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Competition in Modular Clusters 
 

Carliss Y. Baldwin and C. Jason Woodard 

 
Abstract 

 

The last twenty years have witnessed the rise of disaggregated “clusters,” “networks,” or 

“ecosystems” of firms. In these clusters the activities of R&D, product design, production, distribution, 

and system integration may be split up among hundreds or even thousands of firms. Different firms will 

design and produce the different components of a complex artifact (like the processor, peripherals, and 

software of a computer system), and different firms will specialize in different stages of a complex 

production process. This paper considers the pricing behavior and profitability of these so-called 

modular clusters. In particular, we investigate a possibility hinted at in prior work: that for composite 

goods, a vertical pricing externality operating across complements can offset horizontal competition 

between substitutes. In this paper, we isolate the offsetting price effects and show how they operate in 

large (as well as small) clusters. We argue that it is possible in principle for a modular cluster of firms to 

mimic the pricing behavior and profitability of a vertically integrated monopoly. We then use our model 

to compare open and closed standards regimes, to understand how commoditization affects a cluster, to 

determine the relative profits of platform firms and firms that depend on the platform, and to assess the 

impact of horizontal and vertical mergers. Our model highlights a collective action problem: what is good 

for an individual firm is often not good for the cluster. We speculate that this conflict may be a source of 

strategic tension in platform firms. 
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1 Introduction 
 

The last twenty years have witnessed the rise of disaggregated “clusters,” “networks,” or 

“ecosystems” of firms in a number of industries including computers, telecommunications and 

pharmaceuticals. In these clusters, different firms design and produce the various components of a 

complex artifact (like the processor, peripherals, and software of a computer system), and different firms 

specialize in the various stages of a complex production process. Such clusters or networks of firms have 

been described by many scholars, including Powell (1987), Langlois and Robertson (1992), Saxenian 

(1994), Baldwin and Clark (2000), Sturgeon (2002), Bresnahan and Gambardella (2003), Iansiti and Levien 

(2004), Staudenmayer et al. (2005), Fallick et al. (2006), Gawer and Henderson (2007), Boudreau (2006), 

and Eisenmann et al. (2007). 

Industry clusters can be envisioned using layer maps (Grove, 1996; Fransman, 2002; Fixson and 

Park, 2007). For example, Figure 1 is a map of the computer industry in 2005. Each horizontal band, or 

layer, represents the market for a component or a stage of production that contributes to a whole 

computer system. Layers are defined by NAICS industry classification codes (on the left), and include 

semiconductor design and manufacturing, storage device manufacturing, system design services, 

software publishing, and Internet service provision. The colored rectangles are sized in proportion to the 

market capitalization of the largest firms in each layer. The white areas at the far right represent the total 

market capitalization of the other Compustat-listed companies in each layer. In 2005, there were over 

1,500 publicly traded firms in this cluster. 

A computer system is a composite good, that is, a collection of components that are assembled 

into a working whole. To be functional, a modern computer system requires products and services from 

essentially all of the layers shown in Figure 1. Although consumers do not typically buy every component 

in a separate transaction (some components may be bundled), each component is an economic good that 

is subject to the pricing decisions of the firm that supplies it. In setting the price of a particular 

component, each firm competes against other suppliers of the same type of component, but also 

influences the demand for systems, hence the demand for complementary components. This is the 

industrial structure that Brandenburger and Nalebuff (1996) labeled “co-opetition.” In addition to 
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computers, other composite goods include vacations (travel, lodging, food, activities); movies (writing,  

acting, filming, production, distribution, exhibition, concessions); and telecommunications (handsets, 

transmission equipment, network infrastructure, software, services). 

 
Figure 1 
Layer Map for the Greater Computer Industry in 2005 
(Area equals market capitalization) 
 

 
 
© M. G. Jacobides, C. Y. Baldwin and R. Dizaji (2007). Used by permission. 

