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Abstract

This study explores the importance of knowledge transfer for international technology
di¤usion by examining ethnic scienti�c and entrepreneurial communities in the US and
their ties to their home countries. US ethnic research communities are quanti�ed by
applying an ethnic-name database to individual patent records. International patent
citations con�rm knowledge di¤uses through ethnic networks, and manufacturing output
in foreign countries increases with an elasticity of 0.1-0.3 to stronger scienti�c integration
with the US frontier. To address reverse-causality concerns, reduced-form speci�cations
exploit exogenous changes in US immigration quotas. Consistent with a model of sector
reallocation, output growth in less developed economies is facilitated by employment gains,
while more advanced economies experience sharper increases in labor productivity. The
ethnic transfer mechanism is especially strong in high-tech industries and among Chinese
economies. The �ndings suggest channels for transferring codi�ed and tacit knowledge
partly shape the e¤ective technology frontiers of developing and emerging economies.
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1 Introduction

The adoption of new technologies and innovations is a primary engine for economic growth,
improving worker productivity and spurring higher standards of living. Invention, however,
is concentrated in advanced economies. OECD countries account for 83% of the world�s R&D
expenditure and 98% of its patenting (OECD 2004). Even within the OECD, a disproportionate
share of R&D is undertaken in the US. Di¤usion of new innovations from technologically leading
nations to following economies is thus necessary for the economic development of poorer regions
and the achievement of global prosperity.
Economic models often describe a worldwide technology frontier, where new ideas and in-

novations travel quickly to all countries.1 Rapid di¤usion may be a good approximation for
industrialized economies, but many advances are either not available or not adopted in poorer
countries. Case studies in the business sociology and economic history literatures suggest this
poor adoption may result from inadequate access to the informal or practical knowledge that
complements the codi�ed details of new innovations. Be it between two people or two countries,
knowledge transfer is much more complicated than sharing blueprints, process designs, or jour-
nal articles. Intellectual spillovers are often thought to be important for the formation of cities
and high-tech clusters, and perhaps heterogeneous access to the codi�ed and tacit knowledge
associated with new innovations shapes the e¤ective technology sets of following countries.2

Recent research stresses the importance of ethnic scienti�c communities in frontier countries
for conveying new technologies to their home countries. In surveys of Silicon Valley, 82% of
Chinese and Indian immigrant scientists and engineers report exchanging technical information
with their respective nations; 18% further invest in business partnerships (Saxenian 2002a,b).
Studies of software o¤-shoring suggest 30% of India�s systems workforce rotates through the
US to obtain the tacit knowledge necessary for their work (Piore 2004). Moreover, some
observers believe the success of India versus Mexico and other countries in this �eld derives
in part from India�s strong US entrepreneurial community. More generally, explorations of
knowledge di¤usion �nd countries with a common language have larger R&D spillovers and
international patent citation rates (e.g., Keller 2002b, Ja¤e and Trajtenberg 1999).
Ethnicity thus o¤ers an observable channel for exploring the extent to which international

networks transmit the codi�ed and tacit knowledge of new inventions. This study examines
whether a larger ethnic research community in the US improves technology di¤usion to foreign

1For example, Mankiw et al. (1992) and Heckscher-Ohlin trade theory. Recent descriptions of multiple
technology frontiers build on geographic distances to major R&D nations (e.g., Keller 2002b), the innovations of
trading partners (e.g., Grossman and Helpman 1991, Coe and Helpman 1995, Coe et al. 1997), or international
patenting decisions (e.g., Eaton and Kortum 1999). Keller (2004) reviews the technology transfer literature.

2Marshall (1890) and Jacobs (1970) describe the forces contributing to spatial agglomeration, while Rosenthal
and Strange (2003) and Ellison et al. (2007) provide more recent empirical tests. Other country-speci�c
di¤erences that inhibit adoption include barriers to technological investment, capital-labor or human-capital
disparities, di¤erences in the organization of production, and the appropriateness of technology. Representative
papers in this literature are Parente and Prescott (1994), Atkinson and Stiglitz (1969), Nelson and Phelps (1966),
Banerjee and Newman (1993), and Acemoglu and Zilibotti (2001), respectively.
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countries of the same ethnicity. US ethnic research communities are quanti�ed by applying
an ethnic-name database to individual US patent records (e.g., identi�es inventors with Chinese
versus Hispanic names). These matched records describe the ethnic composition of US scientists
and engineers with previously unavailable detail. These trends are joined with industry-level
manufacturing data for foreign countries (e.g., Chinese computer research in the US is paired
with China�s computer industry) in an econometric framework that isolates the role of scienti�c
integration by exploiting within-industry variation.
To clarify this empirical methodology, the next section develops a theoretical model where a

technology follower depends on the imitation of frontier innovations for technical progress in its
manufacturing sector. In order to imitate these frontier technologies, however, scientists in the
following country require codi�ed and tacit knowledge with respect to the frontier inventions.
This knowledge is acquired and transferred through the scientists of the following country�s
ethnicity who work in the frontier economy. The model thereby relates the technology follower�s
manufacturing output and productivity growth to its scienti�c integration with the leader. The
primary estimating equations employed in this study are determined within this framework.
Section 3 then describes the ethnic patenting dataset constructed, and a �rst character-

ization of ethnicity�s role in international knowledge transfer is undertaken through citation
patterns. Foreign researchers are found to cite US researchers of their own ethnicity 30%-50%
more frequently than researchers of other ethnicities, even after controlling for detailed technol-
ogy classes. A further examination divides the sample into di¤erent time lags from the �ling
dates of the cited US patents to the dates of the citing foreign patents. This analysis reveals
that the own-ethnicity e¤ect is most important during the �rst �ve years of the di¤usion process.
After peaking in the �fth year, the higher ethnic citation rates decline to the tenth year.
While informative, citation patterns do not quantify the extent to which following countries

realize economic bene�ts from better access to US innovations. To characterize foreign output
and productivity realizations, the US ethnic patenting data are combined with industry-level
manufacturing data for foreign countries in Section 4. Ethnic research communities are quanti-
�ed at the industry-year level by aggregating individual patent records. Panel estimations then
test whether output increases in foreign countries as their respective ethnic research communi-
ties in the US develop. The speci�cations only exploit within-industry variation. The results
suggest growth in US ethnic scienti�c communities increases foreign output with elasticities of
0.1-0.3 depending upon how the data are weighted. These parameter estimates are economically
and statistically signi�cant, and the output expansion is decomposed into employment and labor
productivity gains.
The inclusion of multiple countries and industries a¤ords a more structured characterization

of ethnicity�s role for technology di¤usion and economic growth than case-based or survey-
based research. This platform also allows us to test the robustness of the results to other
explanatory factors and to assess the extent to which the well-documented transfers of Asian
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high-tech enclaves in Silicon Valley generalize to other settings. The measured elasticities are
moderately robust to further incorporating human-capital and physical-capital developments
abroad, general country trends, and so on. Performance in these tests is weakened by the less
variation in growth of US research communities that exists across industries within an ethnicity
than across ethnicities. Sample decompositions further �nd that the outcomes are especially
strong in high-tech sectors and within the Chinese ethnicity. While measurable growth e¤ects
are present in the broader sample, they are substantially weaker than the showcase examples
often discussed.
Reverse causality is a prominent concern in these types of speci�cations, where human-capital

developments in the foreign country could simultaneously result in higher output growth and
more ethnic researchers emigrating to the US. Section 5 returns to the theoretical model to
highlight how immigration quotas o¤er a foothold for addressing these issues. The resulting
reduced-form strategy is applied in the context of the Immigration Act of 1990, a major revision
of the US quotas system, that led to a surge in the immigration of scientists and engineers from
previously constrained countries. The immigration quotas exercise suggests that growth in US
ethnic research communities increases foreign output with elasticities of 0.3-0.4. While the
immigration experiment cannot resolve omitted variable biases, the qualitative �ndings of this
exercise support the results found with the ethnic patenting approach.
Finally, the diverse set of countries studied a¤ords additional insights regarding how the

bene�ts accruing to technology followers di¤er by development stage. An extension to the
theoretical model allows sector reallocation from agriculture to manufacturing. After a transition
point to full employment in the manufacturing sector, greater technology transfer raises labor
productivity and output levels with constant employment. This is the steady-state description
developed in Section 2. Prior to this transition, however, the following country responds with
growth in manufacturing employment as well as labor productivity gains. Consistent with
these predictions, interactions with development stage show labor productivity growth is mostly
concentrated in economies that have transitioned to full manufacturing employment (e.g., the
Asian tiger economies); countries with large agricultural sectors instead increase industry output
through higher employment levels (e.g., Mainland China, India).
The results of this project suggest poor access to the codi�ed and tacit knowledge regarding

new innovations does contribute to slow technology di¤usion. Ethnic scienti�c and entrepre-
neurial channels are important for the transfer of this practical or informal information, and
thus di¤erences in ethnic research communities in frontier economies are partly responsible for
the heterogeneous technology opportunities of developing or emerging countries. In addition
to characterizing technology di¤usion, a better understanding of these ethnic linkages provides
an important contribution to the "brain drain" versus "brain circulation" debate. While a full
cost-bene�t analysis is beyond this paper�s scope (e.g., Kapur and McHale 2005), the technology
transfer results highlight a potential bene�t from high-skilled immigration to advanced countries.

