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ABSTRACT 

A critical element of a firm’s technology strategy concerns the allocation of R&D resources across 

distinct technologies and product markets. Yet, beyond the idea of economies of scope, there is little 

predictive theory about how the extent and specific directions of R&D diversification may influence R&D 

performance.  In this paper, we take an information-based approach to the problem.  Following others, we 

view R&D as an information-processing activity geared toward technical problem-solving and R&D 

capabilities as residing in the firm’s specific information-processing routines.  We define relatedness of 

R&D fields in terms of similarities or differences in information processing problems faced by decision-

makers in the firm.  Projects with similar information processing problems are characterized as being 

within the same “information regime.”  Using project-level data from the pharmaceutical industry, we 

explore two questions:  1) Do firms tend to focus their R&D activities within similar information 

regimes? 2) Are there performance benefits of such focus? We find evidence that firms diversify their 

R&D projects portfolios across different information regimes. We also find that there are performance 

costs of such diversification.  

 

 

Keywords: Information regimes; Technological Diversification; Focus; R&D; Project Portfolio 
Management



3 

R&D PORTFOLIO STRATEGY, DIVERSIFICATION AND PERFORMANCE: 

AN INFORMATION PERSPECTIVE 

I. INTRODUCTION  

Decisions about how much to diversify an R&D portfolio and the specific areas in which to 

pursue projects are fundamental to a firm’s R&D strategy.  There is some evidence that larger firms 

diversify their R&D portfolios across a fairly broad range of technologies (Grandstrand, 1998). And, there 

is evidence from a study of the pharmaceutical industry that such diversification can enhance research 

productivity through economies of scope (Henderson and Cockburn, 1996).1 Firms are generally advised 

to pursue projects within “related” fields in order to exploit spillovers and economies of scope in R&D.   

Most previous theoretical and empirical work on this topic has focused on technological 

relatedness as the driving mechanism behind scope economies. The concept of technological relatedness 

raises three problems, however. First, relatedness is not a well defined construct theoretically. Two 

technologies can be simultaneously related and unrelated in many ways. For instance, semiconductors and 

software are related in the sense that they are both complementary inputs into the design of computer 

systems; on the other hand, one requires deep understanding of solid state physics, materials science, and 

electrical engineering while the other is entirely about software engineering.  Should we classify these as 

related or unrelated?  Second, relatedness is only useful as a way to predict R&D portfolio performance if 

we have some way to tie the definition back to organizational competences. We need some way to 

characterize technologies in terms of the particular organizational competences they require. More 

specifically, when we talk about “spillovers”, we need to be able to say what exactly spills over. Finally, 

perhaps as a result of the above two issues, empirical work on relatedness is hampered by ambiguity in 

measurement. 

                                                 
1 Economies of scope exist when the cost of joint production of two or more outputs is less than the cost of 

producing each output separately (Teece, 1980). 



4 

In this paper, we explore the issue of R&D portfolio diversification and relatedness through the 

lens of information-processing.  Following others (e.g., Marquis, 1982; Allen, 1977; Freeman, 1982; 

Clark and Fujimoto, 1991; Gino and Pisano, 2005; Krishnan et al., 1997), we view R&D as an 

information-processing activity.  Investments in R&D generate information about promising technical 

solutions to given problems.  From this perspective, individual R&D projects are repositories of 

information that are updated through experimentation and learning. As information accumulates, the 

uncertainty regarding the prospects of a given project recedes (Krishnan et al., 1997).  While 

experimentation “adds” information to projects (and thus reduces uncertainty), the rate at which this 

process occurs varies across technologies due to differences in the underlying strength of scientific 

knowledge, the availability of good causal models, and the accumulation of prior empirical experience 

(Gino and Pisano, 2005).  At one end of the spectrum are technologies in which uncertainty can be 

reduced relatively rapidly through early experimentation.  In these contexts, experiments are “highly 

productive” in that they generate a significant amount of information that enables the accurate 

anticipation of future problems and the prediction of project prospects. We refer to such technologies as 

“informationally rich.” At the other end of the extreme, we can think of “informationally poor” 

technologies in which experimentation generates noisy information. As a result, information accumulates 

(and uncertainty recedes) slowly during the development process.  Projects which have similar 

informational characteristics are said to reside in the same “information regime.”  

We posit that information regimes are important because they significantly shape the managerial 

challenges of R&D portfolio and project management. Our hypothesis is that since organizational 

capabilities in R&D are concerned heavily with the management of uncertainty and risk, they tend to be 

specific to certain kinds of information regimes.  If this is true, we would expect to see two possible 

patterns of behavior. First, firms would presumably focus their R&D efforts on projects which reside in 

similar information regimes.  Second, we would expect significant performance benefits from such focus.   

We examine these questions with project-level data from the pharmaceutical industry. Our 

analysis reveals evidence that individual firms diversify their portfolios across different information 
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regimes.  That is, information ‘relatedness’ appears to play no role in patterns of diversification. 

However, we find evidence that such strategy is costly to performance. Indeed, our results show that 

project performance is enhanced by undertaking projects in informationally similar or related areas.  

The rest of the paper proceeds as follows. In section II we review the literature on R&D 

diversification. Section III develops specific hypotheses relating project information content to firms’ 

R&D strategies. Section IV presents the data, method, and main econometric results. Concluding remarks 

and implications for our main findings are offered in Section V. 

II. DIVERSIFICATION IN R&D PROJECTS PORTFOLIO  

There is an extensive body of research investigating the patterns of technological diversification 

and the consequences of such diversification for performance. Despite the intuitive appeal of such 

concepts as focus and core competences, the empirical evidence suggests a reasonably high degree of 

R&D portfolio diversification across technologies at the firm level. One form of such technological 

diversification involves companies pursuing R&D in a set of component technologies that constitute a 

complementary set of inputs for a given end market. Evidence of such diversification has been 

documented by Gambardella and Torrisi (1998) who found that in the electronics industry, firms’ 

technological diversification is broader than their product diversification. Similar finding are reported by 

Patel and Pavitt (1997) in their study of large multinationals. A second form of technological 

diversification is associated with a strategy of diversification across market segments.  Prior research has 

provided evidence of significant diversification across product technology classes. For instance, 

Henderson and Cockburn (1996) found that large pharmaceutical firms typically have R&D programs in 

10-15 therapeutic markets (e.g. cardiovascular, cancer, neurology, etc.).  