 

A fundamental tenet of economic theory is that an increase in the number of sellers of a good 

reduces equilibrium prices relative to a monopoly. An equally fundamental but less celebrated result, 

first derived by Cournot (1838), is that splitting the supply of complementary goods across two 

monopolies increases prices relative to a vertically integrated monopoly. If the complementary goods 

constitute the successive stages of a supply chain, the latter effect is known as “double marginalization” 

or the “chain of monopolies” effect (Spengler, 1950; Tirole, 1988). But, more generally, this vertical pricing 

externality applies to any set of complementary products or services that are combined into a composite 

good (Nalebuff, 2000). Formally, the vertical pricing externality is the dual of Cournot competition in 

quantities (Sonnenschein, 1968). 

The purpose of this paper is to study competitive equilibria in modular clusters characterized by 
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horizontal competition and the vertical pricing externality. By our definition, a modular cluster has two 

properties. First, the firms in the cluster make products that are both substitutes for other products in the 

same layer and complements to products in other layers. Second, the components are modular, in the 

sense of being mutually compatible and interoperable (Baldwin and Clark, 2000; Farrell and Weiser, 

2003). In other words, a component from one layer will work in systems containing any combination of 

components from other layers. This “mix and match” assumption (cf. Matutes and Regibeau, 1988) means 

that the pricing of each component is influenced by the prices of all other components.  

Modular clusters are based on technical architectures in which the standards of interoperability—

often defined as part of a “platform”—are open and public (Farrell and Weiser, 2003; Henderson, 2005). 

In Section 5, we will discuss what happens when the standards are closed and/or proprietary. 

To make our analysis tractable, we will lean heavily on symmetry. We define a symmetric 

modular cluster as one with J vertical layers and N firms competing in each layer. Layer maps of four 

symmetric clusters are shown in Figure 2. For clusters such as these, we will combine a Hotelling-style 

model of horizontally differentiated products with a Cournot-style model of complementary components. 

The model yields a pricing equilibrium for each J N×  cluster configuration. Then, holding demand fixed, 

we will compare equilibria across configurations. 

 
Figure 2 
Four Symmetric Modular Clusters 
(J layers x N firms per layer) 
 

1 x 1 10 x 1 1 x 5 10 x 5  
 

The comparison yields a somewhat surprising result. As the number of layers and the number of 

firms per layer increase, price competition within layers drives prices down, while the vertical pricing 

externality across layers drives prices up. The two effects offset one another, and thus a large symmetric 

modular cluster of firms can in principle arrive at the same system price and aggregate profitability as a 
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single, profit-maximizing monopoly that controls 100% of every layer. We first show this for an 

illustrative case with a simple demand function, and then generalize the results. Our main results hold 

for a potentially large class of symmetric modular clusters. 

Our model can be used to study open vs. closed standards regimes, the commoditization of 

layers, platform monopolies, and horizontal and vertical mergers. Counter-intuitively, we find that 

clusters based on open, public standards may have higher prices and be more profitable than clusters 

based on closed, proprietary standards. Also, by increasing the number of layers in cluster, component 

makers may be able recapture rents from the platform proprietor. Finally, consistent with prior 

theoretical and empirical work (cf. Lafontaine and Slade, 2007), a series of horizontal mergers will raise 

prices and lower profits, while a series of vertical mergers will lower both prices and profits. 

The rest of the paper is organized as follows. Section 2 discusses prior work. In Section 3, to build 

intuition, we set up a simple model and show the results of a numerical example. Section 4 generalizes 

the model and results. In Section 5, we extend the model to look at open vs. closed standards, the 

commoditization of layers, platform monopoly, and horizontal and vertical mergers. Section 6 concludes. 

 

 

2 Related Work 
 

Most of the literature on oligopoly pricing has focused on single-stage production processes 

(Tirole, 1988; Vives, 1999), while the recent literature on vertical integration has focused primarily on the 

design of optimal bilateral contracts or tradeoffs between efficiency and vertical foreclosure (Choi and Yi, 

2000; Linnemer, 2003; Chemla, 2003; Rey and Tirole, 2007). Thus with the few exceptions described 

below, prior work does not consider the potentially offsetting effects of horizontal competition and the 

vertical pricing externality. 

An important exception to this rule is a seminal paper by Economides and Salop (1992). They 

showed that a 2 2×  configuration (two layers with two firms in each layer) might be able to mimic the 

pricing and profitability of a single firm (the 1 1×  configuration). But the precise circumstances that gave 

rise to that outcome were difficult to discern from their model. We discuss their modeling approach in 

relation to ours in Section 4 below. 