3



2 Theoretical Framework

This section outlines a simple leader-follower model of technology transfer. Both economies fea-
ture a manufacturing sector characterized by an expanding-product-variety production function
where technological progress occurs through the adoption of new intermediate products used in
production of �nal goods. Entrepreneurial scientists living in each country supply these new
technologies for pro�t, and they can either invent the intermediate products themselves or imi-
tate foreign innovations. Spillovers from past innovations increase the research productivity of
current scientists for invention and generate endogenous growth.3 Knowledge is local, however,
in that a country�s researcher productivity for invention builds only on its own past research.
That is, the capabilities of the two nations to invent evolve separately.
Researchers can alternatively imitate foreign inventions for use in their own country. Their

e¤ectiveness in doing so, however, depends upon their codi�ed and tacit knowledge with respect
to the foreign country�s innovations. In preparation for the empirical analysis, ethnicity is
incorporated into the framework to model this knowledge network. Speci�cally, the following
country is of homogeneous ethnicity; the frontier country is primarily of another ethnicity but is
home to some researchers of the following country�s ethnicity. These frontier expatriates acquire
and transmit the knowledge necessary for e¤ective imitation in the following country.
Variables for the leader�s economy are denoted by a tilda (e.g., ~Y ), while the follower�s

variables are in plain font (e.g., Y ). Superscripts and subscripts further distinguish ethnicity
and sector as required. The �rst section outlines the core elements of follower�s economy, followed
by di¤erences in the leader�s economy. The steady-state outcome is then characterized.4

2.1 Follower�s Economy

The technology follower�s economy contains L workers of homogeneous ethnicity F employed
in manufacturing and research. Its labor market is competitive, such that workers are free to
move between the two sectors and are paid their marginal products of labor in each. Denote the
workers employed in manufacturing and research by LM and LR, respectively. The behavior of
the manufacturing sector is �rst described, followed by the research sector and consumers.
The competitive manufacturing sector produces �nal goods YM that can be consumed or

used to make intermediate manufacturing goods. The price of �nal goods is normalized to one.
Production for a representative �rm i that employs labor LMi

and non-durable intermediates
Xij of type j takes the form

YMi
= AL1��Mi

NX
j=1

(Xij)
�: (1)

3For example, Romer (1990), Rivera-Batiz and Romer (1991), and Barro and Sala-i-Martin (1995).
4Section 4 discusses transitional dynamics to this steady state when labor reallocation from an agricultural

sector is introduced. Technology �ows are the only interactions between the two countries. The model abstracts
from trade, and immigration is restricted in the base scenario.
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� is the elasticity of output with respect to intermediate inputs (0 < � < 1), A is a common
manufacturing productivity parameter, and N is the number of intermediate product varieties
currently available in the follower. In equilibrium �rms employ equal amounts of all intermediate
inputs (Xij = Xi 8j) and (1) can be simpli�ed to YMi

= AL1��Mi
X�
i N = AL1��Mi

(NXi)
�N1��.

Thus, the production function exhibits constant returns to scale in labor and total intermediate
inputs NXi, but a larger number N of intermediate goods increases output by distributing the
total intermediate inputs over more goods and thereby raising the marginal product of each.
Technical progress takes the form of increases in N , either through inventions I or imitations

M of the leader�s inventions (N = I + M). Entrepreneurial research �rms choose between
invention and imitation by comparing the productivity of the two techniques. The research
productivity for invention in the follower is determined by the existing stock of the follower�s
inventions, or @I=@t = I � LR. There are no international knowledge spillovers in the sense
that researchers in the follower cannot build on the the leader�s stock of inventions directly in
innovation. The follower�s researchers can alternatively imitate the leader�s inventions at a rate

@M

@t
=

�
~I	

�
M
~I

�
( ~HF )�

�
� LR; (2)

where ~I is the leader�s invention stock and ~HF is the follower�s human-capital stock with respect
to the leader�s inventions. A larger stock of frontier inventions a¤ords a larger pool of technolo-
gies that can be imitated, thus raising the imitation productivity for the follower�s researchers.
The imitation of products exhausts the available pool, however, and the function 	 decreases
with the ratio of imitated products to the available frontier stock, 	0 < 0. 	[1] = 0 when all
available products have been imitated, and 	[0] is su¢ ciently large to ensure some imitation
occurs with human capital for foreign technologies. The ( ~HF )� speci�cation models that tacit
knowledge of frontier inventions is necessary for successfully adopting them in the follower. This
human-capital stock depreciates at a rate �, and the population of follower�s ethnic researchers
in the leader undertaking inventive activity adds to it: @ ~HF=@t = �� ~HF + ~LFR.
Regardless of how new products are acquired, the entrepreneurial research �rms gain per-

petual monopoly rights over the production and sale of new intermediate goods in the fol-
lower. The present discounted value of these rents for a good j at time t is V (t) =

R1
t
(Pj �

Cj)Xje
��r(s;t)�(s�t)ds, where Pj is the selling price and Cj is the cost of producing the intermediate

good. �r(s; t) is the average interest rate between times t and s, which is constant in equilibrium.
Cj = 1 for research �rms as one unit of YM is required to produce one unit of intermediate input.
Monopoly rights a¤ord research �rms the power to set Pj in each period to maximize (Pj �

1)Xj. As price takers, the manufacturing �rms equate the marginal product of an intermediate
good, @YMi

=@Xij in (1), with its price Pj for a demand ofXij = (A�=Pj)
1=(1��)LMi

. Substituting
this demand function into the research �rm�s maximization problem, summing across �nal-goods
producers, and taking the derivative with respect to Pj yields the monopoly price Pj = ��1.
Thus, research �rms charge the same price (Pj = P ) and face similar aggregate demands of
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X = A1=(1��)�2=(1��)LM . The constant interest rate, price, and aggregate demand relationships
simplify the value of inventing or imitating a new technology V (t) to

V =

�
1� �
�

�
A1=(1��)�2=(1��)

1

r
LM : (3)

Constant intermediate demand functions also simplify the follower�s aggregate output,

YM = A1=(1��)�2�=(1��)LMN: (4)

On the consumer side, households maximize a linear lifetime utility function U =
R1
0
c(t) �

e��tdt, where � is the rate of time preference. Consumers earn wage w and receive the interest
rate r on savings. In equilibrium, � = r.

2.2 Leader�s Economy

Before the equilibrium for the follower�s economy can be determined, the frontier economy
must be described. The leader�s economy is identical to the follower�s except in its ethnically
heterogeneous labor force and in its invention of new intermediate goods. Workers of both
the leader�s and follower�s ethnicity live in the leader. Workers of the leader�s ethnicity move
between the manufacturing and research sectors, but the follower�s expatriates work only in the
research sector (~LM = ~LLM , ~LR = ~LLR +

~LFR). The follower�s ethnic population in the leader
is small enough to ensure some scientists of the leader�s ethnicity are always required. The
aggregate populations of the two countries are equal (L = ~L).
Researchers of both ethnicities contribute to and utilize the existing frontier invention stock

~I in developing new intermediate products: @ ~IF=@t = ~I � ~LFR and @ ~IL=@t = ~I � ~LLR, where
~I = ~IF + ~IL. This research speci�cation again highlights the role of past inventions ~I in
making current researchers more productive, and assumes inventions made in the follower do
not contribute to the leader�s researcher productivity for invention. More subtly, ethnicity does
not matter for invention in the leader � both types of scientists are symmetric with respect to
the frontier invention stock. Finally, frontier researchers of the follower�s ethnicity can imitate
products made in the follower with a productivity analogous to (2).5

2.3 Steady-State Description: Leader Invents, Follower Imitates

This case determines the core estimating equation for this study. Without invention in the
follower, the frontier economy operates in isolation, and imitation does not occur ( ~N = ~I).
The leader�s research sector is competitive with respect to labor markets, and scientists earn
the marginal product of their innovative e¤orts. Denote by ~V the present discounted value of

5The potential crowding out of US workers and students from science and engineering �elds by immigrants is
often debated (e.g., Borjas 2005, Freeman 2005). This model incorporates a crowding-out e¤ect for analytical
convenience only.
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making a new invention in the leader. As researchers invent ~I new products each period (i.e.,
(@ ~I=@t)=~LR = ~I), the wage paid to scientists is ~V � ~I. Likewise, wages in the manufacturing
sector are equal to the marginal product of labor (1 � �) ~YM=~LM . Labor mobility between
sectors requires that these wages be equal, ~V � ~I = (1 � �) ~YM=~LM . Substituting into this
free-entry condition the leader�s versions of the value of innovations (3) and aggregate output
(4), and noting r = �, the steady-state allocation of labor in the frontier economy is found to be
~LM = �=� and ~LR = L� �=�. Thus, the growth rate of both the stock of frontier intermediate
technologies and manufacturing output is L� �=�.
Returning to the follower�s economy, all intermediate products come through imitation of

the leader (N = M). Labor mobility again requires wage equality for the follower, V �
(~I	[M=~I]( ~HF )�) = (1 � �)YM=LM . Substituting in the value of new intermediates V from
(3) and aggregate output YM from (4),

r =
~I

M
	

�
M
~I

�
( ~HF )��LM : (5)

With identical preferences and aggregate populations, the follower�s interest rate and allocations
of labor to manufacturing and research are the same as the leader.6 Equation (5) further shows
the steady-state ratio of the follower�s imitated products to available frontier products M=~I is
constant and increases with the follower�s human-capital stock with respect to leader�s technolo-
gies (	0 < 0). Stronger knowledge transfer improves researcher productivity for imitation in
the follower and closes the steady-state gap to the frontier.
Simplifying (5) for economies of equal size relates the follower�s imitated technology stock to

the technology frontier and the follower�s knowledge for frontier innovations,M = ~I	[M=~I]( ~HF )�.
Substituting this relationship into the follower�s manufacturing output (4), taking logs, and col-
lapsing time-invariant terms into a constant �, the follower�s manufacturing output depends
upon its human-capital stock with respect to frontier research with elasticity �: ln(YM) =
�+ ln(~I) + � ln( ~HF ). The human-capital stock is ��1 ~LFR in steady-state, so that

ln(YM) = �+ ln(~I) + � ln(~L
F
R); (6)

where ��1 is absorbed into the constant. Equation (6) is the basis for the estimating equations
employed in Sections 4 and 5. The statistical framework will return to the intricacies of em-
pirically estimating this relationship, but the outlook is promising that the relationship will be
directly identi�ed if this scenario holds.
The follower�s imitation-versus-invention decision determines the condition required for this

steady-state description. Speci�cally, the productivity of the follower�s researchers for invention
must be less than the researcher productivity for imitating frontier innovations in equilibrium,

I < ~I	

�
M
~I

�
( ~HF )�: (7)

6These conditions hold for more general utility functions. As Barro and Sala-i-Martin (1995) note, techno-
logical di¤usion can equalize rates of return without other interactions between economies.
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The assumption I = 0 requires (7) hold forever; without a knowledge stock on which to build,
a �rst invention is impossible. While this may describe extremely poor regions, the more
interesting implication for developing or emerging countries is that, even with a small invention
stock, the comparative bene�t to imitation can be sustained so long as access to the codi�ed and
tacit knowledge for a growing stock of frontier innovations is maintained. Section 5 discusses
the case where (7) no longer holds.7

3 Ethnic Patenting and International Citations Analysis

The above model is applied to technology transfer from the US through ethnic networks. Esti-
mation of the � parameter requires quantifying each ethnicity�s human-capital stock with respect
to US research. This section outlines the dataset built for this exercise, and presents an analysis
of knowledge �ows using international patent citation records. The ethnic patenting data are
then joined with foreign output metrics in Section 4 to evaluate (6) directly.