The rationale for technology diversification is generally posed in terms of scope economies or 

spillovers between technological categories. Theoretically, if technology A and technology B share some 

common underlying knowledge base or technical skills, a firm pursuing projects in both A and B can reap 

spillovers between the categories that a firm pursuing only one of these can not. Henderson and Cockburn 
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(1996) found that such economies of scope have a positive influence on research productivity in 

pharmaceuticals. A related line of research has suggested that product market diversification based on 

similarities or “relatedness” of R&D can have a positive influence on competitive performance 

(Silverman, 1999). While not measured directly, economies of scope and technological spillovers are the 

mechanisms presumed to be driving this competitive advantage.  

One of the major challenges in this line of research is to measure technological diversification, 

relatedness and spillovers that may exist in an R&D portfolio. The most common approach, empirically, 

is to use some type of index based on patent data. For instance, in order to measure technological 

diversification at the firm level, Gambardella and Torrisi (1998) utilize the number of firm patents in a 

certain number of sectors.2  Zander (1997) measures technological diversification by an entropy measure 

which considers the technologies in which a firm is active (through the share of US patents accounted for 

by those technologies) and the technological activities across the technologies.  Relatedness among 

technological fields has been measured by the co-occurrence of International Patent Classification (IPC) 

codes assigned to individual patents3 (Breschi et al. , 2003) or by looking at the proximity within the 

Standard Industrial Classification (SIC) system (e.g., Montgomery and Wernerfelt, 1988). Finally, as in 

Henderson and Cockburn (1996), patent classification has been also used to identify potential scope 

economies between R&D categories. 

                                                 
2 In particular, they measure technological diversification in the electronic industry by the Herfindhal index of a 

company’s total number of patents in five sectors (i.e., computers, telecommunications equipment, electronic 

components, other electronics and non-electronic technologies) in the period 1984-1991. 

3 The measure for a firm’s technological diversification thus depends on the links and distance among technological 

fields. Patent application in the same field over the years indicates an accumulation of technological knowledge and 

an advancement of the firm on the same technological trajectory.  Whenever multiple codes exist in the same patent, 

technological relatedness can be defined based on whether additional IPC codes are equal to or different from the 

primary IPC code. 
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If one wants to make a spillover argument, it is important to identify exactly what spills over or 

the nature of the common underlying assets that makes two categories related.  The use of patents, or any 

other indicator of technological relatedness for that matter, presumes that the critical underlying drivers of 

scope economies and spillovers are, in fact, knowledge and competences about how to solve technical 

problems.  So, for instance, the presumption would be that R&D in cardiovascular drugs aids R&D in 

inflammation drugs because the two categories share some common biology (that makes discovery in one 

area applicable to the other). The existing evidence suggests that technological relatedness matters 

(Henderson and Cockburn, 1996). Nevertheless, this does not preclude the possibility that other types of 

organizational skills and capabilities may be at play in the process, and thus other forms of spillover may 

be important.   

In the context of R&D, the ability to manage projects—specifically embodied in such decisions 

as project selection, resource allocation, project termination, and portfolio management—is a critical 

driver of competitive performance (Clark and Wheelwright, 1995). Indeed, a poor ability to manage R&D 

projects may likely result in projects’ failures which are often very costly to a firm. For instance, in the 

pharmaceutical industry, a failure in Phase III drug development corresponds to an average decline in 

firm value of $551.9 million (Girotra et al., 2006). Therefore, relatedness that drives performance may not 

only depend on technological relatedness but also on the relatedness of the management problems faced 

by the firm on other projects. Focusing purely on technological relatedness, we argue, obscures the 

possibility that two projects can be related from a management capabilities point of view.  Such 

management capabilities, while utilizing technological capabilities, may hinge much more critically on a 

generalized set of information processing routines. In the next section, we develop a framework for 

considering relatedness in terms of the informational characteristics of R&D projects.  

III. AN INFORMATION-BASED VIEW OF R&D AND R&D COMPETENCES 

 Research in the organization theory literature has long suggested that a key function of an 

organization is to process information (Galbraith, 1973; 1977). Specifically, this literature has conjectured 
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that different sources of uncertainty drive different information processing requirements, and these 

requirements in turn should influence organizational design (Tushman and Nadler, 1978).  The 

information processing lens has also been used in the literature on R&D management (see, for instance, 

Marquis, 1982; Allen, 1977; Freeman, 1982; and Clark and Fujimoto, 1991). According to this 

perspective: “[P]roduct development is a process by which an organization transforms data on market 

opportunities and technical possibilities into information assets for commercial production. During the 

development process, these information assets are created, screened, stored, combined, decomposed, and 

transferred among various media, including human brains, paper, computer memory, software, and 

physical materials.  Ultimately, they are articulated as detailed product and process designs stored in blue-

prints and computer-aided design data bases and eventually deployed in production processes on the 

factory floor” (Clark and Fujimoto, 1991: 21). 

This perspective highlights two critical features of the R&D process upon which we base our 

analysis.  First, the successive steps of the R&D process can be viewed as “adding” information to 

product or process in development. Each experiment or test, for instance, generates information which 

becomes part of the information set of projects and reduces uncertainty about their potential prospects.  

Second, R&D capabilities can be viewed specifically as those organizational routines for generating, 

screening, interpreting, and ultimately acting upon information. Using these two features, we develop a 

set of hypotheses regarding the patterns and performance impact of R&D diversification.     

III.1 R&D AS “ADDING INFORMATION”  

At any point in the process, we can think of an R&D project as containing a specific information 

set.  At the outset of a project, this information set may be relatively sparse. For instance, the firm may 

have some crude information about the market and customer requirements, and it may have some basic 

technical information (acquired from previous projects) about the feasibility of various known 

technological options.  R&D can indeed be viewed as a series of problem-solving cycles, which use 

different methods such as computer simulations, laboratory experiments, prototype tests, and market 
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research to produce or acquire data.  Data generated in each cycle are then transformed into information 

via a process of interpretation, which, in turn, reduces the uncertainty about the prospects of the project in 

development.4  Thus, from this perspective, individual R&D projects are repositories of information that 

are updated through experimentation and learning. 

