surveying scores of studies on the 

direct impact of organizational structure on performance, Dalton and his co-authors found robust support 

for only one of the nine relationships they examined. (The positive relationship between subunit size and 

performance, if performance was measured by the degree of absenteeism, was robust across several 

studies.) Table 1 quotes the authors’ summary of a number of relationships and reflects their general 

sense of exasperation (Dalton et al., 1980).  

A separate set of studies examined the impact of design on performance contingent on environmental 

conditions. A number of early and prominent tests of such contingency hypotheses found little support. 

Mohr (1971), for instance, hypothesized that autocratic supervision of work groups would be most 

effective for routine jobs while democratic supervision would succeed for nonroutine jobs; yet he found 

no support. Similarly, Pennings (1975) found that an organization’s fit between environmental and 
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structural conditions had little relationship to its effectiveness. In defense of contingency theory, 

Donaldson (2001) surveyed a set of papers that are more supportive. He concluded that, “More studies 

support the positive relationship of fit and performance than fail to support it. Moreover, the later and 

more sophisticated research provides more support for contingency theory than the earlier research” (p. 

226). This begs the question of why it has taken such effort and sophistication to uncover relationships 

that have such strong theoretical foundations. 

     
<INSERT TABLE 1 ABOUT HERE> 

 
Explanations 

We consider two potential answers to this question. The first is that the relationships are not valid 

despite the theoretical foundations. For example, if there is widespread equifinality (Doty, Glick and 

Huber, 1993; Gresov and Drazin, 1997) and many different organizational designs will produce the same 

levels of performance (Levinthal, 1997), then it becomes hard to specify what design is “appropriate,” and 

Propositions 1 and 2 lose their meaning. Similarly, a multiplicity of environmental contingencies may 

create conflicting structural requirements and undermine the notion of a single appropriate design 

(Galunic and Eisenhardt, 1994). Moreover, if managers choose organizational designs that they view as 

legitimate (Meyer and Scott, 1983) rather than ones that are effective, Proposition 2 loses its force. Herd 

behavior may lead a population of firms to lock in on a design that does not optimize performance (Staw 

and Epstein, 2000). Lastly, if the benefits of changing to another organizational structure are outweighed 

by the direct costs of this adaptation, a firm may stick with its “inappropriate” structure. 

The second possible answer is that the predicted relationships – though fully valid – are hard to 

detect. Detection requires that we measure constructs such as autonomy, uncertainty, and performance, 

each of which is difficult to monitor on its own. The constructs interact with one another, and results may 

depend delicately on fairly arbitrary choices of functional forms (Schoonhoven, 1981). If one does not 

control for interacting elements, the underlying interdependencies among elements of design may make it 

hard to find clear relationships; as Galunic and Eisenhardt (1994: 229) put it, “empirical research typically 
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consists of bivariate analysis, whereas reality is multifaceted.” Moreover, if Proposition 1 is valid and 

design affects performance, then selection pressure and firm adaptation may drive out heterogeneity in 

organizational design. Without variation in design, of course, it is impossible to detect the impact of 

design on performance. Any variation in design that persists may reflect heterogeneity across firms in 

unobserved factors, and any differences in performance that remain may reflect the unobserved 

heterogeneity, not a true impact of design on performance. 

We fully accept this set of explanations for the mixed empirical evidence, but we will argue that the 

set is incomplete in an important way. In particular, none of these explanations reflects the coupled, 

asynchronous search processes that generate the underlying relationship between design and performance. 

These processes alone, without any of the explanations offered so far, can make it difficult to detect the 

performance impact of organizational design. To clarify how they can do so, we construct a simulation 

model in which none of the alternative explanations are valid: in our model, there is one, truly appropriate 

design; managers pursue performance and not legitimacy; change of organizational structure is costless; 

relevant constructs can be measured perfectly; interactions among design elements do not interfere with 

measurement; and selection and adaptation do not drive out variation in design. Even in this setting, 

coupled search for good designs and for high-performance operational choices can obscure the link 

between design and performance. 

 
Modeling Precedents 

A number of prior studies have used a simulation methodology to assess population-wide changes in 

the distribution of organizational forms. Unlike the present study in which firms are searching, and thus 

are changing their structures, Carroll and Harrison (1994) treat “organizational change as a selection 

process, meaning that changes in the number of organizations with a particular form occur through 

fluctuations in founding and failure rates rather than through transformations of existing organizations 

having other forms” (p. 724). They find that inferior forms may outlive more appropriate forms, if firms 
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with inferior forms are given a head-start. In our model below, we will even the playing field completely, 

by having an equal number of firms with different designs start the evolutionary process at the same time.  

Carley and Svoboda (1996) allow organizations to change their designs over time along three 

dimensions: the number of employees, the reporting relationships between these employees, and the task 

allocation among the employees. Organizational change is modeled as a stochastic, simulated annealing 

process, i.e., as a process that is more likely to occur for lower-performing organizations than for higher-

performing organizations. Unlike our model, Carley and Svoboda’s model assumes that organizations can 

evaluate the benefits of proposed organizational changes in an “off-line” manner (Gavetti and Levinthal, 

2000) by correctly anticipating whether a change will be performance-enhancing. Moreover, given the 

more complex structure of the modeled organizations, interactions among the various design elements 

play a key role. 

The model by Strang and Macy (2001) comes closer to the model presented in this study, as firms are 

allowed to adopt an innovation both through own experimentation and through imitation of other firms. In 

their model, the innovation that is being adopted has a direct impact on a firm’s performance. Since we 

model organizational design specifically, we do not need to assume that different designs have a direct 

performance effect, but only that designs influence the second search process that our firms are engaged 

in, i.e., the search for good activity configurations. 

Lastly, also using an agent-based simulation model, Siggelkow and Levinthal (2003; 2005) analyze 

the performance effects of changing organizational designs. In their model, firms are, however, 

exogenously forced to change their designs. Thus, their model does not capture a coupled search process 

in which firms endogenously choose when and how to change their designs. 

 

MODEL 
 

Our goal is to study the consequences of coupled, multi-level search processes on the ability to detect 

underlying relationships between the objects over which firms conduct their lower-frequency search and 

ensuing performance. To make the analysis more concrete, we focus on the context of organizational 
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design. We model firms that are constantly engaged in search for higher-performing choices of activities. 

This search process is intimately influenced by the firm’s current design. At a slower, intermittent pace, 

firms are also searching for designs that may allow them to improve performance even further.  

Agent-based simulation modeling is an attractive methodology to make headways on these issues. 

Broadly, “[s]imulation is particularly useful when the theoretical focus is longitudinal, nonlinear, or 

processual, or when empirical data are challenging to obtain” (Davis, Eisenhardt and Bingham, 2007) – 

all of which are true in the context of the impact of design on performance. More specifically, agent-

based simulation allows us to model the two search processes directly and let the consequences of these 

processes emerge from the simulation. At the same time, the model allows us to control a host of other 

issues that would be particularly difficult to control for in empirical studies. First, we can study a situation 

in which there exists a true underlying relationship between design and performance. Thus, if we find that 

this relationship is hard to detect once the coupled, multi-level search processes operate, it is not due to 

the fact that this relationships does not exist. Second, we can make the organizational design problem as 

simple as possible in order to avoid issues of equifinality or interactions among various elements of 

design. In particular, we focus on only one element of organizational design, which we model along a 

single dimension: the degree to which, in a hierarchical firm, lower-level managers are allowed to narrow 

the information that flows to superiors, i.e., the degree of their autonomy to narrow down options before 

they have to turn to superiors. If coupled search processes make it difficult to detect the optimal degree of 

this single-dimensional variable, even more problems for analysis are likely to arise when designs are 

more complex. Third, the model allows us to control for other reasons that may lead to a weak 

design/performance relationship. For instance, firms are all endowed with the same starting conditions 

and capabilities for change. Lastly, the model gives us control over the environments in which firms 

operate, thereby providing us with the opportunity to investigate for which environmental contingencies 

our results are more likely to hold. 

In sum, our model contains three parts: environments in which firms operate; high-paced search for 

good configurations of activities; and lower-frequency search for better organizational designs. We 
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discuss each part in turn. 