3.1 Ethnic Patenting Records

Ethnic technology development in the US is quanti�ed through the NBER Patent Data File
originally compiled by Hall et al. (2001). This dataset o¤ers detailed records for all patents
granted by the United States Patent and Trademark O¢ ce (USPTO) from January 1975 to
December 1999. Each patent record provides information about the invention (e.g., technology
classi�cation, citations of prior art) and the inventors submitting the application (e.g., name,
city). To estimate ethnicities, a commercial database of ethnic �rst names and surnames is
mapped into the inventor records. Kerr (2007c) documents the name-matching algorithms, lists
frequent ethnic names, and provides extensive descriptive statistics. The match rate is 98% for
US patent records, and the process a¤ords the distinction of nine ethnicities: Chinese, English,
European, Hispanic, Indian, Japanese, Korean, Russian, and Vietnamese.
Table 1 describes the 1985-1997 US sample, while Figure 1 illustrates the evolving ethnic con-

tribution to US technology development as a percentage of patents granted by the USPTO. The
trends demonstrate a growing ethnic contribution to US technological development, especially
among Chinese and Indian scientists. Ethnic inventors are more concentrated in high-tech in-
dustries like computers and pharmaceuticals and in gateway cities relatively closer to their home
countries (e.g., Chinese in San Francisco, European in New York, and Hispanic in Miami). The
�nal three rows demonstrate a close correspondence of the estimated ethnic composition to the
country-of-birth composition of the US science and engineering workforce in the 1990 Census.

7Immigration is restricted in this framework. Moreover, the follower�s workers would prefer to emigrate to
the leader as the frontier wage rate is higher ceteris paribus due to the larger stock of intermediate goods.
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3.2 International Patent Citation Analysis

The ethnic-name database is also applied to foreign patent records registered in the US. In-
ventions originating outside the US account for just under half of USPTO patents, with appli-
cations from Japan comprising 45% of this foreign total. Kerr (2007c) presents the matched
characteristics for countries grouped to the ethnicities identi�able with the database. From a
quality-assurance perspective, the results are very encouraging. First, the ethnic-name database
assigns ethnicities to 98% of foreign records. Second, the estimated inventor compositions are
quite reasonable, with the own-ethnicity contributions in all but three regions being greater than
80% (e.g., 89% of inventors �ling from Chinese countries and regions are classi�ed as ethnically
Chinese). Like the US, own-ethnicity shares should be less than 100% due to foreign researchers.
In addition to serving as a quality-assurance check, patents registered with the USPTO

by foreign inventors a¤ord an initial characterization of international knowledge �ows through
ethnic scienti�c networks. Each patent record includes citations of prior inventions on which the
current patent builds, and the pattern of these citations can be informative about communication
channels between researchers.8 This �rst exercise simply compares the ethnic composition of
cited US inventors across di¤erent foreign inventor ethnicities. That is, do Chinese inventors
living outside of the US tend to cite more Chinese inventors living in the US than their technology
�eld would suggest?
Inventor names are only included with patents granted from 1975-1999, and the data are cut

in two ways to form a uniform sample. First, only the citations of foreign patent applications to
the USPTO from 1985-1997 are considered. Second, the application year of the cited US patent
must be within ten years of the application date of the citing foreign patent. That is, citations
of 1975-1984 US domestic patents are considered for foreign patents applied for in 1985, while
1976-1985 is the appropriate ten-year window for 1986 patents. In addition, all within-company
citations and patents with inventors in multiple countries are excluded.9

From this sample, citation counts are developed by cells that contain four dimensions: 1) the
ethnicity of the citing foreign inventor, 2) the ethnicity of the cited US inventor, 3) the technology
class of the citing foreign inventor, and 4) the technology class of the cited US inventor. The
latter two dimensions are necessary for isolating ethnicity�s role since patents cite other patents
within their technology �eld far more frequently than those outside of their �eld. If ethnicities
concentrate in di¤erent industries in the US and abroad, measured ethnic �ows could be merely
capturing that technologies build upon prior art in their own discipline.

8Ja¤e et al. (2000) and Duguet and MacGarvie (2005) discuss using patent citations to study knowledge
transfer. Ja¤e et al. (1993), Peri (2005), Hu and Ja¤e (2004), Agrawal et al. (2006), and MacGarvie (2006) are
examples of applications in an international distance context.

9Patents may have multiple inventors with di¤erent ethnicities. The reported regressions only consider
citations for which a dominate ethnicity can be assigned to both patents (i.e., a single ethnicity accounts for strictly
more than 50% of multiple inventors). English-ethnicity inventors abroad are excluded. These restrictions are
required for the cells constructed for the citations estimations and are not carried forward into the output and
productivity analyses. The results are robust to alternative techniques like Thompson (2006) below.
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Almost 100,000 cells are formed with this organization, and many cells contain zero values.
The zero values are due to both the small sizes of some ethnicities (e.g., Vietnamese inventors
outside of the US) and that researchers in a given �eld simply do not cite the universe of
technologies in their work. Count data containing zero values can be appropriately handled
with a Negative Binomial model. The counts are regressed on an indicator variable for whether
the citing foreign ethnicity and cited US ethnicity are the same, as well as vectors of �xed e¤ects
for each of the four dimensions on which cells are formed. These �xed e¤ects remove basic
levels di¤erences between the series (e.g., English in the US receiving uniformly more citations,
Vietnamese researchers abroad making uniformly fewer inventions and citations). An indicator
variable is also included for whether the cited and citing technology categories are the same.
The coe¢ cient on the indicator variable for same-ethnicity is transformed into an incidence

rate ratio that gives the higher rate of citations within an ethnic group. The incidence rate ratio
for all citations is 1.496 with a standard error of 0.052. This coe¢ cient is statistically di¤erent
from one, the level where own-ethnicity citations have the same frequency as citations of other
ethnicities, and suggests a moderate e¤ect that own-ethnicity citations are 50% higher than
citations to other ethnicities once the basic levels and industry e¤ects are removed. This ethnic
di¤erential is a couple of orders of magnitude less than the within-technology �eld e¤ect, and
Kerr (2007a) shows that tighter technology controls by disaggregating the sample can weaken the
own-ethnicity di¤erential to 20%-30%. The tighter speci�cations, however, remain economically
and statistically important. To further study the time path of these knowledge �ows, the
Negative Binomial regressions are performed separately for each citation lag of one to ten years,
rather than collapsing the data into a single regression. The coe¢ cients from these regressions
and their con�dence bands (two standard deviations) are presented graphically in Figure 2.
Common ethnicity appears most important for international technology di¤usion in the �rst few
years after an invention, peaking in a citation lag of four to �ve years.10

3.3 Codi�ed and Tacit Knowledge Transfer

The international patent citation exercises con�rm that knowledge di¤usion occurs at an un-
even rate across countries and further suggest that ethnic scienti�c networks are important for
short-run technology transfer from the US. The declining importance to common ethnic ties
over time in many respects resembles the declining importance of geographic distance in knowl-
edge di¤usion over time (e.g., Keller 2002b). While the citation regressions explicitly measure
inventor-to-inventor knowledge �ows, the short-term di¤erentials are more generally representa-
tive of the transfer of codi�ed and tacit knowledge.
The heightened transfer of codi�ed knowledge can arise from several factors. Most sim-

10Kerr (2007a) tabulates these Negative Binomial regression results. This unpublished appendix also contains
results using the dataset and techniques developed by Thompson (2006). After assigning ethnicities to inventors
in Thompson�s dataset, estimations using Thompson�s technique yield a quantitatively similar role for own-
ethnicity in international citations of 40%-60% depending upon the speci�cation.
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ply, ethnic networks aid awareness of new technologies that are developed. Even with modern
communications advances, information continues to di¤use through professional networks and
word-of-mouth. Second, ethnic business networks can aid trust and informal contracts where
traditional legal enforcement is uncertain. Ethnic diasporas have facilitated trade �ows for cen-
turies (e.g., Rauch 2001, Rauch and Trindade 2002), and frontier ethnic expatriates can serve as
reputation intermediaries for the transfer of new technologies, too. These transfers are under-
standably cautious given weaker international intellectual property protections. Kapur (2001)
notes that US ethnic scientists and entrepreneurs are likely to play a greater role as reputation
intermediaries in industries where tacit knowledge is important with respect to quality. US
Indian entrepreneurs have substantially enhanced the brand reputation of India�s programmers.
The transfer of the practical knowledge necessary for using or adapting new innovations is

also aided by frontier expatriates. This tacit knowledge applies to both the speci�c technologies
developed and the broader context of innovation. Often times, the technology di¤usion encour-
aged by cross-border ethnic transfers encourages the formation of new �rms seeking to integrate
into industries characterized by decentralized production and cross-�rm collaborations. In these
environments, informal knowledge regarding component integration and the industry�s future di-
rection are critical; these insights can moreover illuminate pitfalls to avoid. The importance of
this tacit knowledge cannot be overestimated. Lester and Piore (2004) describe how a Japanese
communications equipment manufacturer withdrew from the US market after being excluded
from standards hearings held by the Federal Communications Commission (FCC), despite the
fact that the FCC published the transcripts of its sessions! The Japanese vendor felt it would
not understand adequately the unspoken or implicit decisions being made.11

Finally, this study has interesting parallels to two recent papers regarding knowledge di¤usion
through Indian entrepreneurial and scienti�c networks. In a study of India�s software industry,
Nanda and Khanna (2006) �nd that entrepreneurs outside of software hubs rely more on the
Indian diaspora than those working within centers like Bangalore. These �ndings suggest that
diaspora networks may serve as substitutes for local institutions and technology opportunities.
Looking within a single economy, Agrawal et al. (2007) jointly examine knowledge di¤usion
through co-location and co-ethnicity using domestic patent citations made by Indian inventors
living in the US. While being in the same city or the same ethnicity both encourage knowledge
di¤usion, their estimations suggest that the marginal bene�t of co-location is four times larger for
inventors of di¤erent ethnicities. This substitutability between social and geographic proximity
can create di¤erences between a social planner�s optimal distribution of ethnic members, and
what the inventors themselves would choose.12

11A second intuitive example is the construction of an atomic bomb. While the basic designs are available on the
internet, e¤orts to stem nuclear weapons proliferation focus extensively on the scientists with the tacit knowledge
necessary for implementation. Other examples are drawn from Amsden (2001), Feinstein and Howe (1997), Kim
(1997), Lim (1999), and Saxenian (2006). Polanyi (1958, 1966) introduces tacit knowledge; Granovetter (1973)
highlights the strength of weak ties.
12Technology di¤usion is also facilitated by foreign direct investment and multinational enterprises (e.g.,
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4 Output and Productivity Analysis

This section turns to the next question of whether this greater transfer of knowledge for US
innovations through ethnic networks produces measurable economic improvements for foreign
countries. The US ethnic patenting trends are joined with data on foreign manufacturing
industries, and an empirical extension of speci�cation (6) is developed and estimated.