COMPETITION IN MODULAR CLUSTERS  DECEMBER 20, 2007 

  

7 

Rey and Stiglitz (1995), Nalebuff (2000) and Casadesus-Masanell et al. (2007) also consider cases 

in which both horizontal competition and the vertical pricing externality influence prices and 

profitability. First, Rey and Stiglitz model a duopoly in which two upstream firms may sell through 

perfectly competitive or differentiated retailers. (Differentiation among retailers is achieved by giving 

them exclusive territories.) They find that retail prices and aggregate profits are higher when the retailers 

are differentiated. The Rey and Stiglitz case with perfectly competitive retailers corresponds to a “one-

layer duopoly” or, in our notation, a 1 2×  configuration. Differentiated retailers correspond to a 2 2×  

configuration (Figure 3). Although our assumptions are different, we also find that system prices and 

aggregate profits are higher in a 2 2×  than a 1 2×  cluster configuration. 

 
Figure 3 
Cluster Configurations Analyzed by Rey and Stiglitz (1995) 
 

2 x 2 1 x 2

Decreasing Profit 
 

 

Nalebuff looks at a configuration in which a vertically integrated firm competes against vertically 

separated complementors. He constructs a product-location model in the tradition of Hotelling (1929) and 

shows that, when a vertical merger takes place, system prices decline. In our terminology, he compares a 

2 2×  configuration to an asymmetric configuration with one vertically integrated firm and a 1 2×  

configuration (Figure 4). Like Rey and Stiglitz, he finds that prices and aggregate profits are higher in the 

2 2×  than the 1 x 2  configuration. The results we derive below are consistent with these. 
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Figure 4 
Cluster Configurations Analyzed by Nalebuff (2000) 
 

2 x 2 Asymmetric 1 x 2
Cluster

Decreasing Profit 
 

 

Casadesus-Masanell et al. consider another asymmetric configuration, in which a single firm 

dominates one layer and two firms compete in a complementary layer. In the layer with competition, the 

products are differentiated in terms of quality. (If the two firms’ products were priced the same, one 

would dominate the other.) If there are positive marginal costs in each layer, then there is no equilibrium 

in which the firm with the lower product quality survives. Thus an asymmetric cluster devolves in 

equilibrium to a 2 1×  configuration (Figure 5). 

 
Figure 5 
Cluster Configurations Analyzed by Casadesus-Masanell, Nalebuff and Yoffie (2007) 
 

Asymmetric 2 x 1
Cluster
(not an
equilibrium)  

 

These papers all hint at the fact that a J N×  cluster of firms can be more profitable than a 

vertically integrated N-opoly ( 1 N× ) or a set of J complementary monopolies ( 1J× ). In this paper, we 

seek to establish when and why this is true. 

In addition to these theoretical papers, in the field of strategy, there is a large, growing literature 

on “platform competition.” Gawer and Henderson (2007) define a platform as a “core element of the 

technological system” that is “strongly functionally interdependent with most of the other components of 

[the] system, … [and] there is no demand for components when they are isolated from the overall 

system” (p. 4). In other words, a platform is a set of unique components that drive the demand for all 
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other components.1 From the perspective of those who build on it, the platform is a natural monopoly, 

although it may be supplied as a public good. 

In a modular system, the design rules or architectural standards that serve to make the 

components compatible are a set of unique components on which all others depend (Baldwin and Clark, 

2000; Farrell and Weiser, 2003; West, 2003). All other components are mix-and-matchable, but the 

standards of compatibility are (by definition) an input to every system. Thus standards are a key part of 

every platform, although platforms can contain more than just standards.2 We follow Henderson (2005) in 

classifying standards according to their degree of access to component designers (open or closed), and the 

mode of control over their use and evolution (public or proprietary). 