By the time a product has reached the end of its development, the firm has relatively complete 

information about the product’s design (Clark and Fujimoto, 1991).  However, the relationship between 

R&D effort (investment) and information content may vary across projects due to structural differences in 

the underlying knowledge bases. Gino and Pisano (2005) use the term “information regime” to describe 

the relationship between experimentation effort and the rate of decline in uncertainty over the 

development cycle. While experimentation “adds” information to projects and reduces uncertainty, the 

rate at which this process occurs varies across technologies due to differences in underlying scientific 

knowledge, the availability of predictive heuristics, and the accumulation of prior empirical knowledge.  

Technologies sharing a similar relationship between experimentation effort and uncertainty reduction are 

said to be in the same information regime.   

Consider the following illustrative example. In the design of a modern jetliner, an extensive 

amount of design uncertainty can be reduced relatively early in the development process through 

computer aided simulation.  The construction and testing of “virtual prototypes” enables companies like 

Boeing to explore a range of design alternatives (e.g., wing shapes, body profiles) and home-in on the 

most promising approaches without the costs (and time) of building and testing physical prototypes. 

These virtual experiments are productive (in an information sense) because of the availability of highly 

reliable models (based on aerodynamic theory and heuristics accumulated over decades of design 

experience) that enable a tight mapping between experimental observations and actual future 

performance.  At the other end of the extreme, we can think of contexts like movies where no such 

                                                 
4 We define information in entropic terms, following the literature on the theory of communications and information 

(Shannon and Weaver, 1949): information is equivalent to a reduction in uncertainty. 
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predictive models exist.  There is, for instance, no “formula” for deciding whether a script will lead to 

blockbuster hit (DeVany, 2004). And, it is impossible to prototype a film in any meaningful way. As a 

result, information enabling prediction and project sorting is not available.   

Following their framework (Gino and Pisano, 2005), we distinguish between informationally rich 

technologies (like aircraft), in which experimentation generates a significant amount of high quality 

(predictive) information early in the development process, and informationally poor technologies (like 

movies), in which information accumulates slowly. In essence, in informationally rich regimes, the 

marginal rate of uncertainty reduction is high relatively early in the development process, while in 

informationally poor regimes it is low in the earlier phases of the project. Projects characterized by 

similar marginal rates of uncertainty reduction belong to the same “information regime.”   

III.2 R&D CAPABILITIES AS INFORMATION PROCESSING  

Much of the theorizing in strategy over the past decade has focused on the role of organizational 

capabilities (see, for instance, Prahalad and Hamel, 1990; Teece and Pisano, 1994; Dosi, Nelson and 

Winter, 2000) in shaping competitive strategies and performance.  From a resource-based and capability-

based perspective, diversification of R&D leverages common organizational resources, skills, or 

capabilities and it is likely to lead to better outcomes than “unrelated” diversification.      

What exactly these capabilities are, and how they can be identified or characterized is still not 

well understood.  The information-based approach to R&D looks at a specific set of an organization’s 

capabilities, R&D capabilities, and suggests a way to define them:  R&D capabilities are embedded in an 

organization’s routines for acquiring, generating, storing, retrieving, interpreting, and transmitting 

information for the purposes of problem-solving.  Based on this definition, we propose that common 

information processing routines play a critical role in determining the performance implications of R&D 

diversification. More specifically, projects that share information processing routines might be expected 

to perform better than projects that do not.  
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Different organizational capabilities, we argue, are required to manage projects in different 

information regimes. Managing projects in informationally poor regimes requires management 

capabilities and skills to deal with high levels of persistent risk and uncertainty.  Because uncertainty can 

not be resolved early in the development process, organizations need capabilities and approaches to 

manage and hedge “back-end” risks. They could conduct more parallel projects to hedge risks. They 

could adopt, if possible, modular design strategies to facilitate design flexibility.  Their development 

processes themselves need to be flexible to enable significant mid-course corrections. Portfolio planning 

needs to be fluid in order to quickly reallocate resources across projects, and to deal with unexpected 

surprises (both positive and negative). And, the managers themselves need to be comfortable with a 

relatively high level of ambiguity (uncertainty) and risk taking.   

Managing projects in informationally rich regimes requires a very different set of organizational 

capabilities.  In an informationally rich regime, it is both feasible and desirable to make commitments to 

projects relatively early in the development process in order to exploit the plethora of available 

information. As a result, project management and portfolio management processes need to be structured 

around the early selection of projects early in the development cycle.  Management attention should be 

focused on these early decision points, and on committing appropriate resources to “good prospects” 

while ruthlessly terminating less attractive project opportunities.  Here, management needs to be 

comfortable in making hard decisions early, and management review processes need to be highly 

disciplined.  In essence, the important events happen early in the life of projects belonging to an 

informationally rich regime, while they tend to happen late for projects belonging to an informationally 

poor regime.    

Information-processing capabilities are embodied in routines, expertise and skills (Nelson and 

Winter, 1982). If organizations had infinite cognitive capacity and infinitely elastic organizational 

capabilities, they could theoretically select optimal routines for each project based on that project’s 

unique information requirements.  Empirical evidence, however, suggests that such capacity and elasticity 

is likely to be extremely rare. Previous studies of new product development processes reveal that firms 
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tend to have dominant approaches for executing and managing their projects (Clark and Fujimoto, 1991; 

Iansiti, 1998; Pisano, 1997).  That is, firms do not match each project to an optimal set of routines, but 

tend to deploy similar routines across projects.  These findings are highly consistent with behavioral and 

evolutionary theories of the firm (Cyert and March, 1963; Nelson and Winter, 1982). 

There are likely to be many reasons for such homogeneity in project management routines. Often, 

within a firm there are organizational processes at work that lead to “inertia” (Hannan and Freeman, 

1984) or “inflexibility” (Weiss and Ilgen, 1985; Gersick and Hackman, 1990). Thus, organizations tend to 

do what they are already doing or what they have been doing in the past. In addition, a persistent process 

of accumulation of competences may often generate lock-in effects and competence traps (Henderson and 

Clark, 1990). We posit along these lines that organizations develop information processing routines 

biased (favorably) toward specific information regimes. That is, organizations tend to have a dominant 

way of dealing with project uncertainty and information processing that is specialized to a particular 

information regime (e.g. poor or rich). To the extent that these processes are specialized, they may 

influence decisions about R&D diversification and have important performance implications.  

The above discussion leads us to the following two hypotheses: 

• Hypothesis 1: Firms are more likely to diversify their R&D portfolios into product areas that occupy 

similar information regimes. 