4.1 Foreign Manufacturing Data

The bene�t of knowledge integration for foreign development is evaluated through the Indus-
trial Statistics Database of the United Nations Industrial Development Organization (UNIDO).
The UNIDO collects industry-level manufacturing statistics for The International Yearbook of
Industrial Statistics and specialized publications on topics like development and competition.
Researchers at the UNIDO supplement the data resources of the OECD with national records
for non-OECD members, creating a unique global resource. The UNIDO�s stated objective
is the compilation of internationally comparable and internally consistent series (e.g., variable
de�nitions, accounting units, collection procedures).
Table 2 describes the sample and lists the three-digit ISIC industries. The panels include

all country-industry observations surveyed at least four times from 1985-1997 that correspond
to non-English ethnicities identi�able with the ethnic-name database (e.g., Canada, the United
Kingdom, Africa, and the Middle East are excluded). Three industry characteristics are con-
sidered: output, employment, and labor productivity measured as output per employee. Table
2 aggregates the annual industry-level data to describe the country-level manufacturing sectors.
While direct comparisons across countries are limited with an unbalanced panel, the output
and labor productivity di¤erences between industrialized countries (e.g., Japan) and developing
nations are clearly evident. The underlying industry-level metrics also agree with published
UNIDO and World Bank statistics.13

4.2 Output and Productivity Estimation Framework

The combined dataset a¤ords an industry-level analysis of technology transfer with multiple
countries and ethnicities. Extending (6) to industry i and country c of ethnicity e,

ln(Yci) = �ci + ln(~Ii) + � ln(~LR;ei); (8)

where ~LR;ei is the size of the US research community of ethnicity e in industry i. While
analytically convenient, this steady-state description must be adapted for the empirical exercises.

Branstetter 2006, Singh 2004). Foley and Kerr (2007) �nd growth in the US-based ethnic researchers within
US multinational �rms is correlated with larger FDI into countries of the researchers�ethnicity. Moreover, the
organizational form of the FDI shifts towards more direct entry versus joint ventures.
13Kerr (2007a) documents additional descriptive statistics for this sample, the dataset development process,

and alternative UNIDO panels considered. The appendix also describes the mapping of USPTO technology
classi�cations to ISIC industries, building on Johnson (1999) and Silverman (1999).
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The ethnic human-capital stocks for US technologies change over the 1985-1997 period � the
source of identi�cation for the � parameter. The citation regressions in Figure 2 highlight
that ethnic ties have an important lag structure, especially for the �rst �ve years of knowledge
dissemination. Rewriting (8) in discrete time to model this �ve-year dependency,

ln(Ycit) = �ci + ln(~Iit) + � ln

 
5X
s=1

~LR;ei;t�s

!
: (9)

Ethnic patenting data provide an empirical foothold for estimating these US ethnic scienti�c
research communities. Rewriting the US researcher productivity function into a discrete-time
form for industry i and ethnicity e, ~IFloweit = ~Iit � ~LR;eit. The measured patenting of ethnicity e in
year t again depends upon the overall stock of US knowledge and the size of the ethnic research
group in the US (measured at the beginning of the year). By abstracting from the endogenous
growth stimulus, the researcher productivity becomes time-invariant: ~Iit = ~Iit0. Thus, the
US ethnic research community can be inferred from the patent �ow divided by the constant
researcher productivity (~LR;eit = ~I�1it0 � ~I

Flow
eit ). Substituting this simpli�ed form into (9), the

time-invariant researcher productivity ~I�1it0 is separated from the patent sum and incorporated
with ln(~Iit) into an industry-year �xed e¤ect �it. Likewise, the base productivity constants �ci
are extended into country-industry �xed e¤ects.
To keep the exposition simple, de�ne PATUSeit to be the �ve-year sum of recent US ethnic

patenting in an industry. The core estimating equation becomes

ln(Ycit) = �+ � ln(PAT
US
eit ) + �ci + �it + �cit; (10)

where �ci and �it are the vectors of country-industry and industry-year �xed e¤ects, respectively.
These �xed e¤ects warrant careful discussion. First, the country-industry e¤ects �ci remove
levels di¤erences between series. Without �ci, a positive � would be found if output in China�s
computer industry and US Chinese research in the computer industry are higher than average.
Incorporating �ci instead requires the output growth in China�s computer industry be above
average if the US Chinese computer research growth is above average. Focusing on relative
growth rates removes time-invariant factors that potentially confound the analysis (e.g., the
productivity parameters A, ethnicity size).
The derivation of (10) highlights two important roles for the industry-year �xed e¤ects �it.

First, �it extract the overall growth in the US knowledge stock for an industry (e.g., the strong
increase in computer and pharmaceutical research vis-à-vis mechanical research). Second, �it
control for the invention productivity of researchers, so that ethnic patenting �ows are viable
proxies for ethnic research in the US. More generally, the industry-year e¤ects remove all
industry-level trends common to the countries (e.g., demand shifts, price changes) and �uctua-
tions in patent statistics due to changes in USPTO resources (e.g., Griliches 1990).
These �xed e¤ects are crucial for the interpretation of the � parameter. This project does

not estimate the e¤ect of US patenting on foreign output and productivity; indeed, isolating that
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speci�c channel from other knowledge �ows between countries is not feasible with industry-level
outcomes. Moreover, the substantial increase in the number of patents granted by the USPTO
over the last two decades is di¢ cult to interpret. Instead, (10) forces variation to be within
industries, isolating the size of ethnic communities from aggregate industry trends. A positive �
coe¢ cient requires that higher relative growth of Chinese computer research compared to Indian
computer research in the US correlate with higher relative output growth in China�s computer
industry compared to India�s computer industry.

4.3 Ethnic Patenting Estimator

The �ve-year patent sums PATUSeit are developed for each ethnicity-industry from the patent
database. The matched USPTO records describe the ethnic composition of US scientists and
engineers with previously unavailable detail: incorporating the major ethnicities working in the
US scienti�c community; separating out detailed technologies and manufacturing industries; and
providing annual metrics. The panel econometrics (10) require this level of cross-sectional and
longitudinal variation to estimate general elasticities. The procedure does, however, have three
potential limitations that should be discussed before presenting the results.
First, the approach does not distinguish foreign-born ethnic researchers in the US from later

generations working as scientists and engineers, especially for the European contribution. While
research on social and business networks �nds the strength of ties to home countries declines for
later generations, the ethnic patenting approach can only estimate total ethnic scienti�c popu-
lations. The panel econometrics employed for the output and productivity analyses, however,
identify o¤ of relative changes in these community sizes. Census and INS records con�rm these
changes are primarily due to new immigration for the period studied, substantially weakening
this overall concern. Moreover, the immigration reform exercises in Section 5 yield similar
results when focusing speci�cally on new arrivals through US quotas changes.
On a related topic, recent surveys of ethnic technology transfer from the US to China and

India suggests technical exchanges are particularly aided by the circular labor movements of
US-trained researchers and entrepreneurs (e.g., Saxenian 2006, Nanda and Khanna 2006). The
ethnic patenting technique cannot quantify the magnitudes of reverse migration and circular
migration �ows, instead being restricted to net growth in US ethnic researcher populations. In
this metric�s defense, the scienti�c integration it captures likely embodies circular �ows too, and
the 1985-1997 period pre-dates most large-scale return migration decisions. If anything, the
extent to which return migrations are important should lead to �nding a negative � coe¢ cient in
the estimations. Return migration and circular movements are rapidly growing in importance,
however, and it is hoped that future research will illuminate these issues further.
Finally, the name-matching technique does not distinguish �ner ethnic and linguistic divi-

sions within the nine major ethnic groupings. It would be advantageous to separate Mexican
from Chilean scientists within the Hispanic ethnicity, to distinguish Chinese engineers with ties
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to Taipei versus Beijing versus Shanghai, and so on. These distinctions are not possible for
this study�s large scale analysis, and several countries will map into the Chinese, European, and
Hispanic ethnicities for the output and productivity analyses below. The empirical analysis ac-
counts for this multiplicity by conservatively clustering standard errors at the ethnicity-industry
level; this cross-sectional clustering further addresses the serial-correlation concerns of Bertrand
et al. (2004). Despite the clustering, measurement error from the broader ethnic divisions may
still bias the estimated coe¢ cients downward. The positive elasticities evident will nevertheless
support the conclusion that technology following countries experience economic growth due to
stronger technology transfer from the US.

4.4 Basic Output and Productivity Regressions

As a �nal preparation step, the levels speci�cation (10) is �rst di¤erenced for estimation,

� ln(Ycit) = �+ �� ln(PAT
US
eit ) + �it + �̂cit; (11)

where �̂cit = �cit � �cit�1.14 Table 3 reports the primary results. The top row �nds that
output rises with strong scienti�c integration to the US. As both variables are in logs, the
0.091 coe¢ cient in the upper-left corner �nds a 10% increase in US ethnic research is associated
with a 1% increase in foreign output. Industry output expansion can come through both labor
productivity gains and expansion in employment. Disaggregating the output regression, Panels
B and C �nd labor productivity growth facilitates most of the manufacturing development
captured in this sample.
Three weighting schemes are tested: no weights, weighted by the 1985-1987 industry-level

patenting in the US, and weighted by the 1985-1987 size of the foreign manufacturing indus-
try. The � coe¢ cients in the weighted regressions are larger than the unweighted speci�cation,
measuring an output elasticity of approximately 0.3. The patent weights emphasizes high-tech
industries and the strong interactions of the Chinese and Indian research communities with their
home countries. The output weights instead focus on the largest industries and o¤er a sense of
the average treatment e¤ect for industries. Coe¢ cient estimates tend to be marginally smaller
with the output weights than the patent weights due to the output weights�greater emphasis
on traditional economic sectors (e.g., food products, textiles). Both approaches, however, yield
more consistent results than the unweighted regressions by focusing attention on larger countries
and industries and reducing measurement error in the ethnic patenting estimator. The weighted
estimations are the preferred speci�cations of this study.15

14The e¢ ciency of this �rst-di¤erences form versus the levels speci�cation turns on whether the error term �cit
is autoregressive. If autoregressive deviations are substantial, the �rst-di¤erences form is preferred; a unit-root
error is fully corrected. If there is no serial correlation, however, �rst di¤erencing introduces a moving-average
error component. Estimations of the autoregressive parameter in the levels speci�cation for this study �nd serial
correlations of 0.5-0.6, while -0.1 is evident in the �rst-di¤erences form.
15The elasticities are larger and more uniform in the levels estimation (10). The unweighted output elasticity is