Closed, public standards (e.g., interface specifications for military systems) fall outside the scope 

of our model. Open, public standards (e.g., the Internet protocols) are freely available to all, hence give rise 

to modular clusters. Open, proprietary standards (e.g., the instruction set of an Intel chip or the application 

program interfaces of Windows) are available to all, but the proprietor may charge for their use. These 

give rise to asymmetric clusters in which one (or more) layers are monopolies and other layers are 

modular. Finally, closed, proprietary standards (e.g., parts specifications for an automobile) are accessible 

only via a special contract with the proprietor. With closed, proprietary standards, components that work 

one system will not function in another. The result is a set of vertical “silos,” a 1 N×  cluster 

configuration, where N  is the number of proprietors promulgating different standards. Figure 6 

summarizes the correspondence between types of standards and cluster configurations. 

 

 

 

 

 

                                                           
1 As Gawer and Henderson (2007) point out, this definition differs from that used in the multi-sided market literature 
(cf. Parker and Van Alstyne, 2005; Armstrong, 2006; Rochet and Tirole, 2006). 

2 Proprietary platforms usually comprise both standards and other components of the system. Public platforms are 
often only design rules, i.e., pure standards, possibly supplemented by an example of their implementation. 
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Figure 6 
The Correspondence between Standards Regimes and Cluster Configurations 
 

Microsoft APIs
Intel instruction set

Open, Public Open, Proprietary Closed, Proprietary
Standards Standards Standards

 
 

A strength of our model is that we can derive pricing equilibria for each of these standards 

regimes under consistent assumptions. We can then compare outcomes across regimes in terms of 

aggregate profits and the distribution of profits across layers and firms. We are not aware of any 

theoretical model of platform competition that supports such comparisons. We are also not aware of any 

model involving both horizontal competition and the vertical pricing externality that yields results for 

large clusters of firms. For these reasons, we believe that despite our model’s necessarily stylized 

assumptions, it can serve as a bridge between theoretical models of the strategic interaction of small 

numbers of firms and the rich and growing body of empirical work focused on large industry clusters. 

In the next section, we introduce our model by looking at a special case with a very simple 

demand structure. We can derive closed-form expressions for prices and aggregate profit for this case, 

holding costs and demand functions fixed but varying cluster configurations. In the section after, we 

generalize these results. 

 

 

3 A Simple Model with Bilinear Demand 
 

In this section we present a model of pricing in a J N×  modular cluster with a simple demand 

structure that yields closed-form results. We derive unique symmetric equilibria for any combination of 

J and N. We then compute prices and profits for an array of cluster configurations that vary by J and N. 

We show that clusters exist which, in equilibrium, arrive at the same prices and profits as the 1 1×  

configuration—a monopoly that supplies all of the components of the system. 
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3.1 Basic Assumptions 

 

Consider a symmetric cluster with J layers and N firms per layer, as illustrated in Figure 2. We 

assume that a functioning system requires exactly one component from each layer. We index the layers 

by j and firms within each layer by i, and focus on the ith firm in the jth layer, identified by the subscript 

ij. 

Each firm in the cluster produces and sells a product in a given layer. A firm sets the price of its 

product to maximize its profit, independently of the other firms. We assume that the demand faced by a 

firm is a function of that firm’s price, ijp , the average price of its substitutes, vjp , and the average price of 

its complements, kp . These averages are known to the firm and taken to be fixed. For simplicity, we set all 

firms’ marginal costs to zero. (For our demand structure, the optimal price is the cost plus a markup; the 

prices we derive can thus be interpreted as markups over marginal cost.) 

Hence firm ij seeks to maximize 
 

 ( ; , )ij ij ij ij vj kp q p p pπ = . (1) 

Let the quantity demanded of firm ij be given by 
 

 0( ; ) ( ; )ij ij vj ij kq a p p b p p Q= , (2) 

where 
 

 

( )

( )

1 if 1
1

if 1

1 1 .

vj ij

k ij

N
a

s p p N
N

b r J p p

=⎧
⎪= ⎨ + − >⎪⎩

⎡ ⎤= − − +⎣ ⎦

 

Both a and b are linear in prices, so we say that the demand function is bilinear. 

The parameter 0Q  is the maximum demand for systems, i.e., the number that would be sold if the 

price of all components were zero. The parameters s and r determine the elasticity of firm ij’s demand to 

price changes by its competitors and complementors respectively. For a high value of s, a small difference 

in the price of the firm’s product compared to its substitutes will yield a large change in the quantity sold, 

either negative or positive depending whether firm ij’s price is higher or lower than the average. The r 
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parameter relates the demand for the focal firm’s product to the average price of systems containing this  

product. Since a system requires one component from each layer, the total price of a system containing a 

component produced by firm ij is ijp  plus the prices of 1J −  other components, whose average is defined 

as kp . 