• Hypothesis 2:  The performance of projects in similar information regimes is likely to be higher than 

the performance of projects that are in different information regimes. 

 We test these hypotheses using a large sample of detailed project-level data from the 

pharmaceutical industry. We present our data and methodology next. 

IV. METHODOLOGY 

In order to test our hypotheses, we used data from the pharmaceutical industry. The 

pharmaceutical industry is an ideal setting in which to investigate these issues for three reasons. First, 

there is ample publicly available data on R&D projects entering and terminating clinical trials. Second, 
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because of the diversity of underlying biomedical and scientific knowledge for different diseases (e.g. 

cancer, diabetes, etc.), we would expect the pharmaceutical industry to be characterized by a high degree 

of variability in information regimes across product areas.  Third, the clinical trial process is largely one 

of generating information about the safety and efficacy of drug candidates.  Moreover, this process occurs 

through a relatively structured and standardized process due to regulatory reasons.  

Clinical trials are required by the Food and Drug Administration (FDA) in order to obtain 

marketing approval. There are three main phases of clinical trials. Phase I studies assess the drug’s safety. 

The safety of the drug is further examined in Phase II, which also assesses the effectiveness of the drug in 

the targeted patient population.  Next, in Phase III, studies are conducted to confirm the efficacy of the 

drug in a larger patient group.  Finally, to obtain marketing approval, a company must compile all of the 

drug’s results and information into a marketing application, which it submits to FDA for review and, with 

any luck, approval. Based on information generated at various points in the development process, 

managers of pharmaceutical companies make decisions about which projects to continue and which to 

terminate. These decisions have a significant impact on overall R&D performance. 

DATA 

Our data, derived from PJB Publications’ PharmaProjects database, describe the clinical 

development histories of several thousands pharmaceutical projects from May 1989 through January 

2005.  Each project observation includes, among other variables, the therapeutic category, the dates of 

major events (such as the initiation of clinical trials, final governmental registration, or cessation of 

activity), and the firm responsible for development. To restrict the technological heterogeneity of the data 

set, we only considered projects involving the development of New Chemical Entities (NCEs).  

Therefore, our sample does not include re-formulation projects or biotechnology drugs.  Each project in 

the sample belonged to one of 15 primary therapeutic categories indicating the medical purposes for 

which the drug was being developed: alimentary (gastrointestinal), referred to in this paper as category 

(A); blood disorders and clotting, (B); cancer, (K); cardiovascular, (C); dermatology, (D); genitourinary, 
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(G); hormonal, (H); immunology, (I); imaging, (V); anti-infective, (J); musculoskeletal, (M); neurology 

(including psychiatry drugs), (N); anti-parasitic, (P); respiratory, (R); and sensory, (S). Since anti-

parasitic contained only two projects, we excluded that therapeutic category from further study. 

Our analysis proceeded in three steps. First, we characterized the information content of the 14 

remaining therapeutic categories. Second, we examined factors that influence our firms’ diversification 

strategies (hypothesis 1). Finally, we examined the performance implications of undertaking projects 

outside a firm’s dominant information regime (hypothesis 2).   

ANALYSIS 1:  Characterizing therapeutic categories by information regime 

An information regime, as defined in Gino and Pisano (2005), describes the residual level of 

uncertainty regarding technical or commercial prospects of a project at any given point in the 

development cycle. The concept is comparative in the sense that the information “richness” (or 

“poorness”) of a project can only be judged relative to other projects. In informationally rich regimes, 

uncertainty is resolved relatively earlier in the development cycle than in informationally poor regimes. A 

project’s information regime influences the likelihood of committing a Type II error late in the 

development cycle. As commonly defined, a Type II error is accepting the null hypothesis when the null 

hypothesis is false.  In our context, a firm that moves a project from one development stage to the next is 

hypothesizing that the project will result in an approved drug.  If the project subsequently fails, then this 

would be evidence of having made a Type II error. That is, later stage failure rates can be used as a 

measure of Type II errors. Hence, higher (lower) levels of Type II errors are indicative of a poorer (richer) 

information regime. Thus, higher (lower) levels of type II errors correspond to high (low) failures rates or, 

equivalently, to low (high) success rates.  

One way to identify information regimes is to compare either failure or success rates of projects 

at comparable milestones in the development process. In our analyses, we use success rates. In 

pharmaceuticals, we can take advantage of the fact that the clinical development process is structured 

around reasonably well defined phases (described earlier), and that, before drugs can be marketed, they 
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must be approved by a government agency. By comparing project success probabilities at given phases, 

we are able to make inferences about the information regimes of each therapeutic category. To 

accomplish this information content identification, we grouped the drugs in our database by the 14 

primary therapeutic categories and proceeded to analyze their relative success probabilities conditional on 

having started Phase III clinical trials.  We coded a drug as a success if it was registered in either the U.S., 

Canada, a European Union member (excluding the 2004 entrants), or Switzerland because of the 

similarities in the approval criteria among those countries. We coded a drug as a failure if it had reported 

one of the following events: discontinued product, suspended product, or no development.   

Many projects were right-censored because they were still in process at the time of our sampling.  

To handle this problem, we followed a similar procedure to that used by Danzon et al.’s (2005) study of 

pharmaceutical R&D: we coded these observations as a failure only if the time a given drug had spent 

since the initiation of Phase III trials exceeded the maximum time to registration in a favored market 

among all successes in the same primary therapeutic category. The other right-censored observations were 

discarded.  The Phase III database, as constructed above, comprised 616 unique drugs. 

From these 616 drugs, we estimated the success probabilities for drugs entering Phase III clinical 

trials (see Table 1). Figure 1 shows a chart of the estimated success probabilities across the 14 therapeutic 

categories in our sample. The difference in Phase III success probabilities is noteworthy: at the extremes, 

only 3 out of every 10 respiratory drugs entering Phase III trials eventually receive approval, compared to 

approximately 8 out of every 10 imaging drugs.5 In our terminology, information rich categories are those 

like imaging, sensory and anti-infective, while information poor categories are those like respiratory and 

cancer. To test for differences among the success probabilities, we performed two chi square tests (Table 

1).6 We first tested the hypothesis that the distribution of success was uniformly distributed across the 14 

                                                 
5 Our estimates of clinical success probabilities are consistent with similar estimates made by Danzon et al. (2005).   

6 Category S was excluded because it had fewer than 5 expected successes. The chi-square test requires at least 5 

expected successes. 
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categories, i.e. that there were no differences in success among the 14 categories. The results of the chi-

square test indicate that we can reject this hypothesis at the 1% level. We then tested the hypothesis that 

the distribution of success was the same as the distribution of drugs. The results of the chi-square test 

state that we can reject this at the 5% level. Thus, our results show that there are significant differences 

among the therapeutic categories with respect to information regimes. 