 
Environments 

We conceptualize a firm’s management team as facing a system of interdependent decisions (Porter, 

1996; Siggelkow, 2002). Each firm must decide, for instance, how much to train its sales force, whether 

to field a broad product line or a narrow one, whether to pursue basic R&D or not, etc.  Moreover, a 

number of these choices interact with each other in influencing firm performance. For instance, the value 

of having a well-trained sales force might increase as a firm broadens its product line. A firm’s 

environment is, in its simplest conception, a mapping from the firm’s set of interdependent choices to its 

performance. 

In our model, each simulated firm has to make decisions concerning N choices, and we designate the 

realized choices by a1, …, aN. For simplicity, we assume that a firm can resolve each decision in either of 

two ways. For instance, a1 may represent the decision to invest in more training of the sales force (a1 = 1) or 

not (a1 = 0) while a2 may represent the decision to increase product breadth (a2 = 1) or not (a2 = 0). In total, 

thus, a firm has 2N possible configurations of choices. 

In computational studies of firms as interdependent systems, it has become common to visualize the 

payoffs to these choice configurations as a performance landscape (e.g., Levinthal, 1997; Gavetti and 

Levinthal, 2000; Rivkin, 2000; Ethiraj and Levinthal, 2004). A performance landscape consists of N 

“horizontal” dimensions, each representing one of the N decisions a firm has to make, and one “vertical” 

dimension, which records the payoff to each of the possible choice configurations. A performance 

landscape is thus a mapping of any possible vector of firm choices a = (a1, a2, …, aN) to a performance 

value V(a).  

We create two types of performance landscapes with a variant of the NK model (Kauffman, 1993), 

which has been employed in a number of organizational studies (for a survey, see Sorenson, 2002). In 

simple environments, all decisions are independent from each other, i.e., the contribution of each 

individual choice ai to firm payoff V is affected only by the state (0 or 1) of the choice itself. In contrast, 
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in complex environments, decisions are highly interdependent. In this case, the contribution of each 

individual choice ai depends on the states of all other choices a-i.  

Denote the contribution of choice ai by ci(ai, a-i). For each landscape, the particular values of all 

possible ci’s are determined by drawing randomly from a uniform distribution over the unit interval, i.e., 

ci(ai, a-i) ~ u[0, 1]. The performance of a given set of choices a is then given by the average of the N 

contributions: V(a) = [c1(a1, a-1) + c2(a2, a-2) + … + cN(aN, a-N)]/N.  Throughout the simulations, we set N 

to 8. (A larger value for N does not change the qualitative results reported in the paper.) 

The second distinction we make is between environmental stability and turbulence. Firms in stable 

environments operate on the same landscape for their entire life-histories (200 periods). In turbulent 

environments, the landscape undergoes “correlated” shocks in periodic intervals. In particular, once a 

landscape is created, every 10 periods each contribution value ci is replaced by 0.2*ci + 0.8*u, where u is 

a new draw from a uniform distribution over the unit interval. 

 
Fast-paced Search for Good Configurations of Choices  

In the first period of each simulation, firms are placed on a randomly chosen point of the landscape, 

i.e., endowed with a randomly chosen set of choices. In subsequent periods, each firm tries to find higher-

performing sets of choices, i.e., higher locales on the performance landscape.  

In modeling how firms search a performance landscape, we focus on a hierarchical, two-level design, 

in which lower-level department managers search for improvements in their respective departments and 

send proposals to upper-level managers, who in turn, coordinate low-level choices. As described in the 

next section, firms may, over time, change the degree to which department managers are allowed to 

narrow the information flow to superiors. We focus on this particular setting for three reasons. First, the 

degree of lower-level autonomy to narrow down options before superiors have to be involved is a central 

issue of organizational design. Second, this choice can be modeled as a one-dimensional object for search 

– “How many proposals have to be sent up?” – thereby providing a very simple setting for organizational 

search. Third, given our particular model set-up, a clear relationship between richness of information flow 
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and performance exists. In particular, in stable, complex environments a firm benefits from a rich 

information flow (and hence, relatively low autonomy), while in dynamic, simple environments a narrow 

vertical information flow (i.e., a higher degree of autonomy) is more appropriate (Siggelkow and Rivkin, 

2005). 

It is important to note that we do not claim that this particular hierarchical structure is any way 

“optimal” – other structures including ones that stress more horizontal information exchange may 

outperform this one (Siggelkow and Rivkin, 2005). However, to simplify the organizational search 

process as much as possible, we focus on adaptation of design within the hierarchical structure.  

 Search for higher-performing sets of choices proceeds as follows. We assume that the firm’s eight 

decisions are split between two department managers. The first manager has responsibility for the first 

four decisions, and the second manager has responsibility for the remaining four decisions. In each 

period, each department manager evaluates all four local alternatives to the status quo within her 

department and ranks them from most attractive to least attractive for her department. (An alternative is 

“local” if it only differs in one choice. For instance, if the status-quo choices for a department manager 

are 0000, then a department manager would evaluate 1000, 0100, 0010, and 0001.) 

If manager A has control over the first four decisions, and manager B has control over decisions 5-8, 

then manager A evaluates each alternative by computing VA = [c1(a1, a-1) + c2(a2, a-2) + c3(a3, a-3) + c4(a4, 

a-4)] /4, while manager B computes VB = [c5(a5, a-5) + c6(a6, a-6) + c7(a7, a-7)+c8(a8, a-8)]/4. 

After evaluating and ranking the alternatives, each manager sends the P most preferred proposals to 

upper management. A low level of P reflects a firm in which managers are expected to, or permitted to, 

narrow down options a great deal before turning to superiors. A high level of P reflects a firm in which 

senior managers want to review many alternatives themselves. Thus, P captures the richness of the 

vertical information exchange. P is bounded by 1, since department managers need to send up at least one 

proposal, and by 5, since department managers can at most send up 4 local alternatives and the status-quo. 

Upper management focuses on coordinating the actions of the firm’s two departments. In particular, 

from all possible combinations of departmental proposals and status quo choices, upper management 
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selects one composite alternative at random, assesses it in light of the interests of the firm as a whole (that 

is, evaluates the overall V(a)), compares it to the status quo, and implements the option if it yields a 

higher payoff for the firm than the status quo does. The configuration implemented by upper management 

forms the starting point for further search at the departmental level in the next period. One should note 

that the random selection of composite alternatives by upper management creates a source of 

heterogeneity between firms with the same value of P. A firm whose upper management happens to have 

picked a good combination of proposals may improve its performance faster than a firm with a less lucky 

upper management.1 

 
Lower-frequency Search for Better Organizational Designs 

While firms search for better activity configurations in every period, the search for better 

organizational structures happens at a lower frequency and is “on-line” (Gavetti and Levinthal, 2000), i.e., 

firms need to implement a new design and experience it before they can ascertain what performance they 

can achieve with this design. In particular, we assume that firms consider design changes every 10 

periods. (In the later robustness section, we analyze firms that consider design changes every 5 or 25 

periods.) When a firm considers a design change, it first has the opportunity to revert to its most recent 

design should the performance achieved by the current design be worse than the performance under its 

former design. Thus, a firm is allowed to recover from a failed experiment (at least with respect to its 

design; it still retains its current set of choices.)2 If a firm does not revert, it proceeds to search for a better 

design. The literature on organizational change identifies a number of different drivers for change and a 

number of ways of how firms may change. We focus on two frequently described drivers (time-driven 
                                                 
1 The random choice of composite alternatives to be considered by upper management is the only source of 
heterogeneity, since department managers always evaluate all local alternatives and always send up their most 
preferred P alternatives. Thus in two firms with the same choice configuration and the same level of P, the same sets 
of alternatives will be sent up to upper management. 
2 In more detail, every 10 periods, a firm will compare the final performance achieved under the current design with 
the final performance achieved under its most recent different design. If the performance under the current design is 
worse than the performance that the firm had under its most recent design, the firm will revert to the old design, 
which completes the adaptation process for this 10-period cycle. If the performance is better (or equal), the firm will 
consider the possibility of changing its design as described below. In a sense, if a firm was successful in a past 
experiment with a new design, the firm will continue to experiment with new designs, since the firm can always 
return to its old design.  
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and performance-driven) and two commonly noted modes of changing (incremental and mimicry).  