The model combines Hotelling-style competition among firms producing horizontally 

differentiated substitutes with Cournot-style vertical pricing externalities among producers of 

complementary components. This can be seen by looking at equation (2). If b  is held constant and 1N > , 

then total demand is fixed and the firm faces the simplest form of differentiated-goods competition: its 

market share goes down as it raises its own price, and up as the average price of substitutes rises. If, on 

the other hand, a is held constant (as is the case when 1N = ), firm ij’s demand is a linear function of the 

system price. This is the simplest demand function that gives rise to the vertical pricing externality (cf. 

Tirole, 1988, pp. 174–175). 

 
3.2 Solving for Equilibrium Prices and Profits 

 

Under these assumptions, firm ij’s first-order condition for profit maximization is 
 

 
( )

( ) ( )2

1 1 2 0 if 1

1
3 2 1 1 1 0 if 1.

k ij

ij vj k ij vj k

r J p p N

r
rsp s rs p J p p sp r J p N

N N

⎡ ⎤− − + = =⎣ ⎦
⎛ ⎞ ⎛ ⎞⎡ ⎤− + + − − + + ⎡ − − ⎤ = >⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠ ⎝ ⎠

 (3) 

(We have divided out the common factor of 0Q .) To keep the model tractable, we restrict our attention to 

symmetric pure-strategy Nash equilibria in which the prices of all firms are equal, i.e., vj k ijp p p= = . 

Substituting into (3) yields 
 

 
( )
2

1 1 0 if 1

1 1
0 if 1.

ij

ij ij

r J p N

J
Jrsp r s p N

N N

− + = =

+⎛ ⎞− + + = >⎜ ⎟
⎝ ⎠

 (4) 

Note that we derived the first-order condition for each firm before imposing the assumption of 

symmetry. This implies that firms in the cluster select their optimal prices taking the average prices of 

their substitutes and complements as given. In other words, when setting their prices, they do not expect 

other firms to behave as they do. 

 



COMPETITION IN MODULAR CLUSTERS  DECEMBER 20, 2007 

  

13 

Solving these equations yields the unique symmetric equilibrium price, ijp∗ , for firms in the 

cluster: 
 

 
( )

( )( )2

1
if 1

1

1 1 1
1 4 if 1.

2 2 2

ij

N
J r

p
J

J r Ns JNrs N
Jr JNs JNrs

∗

⎧ =⎪ +⎪= ⎨ +⎪ + − + + − >
⎪⎩

 (5) 

We have taken the negative root of the quadratic equation for 1N >  since it always yields 

economically meaningful prices ( 0 1ijp Jr∗< < , so that 0ijq > ), whereas the positive root always leads to 

negative demand. It is straightforward to verify the second-order condition by taking the derivative of (3) 

with respect to ijp  and testing the sign. For 1N =  the profit function is everywhere concave in ijp , and for 

1N >  it is concave at all symmetric solutions to (3), so the stationary point identified by (5) is indeed a 

local profit maximum for all firms. 

 Of interest for comparing equilibria across cluster configurations is the equilibrium system price, 

J NP∗
× , which is simply J times the component price given in (5): 

 

 
( )

( )( )2

if 1
1

1 1 1
1 4 if 1.

2 2 2

J N

J
N

J r
P

J
J r Ns JNrs N

r Ns Nrs

∗
×

⎧ =⎪ +⎪= ⎨
+⎪ + − + + − >⎪⎩

 (6) 

Finally, the aggregate profit for the cluster is NJ times the individual firm profit from (1) when all firms 

charge the equilibrium price: 
 

 
( )

( )( )

0
2

2

02

if 1
1

1 1
1 4 ( 1) if 1.