SUMMARY 

Analysis 1 allowed us to differentiate among the information regimes of the 14 therapeutic 

categories which are present in our sample. The estimates (i.e., probabilities of success) of the various 

therapeutic categories appear to make sense from our information perspective. At one extreme, the 

categories with the lowest success rates in Phase III, and thus considered “informationally poor” in our 

framework, tend to contain drugs for chronic conditions (cancer, neurological diseases, cardiovascular 

disease) where safety and efficacy “signals” can only be assessed over long periods. In addition, in the 

case of cancer and neurological diseases, the underlying biology is generally considered relatively poorly 

understood, thus limiting the predictive power of animal models. At the other end of the spectrum are 

therapeutic categories like imaging drugs and anti-infective drugs where reasonably strong safety and 

efficacy signals can be generated from both animal studies and shorter-term human clinical studies.     

ANALYSIS 2:  The relationship between information content and portfolio composition 

We next explored how pharmaceutical firms’ R&D portfolio decisions are related to the 

information content of the various therapeutic categories. Since strategic portfolio decisions influence 

which projects an organization starts, we shifted our attention further back into the development cycle. 

Our sample for analysis 2 consisted of 1,628 drugs candidates which started Phase II during the sample 

period. These drugs were developed by 477 firms. We chose Phase II, as opposed to Phase I, initiation 

decisions because of the qualitative differences between these two sets of trials. Phase I is concerned 

largely with safety, while Phase II begins to shift emphasis to efficacy, under different dosing regimes.  In 
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general, failures of drugs in Phase III are due to failures to demonstrate efficacy. Thus, we argue, the 

prevalence of Type II errors associated with a given category results from incorrect null hypotheses about 

the efficacy, not the safety, of drugs in that category. Therefore, if strategic decisions are made 

considering a firm-specific competence for dealing with varying levels of uncertainties about efficacy, 

these decisions should be manifested in the portfolio of drugs firms take into the beginning of efficacy 

testing—that is, Phase II clinical trials. 

Dependent variable. We are interested in the decision of a firm to undertake R&D in a given 

therapeutic category. More formally, the dependent variable can be specified as the probability that firm i 

will have undertaken R&D in therapeutic category j: Pr(ENTERij=1), where ENTERij=1 if firm i had 

undertaken at least one Phase II trial of a drug in therapeutic category k.    

Explanatory variables. Hypothesis 1 posits that the probability of a firm having undertaken a 

specific therapeutic category is influenced by the information characteristics of the other projects in the 

firm’s portfolio. More specifically, we hypothesized that the probability of a firm undertaking R&D in a 

specific therapeutic category would be higher if that category were informationally related (i.e., 

informationally similar) to the other projects contained in its portfolio. We thus needed to construct a 

measure of information relatedness. To simplify the interpretation of the results, we considered 

informational distance instead of relatedness.  

Informational Distance. We first calculated a measure of the firm’s tendency to undertake 

projects in either informationally rich or informationally poor categories. Following Danzon et al. (2005), 

we first calculated an expected portfolio success probability for each firm, using the estimates of the 

success probabilities from our Phase III database.7 This expected portfolio success probability is simply 

the weighted average probability of success across the firm’s whole portfolio. It was calculated by taking 

the success probability of category j times the percentage of drugs in firm i’s portfolio whose primary 

                                                 
7 Phase III is primarily concerned with efficacy, while Phase I and II are concerned with safety. Because of this fact, 

we use Phase III to avoid any confounding effects.  
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therapeutic category is j, summed over all 14 categories: ∑
=

N

j iTOT

ij
j project

project
p

1
. A higher (lower) number 

indicates a tendency toward informally rich (poor) categories. Figure 2 shows the distribution of this 

statistic across firms in the sample. Note, the expected Phase III success probability for the entire industry 

portfolio is .389. Figure 2 depicts a relatively high degree of variance around this industry mean, 

suggesting that firms within the industry vary in terms of their R&D projects portfolios and in terms of 

the information regimes their R&D projects belong to. 

The second step was to measure the informational distance of any given therapeutic category to 

the firm’s overall portfolio. To do this, we took the absolute value of the difference between a therapeutic 

category’s Phase III success probability and the developing firm’s expected portfolio success probability, 

excluding that therapeutic category.8 This measure is a continuous variable bounded between 0 and 1. 

Values closer to 0 indicate a relatively close distance between the information regime of a specific 

therapeutic category and the firm’s overall portfolio of projects in other categories. Values approaching 1 

indicate larger informational distance. 

Control variables. We expect that both therapeutic category and firm factors will affect the 

decision of a firm to pursue R&D in a specific category. For this reason we included the following control 

variables in our model: technological relatedness of the category to the firm’s other categories, and the 

size of a firm’s research program. In addition, to control for unobservable differences across categories 

(e.g. commercial desirability of the market, etc.), we included a set of category fixed effects.   

 Technological Relatedness. Previous literature suggests that technological relatedness will 

shape firm’s decisions to participate in given areas of R&D (Henderson and Cockburn, 1996). Prior 

studies have relied heavily on patents (and patent citations) as a way to infer technological relatedness 

between fields of R&D. In this analysis, we take a different approach that enables us to exploit a unique 

                                                 
8 We exclude it since in analysis 2 we are interested in how the decision to enter a therapeutic category is related to 

the rest of the firm’s R&D portfolio.  
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feature of our data and the nature of technological relatedness in drugs.  In the drug industry, it is very 

common for drugs developed in one therapeutic category (e.g. neurology) to find use in another (e.g. 

cardiovascular). Previous work by Henderson and Cockburn (1996) empirically documents that 

technological relatedness in drugs is manifested largely through such spillovers in the application of 

drugs across therapeutic categories. Fortunately, the PharmaProjects database provides information on 

the primary therapeutic applications and the other therapeutic applications under investigation for each 

drug in the sample. We used this information to create a measure of technological relatedness similar to 

that described in Breschi (2005). 