We say that a firm engages in time-driven change when a firm that decides to change its design 

(rather than revert to the old one) will always change its design, regardless of its performance. This is akin 

to a “time-paced” evolutionary path “in which change is keyed to the passage of time” (Brown and 

Eisenhardt, 1997: 25). 

A firm is said to follow performance-driven change if the firm adjusts its design with a probability 

that is inversely correlated to its performance. This driver captures an element of organizational behavior 

suggested by March and Simon (1958) and subsequently developed by many others: firms with low 

performance are likely to be below their aspiration level of performance and are thus triggered to search 

for improvements; firms with high performance are more likely to be above their aspiration level and thus 

are less likely to search for improvements. In particular, let Π be the performance of the focal firm; let 

Πmax be the maximum performance of all firms in the landscape, and Πmin be the minimum performance. 

Then the focal firm will reorganize with probability p = (Πmax - Π)/( Πmax - Πmin).3 This implies, for 

instance, that the firm with the best performance would never reorganize and the firm with the worst 

would always reorganize.4 One should note that with performance-driven change the two search processes 

that the firm is engaged in are coupled in both directions. The organizational design influences the fast-

paced search for better choice configurations; and the degree to which the fast-paced search for better 

choice configurations is successful influences the frequency of the search over organizational designs. 

Once a firm decides to reorganize, it has to determine how to change its design. In our case, the only 

element that a firm can change is P, the richness of information exchange. We distinguish two change 

modes: incremental changes and changes employing mimicry. Incremental change captures internal, 

small-scale experimentation. Incremental and local search, in which “members of organization begin by 

looking at close alternatives to improve performance” (Barnett and Sorenson, 2002: 291), has often been 

                                                 
3 In the special case in which all firms have the same performance, i.e., Πmax = Πmin, it is assumed that 
reorganization occurs for sure. 
4 This mechanism only requires firms to know their performance relative to other firms, but not relative to the 
highest performance possible, as assumed, e.g., by Strang & Macy (2001).  
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used in formal models as a reflection of managerial behavior (March and Simon, 1958). Empirical 

support for this assumption, in particular with respect to changing the parameter of our interest, is 

provided by Colombo and Delmastro (1999). In a sample of 438 Italian metalworking plants, 

organizational change with respect to decision autonomy at different levels in the organization (which is 

inversely correlated with our parameter P) was “characterized by a process of marginal adaptation instead 

of radical modification” (p. 264). In our model, with incremental experimentation, a firm either increases 

or decreases P by one unit with equal probability.5  

If a firm employs mimicry, the firm will imitate the level of P of another firm. Following prior 

conceptual (DiMaggio and Powell, 1983), empirical (Haveman, 1993), and modeling work (Strang and 

Macy, 2001), we assume that firms are more likely to imitate high-performing firms than low-performing 

firms. Thus, in the terminology of Haunschild and Miner (1997), firms engage in “outcome imitation,” by 

choosing to copy an organizational feature that appears to have good performance consequences. In 

particular, if Πi is the performance of any given firm i, then a focal firm m will copy another firm j, j ≠ m, 

with probability p = Πj/Σi≠mΠi.6 As per timing, each firm chooses the design it intends to mimic before 

any firm actually implements its changes. Thus firms do not accidentally mimic a just-adopted design of 

other firms. 

Combining the different drivers and modes of organizational search captures a range of organizational 

search processes: time-driven and performance-driven incremental adaptation, and time-driven and 

performance-driven mimetic adaptation.  

 
 
 
 
 
 

                                                 
5 Should P reach its upper or lower bound, the firm will move away from the boundary with probability 0.5 and stick 
at the boundary with probability 0.5. 
6 For example, suppose that there are five firms with performances as follows: Firm 1: 0.3; Firm 2: 0.7; Firm 3: 0.4; 
Firm 4: 0.6; Firm 5: 0.8. If Firm 5 reorganizes using the mimicry direction rule, it has a 0.3 / (0.3 + 0.7 + 0.4 + 0.6) 
= 15% chance of copying Firm 1’s design, a 0.7 / (0.3 + 0.7 + 0.4 + 0.6) = 35% chance of copying Firm 2’s design, 
and so forth. 
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RESULTS 

To focus on the effect of organizational design, we eliminate all other heterogeneity within each 

simulation: In each simulation we place all firms on the same, randomly chosen starting point on the 

landscape. Thus firms start off with exactly the same choice configuration (and performance). The 

capabilities of managers in all firms are the same; i.e., they all evaluate the same number of alternatives, 

as described in the previous section. Likewise, all firms start at the same time. At the beginning of each 

simulation, firms differ in their initial degree of information flow, with P being set to 1, 2, 3, 4, or 5. We 

use five firms of each type, creating a population of 25 firms on each landscape. All firms on the same 

landscape employ the same search process for new organizational designs. For each landscape we run the 

simulation for 200 periods, and we repeat each simulation on 2,000 landscapes. (Each landscape is 

created by randomly re-drawing all contribution values ci.) The reported results are thus always averages 

over 2,000 observations. Performance values are given as percentages of the highest performance possible 

in each landscape. Each firm considers a reorganization every 10 periods.  

For most of the results, we report the final design that a firm adopts by the end of the simulation, i.e., 

by the end of 200 periods. We determine the final design of each firm as follows: If the firm would have 

reverted in period 201 to a prior design, we count this prior design as its final design. Otherwise, the final 

design is the design observed in period 200.  

In discussing the results, we find the notion of a sticking point to be helpful. Sticking points are 

choice configurations from which a firm will not move (Rivkin and Siggelkow, 2002). That is, at a 

sticking point, there exists no alternative configuration of the N choices that the actors within the firm 

would consider and that meets the approval of enough actors to be adopted. Once a firm reaches a 

sticking point, its search has come to an end (assuming the environment does not change afterwards). 

We discuss, in turn, results for static, complex environments, results for turbulent, simple 

environments, and robustness with respect to various model parameters. 
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Results in Stable, Complex Environments 

The first set of analyses considers firms that operate in stable, yet complex environments. Column 1 

in Table 2 reports an important benchmark: the average performance in period 200 of firms that cannot 

change their designs. The results show that in complex, stable environments a rich information flow is 

very valuable: performance increases monotonically with P. For instance, firms with P = 5 have an 

average performance of 0.920, whereas firms with P = 1 have an average performance of only 0.843, a 

statistically highly different value. The intuition behind this benchmark result is that highly complex 

environments are very “rugged” with many sticking points that create the possibility firms will get stuck 

with suboptimal choices. Rich information flow increases the degree of exploration that a firm engages in, 

thereby increasing its long-run performance. Given the relatively large performance difference between P 

= 1 and P = 5 firms and the absence of confounding circumstances, the set-up seems ideal for finding 

support for Propositions 1 and 2: At the end of the simulation, one would expect firms with more 

appropriate designs to outperform firms with less appropriate designs (Proposition 1). Moreover, one 

would expect firms to find the more appropriate design so that better designs appear more frequently in 

the population of firms than do less appropriate designs (Proposition 2). 

 
<INSERT TABLE 2 ABOUT HERE> 

 
Time-driven incremental search process.  In the first simulation, we consider the time-driven 

incremental search process. Thus, every 10 periods each firm will reorganize by adjusting its P up or 

down by 1 (or revert to its prior design). Column 3 in Table 2 shows the percentage of firms that end up 

with different levels of P, while column 2 shows the average performance of these firms. For these firms 

and for the benchmark firms in column 1, Figure 1 graphs average performance as a function of P. 

Two results stand out. First, there is hardly any drift toward the more appropriate design (column 3). 

The simulation started with an equal distribution of firms across the different levels of P (20% each), and 

by the end, we find 19.4% firms with P =1 and 20.3% firms with P = 5. This difference is statistically 
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significant, but its magnitude is clearly underwhelming.7 For firms following a time-driven incremental 

search process, we do not find much support for Proposition 2.  