0.241 (0.126), while the patent and output weighted elasticities are 0.420 (0.228) and 0.400 (0.147), respectively.
Kerr (2007a) documents equivalent results using the levels speci�cations for all of the tables presented below.
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The basic estimations reported in Table 3 are consistent with technology following countries
realizing economic gains from stronger scienti�c integration with the US. These bene�ts appear
to extend beyond the inventor-to-inventor �ows evident with the citations analysis, as these US
ethnic research communities facilitate broader manufacturing output growth through superior
access to the US technology set. The remainder of this section further tests this �nding by
incorporating country-level controls, examining sector reallocations, and so on.16

4.5 Foreign Country Development Controls

The industry-year �xed e¤ects create an empirical environment where US ethnic patenting serves
as a viable metric for the strength of ethnic research communities. Moreover, the focus on
within-industry variation circumvents many problems in interpretation that could arise from
di¤erent industry trends (e.g., rapid high-tech growth). As the constructed panel includes
multiple industries within a country, additional tests can be performed that further control for
country-wide development. Table 4 undertakes four such tests, with Panel A simply replicating
the base �rst-di¤erences regressions for foreign output from Table 3.
An immediate concern is whether the results are capturing only foreign human-capital de-

velopment, which could reasonably lead to an expansion in foreign manufacturing and the em-
igration of researchers to the US. The NSF collects annual data on the US Ph.D. science and
engineering graduates by country-of-birth. As an initial robustness check on the general human-
capital development story, Panel B adds the log trend in these graduates as an additional covari-
ate. The role of the US ethnic scienti�c community remains strong and signi�cant. (Section
5�s immigration analysis returns to these Ph.D. trends and the reverse causality concern.)
Panel C next explores the role of physical-capital development in explaining the output

growth. Section 2�s theory only models non-durable intermediate inputs, a simpli�cation that
removes the need to track two state variables. Labor productivity and output growth occurs
with capital deepening as well as technology adoption, however. This investment in physical
machinery and structures is clearly endogenous to technology transfer from the frontier economy,
due to both the larger available technology set and the general equilibrium economic development
experienced. Nevertheless, additional con�dence for the role of frontier scienti�c communities
can be established through joint tests with this factor input. The output-weighted coe¢ cient
retains most of its economic magnitude and statistical strength; the patent-weighted coe¢ cient
retains 80% of its original economic importance but is no longer statistically signi�cant.17

16The di¤erential technology transfer explains 1%-2% of the sample�s output and productivity growth variation
after removing aggregate industry trends. The percentage accounted for rises to 3%-5% with the sector realloca-
tion speci�cations studied below. These percentages provide order-of-magnitude estimates for the total growth
accounted for, although calculations after removing industry-year e¤ects likely understate the total impact due
to technology transfer. These technology gains in turn produce comparative advantages for trade (Kerr 2007b).
17The UNIDO data unfortunately lack capital records for almost half of the sample. Moreover, the available

capital stocks are measured with substantial error, downward biasing the capital coe¢ cients. Kerr (2007a)
details the construction of the capital stocks and provides additional tests. These results can be extended to
include labor in a production function estimation, although the employment response is even more endogenous
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More generally, Panels D and E incorporate into (11) linear country time trends and non-
parametric country-year �xed e¤ects, respectively. These additional controls remove trends
common to the industries within a country, including the overall growth in each ethnicity�s US
research community (e.g., the strong increases in Chinese and Indian patenting in the US). For
foreign output, the country e¤ects extract national business cycles, trend manufacturing gains,
trade agreements, and so on. A positive � coe¢ cient in these estimations requires higher relative
growth of Chinese computer research to Chinese pharmaceutical research in the US be partially
correlated with higher relative output growth in China�s computer industry to its pharmaceutical
industry (after worldwide industry trends are removed).
The inclusion of both country-year and industry-year �xed e¤ects in a �rst-di¤erenced speci-

�cation is a very stringent test, and much of the variation is removed from the sample. While the
positive correlations are preserved in three of the four weighted regressions, only one coe¢ cient
is statistically signi�cant. Moreover, the correlations are zero or negative in the unweighted
speci�cations. These declines in coe¢ cient magnitudes are partly explained by the relatively
uniform growth (versus levels) in each ethnicity�s US research communities across industries in
a log expansion. That is, much greater variation exists across ethnicities than across industries
within an ethnicity (Kerr 2006c). To the extent that this uniform growth is what is being
captured by the country-year �xed e¤ects, the core estimations correctly measure the general
elasticity. This study cannot reject, however, that the base elasticities are upward biased due
to presence of an omitted variable operating at the country-year level too.

4.6 Sample Decompositions

The core objective of these empirical exercises is quantifying the mean output gains from US
technology transfer through ethnic networks across a diverse group of countries and industries.
It is informative, however, to identify which observations are most responsible for the aggregate
�ndings. Table 5 investigates this question through several sample decompositions.
Case studies of successful technology di¤usion often focus on the computer and pharmaceuti-

cal industries, and the exceptional outcomes of Asian scienti�c communities in Silicon Valley are
widely noted. While the industry-year e¤ects control for the overall growth in each industry�s
research and output (e.g., Griliches 1994), ethnic di¤erences in high-tech industries alone could
still be responsible for the positive correlations. To some extent, the stronger coe¢ cients in
the patent-weighted regressions suggest this is true, and Panel B begins by directly excluding
the computer and pharmaceutical industries from the sample. The results are mixed. On one
hand, both the unweighted and patent-weighted coe¢ cients decline substantially in economic
magnitude. On the other hand, the patent-weighted coe¢ cient does remain statistically sig-
ni�cant and the output-weighted elasticity is broadly robust. These mixed results suggest the
gains are concentrated in high-tech sectors, but that they are not entirely exclusive to them.

to technology transfer as discussed below.
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Chinese economies, more often than not, are also the centerpieces of technology transfer
stories. The US Chinese research community experiences strong growth during the sample pe-
riod, and Mainland China has exceptional manufacturing gains too. When excluding Mainland
China in Panel C, the unweighted elasticity loses a third of its magnitude and its statistical
signi�cance, but the weighted regressions deliver fairly similar results. Unreported regressions
further �nd that the weighted parameter estimates do not depend signi�cantly on the inclusion
of any one country in the sample. Panel D of Table 5 demonstrates, however, that excluding
the full Chinese ethnicity can be important even for the weighted estimations. Given that the
Chinese grouping includes three of the four Asian "tiger" economies (i.e., Hong Kong, Singa-
pore, and Taiwan) and Mainland China, it is not too surprising that the e¤ect is sensitive to
their inclusion. Further tests �nd that the decline in the coe¢ cient size is mostly linked to
dropping the computer and drug industries for the Chinese economies. This cautions that the
well-documented outcomes for Silicon Valley are in some sense special even for the Chinese, with
the bene�ts of scienti�c collaboration for manufacturing being weaker in most other contexts.18

The UNIDO sample also includes several industrialized economies that are undertaking ex-
tensive R&D themselves. For example, Japanese inventors living in the US, who are well
identi�ed with the ethnic-name database, patented less than 10,000 inventions from 1985-1997;
almost 300,000 USPTO patents were awarded to Japanese inventors living outside of the US
during this period.19 Positive correlations of foreign country growth to US ethnic research may
simply be capturing reverse technology �ows, intra-company patenting, or defensive patenting
from these advanced economies. Exploring this issue, Panel E excludes Japan, European coun-
tries, and Russia and �nds similar results to the full sample. Likewise, the last row drops the
large bloc of Hispanic countries and �nds similar coe¢ cients in the weighted regressions.
To summarize, the unweighted elasticities are clearly sensitive to the sample composition,

while the weighted elasticities are more robust across sample compositions. The ethnic tech-
nology transfer mechanism is especially strong for high-tech and Chinese outcomes, re�ective
of the disproportionate number of case studies written. The weighted speci�cations suggest,
however, that some transfer bene�ts extend beyond these special outcomes to other ethnicities
and more traditional industries. The next section re�nes the main e¤ects to characterize further
di¤erences in outcomes by development stage.

4.7 Sector Reallocation

Section 2�s theoretical framework builds on the assumption of full employment in the technology
follower�s manufacturing and research sectors. While the estimating equation (6) relates the
follower�s output to its research presence in the leader, the same elasticity � would hold for

18Dropping only the computer and drug industries for Chinese economies yields coe¢ cients slightly larger than
those in Panel D that are statistically signi�cant in the two weighted regressions.
19The estimates are sums over inventor ethnicity percentages at the patent level. Japanese inventors are

associated with more patents due to multiple inventors.
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labor productivity speci�cations. With full employment, output gains can only come through
labor productivity enhancements. Many developing economies have large agricultural sectors,
however, and the migration from agriculture to manufacturing is important for characterizing
economic development (e.g., Harris and Todaro 1970).
Kerr (2007a) incorporates into the basic model an agricultural sector in the follower. In

this extension, technology transfer from the leader to the follower induces sector reallocation,
with labor shifting from agriculture to the manufacturing and research sectors. Thus, output
growth occurs through both labor productivity gains, as in the steady-state scenario, and through
employment growth along the transition path. After a su¢ cient number of frontier innovations
are imitated, the follower�s economy transitions to full employment in the manufacturing and
research sectors. Thus, the steady-state of the expanded economy is the same as the basic
framework described in Section 2.20

To test these transition path predictions for developing economies, Table 2 lists the 1980
share of national employment in agriculture for each economy. The three smallest agricultural
sectors are found in Hong Kong (1%), Singapore (2%), and Belgium (3%), while the three largest
sectors are India (70%), Vietnam (73%), and Mainland China (74%). A modi�ed form of (11)
interacts the ethnic scienti�c community regressor with this pre-period agricultural share,

� ln(Ycit) = �+ �� ln(PAT
US
eit ) + 
� ln(PAT

US
eit ) � AGR%c;1980 + �it + �̂cit;

where the main e¤ect for the agricultural share is absorbed into the �rst di¤erencing. The
main e¤ects are demeaned prior to the interaction to restore the � coe¢ cient to close to its base
level. A positive 
 coe¢ cient indicates output growth due to scienti�c integration is stronger
in countries with larger agricultural workforces in 1980.
Table 6 reports the results from these interacted regressions. Foreign country output growth

due to stronger US ethnic research integration is higher in economies with large agricultural
shares in 1980. Panels B and C again disaggregate the output regression into labor productivity
and employment shifts, respectively. Labor productivity gains are weaker in the less developed
economies, though the di¤erence is usually not statistically signi�cant, while substantial sector
reallocation through employment growth is clearly evident in Panel C. The interacted regressions
thus support the model�s predictions regarding the stage of development being important for
how technology transfer gains are realized. Economies with large agricultural sectors facilitate
employment reallocation across sectors that aid manufacturing output expansion.21