 Like Breschi (2005), we made no distinction between the primary, secondary or tertiary 

categories because “nothing can be said about the direction of knowledge flows” (Breschi, 2005:78). 

We first counted every possible joint occurrence (pairing) of therapeutic categories within the database 

to get a 14*14 matrix. However, unlike Breschi (2005), we estimated an expected pairing count and 

standard deviation based on the pairing data.  We used the expected pairing and standard deviation 

values to generate standardized z-scores as measures of the relatedness or un-relatedness of pairings (see 

Table 2).9 If a particular therapeutic category pairing occurs more (less) often than expected, it is 

thought to reflect a high (low) degree of technological relatedness and will have a high (low) z-score. A 

score close to zero suggests average technological relatedness. For example, imaging (Category V), 

which is informationally rich, appears to have a low technological relatedness to the other 13 categories. 

This suggests that there are very few spillovers between imaging and the other therapeutic categories. 

On the other hand, there appears to be a lot of spillover (high technological relatedness) between 

alimentary and neurology. The high z-score suggests that companies are maximizing this spillover to 

their benefit. 

Using our estimates of technological relatedness, we calculated a measure similar to 

informational distance. We estimated the weighted average of the technological related projects across 

the firm’s whole portfolio, excluding the therapeutic category. In particular, the technological 
                                                 
9  Correlation analysis did not provide significant coefficients to determine technological relatedness. 
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relatedness measure was calculated by taking the technological relatedness of category j with category k 

times the percentage of drugs in firm i’s portfolio whose primary therapeutic category is j and secondary 

category is k, summed over all 13 categories: ∑
≠

N

ij iTOT

ij
j project

project
p . 

Firm Size. Firm size has been found to play a role in R&D diversification (Henderson and 

Cockburn, 1996). A measure of firm size is R&D spending. However, given that many of the firms in the 

sample were not publicly held during the entire sample period, or did not report R&D (e.g. because they 

were not publicly traded in the US), we used the total number of projects in the firm’s portfolio (Phase II 

over the 16 years) as a proxy (Firm_Size).   

Model Specification.  We specified the following probit model to study firm diversification: 

Pr(ENTER=1|X) = F(β1INFO_DIST + β2TECH_REL+ β3FIRM_SIZE + βA CAT_A + … + βV CAT_V) 

Since we are studying firm diversification, and to get meaningful values for our independent 

variables, we excluded from our dataset those firms which had projects in only one therapeutic category.  

This left 170 firms in the sample.   

RESULTS 

The results of the probit model are presented in Table 3. The effect of firm size is in the 

expected direction (positive) and is significant. The effect of technological relatedness is also positive 

and significant, suggesting that firms tend to diversify their R&D portfolios into product areas that are 

technologically related. However, contrary to hypothesis 1, we find a positive and significant effect for 

informational distance, suggesting that pharmaceutical firms diversify across unrelated (i.e., distant) 

information regimes. This pattern may reflect a deliberate strategy of risk diversification into 

informationally unrelated areas. Many large therapeutic areas (like alimentary, neurology, and 

cardiovascular) are in information poor regimes, and thus they involve greater uncertainty and risk. 

However, despite the high risk, pharmaceutical companies may find it desirable to participate in these 

areas either because they are technologically related or because they could lead to large profits. This 
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reasoning is consistent with Danzon’s analysis that “firms appear to be willing to develop drugs with a 

lower probability of success with greater sales potential” (Danzon, 2005: 330).  

Our hypothesis 2 posits that diversification across unrelated information regimes can harm 

performance. We test this hypothesis in our third analysis.  

ROBUSTNESS CHECK 

 To insure the validity of the measures used in Analysis 2, we ran correlation analyses using firm 

size, technological relatedness and informational distance. The results of the correlation analyses 

suggested that both technological relatedness and informational distance were not correlated with firm 

size. However, technological relatedness and informational distance were negatively correlated at -0.55 

(see Table 4).   

 To test for multicollinearity, we ran a regression with both technological relatedness and 

informational distance and no other variables. We then estimated the variance inflation factor between the 

two variables.  The mean VIF was 1.16.  Since the value was not significantly greater than 1, we were 

sure of no multicollinearity between the variables. We also ran regressions with informational distance 

and technological relatedness where one was the dependent variable and the other the independent 

variable. The results suggested no instance of multicollinearity. 

ANALYSIS  3: Information regime specific competences 

In Analysis 3, we turned to the question of whether or not focus in informationally similar 

categories confers any performance advantage.  For this final analysis, we used our Phase III database of 

616 drugs and fit a probit model. Our aim was to see whether increasing informational distance was 

associated with decreasing success in Phase III, all other things equal.  
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Dependent Variable.  Our measure of performance is the likelihood that a drug, once it enters 

Phase III trials, will be approved. Our dependent variable (SUCCESS) is a dummy variable that takes the 

value of 1 if the drug was approved and 0 otherwise.10   

Independent Variables. Our model includes variables similar to those used in the earlier analysis 

of portfolio decisions.  However, in order to make correct inferences about the impact of informational 

distance on the probability of success, some changes to the independent variables – except firm size – 

were needed. First, informational distance now represents the distance from the candidate drug’s primary 

category to the expected portfolio success probability of the developing firm, excluding no categories.11 

Second, a similar adjustment was made to technological relatedness. To make this adjustment, we 

measured the expected pairings based on each individual category. We then averaged the expected 

pairings between categories. This gave us a technological relatedness measures based on both primary 

categories. Therefore, our measure excluded no categories in the analysis.12  

We also included a set of therapeutic category fixed effects to control for any unobservable 

differences influencing the likelihood of success across therapeutic categories (e.g .different regulatory 

requirements, etc.). The dummy variables in this model {CAT_A … CAT_V} have a different 

interpretation. In this model, they represent the baseline likelihood of eventual success given that the drug 

candidate is of a certain category.   

                                                 
10 We chose this variable since the success probability measure is the only accurate measure of performance in the 

PharmaProjects data-set. 

11 In analysis 3, we exclude no categories since we are interested in measuring how the overall informational 

distance and technological relatedness of the portfolio impact firm performance. 