Prior studies have noted that non-optimal features might survive in a population of firms, but they 

have argued that such non-optimal features will undermine performance (Proposition 1). To the contrary, 

our second main result is that the performance penalty associated with a poor design may be drastically 

smaller than a benchmark would lead one to expect (column 2 vs. column 1; Figure 1). Whereas the 

performance difference between the best (P = 5) and worst (P = 1) designs was 0.077 when firms could 

not change their designs, now the performance difference between firms that have the best and worst 

designs is seven times as small (0.011). Thus, the performance differences among designs, while still 

present, are severely dampened. To gauge the size of this effect, we construct a metric called dampening. 

Let Π0(P1) and Π0(P5) be the performance of firms with P = 1 and P = 5 when they cannot change their 

design, and let Π(P1) and Π(P5) be the performance of firms that have P = 1 and P = 5 at the end of each 

simulation. Then dampening = 1 – [Π(P5) – Π(P1)]/[Π0(P5) – Π0(P1)]. For instance, a dampening of 1 

would imply that the entire performance difference is dampened away. 

As reported in the first row of the bottom panel of Table 2, about 85% of the performance difference 

between firms with best and worst designs is dampened away by the coupled search processes. One 

should note that this performance dampening is driven almost exclusively by higher performance of firms 

with poor designs, rather than lower performance of firms with good designs. (This result will hold for 

other drivers and change modes as well.) Consequently, to understand performance dampening, we need 

to understand why firms with seemingly poor designs can have high performance. 

 
<INSERT FIGURE 1 ABOUT HERE> 

 
Two mechanisms dampen performance differences. First, there is a survivor effect: Structures that 

survive an evolutionary adaptive process despite being inappropriate must have been present in firms that 

                                                 
7 On average, each of the 2,000 landscapes contains 5.08 firms with P = 5 and 4.85 firms with P = 1. Using the 
standard deviation of number of firms of each type across landscapes, we can compute the significance of the 
difference in the mean values. The p-value is below 0.001. 
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had some other advantage (for instance, lucky upper management who happened to evaluate some very 

good alternatives).8 Thus if one observes a firm with an inappropriate design, that firm must have had 

relatively high performance (compared to an “average” firm with this design), thereby belying the 

generally poor outcome associated with this design. To gauge how much of the dampening effect is 

driven by P = 1 survivors, we identify survivors by tagging firms whose performance at the end of period 

10 equals the performance in period 200 and whose starting design equals its final design. These firms 

found a sticking point with their initial design, never found a better configuration of choices, and ended 

up with their original design. Given that firms using the time-driven, incremental search process change 

their design every 10 periods, we may expect relatively few survivors to exist. Indeed, only about 10% of 

all P = 1 firms are survivors. As expected, the performance of these survivors, 0.894, is significantly 

higher than the performance of the average non-changing P = 1 firm of 0.843. Overall, survivors 

contribute 8% of the performance dampening effect (see the second row in the bottom panel of Table 2).9  

The second mechanism that leads to high performance among firms with poor designs is a wrong-

attribution effect: A firm might start with a good design and find a good configuration of choices; after 

this, the firm may continue to experiment with its design and may adopt a poor design. This poor design 

may prevent the firm from improving its performance, but if it does not pull the firm from its current set 

of choices, the firm will retain its current, relatively high performance. If one correlates final performance 

with final design, one would attribute the firm’s high performance to the final design; yet the final design 

had little to do with the firm’s final performance. For instance, about 24% of all firms that have P = 1 as 

their final design actually reached their final performance level with a P = 5 design at some earlier time 

and then remained at this performance level. These firms’ average performance is a relatively high 0.917 

and is being attributed to the P = 1 design, since that is the design observed at the end of the simulation 

                                                 
8 Note, in our model firms do not die, but structures may, as over time a particular structure may fail to be adopted 
by any firm. In this sense, some structures survive, while others do not. 
9 Let Π0(P1) and Π0(P5) be the performance of firms with P = 1 and P = 5 when they cannot change their design. Let 
ΠS(P1) be the performance of P = 1 survivors and α the fraction of final P = 1 firms that are survivors. Then, the 
degree to which survivors contribute to the dampening effect is given by  α/dampening * [(ΠS(P1) – 
Π0(P1)]/[Π0(P5) – Π0(P1)]. 
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for these firms. 

If firms follow a time-driven incremental search process, such experimentors – firms that achieved 

their final performance with a design that is different from the current design – are rampant. About 85% 

of all firms with P = 1 at the end of the simulation reached their sticking points (i.e., final-period 

performance) with a different design. Overall, these experimentors contribute 86% of the dampening 

effect (see the third row in the bottom panel of Table 1).10 

Given that in this case the dampening effect is mainly caused by the wrong-attribution effect, one 

might argue that a researcher has been “lazy” not to track down for each firm the design that really led to 

the firm’s final performance (or the researcher might simply have been unable to do so). How would the 

results look if one did not simply attribute final performance to the final design, but if one attributed final 

performance to the design that actually led the firm to this performance? As reported in column 5 in Table 

2, tracking down the design that leads to final performance reveals a larger drift towards the appropriate 

design. On average, only 9.7% of all firms reach their final sticking point with a P = 1 design, while 

27.7% of all firms reach their final sticking point with a P = 5 design. The degree of dampening, however, 

is still very high. About 76% of the performance difference between the best and the poorest design is 

washed out. Again the dampening is driven by higher performance of the P = 1 firms. What could explain 

this result? The same two mechanisms are actually still at play. First, there is still the same set of high-

performing survivors, i.e., firms that early on found a sticking point with P =1 and afterwards were unable 

to find any better performance despite having better designs. Second, a wrong-attribution effect is also 

still at work. Firms that reach a sticking point with P = 1 may have had a different, better design at some 

earlier time, which allowed the firm to reach a relatively high performance. If that earlier search did not 

end in a sticking point, the P = 1 design would get credit for finishing off the search process. Thus, the P 

= 1 design, which leads the firm onto its final sticking point, still receives credit for the performance 

                                                 
10 There is a third category of firms, besides survivors and experimentors that end up with P = 1: firms that started 
with P = 1 and that found their sticking point when they had a P = 1 design, yet not within the first 10 periods. The 
performance of these firms makes up the remaining dampening effect. In general, this effect is relatively small; 
hence we focus on survivors and experimentors. 
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generated by the entire sequence of organizational designs that the firm ever had, leading to a seemingly 

high performance associated with having a P = 1 design. In other words, the dampening effect would not 

be eradicated even if one were able to track down the design that was responsible for reaching the final 

performance level. 

With a time-driven incremental search process, we thus see a significant compression of performance 

differences, which would make a test of Proposition 1 more difficult. Suppose one hypothesizes that firms 

with P = 5 outperform firms with P = 1. How large a sample would a researcher need to find a statistically 

significant (p < 0.05) difference between the performance of these two types of firms? If firms were 

endowed with fixed designs that they could not change (the implicit assumption generally made when 

theorizing about why certain designs outperform other designs), one would only need 21 firms of each 

type. (This calculation takes into account the differences in the means reported in column 1 of Table 2, as 

well as the standard deviations of the individual means.) If one observes these firms, however, only after a 

period during which firms have adjusted and experimented with their designs, one would need 672 firms 

of each type to find statistically significant support for one’s hypothesis. In this sense, it is more than 30 

times harder to find a significant difference empirically than to theorize about it. (The number of firms of 

each type required to find significant differences are reported in the last row of Table 2.) 

 
Performance-driven incremental search process.  So far we have assumed that firms would change 

their design every 10 periods, regardless of their performance. In the next simulation, we relax this 

assumption by using the performance-driven search process, i.e., by making the probability of a firm 

changing its design an (inversely correlated) function of its current performance. Columns 6 and 7 in 

Table 2 contain the results of this simulation. In contrast to the time-driven process, we can observe a 

slightly larger drift towards P = 5 designs, with 24.4% of all firms ending up with P = 5, and a lower 

degree of dampening. However, there is still a significant performance compression, with about 63% of 

the performance difference between the best and worst designs being dampened away. In the presence of 

a performance-driven search process, which allows high-performing firms to retain their designs, 



 22

survivors are playing a larger role, as one might expect. In this case about 19% of all original P = 1 firms 

survive, i.e., reach their final performance in the first 10 periods, never find a high performance later, and 

end the simulation with P = 1 design. (About half of these firms never change their design at all, i.e., have 

a P = 1 design throughout their lives.) Moreover, these survivors have a high average performance of 

0.926. Overall, in this case, survivors contribute 42% of the dampening effect. Thus, even with 

performance-driven search processes we find performance dampening across organizational designs. In 

this case, one would need 106 firms of each design to find a significant difference between P = 1 and P = 

5 firms. 