2 2( )

J N

JQ
N

J r

J J
J r Ns JNrs J r Q N

Ns Ns

∗
×

⎧ =⎪ +⎪Π = ⎨
⎡ − + ⎤⎛ ⎞⎪ + + + − − + >⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

 (7) 

 
3.3 Comparison of Equilibria 

 

Next we use a numerical example to compare prices and aggregate profits across the symmetric 

equilibria of different cluster configurations. Figure 7 shows an array of symmetric configurations in 

which each cell represents a different industry structure, comprising some number of layers and some 

number of firms per layer. 
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Figure 7 
An Array of Symmetric Cluster Configurations 
 

More Firms in Each Layer  

1x1 1x2 1x3 1x4 … 1xN

More 2x1 2x2 2x3 2x4 … 2xN

Layers 3x1 3x2 3x2 3x4 … 3xN

4x1 4x2 4x3 4x4 … 4xN

… …

Jx1 Jx2 Jx3 Jx4 … JxN
 

 

For given parameter values, we can solve for the symmetric equilibrium system price and 

aggregate profit for each cluster configuration (each cell in the array). We can then compare outcomes 

across the configurations. Let 6
0 2 10Q = × , 0.0005r = , and 0.001s = . These assumptions imply that total 

demand can range from zero to two million units; system prices may range from zero to $2,000; and, 

ceteris paribus, for every dollar increase in the price of a substitute component, the ij firm’s share of 

revenue in its layer declines by 0.1%. 

Table 1 shows system prices for configurations in which J and N range from 1 to 20. Consistent 

with the idea that more competition in layers should cause prices to fall, equilibrium system prices 

decrease as N increases across each row. And consistent with the known effects of the vertical pricing 

externality, as the number of layers increases and each component accounts for less of the total system, 

system prices rise as J rises down each column. The combination of these two effects leads to an 

interesting outcome, which can be seen by looking at the bold numbers down the diagonal: There are 

cluster configurations in which the equilibrium system price of a cluster of firms setting prices independently is the 

same as the system price charged by a vertically integrated monopoly. 
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Table 1 
System Price for Various Configurations of Symmetric Modular Clusters: 

{ }, 1, , 20J N∈ …  
 
System Price Firms in Each Layer (N)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1000 382 279 219 180 153 133 117 105 95 87 80 74 69 64 61 57 54 51 49
2 1333 719 543 431 357 304 264 233 209 190 173 159 148 138 129 121 114 108 102 97
3 1500 1000 785 634 528 451 394 349 313 283 259 239 221 206 193 181 171 162 154 146
4 1600 1219 1000 825 694 596 521 462 415 377 345 318 294 274 257 241 228 216 205 195
5 1667 1382 1184 1000 852 736 646 575 517 469 430 396 367 342 321 301 284 269 255 243

Layers (J) 6 1714 1500 1333 1157 1000 871 768 685 617 561 514 474 440 410 384 361 341 323 306 291
7 1750 1586 1451 1293 1137 1000 886 793 716 652 598 552 512 478 447 421 397 376 357 340
8 1778 1649 1543 1407 1260 1121 1000 898 813 741 680 628 584 545 510 480 453 429 408 388
9 1800 1697 1613 1500 1368 1232 1108 1000 908 829 762 705 655 611 573 539 509 482 458 436

10 1818 1734 1667 1575 1460 1333 1210 1098 1000 916 843 780 725 678 636 598 565 535 508 484
11 1833 1764 1709 1634 1537 1423 1304 1191 1089 1000 922 855 795 743 698 657 621 588 559 532
12 1846 1788 1743 1681 1600 1500 1389 1278 1175 1082 1000 928 865 809 759 715 676 640 609 580
13 1857 1807 1770 1719 1652 1566 1465 1360 1257 1161 1076 1000 933 873 820 773 731 693 658 627
14 1867 1824 1792 1750 1694 1621 1532 1434 1333 1238 1150 1071 1000 937 881 831 785 745 708 675
15 1875 1838 1811 1775 1728 1667 1590 1500 1405 1310 1221 1140 1066 1000 941 888 840 797 757 722
16 1882 1850 1826 1796 1757 1705 1638 1559 1470 1378 1290 1207 1131 1062 1000 944 894 848 807 769
17 1889 1860 1840 1814 1780 1736 1680 1610 1529 1442 1355 1271 1194 1123 1058 1000 947 899 855 816
18 1895 1869 1851 1829 1800 1763 1714 1653 1581 1500 1416 1333 1255 1182 1116 1055 1000 950 904 862
19 1900 1877 1861 1842 1817 1785 1743 1691 1627 1553 1473 1392 1314 1240 1172 1110 1052 1000 952 908
20 1905 1884 1870 1853 1831 1804 1768 1723 1667 1600 1526 1448 1371 1297 1227 1163 1104 1050 1000 954  