12 For robustness check, analysis 2 was re-run with this new measure.  Both informational distance and technological 

relatedness were significant at the 5% level.  One could also theorize that the cross diagonals in the first measure of 

technological relatedness all have z-scores of 4 or higher. This theorized value was entered for analyses 2 and 3. The 

results were the same. The only reason to create a new variable is because of the cross-diagonals. However, the 

results of analysis 3 do not change if different values are put in the cross diagonals. 
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Model Specification.  We estimated the following probit model: 

Pr(SUCCESS=1|X) = F(β1INFO_DIST + β2TECH_REL+ β3FIRM_SIZE + βA CAT_A + … + βV CAT_V) 

RESULTS 

The results of this model are reported in Table 5. The coefficient for technological relatedness is 

negative and significant, suggesting that there are performance costs of R&D diversification into 

technologically related areas. In other words, firms are moving into technologically related areas (like 

alimentary, neurology, and cardiovascular) at the expense of their overall success probability. As for 

informational distance, we find support for hypothesis 2: an increase in informational distance (relative to 

the rest of the firm’s portfolio) decreases the likelihood that a drug candidate in Phase III will eventually 

be approved. Thus, although firms seem to diversify across informationally unrelated (i.e, distant) 

therapeutic categories, such behavior may have a negative impact on their eventual performance 

measured as likelihood of success.   

ROBUSTNESS CHECK 

 To insure the validity of the new measures, we ran correlation analysis using firm size, 

technological relatedness, and informational distance. The results of the correlation analysis suggested 

that both technological relatedness and informational distance were not significantly correlated with firm 

size. Technological relatedness and informational distance were negative correlated at of  -0.43 (Table 6).   

 To test for multicollinearity, we ran a regression with both technological relatedness and 

informational distance and no other variables. We then estimated the vector inflation factor between the 

two variables.  The mean VIF was 1.22.  Since the value was not significantly greater than 1, we were 

sure of no multicollinearity between the variables. 

ADDITIONAL ANALYSES FOR ROBUSTNESS  

 As a robustness check, we ran several regressions with various measures of technological 

relatedness and categories.  First, we re-estimated analysis 2 with our technological relatedness measure 
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from Analysis 3.  Both informational distance and technological relatedness were significant at the 5% 

level. Next, we re-estimated analysis 3 with the theorized cross-diagonals in our original measure of 

technological relatedness. This did not change our results. 

 Finally, we re-estimated analysis 2 and analysis 3 without imaging, category V.  This is because 

we noticed that imaging could be considered an influential outlier in Analysis 2 and Analysis 3. Tables 7 

and 8 show the results of models excluding imaging.  As we tables show, both informational distance and 

technological relatedness are significant at the 5% level in both regressions.  Also, the signs are in the 

same direction. 

V. DISCUSSION AND CONCLUSION 

This paper has explored an information-based approach to R&D portfolio diversification.  This 

perspective may help to recognize seemingly unrelated diversification. Our results show that firms 

diversify their portfolios across unrelated information regimes and that there is a cost to such 

diversification. In fact, our findings show that concentration within informationally similar regimes has 

potential performance benefits. Let us drill down on one example from our study which we think is 

illustrative of the broader issue. Our data show that firms which do R&D in cancer drugs also tend to 

perform well on projects in the neurology area. Most of the drugs in the neurology category are for 

psychiatric diseases (depression, bipolar, schizophrenia, psychosis, etc.). Cancer drugs and 

neuro/psychiatric drugs are, by and large, based on very different areas of biomedical science. They do 

not share any biological mechanisms of action; they seem to be influenced by completely different 

biochemical pathways; they do not share any common targets. In sum, they are not technologically related 

but they are informationally related since they reside in a similar (poor) information regime. As such, they 

present organizations with similar types of uncertainty, risk and project management challenges. In 

essence, they share common R&D management routines.  

In general, therapeutic categories from informationally poor regimes tend to pose greater 

problems for firms that are more oriented toward informationally rich product categories than for firms 
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focusing on informationally poor categories. This suggest that the organizational routines for dealing with 

limited information may be somewhat specialized. Our findings show that firms oriented toward products 

in therapeutic categories belonging to a certain information regime (e.g., poor) appear to be at a 

disadvantage in doing projects in informationally distant categories (compared to specialists in 

informationally similar areas). These results suggest that firms that develop capabilities for dealing with 

certain information (and thus a certain level of uncertainty and risk) are not able to “cope” with different 

information. The implications of these findings for competitive advantage need to be explored in future 

research. 

 The present study has been limited in many ways, and thus our findings need to be interpreted 

with care.  These limits, however, suggest fruitful avenues for future work. First, our analysis was limited 

to the pharmaceutical industry. Exploration outside of pharmaceuticals, while difficult because of limited 

data availability, is needed to more fully validate the generalizability of our findings.  Second, our 

analysis categorized projects into only 14 fairly broad therapeutic classes.  There may be alternative 

classification schemes (e.g. classifying projects by target, or more specific disease states). We 

experimented with alternative approaches but found that below the level of the broad therapeutic 

category, there were many categories with too few Phase III projects to achieve reasonable estimates of 

success probabilities. Future research might need to create more customized classification schemes to 

strike the right balance between over and under-aggregation.  Finally, we used a fairly crude indicator of 

information regimes (the Phase III probability of success).  If the concept of information regimes is to 

become more useful in both research and practice, better measures might be needed.     

In this paper, we looked not only at the information side of the projects in question but also at 

technological relatedness. There are likely to be many factors that influence real portfolio decisions and 

the outcomes of such choices. Future work should explore these forces with both aggregate data and more 

detailed organizational data.  This is tall undertaking, but could lead to important insights about the 

relationship between organizational competences and R&D strategies of firms. 
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Table 1. Number of drugs and success probabilities for each therapeutic category. 
    