 
Time-driven mimicry search process.  We now turn our attention to the effect of mimicry on both 

the distribution of designs that are observed at the end of the coupled search process and the degree of 

performance dampening. In these simulations, when firms decide to change their design, they do not 

change their design incrementally. Rather, they imitate the design of high-performing firms. 

With mimicry one might expect more drift towards P = 5, since better designs should be copied over 

time, thereby crowding out poor designs. The results of the time-driven mimicry search process can be 

found in columns 8 and 9 of Table 2. First, we observe that in aggregate there is hardly any drift towards 

P = 5 firms. At the end of the simulation, 19.5% of all observed firms had a P = 1 design, while 20.1% of 

firms had a P = 5 design. Why is there such a large degree of diversity of designs? In part, the apparent 

diversity of designs is generated by diversity across landscapes. The average number of designs one can 

observe in any given landscape at the end of each simulation is 2.2. Thus, the mimetic process does 

indeed lead to a reduction of variety in any given landscape. However, in different landscapes different 

designs survive, creating overall diversity of designs. This outcome has been empirically observed by 

Djelic and Ainamo (1999), who studied the evolution of organizational forms in the fashion industry. 

They find the emergence of one dominant organizational design within France, Italy, and the US – yet 

this design was different in each country. 
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With respect to dampening, we continue to see a large performance compression. The performance 

difference between P = 1 and P = 5 firms is dampened by 86%.11 The mechanisms behind the dampening 

effect remain the same as with the incremental search processes above. As before, the dampening effect is 

driven mainly by the performance improvement of P = 1 firms. And the reason for this high performance 

is still two-fold. Some P = 1 firms are high-performing survivors, and others are experimentors, i.e., firms 

for which their current design has nothing to do with the design that generated the performance for the 

firm. 

With mimicry one might be surprised by the large degree that wrong-attribution plays in contributing 

to the dampening effect (about 85%). In contrast to the incremental search processes, with mimicry 

experimentation is not random: the design of high-performing firms are imitated. Thus, for the wrong-

attribution mechanism to work, “poor” designs must be imitated by firms with “better” designs. Why does 

this happen? We can identify three reasons why firms might imitate poor designs of other firms. Firms 

may imitate the lucky; firms may imitate the fast; or firms may imitate other imitators, i.e., experimentors.  

Imagine a P = 1 firm that for some (lucky) reason reached a very high performance. If firms with 

different, more appropriate design, reached relatively high performance but not as high as the outlier P = 

1 firm, these firms might copy the P = 1 design. Consequently, one might observe a number of high-

performing firms with a P = 1 design and ascribe the high performance of all firms to the P = 1 design, 

even though the P = 1 design was only responsible for the good performance of one firm. In a sense, the 

process of mimicry magnifies the luck of an outlier P = 1 firm, thereby leading to a large dampening 

effect.  

Besides luck, P = 1 firms can appear to be appropriate targets for imitation because they improve their 

performance quickly. Firms with P = 1 tend to improve faster than firms with P = 5 (a fact we will exploit 

later in the simulations with dynamic environments). As a result, in period 10, the long-run superiority of 

                                                 
11 The dampening effect is not driven by the fact that P = 1 and P = 5 firms survive in different landscapes, i.e., 

the dampening effect is not an across-landscape phenomenon. Even if we constrain our analysis to those landscapes 
in which both P = 1 and P = 5 firms survive (this happens in 330 out of 2,000 landscapes), the dampening effect is 
95%. 
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P = 5 designs has not come to the fore, and many P = 1 firms actually outperform P = 5 firms. Hence, a 

number of P = 1 firms will serve as templates to be copied.  

Once firms copy firms with P = 1, the number of firms with P different from 1 decreases, thereby 

reducing the likelihood that firms in later rounds will find attractive targets that have a P different from 1. 

Thus, once the imitative process starts, the population of firms can tip towards the “wrong” design. 

Interestingly, while such “sub-optimal” outcomes due to path dependencies and positive feedback effects 

have generally been bemoaned (David, 1985; Arthur, 1989), we see that the (population-wide) 

performance outcome should the “wrong” design win, is not that bad. Wrong designs can win only if they 

performed fairly well; and other firms may obtain relatively high performance before they adopt the 

wrong design; hence the harm done by eventually adopting the wrong design is muted in this case. 

 
Performance-driven mimicry search process.  If firms follow performance-driven mimicry search 

processes, we finally see a larger drift away from poor designs toward better designs. Overall, the number 

of P = 1 firms is halved (less than 10% end with a P = 1 design), while 35% of all firms end with a P = 5 

design. The degree of dampening, however, increases even more. Now, 93% of the performance 

difference is washed away, requiring 2,668 firms of each type to detect a statistically significant 

performance difference. While the wrong-attribution mechanism still accounts for a large fraction of the 

dampening effect (48%), survivors now contribute significantly (34%). The number of P = 1 survivors is 

still relatively small (only 11% of P = 1 firms are survivors), but their performance of 0.950 is extremely 

high. We thus observe an interesting dynamic: The stronger the selection mechanism that operates on 

poor designs, the better the survivors have to be in order to survive with poor designs, leading to a greater 

dampening effect, i.e., a worsening of the correlation between design and performance.  

 
 

Results in Turbulent, Simple Environments 
 

We now turn our attention to a different environmental setting – turbulent and simple – that calls for a 

different appropriate organizational design. In column 1 of Table 3, we report the benchmark 
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performances of firms that do not change their designs. In this environment, narrow information 

exchange, i.e., a low P, is beneficial. Firms with P = 1 and P = 2 have the highest performance, while 

firms with P = 5 have the lowest performance. (Firms with P = 1 and P = 2 have statistically 

indistinguishable performance. All other performance differences among the firms are statistically highly 

significant.) The intuition behind this result is as follows: in the simple environment, no 

interdependencies between the two departments of the firm exist. As a result, alternatives that are optimal 

for individual departments are also optimal for the firm. Consequently, upper management should give 

departmental managers high autonomy in filtering alternatives and only request one proposal. In contrast, 

if upper management insists on many proposals, upper management can become a bottleneck, not getting 

to the best proposals sent up by the departments, thereby slowing down the improvement process. This 

reduction in the speed of improvement is particularly harmful in turbulent environments, in which quick 

realization of performance improvements is necessary for high performance.  

 
<INSERT TABLE 3 ABOUT HERE> 

 
Incremental search processes.  When firms follow time-based incremental search processes, we 

again see relatively little drift towards appropriate designs. 40% of firms started with the appropriate 

design (P = 1 or P = 2), and 45% ended with appropriate designs. Likewise, while 20% started with the 

worst design, P = 5, 15% of all firms still have this design by the end of the simulation. In sharp contrast 

to the results from the stable environments, however, is the low degree of dampening. In the turbulent 

environment, we see only 10% performance dampening.  

Turbulence basically negates the two mechanisms for dampening that we had identified. Consider, 

e.g., a firm with P = 5, that by some luck survived the adaptation process. As the environment changes in 

period 191, i.e., as the relationship between choices and performance is re-set, this luck is discarded. The 

firm finds itself in a new situation and its prior good performance is of little help. Moreover, the firm’s 

inappropriate design now does hurt the firm. Hence, we see that the performance of firms that end with a 

P = 5 design is very similar to those P = 5 firms that never change their design, yielding only a small 
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dampening effect. In sum, with environmental shocks that negate prior advantages, survivor effects 

vanish. 