 

A feature of this model, which we will carry over to the more general case, is that if system prices 

are the same in two different equilibria, total revenue and profit will be the same as well. Hence those 

cluster configurations that arrive at the same system price as a vertically integrated monopoly will be as 

profitable as the monopoly. 

Figure 7 graphs aggregate profit for the array of cluster configurations whose system prices are 

given in Table 1. The 1 1×  configuration (the vertically integrated monopoly) is located in the corner that 

appears closest to the reader. Proceeding outward along the axis to the right leads to configurations with 

an increasing number of layers; along the axis to the left lie configurations with an increasing number of 

firms per layer. Looking along those axes, it is clear that for a single layer or a single firm per layer, 

aggregate profit falls if one adds firms or layers. This is consistent with the idea that horizontally 

competitive or vertically separated firms, which cannot coordinate their prices, are not as profitable as a 

single integrated monopoly. However, as is well known, horizontally competitive firms set prices that are 

too low relative to the monopoly price, while vertically separated firms set prices that are too high. This is 

borne out by looking across the top row and down the first column of Table 1. 
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Figure 8 
Aggregate Profit for Various Configurations of Symmetric Modular Clusters 

{ }, 1, , 20J N∈ …  
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Just as system prices vary systematically along the rows and columns of Table 1, aggregate profit 

also exhibits a regular pattern. Along both the rows and columns, it starts low at the axis, rises to a 

maximum and then falls.3 The maximum in any row or column may be as high as the profit of the 

vertically integrated monopoly. Thus, under the assumptions of the model, a symmetric modular cluster 

with the “right number” of layers and firms per layer can be as profitable as one big firm that controls the 

whole cluster. 

However, the results in Table 1 and Figure 8 were derived under specific numerical assumptions. 

We do not, on the strength of a single case, know how general these effects are likely to be. In the next 

section, we provide conditions under which these equilibrium price and profit patterns hold for more 

general demand conditions. 

                                                           
3 In contrast, Nalebuff (2000) finds that aggregate profit rises monotonically with the number of layers. The difference 
in our results is due to the fact that Nalebuff assumes the total number of purchasers is fixed, and thus as prices rise, 
the total demand for systems remains the same. In our model, as system prices rise, demand falls, and once the 
system price exceeds the price charged by a vertically integrated monopoly, further price increases cause aggregate 
profit to fall. 
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4 Prices and Profits in a General Model 
 

We now present a more general version of the model, which allows asymmetric cluster 

configurations and a larger class of demand functions. We then return to the symmetric case to show that 

under appropriate conditions, symmetric pricing equilibria are unique and exhibit the same pattern of 

prices and profits we saw in the previous section. All proofs are in the Appendix. 

 
4.1 The General Model 

 

As in the previous section, consumers purchase a system divided into 1J ≥  layers, where each 

layer represents a component that is essential to the proper functioning of the system. Within each layer j, 

there are 1jN ≥  firms indexed by i. Each firm sells a horizontally differentiated variant of the component 

indicated by its layer. These products are equivalent in function and interact with products in the other 

layers in the same way, so they can be assembled in any combination. 

Each firm chooses a price, ijp , for its product.4 The variable cost of each unit is ijc . The demand 

faced by a typical firm is given by 
 

 0( ) ( )ij ij ijq a b Q= ⋅ ⋅  (8) 

where [0,1]ija ∈  and 0ijb >  are functions of the product prices chosen by all firms in the cluster. As in 

Section 3, the multiplicative form of this expression will allow us to separate the impact of price changes 

by the firm’s horizontal competitors and vertical complementors. To simplify the analysis, let ija  and ijb  

be twice continuously differentiable and concave in ijp , i.e., 2 2 0ij ija p∂ ∂ ≤  and 2 2 0ij ijb p∂ ∂ ≤ . 