     
Category Number of Drugs Success Prob. Success 
A: Alimentary 50 0.34 17

B: Blood and Clotting 25 0.36 9

C: Cardiovascular 78 0.308 24

D: Dermatology 17 0.412 7

G: Genitourinary 27 0.444 12

H: Hormonal 19 0.526 10

I: Immunology 17 0.412 7

J: Anti-infective 106 0.575 61

K: Cancer 72 0.333 24

M: Musculoskeletal 36 0.417 15

N: Neurology 96 0.344 33

R: Respiratory 37 0.297 11

S: Sensory 7 0.571 4

V: Imaging 29 0.759 22

Total 616     

    
    
Chi-Square Goodness of Fit Test   df=13 
    
Ho: The distribution of success is uniformly distributed across categories  p(chi sq=155)<0.000 
    
    
Chi-Square Goodness of Fit Test   df=12 
    
Ho: The Distribution of success is the same as the distribution of drugs p(chi sq=22.1)<0.05 
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Figure 1.  Success probabilities of each therapeutic category. 
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Figure 2.  Expected portfolio success probability. 
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Table 2: Technological relatedness between therapeutic categories (Z-scores) 

 A B C D G H I J K M N R S 
A                           
B -0.0120                         
C 1.7862 1.9425                       
D 1.0043 -0.6375 0.3007                     
G 0.2225 -0.8720 0.3007 -0.7157                   
H -0.5593 -0.9502 -0.8720 -0.8720 -0.7157                 
I 0.3789 -0.5593 -0.4811 0.3007 -0.8720 -0.7939               
J -0.2466 -0.8720 -0.8720 0.0662 -0.7157 -1.0284 1.3171             
K 0.9262 0.0662 0.2225 1.1607 0.8480 -0.4811 2.2553 1.6298           
M 1.8644 -0.6375 -0.0902 1.4734 -0.0902 -0.6375 1.1607 -0.6375 0.8480         
N 3.5062 1.0043 2.1771 0.0662 0.1443 -0.7157 0.1443 -0.4811 0.7698 2.5680       
R 1.4734 0.2225 0.8480 1.0043 -0.6375 -0.9502 -0.2466 -0.7939 -0.6375 1.4734 1.1607     
S -0.0902 -0.7939 -0.0120 -0.1684 -0.7939 -0.9502 -0.7157 -0.8720 -0.0902 -0.4029 -0.4029 -0.4029   
V -0.8720 -0.8720 -0.7157 -1.0284 -0.9502 -0.9502 -1.0284 -0.4811 -0.7157 -1.0284 -0.7939 -0.8720 -0.9502
              
* Values represent standardized z-scores based on all project pairings in PharmaProjects dataset.     
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Table 3. Diversification model.13 

    Probit   Marginal Effects  
Informational Distance  1.8694***  0.5369***  
  (0.6343)  (0.1824)  
       
Technological Relatedness  0.2109***  0.0605***  
  (0.0558)  (0.0160)  
      
Firm Size  0.0455***  0.0130***  
  (0.0045)  (0.0013)  
Category Fixed Effects   Yes  Yes  
Robust Standard Errors  Yes Yes  
   
Observations  2380 2380  
Categories  14 13  
Wald chi2(17) &(16)  598.02 291.57  
Prob > chi2   0 0  
Psuedo R-Squared     0.1994  
 

Note: Dependent variable represents the probability that firm I will have undertake R&D in therapeutic 
category J if firm I had undertaken at least one Phase II trial of a drug in therapeutic category J. Category 
fixed effects are not reported. 

 

Table 4. Correlation analysis and variance inflation factor analysis. 

  Correlation Analysis    

  Informational Distance 
Technological 
Relatedness 

Firm 
Size  

 
Informational 
Distance 1    

 
Technological 
Relatedness -0.5544 1   

 Firm Size -0.0299 0.0387 1  
      
      

  
Variance Inflation Factor 

Analysis    
 Variable VIF 1/VIF     

 
Informational 
distance 1.16 0.859073   

 
Technological 
Relatedness 1.16 0.859073   

      
 Mean VIF 1.16    

 

                                                 
13 For all the models presented in the tables we have the following legend: * Significantly different from zero at the 
10% level; ** Significantly different from zero at 5% level; *** Significantly different from zero at the 1% level. 
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Table 5. Phase III success model. 

    Probit   
Marginal 
Effects  

Informational Distance  -2.8347**  -1.1085**  
  (1.2628)  (0.4938)  
       
Technological Relatedness  -0.0456**  -0.0178**  
  (0.0222)  (0.0087)  
      
Firm Size  0.0043***  0.0017***  
  (0.0023)  (0.0009)  
Category Fixed Effects   Yes   Yes  
Robust Standard Errors  Yes  Yes  
      
Observations  575  575  
Categories  14  13  
 Wald chi2(17) & (16)  61.94  48.9  
Prob > chi2   0  0  
Psuedo R-Squared       0.067  
      
Note: Dependent variable represents the probability that a drug, once it enters Phase III will be approved. 
Category fixed effects are not reported. 

 

Table 6. Correlation analysis and variance inflation factor analysis. 

  Correlation Analysis    

  Informational Distance 
Technological 
Relatedness 

Firm 
Size  

 
Informational 
Distance 1    

 
Technological 
Relatedness -0.4259 1   

 Firm Size 0.1621 -0.3347 1  
      
      

  
Variance Inflation Factor 

Analysis    
      
 Variable VIF 1/VIF     

 
Informational 
distance 1.22 0.818625   

 
Technological 
Relatedness 1.22 0.818625   

      
 Mean VIF 1.22    



31 

Table 7. Diversification model excluding category V. 

    Probit   
Marginal 
Effects 

Informational Distance  1.7681***  0.5456*** 
  (0.6464)  (0.1992) 
       
Technological Relatedness  0.2056***  0.0634*** 
  (0.0563)  (0.0173) 
     
Firm Size  0.0497***  0.0153*** 
  (0.0054)   (0.0017) 
Category Fixed Effects   Yes  Yes 
Robust Standard Errors  Yes Yes 
     
Observations  2210  2210 
Categories  13  12 
 Wald chi2(16) &(15)  528.8  249.2 
Prob > chi2   0  0 
Psuedo R-Squared       0.2117 
 

Note: Dependent variable represents the probability that firm I will have undertake R&D  
in therapeutic category J if firm I had undertaken at least one Phase II trial of a drug 
in therapeutic category J. Category fixed effects are not reported.   

  
 
   

Table 8. Phase III model excluding category V.  

    Probit   Marginal Effects 
Informational Distance  -2.7623**  -1.0688** 
  (1.3564)  (0.5249) 
      
Technological Relatedness  -0.0460**  -0.0178** 
  (0.0226)  (0.0087) 
      
Firm Size  0.0043*  0.0017* 
  (0.0023)  (0.0009) 
Category Fixed Effects   Yes  Yes 
Robust Standard Errors  Yes Yes 
     
Observations  575  575 
Categories  14  13 
 Wald chi2(16) &(15)  53.36  35.49 
Prob > chi2   0  0.0021 
Psuedo R-Squared       0.067 
 

Note: Dependent variable represents the probability that a drug, once it enters Phase III 
will be approved.  Category fixed effects are not reported.   
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