For similar reasons, the wrong-attribution effect disappears. A high-performing firm that changes its 

design from a more appropriate design (that led to this high performance) to a less appropriate design 

will, in a turbulent environment, pay a price for this misguided organizational change. Again, the firm 

cannot leverage its high performance from its prior design, and thereby mask the inappropriateness of the 

current design, since the current design is now actively employed in reacting to the new environment in 

which the firm finds itself. As a result, poor designs will be correlated with poor performance. 

Similar results can be seen when firms follow performance-driven, incremental search processes 

(columns 4 and 5 in Table 3). We see a slightly larger drift towards high-performing designs and away 

from P = 5 designs. At the same time, absolutely no performance dampening is present. 

 
Mimicry search processes.  With time-driven mimicry search processes, we see both a larger drift 

towards appropriate designs and the re-emergence of, at least, moderate dampening. 63% of all firms end 

up with P = 1 and P = 2 designs, but the performance difference between P = 1 and P = 5 firms is 

dampened away by about 24%. Here, a subtle survivor effect arises again. Recall, we identify the “final” 

design of a firm as either the firm’s design in period 200, or the design the firm would revert to the next 

time it considers restructuring. A firm with P = 5 in the last period is thus counted as having a final P = 5 

design only if its performance is higher than the performance the firm had with its prior design. Thus, 

some poor performing P = 5 firms, that would revert to some other design in the next cycle of 

restructuring, are not classified as P = 5 firms, boosting the average performance of the (remaining) P = 5 

firms. Indeed, if we simply coded as final design the design firms have in period 200, we would observe 

more P = 5 firms (4.7% rather than 3.9%), with an overall lower average performance and hence a smaller 

dampening effect (6%).12  

                                                 
12 This survivor effect also accounts for the small dampening effect seen in the time-driven, incremental adaptation 
case above (columns 2 and 3 in Table 3). In that case the survivor effect is, however, smaller. With incremental 
adaptation, a P = 5 firm could only have been a P = 4 firm in its prior organization cycle. The performance 
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Lastly, in the case of the performance-driven mimicry search processes, we finally see a very strong 

drift towards appropriate designs (about 80% of all firms end up with P = 1 or P = 2), and a small degree 

of dampening.  

 
Robustness  

We tested the robustness of our results with respect to a number of assumptions of the model: the 

capability of upper management, the number of firms per starting design, and the reorganization 

frequency. We also investigated two other environmental conditions (stable and simple; and turbulent and 

complex). Under all assumptions and conditions, results could be explained by how changes to the 

simulation altered the strength of the two underlying mechanisms – the survivor effect and the wrong-

attribution effect. (See the Appendix for more detail.) 

 

DISCUSSION AND CONCLUSION 

Our analysis identifies tough challenges for researchers who seek empirical evidence of the impact 

that design has on organizational performance. At the same time, it implicitly reveals some good news for 

the health of populations of organizations. Both the empirical challenges and the implicit good news may 

be echoed in diverse contexts, beyond organizational design, where coupled search processes are at work. 

 
Empirical challenge and response. Our findings indicate that it can be very difficult to test 

empirically the appropriateness of particular organizational designs, for two related reasons. First, 

contrary to Proposition 2, there may be very little drift in a population of firms toward an optimal design. 

This is particularly likely if: 

(a) reorganizations are sparked by the passage of time, not by poor performance, so that high-

performers with appropriate designs can gradually wander away from good designs; and 

                                                                                                                                                             
difference between P = 4 and P = 5 firms tends to be slight; hence, relatively few P = 5 firms would actually revert 
to P = 4 firms. With mimicry, however, P = 5 firms might have been P = 1 or P = 2 firms. In order for a P = 5 firm 
not to revert, it must have had better performance than it had with these much better designs. Clearly, if firms 
survived this selection criteria (and are only observed and counted when they survive), their performance will be 
abnormally high, thereby creating a larger dampening effect. 
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(b) the environment is stable. In a turbulent setting, a firm that wanders away from a good design 

soon learns that its altered design cannot cope well with new conditions, and it reverts to the good 

design.  In a stable setting, a firm may retain good operational choices, and associated high 

performance, even as it wanders away from an appropriate design. 

Thus, under these conditions, it may not be fruitful to assess the optimality of designs by observing the 

frequency distribution of designs. 

An empirical researcher can ameliorate this problem by tracing back each firm’s history to identify 

the design that first delivered the firm’s current performance. One can then examine whether good 

designs are disproportionately likely to have led a firm to arrive at its current performance. We find, 

however, that this may not uncover appropriate designs fully. A firm’s current performance can result 

from an entire sequence of prior designs, so the design that finally delivered current performance might 

not be the design most responsible for that performance. Our results suggest that individual designs may 

not be the appropriate unit of analysis; rather, the right unit of analysis may be different sequences of 

designs. 

The second reason empirical testing may be difficult is that, in many instances, designs expected to 

perform poorly can appear to perform quite well. Especially in stable and complex settings, much of the 

performance difference between firms with appropriate and inappropriate designs may be compressed by 

survivor and wrong-attribution effects. This finding reveals a major challenge for testing conceptual 

claims about the appropriateness of organizational designs. In this type of work, one usually makes a 

conceptual argument about why a certain design should perform particularly well (given environmental 

conditions, etc.). One then assembles a data set and tests the relationship between designs and 

performance (Proposition 1). A failure to find such a relationship is generally seen as a failure of the 

conceptual framework. (For such a test, see for instance Doty, Glick and Huber (1993)). Our simulations 

showed, however, that even when a substantial performance difference among designs exists (i.e., the 

conceptual framework is correct), coupled search processes can dampen performance differences 

significantly and throw doubt on the hypothesized design-performance relationship. Similarly, one may 
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conclude that equifinality is present among a range of designs even when it is not; the fact that firms with 

different designs display similar performance at a point in time does not necessarily imply that these 

designs are equally effective. 

An empirical researcher can combat dampening, we find, by conducting tests in turbulent settings, 

where designs must rise repeatedly to the challenge of finding good operational choices.  In such an 

environment, a firm cannot hide its poor design by getting lucky once with its operational choices.  

Environmental turbulence, however, brings new problems for the empirical researcher; performance data 

may become noisier in turbulent settings, for instance, and patterns are harder to discern. 

A researcher may also combat dampening by seeking settings where firms cannot reorganize easily.  

After all, dampening is driven by the ability of firms to move among designs – that is, to reorganize. This 

ability comes in two forms: (a) the ability of firms with good designs and high performance to move 

toward poor designs without performance consequences, and (b) the ability of firms with poor designs 

and low performance to move toward good designs, leaving only lucky, high performers among those 

with poor designs. Conditions that limit these abilities may reduce the degree of dampening. For instance, 

one may suspect that if firms are allowed fewer opportunities to reorganize, dampening may disappear. 

Our simulations, however, temper this hope. Figure 2 shows the degree of dampening that arises in our 

simulations in the stable, complex environment after each round of reorganization (i.e., after every ten 

periods). Dampening indeed worsens with more reorganizations, but it is salient after only a few 

reorganizations. This is especially true when firms can mimic each other and leap rather than tweak in the 

space of possible designs. Only severe limits on the number of reorganizations will make dampening far 

less damaging to empirical research. 

In sum, we identify challenges to empirical research on the performance impact of design, and we 

suggest approaches to tackle these challenges.  None of the approaches, however, fully resolves the 

difficulties we uncover. 

<INSERT FIGURE 2 ABOUT HERE> 
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Design diversity and population health. While the lack of a strong drift towards more effective 

designs makes empirical testing of appropriateness of designs based on frequency counts difficult, it may 

actually be a helpful property for populations of firms. As Hannan and Freeman (1989: 7) point out: 

“Questions about the diversity of organizations in society might seem to have only academic interest. In 

fact, these issues bear directly on important social issues. Perhaps the most important is the capacity of a 

society to respond to uncertain future changes. Organizational diversity within any realm of 

activity…constitutes a repository of alternative solutions to the problem of producing sets of collective 

outcomes. These solutions are embedded in organizational designs and strategies.” Evolutionary 

processes that lead to a reduction of forms thus can weaken long-term population-wide performance. 