20The output gains through labor productivity and employment growth are of similar magnitude in the nu-
merical simulations Kerr (2007a) models. In alternative models, output growth would come only through labor
reallocation (e.g., �xed physical capital stocks and constant outside wages).
21These sector reallocation �ndings are robust to the earlier sample decompositions. Notably, the interactions

are more robust than the main e¤ects to dropping high-tech industries and the Chinese ethnicity (Kerr 2007a).
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5 Exogenous Changes from US Immigration Reforms

While OLS regressions establish partial correlations present in the data, they frequently fail
to identify causal relationships due to the endogenous relationships between outcomes or due
to omitted variable biases. Domestic human-capital developments in Chinese economies, for
example, could lead to both higher productivity and output growth at home and the export
of scientists to the US. Alternatively, R&D in Japan might be responsible for the growth of
its Asian neighbors and feed into higher US research output. Despite the strong �xed-e¤ect
speci�cations employed, further exercises can aid in the interpretation of the positive outcomes
evident in patent-based regressions.
The earlier model helps understand and address these concerns. Consider the initial tran-

sition from the equilibrium described in Section 2 following an industrialization push in the
follower. The follower�s government temporarily subsidizes invention until condition (7) no
longer holds. As I > ~I	[M=~I]( ~HF )�, it is more pro�table for researchers in the follower to
invent rather than imitate; the follower�s output growth and sector reallocation are now driven
solely by domestic innovations. In the leader, researchers of the follower�s ethnicity switch from
inventing to imitating, as the latter is initially very easy (i.e., 	[0] is high). If international
property rights are weak, so that ethnic researchers in the leader can register their imitations
with the leader�s patent o¢ ce, a positive � coe¢ cient will be found in the core estimating equa-
tions even though the follower�s manufacturing gains no longer depend on its frontier research
community. In fact, data trends will show contemporaneous accelerations in the growth of
foreign output and the leader�s ethnic patenting.22

The leader�s population of the follower�s ethnic researchers is a foothold for establishing
greater con�dence in the direction of technology �ows as the expatriates only in�uence the
follower�s development through their transmission of knowledge regarding frontier innovations.
If the size of this research population is exogenously determined by immigration restrictions, a
reduced-form strategy for the size of the ethnic research community can be developed within the
quotas system. In this paper�s context, US immigration law does not control the population size
of foreigners in the US, but it does control the in�ow of new immigrants. De�ne the quota on
follower�s in�ows of researchers to the US to be QUOTARF ;t. Assuming that only the previous
three years of immigration matter for a research stock23, a reduced-form immigration estimator
for ethnic scienti�c integration to the US is modelled as

ln(IMMRF
RF ;t

) = ln

"
5X
s=1

(QUOTARF ;t�s +QUOTARF ;t�s�1 +QUOTARF ;t�s�2)

#
: (12)

The summation over the previous �ve years maintains the human-capital stock modelling tech-
nique employed with the ethnic patenting dataset. This section designs and implements an
22The follower�s economy still depends on previously imitated products, as well as new inventions. Kerr

(2007a) further discusses the transitions following this disturbance.
23The reform below produced a very sharp immigration surge that makes this assumption more reasonable.
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empirical version of (12) using exogenous changes in US immigration quotas.

5.1 The Immigration Act of 1990

The disproportionate in�uence of immigrant scientists and engineers (ISEs) in the US is stagger-
ing: while immigrants account for 10% of the US working population, they represent 25% of the
US science and engineering workforce and 50% of those with doctorates. Even looking within
the Ph.D. level, immigrant researchers have an exceptional contribution to science as measured
by Nobel Prizes, election to the National Academy of Sciences, patent citation counts, and so
on.24 Yet, the US immigration system signi�cantly restricted the in�ow of ISEs from certain
nations prior to its reform with the Immigration Act of 1990 (1990 Act).
Immigrants can obtain permanent residency in the US through numerically unrestricted

categories (e.g., immediate family members) or numerically restricted categories (e.g., extended
family members, employment based applications). The immigration exercises focus on the
numerically restricted categories that admit 75% of ISEs, versus 43% of all immigrants. US
immigration law applies two distinct quotas within these restricted categories. Both of these
quotas were increased by the 1990 Act, and their combined change dramatically released pent-up
immigration demand from researchers in constrained countries.
The �rst quota governs the annual number of immigrants admitted per country. This quota

is uniform across nations, and the 1990 Act increased the limit from 20,000 to approximately
25,620. Larger nations are more constrained by country quotas than smaller nations and
bene�ted most from these higher admission rates. Second, separately applied quotas govern
the relative admissions of family-based versus employment-based immigrants. Prior to the 1990
Act, the quotas substantially favored family-reuni�cation applications (216,000) to employment
applications (54,000). The 1990 Act shifted this priority structure by raising employment-based
immigration to 120,120 (20% to 36% of the total) and reducing family-based admissions to
196,000. Moreover, the relative admissions of high-skilled professionals to low-skilled workers
signi�cantly increased within the employment-based admissions.25

The uniform country quotas and weak employment preferences constrained high-skilled im-
migration from large nations, and long waiting lists for Chinese, Indian, and Filipino applicants
formed in the 1980s. When the 1990 Act simultaneously raised both of these quotas, the number
of ISEs entering the US dramatically increased. Figure 3 uses records from the Immigration
and Naturalization Service (INS) to detail the response. This graph plots the number of ISEs
granted permanent residency in the US from 1983-1997 for selected ethnicities (summed over

24For example, Stephan and Levin (2001), Burton and Wang (1999), Johnson (1998, 2001), and Streeter (1997).
25Kerr (2007a) describes the 1990 Act in greater detail and discusses ISE immigration through temporary

visas and numerically unrestricted categories. This supplement further catalogues the construction of the INS
data employed in this section. The worldwide ceiling for numerically restricted immigration now �uctuates
slightly year-to-year based on past levels; maximum immigration from a single country is limited to 7% of
the worldwide ceiling. The employment limit increased to 140,000, but 120,120 corresponds to the previously
restricted categories. Jasso et al. (2000) also discuss behavioral responses to the 1990 Act.
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countries within each ethnicity). Prior to the 1990 Act, no trends are evident in ISE immigra-
tion. The 1990 Act took e¤ect in October 1991, and a small increase occurred in the �nal three
months of 1991 for Chinese and Indian ISEs. Immigration further surged in 1992-1995 as the
pent-up demand was released. Low-skilled immigration did not respond to the 1990 Act.
The extremely large Chinese response and sharp decline is partly due to a second law that

slightly modi�ed the timing of the 1990 Act�s reforms. Following the Tiananmen Square crisis
in June 1989, Chinese students present in the US from the time of the crisis until May 1990
were permitted to remain in the US until at least 1994 if they so desired. The Chinese Student
Protection Act (CSPA), signed in 1992, further granted this cohort the option to change from
temporary to permanent status during a one-year period lasting from July 1993 to July 1994.
The CSPA stipulated, however, that excess immigration from the CSPA over Mainland China�s
numerical limit be deducted from later admissions. The timing of the CSPA partly explains the
1993 spike, and the ability of graduating Chinese science and engineering students to remain in
the US in 1990 should factor into the timing of the reduced-form estimator.
Finally, NSF surveys of graduating science and engineering doctoral students � the group

most important for developing human capital with respect to US innovations � con�rm the
strong responses evident in the INS data. The questionnaires ask foreign-born Ph.D. students in
their �nal year of US study about their plans after graduation. Figure 4 exhibits the percentage
intending to remain in the US after graduation for available countries. The 60% to 90% jump
for Mainland China from 1990 to 1992 is striking. Substantial increases are also apparent for
India and Western Europe.

5.2 Immigration Responses

The reduced-form strategy exploits di¤erences in the extent to which countries were a¤ected
by the 1990 reform. It is inappropriate, however, to use the outcomes exhibited in Figures
3-4 to determine treatment and control groups. A proper designation of the a¤ected countries
requires a more formal analysis of researcher immigration responses to the legislation change.
Kerr (2007a) undertakes such an analysis and further characterizes immigration waiting lists
around the time of the reform. From this analysis, the treated groups are determined to be
India, Mainland China, the Philippines, and Taiwan. The reduced-form immigration estimator
(12) then takes the form

ln(IMMRF
cit ) = ln

"
5X
s=1

(QUOTAEffc;t�s +QUOTA
Eff
c;t�s�1 +QUOTA

Eff
c;t�s�2)

#
; (13)

where QUOTAEffct is the e¤ective quota for country c in year t. Raising the numerical ceilings
did not change the e¤ective quotas for nations unconstrained by the former immigration regime,
and their e¤ective quotas are held constant at the pre-reform theoretical limit. For constrained
countries, the e¤ective quota increases to re�ect both the higher country limit of 25,600 and the
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larger employment preference allocation of 36% (i.e., 120,120/336,000). This quota increase
occurs in 1991 and is moved forward to 1990 for Mainland China to account for the CSPA.
This simple reduced-form approach abstracts from several issues: return migration (e.g., Tai-

wanese scientists in the mid 1990s), occupational or industry changes by ISEs, second-generation
immigrant demographics, shifts in researcher productivity, and others. If these types of concerns
are overwhelming, panel regressions of US ethnic patenting on the reduced-form estimator will
yield weak coe¢ cients. Unreported regressions �nd this relationship is quite strong, however,
despite the design�s simplicity. However, two more serious reservations regarding the estimator
should be addressed before viewing the results.
First, the quota change a¤ected all skilled workers seeking admission into the US, not just

researchers, and the impact of other occupations should be considered. The reduced-form
estimator should only in�uence foreign manufacturing output and productivity through the
development of human capital with respect to US technologies. Most skilled occupations can
be dismissed immediately, yet immigration of business executives and lawyers also increased
after the 1990 Act. It is possible this business group might in�uence foreign output growth
through better sales contacts or higher foreign investment independent of technology transfer.
The relative volumes argue against this concern, as the size of the in�ux relative to the existing
base for advanced-degree researchers dwarfs other occupations. The planned in�ow of Chinese
science and engineering Ph.D.s for 1991-1995, as measured by the NSF surveys, would have
doubled the existing Chinese-born Ph.D. stock in the 1990 Census. The business in�ow over
this period is only about 20% of the 1990 stock.
A second liability is that the reduced-form estimator may be correlated with other factors.