Traditionally, one might have thought of this as a clear tradeoff: an evolutionary process that leads to 

quick convergence on the optimal form (given current conditions) has a short-term advantage, but may 

lead to a homogeneous population that cannot adapt should environmental conditions change. Conversely, 

a process that lets inferior forms survive leads to lower short-term performance for the population as a 

whole, but retains a greater degree of diversity and associated adaptability. Our simulation results indicate 

that under some conditions coupled search processes might achieve both long-term adaptability and 

strong short-term performance. “Poor” designs may be retained and serve as diverse, helpful seeds should 

the environment change.  At the same time, firms with “poor” designs show fairly high performance, 

either because they arose from “mutations” of better designs or because poorly designed but lucky firms 

discovered good operational choices. In our model, at least in stable environments, a change from a good 

design to a poorer one is often performance neutral; performance is not negatively affected, although 

performance improvement is stunted. Such “wandering with impunity” in organizational design space has 

a biological counterpart: “neutral mutations” have been proposed to be a key element in the context of 

biological evolution (Kimura, 1983) and to serve as a springboard for future adaptations should the 

environment require it (Huynen, Stadler and Fontana, 1996). 

A second piece of good news was seen in simulations that allowed firms to imitate each other. In 

these instances, even if a poor design prevailed in the evolutionary process (i.e., was the sole surviving 
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form or among the few survivors within a particular landscape), the overall population performance 

tended to be high. Firms within a landscape could get locked in to a suboptimal design, but the conditions 

under which this happened made it likely that overall performance was relatively high. Otherwise, the 

poor design could not have won the evolutionary process. 

In sum, the same processes that complicate the work of the empirical researcher harbor potential 

benefits for the population of firms as a whole: organizational variety may be preserved without incurring 

a performance penalty. 

 

Beyond organizational design. While our simulation focused on organizational design as an 

influence on performance, the argument that underlies performance dampening applies to a wide range of 

coupled search processes. The elements required are (a) some set of choices that affects performance not 

directly and deterministically but by shaping a second set of choices; (b) a tendency among organizations 

to explore alternative configurations of the first set of choices over time (e.g., in our simulation, to 

reorganize); and (c) some stickiness in the second set of choices that acts to (at least partially) preserve 

high performance once it is discovered. (This last element arises in our simulation because upper 

management refuses to accept changes in operational choices that cause performance to decline.) Beyond 

these elements, our results show that dampening is especially pronounced when the choices in the second 

set are intertwined and the mapping from the second set of choices to performance is stable.  As noted in 

the introduction, the required elements seem present in a wide range of organizational phenomena: the 

creation of alliance networks, the development of cognitive frames among managers, firms’ resource 

allocation processes, and investment in dynamic capabilities, for example.  In each setting, we see the 

potential for the performance effects of the low-frequency choices to be dampened and hard to detect. 

Consider, for instance, the long-standing debate in the social network literature concerning which 

type of network design is beneficial. One camp has argued that actors (e.g., firms or individuals) benefit 

from being embedded in densely connected networks (Coleman, 1988), while another camp has argued 

that a focal actor benefits from bridging holes in disconnected and sparse networks (Burt, 1992). Most 
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empirical studies that try to adjudicate between these theories measure network design at a point in time 

and relate this design to performance. The results of these studies have been very mixed, leading 

researchers to propose contingency factors that may distinguish conditions under which each type of 

network is more beneficial (Podolny and Baron, 1997). Our simulation results point to another reason 

why it might be difficult to find systematic evidence for the performance benefits of one or the other 

network design. If networks change over time, and performance of actors can be sticky, differences in 

performance that might be generated by the different networks can be dampened away. For instance, let 

us assume that structural holes provide firms with a long-lasting performance advantage as they may, e.g., 

allow a firm to establish a reputation in its industry. If the network structure changes over time because 

actors in the network create more ties to each other, and if one observes firms only at the end of this 

process, one might conclude that the high performance of a focal firm is generated by the dense network, 

even though the current network structure has little to do with the current high performance of the focal 

firm.  

Perhaps the most prevalent coupled search process in large corporations involves the search for a 

management team. At a low frequency, a firm’s board of directors searches for a team with a winning 

combination of traits. At a higher frequency, the team seeks to find and implement an effective array of 

strategic choices. We would expect these coupled processes to produce data in which it would be hard to 

discern the performance effect of managerial traits. The empirically observable relationship would be 

obscured by survivor and wrong-attribution effects. The survivor effect would arise because the firms that 

persisted with poorly-traited management teams would be those that happened by luck upon good 

strategic choices despite their management. The wrong-attribution effect would arise because firms that 

secure good strategic choices under strong management teams may persist in those good choices even 

when management changes for the worse. 

In the contexts of management selection, network formation, and other coupled search processes, we 

expect not only to see performance dampening but also to find that the empirical responses outlined above 

are effective. Researcher who aim to discern relationships despite dampening would do well to examine 
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whole histories of low-frequency choices, not just final sets of such choices; to focus on turbulent 

settings; and to look for contexts in which low-frequency choices are relatively immobile. Moreover, we 

would expect such settings to display diversity in low-frequency choices without large, observable 

performance penalties for seemingly “wrong” choices. Coupled search processes are able to sustain 

population-level diversity and generate strong short-term performance. This is a powerful combination, 

and it may explain why coupled search processes are so prevalent among organizational phenomena. In 

studying organizations, we often take for granted that hierarchical, coupled search processes exist: firms 

search for structures and then for strategies within those structures; boards seeks managers and then 

managers search for strategies; firms look for alliance partners and then for strong performance within 

their alliance networks; and so on. We rarely ask why search should so commonly take on a coupled, 

hierarchical architecture. Why aren’t the search processes unitary, with—for instance—board members 

searching for strategies directly? Our analysis points to one potential answer. At a population level, such a 

coupled architecture breaks the usual tradeoff between short-term performance and long-term 

adaptability. 
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TABLE 1: SUMMARY OF DALTON ET AL. (1980) REVIEW OF EMPIRICAL EVIDENCE 

 
Structural 
dimension that 
may affect 
performance 

 

Number 
of 

studies 

 

 

 

Conclusion 

Span of control 4 “Conflicting reports and a paucity of empirical work in the area make it 
difficult to summarize this research…. It is probably safe to say that 
there is no evidence concerning the relationship of span of control and 
performance of blue-collar, nonmanagerial, or non-professional 
employees.” 

Flat or tall 
hierarchy 

4 “Summarization of the vertical span relationship is problematic. It is 
difficult to generalize across findings with professionals, laboratory 
studies, and white collar employees, with both positive and negative 
associations reported.” 

Administrative 
intensity 

7 “Once again, a definitive summarization is not possible. There are 
those who report positive and negative associations. The relationship 
between administrative intensity and performance remains 
undetermined.” 

Specialization and 
complexity 

6 “Although the preponderance of evidence suggests a positive 
relationship between specialization / complexity and performance, the 
lack of hard performance criteria, coupled with reports of no 
association, leads to the conclusion that the association between 
specialization and performance has not been clearly demonstrated.” 

Formalization and 
standardization 

8 “We can conclude that an association between levels of formalization 
and performance has not been convincingly demonstrated.” 

Centralization 16 “[T]he limited evidence tends to support a negative relationship 
between centralization and performance for managers and 
professionals in studies using hard performance criteria. Otherwise, 
little is known of the association between centralization and 
performance.” 
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TABLE 2: RESULTS FROM STABLE, COMPLEX ENVIRONMENTS 
 

  (1)  (2) (3)  (4) (5)  (6) (7)  (8) (9)  (10) (11) 

Final 
design 

 Bench- 
mark 

 Time-driven 

incremental 

 Time-driven 
incremental* 

 Perf.-driven 
incremental   

Time-driven 

mimicry  
Perf.-driven 

mimicry  

P = 1  0.843  0.906 19.4%  0.900 9.7%  0.891 15.8%  0.909 19.5%  0.913 9.7% 

P = 2  0.868  0.906 19.9%  0.902 16.9%  0.900 17.7%  0.908 20.8%  0.911 14.3% 

P = 3  0.884  0.910 20.0%  0.908 21.1%  0.907 19.7%  0.910 19.4%  0.911 18.2% 

P = 4  0.903  0.915 20.4%  0.915 24.6%  0.915 22.4%  0.912 20.2%  0.915 23.3% 

P = 5  0.920  0.917 20.3%  0.919 27.7%  0.920 24.4%  0.920 20.1%  0.918 34.5% 

                  

Dampening   85%  76%  63%  86%  93% 

                  

Percent of  

dampening  

 due to: 

 

 

     

       

 

Survivors   8%     42%  8%  34% 

Wrong-attribution  86%     54%  85%  48% 

            

Number of obs.  

required to find     21  
significant  

differences 

  

672 

  

262 

  

106 

  

718 

  

2668 

 

* Results for designs that led the firms to their sticking points, rather than the firms’ final designs. 
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TABLE 3: RESULTS FROM TURBULENT, SIMPLE ENVIRONMENTS 
 

  (1)  (2) (3)  (4) (5)  (6) (7)  (8) (9) 

Final design 

 Bench-
mark 

 Time-driven 

incremental  
Perf.-driven 
incremental   

Time-driven 

mimicry  
Perf.-driven 

mimicry  

P = 1  1.000  1.000 21.9%  1.000 20.9%  1.000 32.4%  1.000 42.6% 

P = 2  0.999  0.999 23.3%  0.999 26.4%  0.999 30.9%  0.999 37.1% 

P = 3  0.992  0.993 21.7%  0.991 21.8%  0.993 22.9%  0.991 13.5% 

P = 4  0.974  0.979 18.5%  0.973 17.6%  0.979 9.9%  0.973 4.7% 

P = 5  0.952  0.956 14.6%  0.951 13.2%  0.963 3.9%  0.953 2.1% 

               

Dampening    10%  0%  24%  4% 

           

Number of designs          3.58  3.67 

             

Number of obs.  

required to find     
significant  

differences 

 

11  11  10  13  10 
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FIGURE 1: PERFORMANCE BY ORGANIZATIONAL DESIGN IN STABLE, COMPLEX ENVIRONMENTS 
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FIGURE 2: DAMPENING AND THE NUMBER OF REORGANIZATIONS 
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Appendix: Robustness results 
 

We investigated the degree of dampening and the drift towards appropriate structures in a broad range 

of circumstances by modifying assumptions and parameters within our model. In particular, we changed 

the capability of upper management, the number of firms per starting design, and the reorganization 

frequency. Lastly, we analyzed two other environmental conditions (stable and simple; and turbulent and 

complex). We discuss only those results that showed interesting differences from the main results 

reported in the body of the paper.  

 

Robustness results for stable, complex environments.  An increase in the capability of upper 

management is modeled by increasing the number of composite alternatives that upper management can 

evaluate. Rather than assuming that upper management can evaluate only one composite alternative in 

each period, we assume that all possible combinations can be evaluated (up to 25). By increasing upper 

management capabilities, upper management is not a source of “luck” anymore, since all possible 

composite alternatives are always evaluated. Moreover, given that upper management is now 

“supercharged,” we remove the possibility that upper management is a bottleneck. As a result, P = 1 firms 

lose their short-run performance advantage over P = 5, i.e., P = 1 firms are not faster anymore in 

improving their performance. Consequently, when firms are mimicking high-performing firms, fewer P = 

1 firms should present high-performance targets for copying attempts. Indeed, with more capable upper 

management we observe by the end of the simulation 8% fewer P = 1 firms and 8% more P = 5 firms than 

with less capable upper management (time-driven search process). The observed dampening increases 

from 86% to 97%.  

When we reduce the number of firms per starting design to 1 (rather than 5), mimicry processes have 

fewer firms to operate on. As a result, the diversity of designs decreases in almost any landscape down to 

only one form. Which design wins, appears still to be random, as overall we do not observe any 

significant drift to P = 5 design. The dampening effect, however, is weakened to 65%. In this case, when 

the P = 1 design “wins,” firms with other designs did not have much time to reach high performance. 

Given that the P = 1 design does not allow firms to significantly improve their performance afterwards, if 

a landscape ends up with firms having only P = 1 designs, their overall performance tends to be low. 

Thus, in these cases lock-in into the wrong design does have a detrimental effect on population-wide 

performance. 

Lastly, we change the reorganization frequency. Rather than considering reorganization every 10 

periods, firms consider reorganizing every 5 or every 25 periods. Two qualitative effects arise from 

different reorganization frequencies. First, the shorter the reorganization frequency, the larger the early 

short-run performance advantage of P = 1 firms over P = 5 firms. Second, the shorter the reorganization 
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frequency, the larger the total number of reorganizations that occur over 200 periods. The greater short-

run advantage of P = 1 firms leads to a larger fraction of eventual P = 1 firms when firms are mimicking, 

especially when firms are using performance-driven search processes (since in that case high-performing 

P = 1 firms can retain their design). In this case, 26% more P = 1 firms can be seen at the end of the 

simulation, as compared to the case when reorganization happens every 10 periods. The larger number of 

total reorganizations leads to an eventual decrease of number of different designs that can be observed. 

For instance, with the time-driven, mimicry search process, only 1.48 different designs survive till the end 

of the simulation (as compared to 2.24 when reorganization occurs every 10 periods). Dampening effects 

for all search processes are fairly similar to the case of 10-period reorganization. 

When the reorganization frequency is changed to 25 periods, the largest changes can be observed for 

the incremental search processes. Here dampening decreases for the time-driven rule from 85% to 64% 

and for the performance-driven rule from 63% to 44%. With fewer reorganization opportunities, and only 

incremental changes to P, fewer high-P firms end up tweaking their way all the way to P = 1 designs. As a 

result, observed P = 1 firms contain fewer experimentors, and the wrong-attribution effect is smaller.  

 

Robustness results for turbulent, simple environments.  In the simulations reported above, we 

assumed that the frequencies of environmental turbulence and reorganization were equal (every 10 

periods). To check for robustness, we also studied the effects of reorganizations that happen more 

frequently (every 5 periods) than environmental changes. Again, shorter reorganization periods 

pronounce the short-run performance advantage of P = 1 firms, which in this case is the appropriate 

design. As a consequence, with more frequent reorganizations, we generally find a larger drift toward the 

efficient design. This is in particular the case when firms use the performance-based, mimicry search 

process. In this case, hardly any P = 5 firms remain (0.1%) and almost all firms find the most appropriate 

design, P = 1 (81.3%). The few P = 5 firms that do remain, however, have high performance, so that the 

performance dampening is considerable (72%). Thus, even in turbulent environments, we can observe 

considerable dampening. In this case, however, given the very few firms with “wrong” designs, one might 

be naturally more cautious to overinterpret the high performance of firms with seemingly inappropriate 

designs. 

 

Results for stable, simple or turbulent, complex environments.  In stable, simple environments, all 

firms, regardless of their value of P reach the global peak relatively quickly. As a result, in the benchmark 

scenario with no organizational change, there are no performance differences among the firms. Hence, no 

optimal value of P exists, making the exercise of assessing whether firms can find an appropriate design 

not very sensible. (Consistent with the results in the simple, turbulent environment, if firms are allowed to 



 40

mimic, we do find a drift towards P = 1 and P = 2 firms, reflecting their speed advantage in the first 

periods. Still, all firms end up on the global peak, with performance 1.0.) 

In turbulent, complex environments, we see the expected tradeoff between speed and breadth of 

search that different values of P provide. Firms with low P are fast but get stuck quickly; firms with high 

P are slow but are able to explore a little more before the landscape changes again. For a reorganization 

frequency of 10 periods, we find a curvilinear benchmark result. Firms with P = 2 and P = 3 significantly 

outperform firms with P = 1 and P = 5. The internal optimum of P, given these environmental conditions, 

does not create a clear gradient for improvement along the P-dimension. Consequently, we find results 

that are intermediate to the results of the other two environments. Generally, we find more drift towards 

efficient designs than in the complex, stable environment (depending on the reorganization rules, we find 

18 - 108% more firms with P = 2 or P = 3 than with P = 1 or P = 5), yet less so than in the simple, 

turbulent environment. Likewise, the degree of dampening is at a level intermediate to that found in the 

other two environments.
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