Here, the simplicity of its design is a concern. While determined by the data, the quotas
technique only distinguishes between the treatment group (i.e., India, Mainland China, the
Philippines, and Taiwan) and the remainder of the sample. Other changes occurring around
1991 that a¤ect the output growth of the treatment group di¤erentially from the control group
could confound the analysis. As with any country-level change, possible confounding factors
can be hypothesized for each treatment member. While the results are robust to excluding any
one country from the treatment group, it is of course not possible to drop them all.
These concerns are why the US quotas are employed for a reduced-form estimator rather

than in an instrumental-variables speci�cation. Immigration quotas directly in�uence the size
of ethnic research communities in the US, and thus the unobserved human-capital stocks. As
such, these quotas o¤er a nice complement to and check on the earlier metrics derived from ethnic
patents; moreover the quotas-based metric is more robust to reverse causality criticisms. The
estimator does not resolve omitted variable concerns, however, and lacks industry-level variation
that can be exploited. As the exclusion restriction for two-stage least squares would not hold,
this study concentrates on the reduced-form outcomes.
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5.3 Reduced-Form Results

The reduced-form regressions for 1985-1997 mirror the patent-based approach,

� ln(Ycit) = �+ �� ln(IMM
RF
ct ) + �it + �̂cit; (14)

with ln(IMMRF
ct ) de�ned by (13). Table 7 exhibits the main results in a format similar to that

of Table 3. The reduced-form estimator suggests foreign output increases with an elasticity of
about 0.3 to higher ethnic research in the US. While the � coe¢ cients should not be directly
compared to the patent-based approach, the interpretation that greater scienti�c integration
with the US boosts foreign manufacturing development is supported. The lower variance in
Table 7�s estimates across weights re�ects the country-level design of the immigration estimator.
In contrast to the patent-based results, Panels B and C �nd output growth comes mainly

through higher employment levels rather than labor productivity gains. This di¤erence is easily
explained with the sector reallocation model. Three of the four treated economies had large
agricultural sectors in 1980 that supported signi�cant expansions in employment; Taiwan is the
one exception at 8%. The immigration estimator contrasts the outcomes in these economies
with the control sample and thus emphasizes the sector reallocation process. The patent-based
regressions, on the other hand, paid greater attention to the outcomes of Hong Kong, Macao,
and Singapore through the application of the US Chinese ethnic patenting series to all economies
within the Chinese ethnicity. Without an agricultural sector from which to draw labor, these
economies experienced sharper labor productivity gains.
Table 8 next turns to robustness checks on the output growth �nding. As a test of the foreign

human-capital development story, Panel B again incorporates the log trends in foreign graduates
from US science and engineering Ph.D. programs. The technology transfer coe¢ cients hold up
well in the augmented speci�cation. Panel C �nds that Mainland China can again be excluded
from the sample with only minor shifts in the outcomes. The results are also robust to dropping
any other country, the computer and drug industries, the full Chinese ethnicity, and the other
sample decompositions studied above.26 Panel D incorporates a linear ethnic time trend that
removes the trend growth in both the foreign country output and the US immigration estimator.
By doing so, the framework emphasizes the discontinuity of the 1990 Act for identi�cation of the
� parameter. The coe¢ cients remain economically and statistically signi�cant in this stringent
speci�cation, providing con�dence against the estimator re�ecting a spurious correlation.
The last two rows incorporate into (14) two counterfactual estimators that move the 1991

e¤ective date of the immigration reform earlier to 1987 or later to 1995. The results with the
1987 counterfactual are mixed. Encouragingly, the coe¢ cients on the true estimator retain most
of their value and are still statistically di¤erent from zero. Moreover, the standard errors for the
placebo estimators are 400% larger than those of the true estimator, and the placebo estimators

26These decompositions are more stable than those with the patent-based metric due to the country-level
design of the estimator.
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are not statistically signi�cant. The coe¢ cient estimates on the 1987 estimator, however, are
of similar magnitude to the true reform, and it cannot be rejected that the coe¢ cients are the
same. Panel F, on the other hand, shows better performance with the 1995 counterfactual.
These results support the conclusion of stronger scienti�c integration leading to foreign output
growth, but also highlight that the estimated elasticity with the immigration estimator may be
partly capturing an earlier di¤erential change for the treatment group.
Establishing the causal direction of international technology �ows is a very daunting task.

The reduced-form quotas estimator o¤ers more con�dence than the patent-based approach that
coe¢ cient estimates are not determined by reverse causality (especially foreign human-capital
developments). The price for this exogenous determinant, however, is the loss of industry vari-
ation that can be exploited. This reduced variation may leave the quotas estimator exposed to
omitted variable biases contemporaneous to or slightly preceding the reform, although the mul-
tiple robustness checks suggest spurious correlations are not solely responsible for the outcomes
measured. Overall, the reduced-form regressions support Section 4�s conclusion that foreign
manufacturing output increases with stronger ethnic scienti�c integration to the US frontier.

6 Conclusions

The international di¤usion of new innovations from frontier countries is necessary for broad eco-
nomic growth. Successful transfer, however, is complicated by the di¢ cult dissemination of the
codi�ed and tacit knowledge necessary for adoption. This project considers the role and impor-
tance of knowledge networks for exchanging this information through the observable channel of
ethnicity, examining the ties between US ethnic research and entrepreneurial communities and
their home countries. The �ndings suggest that these frontier expatriates do play an important
role in technology transfer, and more generally that inadequate access to the codi�ed and tacit
knowledge complementing new frontier innovations can slow development in following regions.
This study concentrates on estimating the general elasticities for technology transfer across

multiple ethnicities and manufacturing industries. The platform, however, identi�es particular
strength for high-tech industries and Chinese communities. While still measurable, the responses
are weaker elsewhere. Future work should investigate whether these patterns hold in other
samples too. Chinese economies experienced exceptional manufacturing development during
the 1985-1997 period. The extent to which these results extend to non-manufacturing sectors
will shed light on whether the strong Chinese outcomes are due to the manufacturing focus, as
all datasets have above-average outcomes, or due to unique qualities of this ethnicity�s network
(e.g., size and network e¤ects). Likewise, characterizing portions of non-manufacturing sectors
like �nancial and business services that are conducive to technology transfer will re�ne our
understanding of the traits of industries (e.g., vertical integration, product cycles) where US
ethnic scientists and entrepreneurs can most aid their home countries.
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Figure 1: US Ethnic Patenting
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Figure 2: Own-Ethnicity Citation Rate
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Figure 3: Science & Engineering Immigration
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Figure 4: US SE Ph.D. Graduates Staying
Percentage of Graduates from Country Expecting to Stay in US
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English Chinese European Hispanic Indian Japanese Korean Russian Vietnamese

1985-1990 Share 79.7 3.7 7.3 3.3 2.9 0.8 0.7 1.5 0.2
1990-1997 Share 76.4 5.4 6.9 3.7 3.7 0.9 0.8 1.7 0.4

Chemicals 74.4 6.5 7.5 3.6 4.3 0.9 0.9 1.6 0.3
Computers 75.2 6.4 6.2 3.5 4.7 0.9 0.8 1.7 0.7
Pharmaceuticals 75.5 5.2 7.5 4.1 3.8 1.1 1.0 1.6 0.3
Electrical 75.0 6.3 7.0 3.6 3.7 1.0 0.9 1.9 0.5
Mechanical 81.9 2.5 7.2 3.2 2.4 0.6 0.5 1.5 0.2
Miscellaneous 82.6 2.4 7.0 3.5 2.0 0.5 0.5 1.3 0.2

KC (89) SF (12) NYC (11) MIA (17) NYC (6) LA (2) BAL (3) BOS (3) AUS (2)
WS (89) LA (7) NOR (11) SD (8) BUF (6) SD (2) COL (2) NYC (3) LA (1)
MEM (86) NYC (7) STL (11) WPB (6) AUS (6) SF (2) SF (2) PRO (3) SF (1)

Bachelors Share 87.6 2.7 2.3 2.4 2.3 0.6 0.5 0.4 1.2
Masters Share 78.9 6.7 3.4 2.2 5.4 0.9 0.7 0.8 1.0
Doctorate Share 71.2 13.2 4.0 1.7 6.5 0.9 1.5 0.5 0.4

Ethnicity of Inventor (Percent Distribution)

Top MSAs as a 
Percentage of MSA’s 
Patents

Table 1: Descriptive Statistics for Inventors Residing In US

Notes:  MSAs - AUS (Austin), BAL (Baltimore), BOS (Boston), BUF (Buffalo), COL (Columbus), HRT (Hartford), KC (Kansas City), LA (Los Angeles), MEM 
(Memphis), MIA (Miami), NOR (New Orleans), NYC (New York City), PRO (Providence), SA (San Antonio), SD (San Diego), SF (San Francisco), STL (St. Louis), 
WPB (West Palm Beach), and WS (Winston-Salem).  MSAs are identified from inventors' city names using city lists collected from the Office of Social and Economic 
Data Analysis at the University of Missouri, with a matching rate of 98%.  Manual coding further ensures all patents with more than 100 citations and all city names with 
more than 100 patents are identified.  1990 Census statistics are calculated by country-of-birth using the country-ethnicity groupings listed in Table 2; English provides a 
residual in the Census statistics. 

A. Ethnic Inventor Shares Estimated from US Inventor Records

B. Ethnic Scientist and Engineer Shares Estimated from 1990 US Census Records



1980 UNIDO3 1980 UNIDO3
Country Agr. Share Panel Level Growth Country Agr. Share Panel Level Growth

India 70% 85-97 117,950 6% China, Mainland 74% 85-97 327,173 11%
Japan 11% 85-97 2,053,048 7% Hong Kong 1% 85-97 30,520 3%
South Korea 37% 85-97 230,942 14% Macao 6% 85-97 1,209 8%
Russia 16% 93-97 109,729 12% Singapore 2% 85-97 37,830 16%
Soviet Union 16% 85-89 1,087,914 7% Taiwan 8% 85-96 145,055 11%

Austria 10% 85-97 73,524 5% Argentina 13% 85-90, 93-96 66,160 11%
Belgium 3% 85-92, 95-97 31,958 5% Bolivia 53% 85-97 1,474 7%
Denmark 7% 85-91 38,198 9% Brazil 37% 90, 92-95 127,807 11%
Finland 12% 85-97 52,510 4% Chile 21% 85-97 20,604 10%
France 8% 85-96 517,276 8% Columbia 40% 85-97 20,099 5%
Germany 7% 91-97 870,625 7% Costa Rica 35% 85-97 3,264 5%
Germany, East 85-92 233,905 12% Cuba 24% 85-89 10,531 -1%
Germany, West 85-89 734,523 12% Ecuador 40% 85-97 4,372 3%
Italy 13% 85-94, 96-97 390,266 7% Honduras 57% 90-95 989 8%
Luxembourg 5% 85-97 2,952 3% Mexico   36% 85-97 61,612 4%
Netherlands 6% 85-97 117,868 6% Panama 29% 85-94, 96-97 1,468 4%
Norway 8% 85-97 37,467 4% Peru  40% 85-92, 94-96 13,944 8%
Poland 30% 90-97 54,895 6% Philippines 52% 85-97 23,238 11%
Sweden 6% 85-97 93,727 6% Portugal 26% 85-97 36,365 8%
Switzerland 6% 86-96 37,827 7% Spain 18% 85-97 201,951 8%

Uruguay 17% 85-97 4,648 6%
Venezuela 15% 85-97 24,174 1%

Hispanic Economies:European Economies:

Output

Notes:  Output values are expressed in millions of 1987 US dollars.  Levels and growth rates are unweighted averages of yearly country-level aggregates derived 
from the industry data used in the UNIDO3 panel.  See Kerr (2007a) for additional descriptive statistics and data preparation steps.  ISIC Rev. 2 Industries:  Food 
products (311), Beverages (313), Tobacco (314), Textiles (321), Wearing apparel, except footwear (322), Leather products (323), Footwear, except rubber or 
plastic (324), Wood products, except furniture (331), Furniture, except metal (332), Paper and products (341), Printing and publishing (342), Industrial chemicals 
(351), Other chemicals (352), Petroleum refineries (353), Misc. petroleum and coal products (354), Rubber products (355), Plastic products (356), Pottery, china, 
earthenware (361), Glass and products (362), Other non-metallic mineral products (369), Iron and steel (371), Non-ferrous metals (372), Fabricated metal products 
(381), Machinery, except electrical (382), Machinery, electric (383), Transport equipment (384), Professional & scientific equipment (385), and Other 
manufactured products (390).  Industry 390 is excluded.

Table 2: UNIDO Industry Sample

Single Ethnic Mappings: Chinese Economies:

Output



No Patent Output
Weights Weights Weights

(1) (2) (3)

∆ Log US Ethnic 0.091 0.340 0.285
Research Community (0.056) (0.133) (0.074)

Observations 8736 8736 8736

∆ Log US Ethnic 0.087 0.214 0.217
Research Community (0.049) (0.114) (0.072)

Observations 8736 8736 8736

∆ Log US Ethnic 0.003 0.127 0.068
Research Community (0.036) (0.084) (0.047)

Observations 8736 8736 8736

Notes:  Row titles document the dependent variable studied; column titles 
document the weighting scheme employed.  Panel estimations consider country-
industry-year observations taken from the 1985-1997 UNIDO manufacturing 
database.  Log US Ethnic Research Communities are estimated at the ethnicity-
industry-year level from the US ethnic patenting dataset.  Regressions include 
industry-year fixed effects.  Standard errors are conservatively clustered at the 
ethnicity-industry level.

Table 3: UNIDO First-Differences Specifications

C. ∆ Log Foreign Employment

A. ∆ Log Foreign Output

B. ∆ Log Foreign Labor Productivity



No Patent Output
Weights Weights Weights

(1) (2) (3)

∆ Log US Ethnic 0.091 0.340 0.285
Research Community (0.056) (0.133) (0.074)

Observations 8736 8736 8736

∆ Log US Ethnic 0.061 0.313 0.210
Research Community (0.035) (0.073) (0.065)

∆ Log Foreign Ph.D. 0.038 0.050 0.053
Students in US (0.068) (0.081) (0.073)

Observations 7780 7780 7780

∆ Log US Ethnic 0.026 0.275 0.209
Research Community (0.069) (0.173) (0.091)

∆ Log Foreign 0.069 0.112 0.059
Capital Stock (0.030) (0.047) (0.034)

Observations 4866 4866 4866

∆ Log US Ethnic 0.000 0.130 0.153
Research Community (0.061) (0.102) (0.068)

Observations 8736 8736 8736

∆ Log US Ethnic -0.092 0.149 -0.022
Research Community (0.048) (0.107) (0.059)

Observations 8736 8736 8736

B. Including Foreign Ph.D. Students in US

C. Including Foreign Physical-Capital Stocks

Notes:  See Table 3.  Panel A replicates the foreign country-industry output 
regressions from Table 3.  Panels B through E incorporate the country controls 
indicated by the row titles.  All regressions maintain industry-year fixed effects 
and the clustering of standard errors.

Table 4: UNIDO Country Controls Specifications

E. Including Country-Year Effects

A. Base Foreign Output Regression

D. Including Country Time Trends



No Patent Output
Weights Weights Weights

(1) (2) (3)

∆ Log US Ethnic 0.091 0.340 0.285
Research Community (0.056) (0.133) (0.074)

Observations 8736 8736 8736

∆ Log US Ethnic 0.058 0.126 0.207
Research Community (0.054) (0.076) (0.063)

Observations 7991 7991 7991

∆ Log US Ethnic 0.059 0.308 0.258
Research Community (0.061) (0.166) (0.086)

Observations 8518 8518 8518

∆ Log US Ethnic 0.059 0.195 0.238
Research Community (0.058) (0.131) (0.082)

Observations 7616 7616 7616

∆ Log US Ethnic 0.117 0.386 0.255
Research Community (0.080) (0.116) (0.079)

Observations 5549 5549 5549

∆ Log US Ethnic 0.055 0.334 0.243
Research Community (0.071) (0.162) (0.091)

Observations 4821 4821 4821

B. Excluding Computers and Drugs

C. Excluding Mainland China

Notes:  See Table 3.  Panel A replicates the foreign country-industry output 
regressions from Table 3.  Panels B through F exclude the observations indicated 
by the row titles.  All regressions maintain industry-year fixed effects and the 
clustering of standard errors.

Table 5: UNIDO Sample Decompositions

F. Excluding All Hispanic Economies

A. Base Foreign Output Regression

D. Excluding All Chinese Economies

E. Excluding All Advanced Economies



No Patent Output
Weights Weights Weights

(1) (2) (3)

∆ Log US Ethnic 0.043 0.315 0.252
Research Community (0.062) (0.153) (0.086)

∆ Log US Ethnic Comm. 0.765 0.442 0.647
  x 1980 Agriculture Share (0.185) (0.353) (0.242)

Observations 8736 8736 8736

∆ Log US Ethnic 0.105 0.225 0.228
Research Community (0.047) (0.106) (0.068)

∆ Log US Ethnic Comm. -0.284 -0.191 -0.216
  x 1980 Agriculture Share (0.097) (0.162) (0.120)

Observations 8736 8736 8736

∆ Log US Ethnic -0.062 0.091 0.024
Research Community (0.037) (0.084) (0.047)

∆ Log US Ethnic Comm. 1.049 0.633 0.863
  x 1980 Agriculture Share (0.146) (0.266) (0.198)

Observations 8736 8736 8736

Notes:  Row titles document the dependent variable studied; column titles 
document the weighting scheme employed.  Panel estimations consider country-
industry-year observations taken from the 1985-1997 UNIDO manufacturing 
database.  1980 Agriculture Shares for foreign countries are listed in Table 2.  Log 
US Ethnic Research Communities are estimated at the ethnicity-industry-year level 
from the US ethnic patenting dataset.  Main effects are demeaned prior to 
interactions.  Regressions include industry-year fixed effects.  Standard errors are 
conservatively clustered at the ethnicity-industry level.

Table 6: UNIDO Sector Reallocation Specifications

B. ∆ Log Foreign Labor Productivity

A. ∆ Log Foreign Output

C. ∆ Log Foreign Employment



No Patent Output
Weights Weights Weights

(1) (2) (3)

∆ Log US Immigration 0.294 0.370 0.320
Quotas Estimator (0.044) (0.086) (0.057)

Observations 8736 8736 8736

∆ Log US Immigration 0.054 0.135 0.086
Quotas Estimator (0.069) (0.080) (0.073)

Observations 8736 8736 8736

∆ Log US Immigration 0.240 0.236 0.234
Quotas Estimator (0.045) (0.052) (0.037)

Observations 8736 8736 8736

Notes:  Row titles document the dependent variable studied; column titles 
document the weighting scheme employed.  Panel estimations consider country-
industry-year observations taken from the 1985-1997 UNIDO manufacturing 
database.  Log US Immigration Quotas Estimators are developed from quotas 
changes due to the 1990 Act.  Regressions include industry-year fixed effects.  
Standard errors are conservatively clustered at the ethnicity level.

Table 7: Immigration Quotas Specifications

C. ∆ Log Foreign Employment

A. ∆ Log Foreign Output

B. ∆ Log Foreign Labor Productivity



No Patent Output
Weights Weights Weights

(1) (2) (3)

∆ Log US Immigration 0.294 0.370 0.320
Quotas Estimator (0.044) (0.086) (0.057)

Observations 8736 8736 8736

∆ Log US Immigration 0.280 0.350 0.297
Quotas Estimator (0.057) (0.110) (0.078)

∆ Log Foreign Ph.D. 0.033 0.054 0.054
Students in US (0.068) (0.088) (0.076)

Observations 7780 7780 7780

∆ Log US Immigration 0.210 0.306 0.252
Quotas Estimator (0.094) (0.152) (0.111)

Observations 8518 8518 8518

∆ Log US Immigration 0.317 0.385 0.327
Quotas Estimator (0.077) (0.135) (0.101)

Observations 8736 8736 8736

∆ Log US Immigration 0.262 0.335 0.287
Quotas Estimator (0.047) (0.061) (0.050)

∆ 1987 Counterfactual 0.296 0.326 0.311
Quotas Estimator (0.199) (0.262) (0.232)

Observations 8736 8736 8736

∆ Log US Immigration 0.266 0.439 0.345
Quotas Estimator (0.081) (0.096) (0.067)

∆ 1995 Counterfactual 0.069 -0.170 -0.063
Quotas Estimator (0.152) (0.099) (0.110)

Observations 8736 8736 8736

B. Including Foreign Ph.D.s in US

Table 8: Imm. Quotas Country Controls Specifications

A. Base Foreign Output Regression

C. Excluding Mainland China

Notes:  See Table 7.  Panel A replicates the foreign country-industry output 
regressions from Table 7.  Panels B through F incorporate the country controls 
indicated by the row titles.  All regressions maintain industry-year fixed effects 
and the clustering of standard errors.

D. Including Ethnic Time Trend

E. Including 1987 Counterfactual

F. Including 1995 Counterfactual