In the absence of any additional restrictions on ija  and ijb , each could be a function of the prices 

set by every firm in the cluster. Indeed, every unique system could have its own demand function, giving 

rise to 
1

J

jj
N

=∏  distinct system demands, as well as a derived demand function for each of the 
1

J

jj
N

=∑  

                                                           
4 A firm may sell multiple products in a layer at different prices, in which case ijp  can be interpreted as a weighted 
average across the firm’s product line. Similar reasoning applies to costs. In this case we assume that firms’ revenues 
and profits are affected only through these averages, so we still only need to consider one price and cost per firm. 
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firms, obtained by adding up the demands for the 
[1, ]\ kk J j

N
∈∏  unique systems in which firm ij’s product 

appears. This was the approach taken by Economides and Salop in their seminal 1992 paper. A limitation 

of this approach is that for industries with a large number of layers or firms, modeling the demand for 

unique systems becomes analytically and even computationally intractable. 

After examining this approach in detail, we elected to take a different route. We assume that ija  is 

affected only by the firm’s own price and those of other firms in the same layer, while ijb  is affected by the 

firm’s price and those of firms in other layers. This decomposition, formalized below, allows us to obtain 

analytical results for both symmetric and simple asymmetric modular clusters. 

 
4.1.1 Competition Within Layers 

 

Under any cluster configuration, for all [1, ]ji N∈  and [1, ]j J∈ , let 
 

 0 if 1, or 0 if 1ij
j j

ij

a
N N

p

∂
< > = =

∂
 (9a) 

 0 for all [1, ]\ij
j

vj

a
v N i

p

∂
> ∈

∂
 (9b) 

 0 for all [1, ] and [1, ]\ij
k

vk

a
v N k J j

p

∂
= ∈ ∈

∂
. (9c) 

Conditions (9a) and (9b) require that ija  responds to prices just as market shares would in a typical model 

of oligopolistic price competition: as a firm raises its own price, ija  decreases (unless it is a monopoly). 

Conversely, as its competitors raise their prices, ija  increases. 

Condition (9c) reflects our simplified approach to cluster pricing by requiring ija  to be unaffected 

by changes in the price of any complementary product. This crucial assumption rules out “special 

complementarities” between products in different layers, i.e., situations in which the attractiveness of a 

firm’s product relative to others in its layer depends on the price charged by a specific complementor. We 

rule out such situations not because they do not exist in reality, but because we think it makes sense to 

treat them as second-order phenomena in the context of this model. 

We further assume that the effects of (9a) and (9b) balance each other out, so that the sum of the 

ija  terms equals one in each layer: 
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1

( ) 1 for all [1, ]
jN

ij
i

a j J
=

⋅ = ∈∑ .  (10) 

This condition means that as a firm raises its price and thereby loses the patronage of some fraction of the 

preference space, other firms in the layer gain the customers in the same fraction of the space. The 

number of such customers may decrease, however, due to the orthogonal effect we describe next. 

 
4.1.2 Complements Across Layers 

 

The conditions we impose on ijb  closely parallel those for ija . Under any cluster configuration, 

for all [1, ]ji N∈  and [1, ]j J∈ , 
 

 0ij

ij

b

p

∂
<

∂
 (11a) 

 0 for all [1, ] and [1, ]\ij
k

vk

b
v N k J j

p

∂
< ∈ ∈

∂
 (11b) 

 0 for all [1, ]\ij
j

vj

b
v N i

p

∂
= ∈

∂
. (11c) 

Condition (11a) means that as a firm raises its price, some consumers will exit the market entirely rather 

than switch to a product of another firm. (11b) captures the vertical pricing externality, stipulating that a 

price increase by any complement reduces demand for ij ’s component. In parallel with (9c), condition 

(11c) reflects our simplifying assumption that ijb  terms are not affected by the pricing actions of firms in 

the same layer (their influence comes through ija ).  

We assume that a functioning system must contain exactly one product from each layer, thus the 

total number of units sold is the same in each layer: 
 

 
1 1

( ) ( ) Q( ) for all , [1, ]
j k

N N

ij ik
i i

q q j k J
= =

⋅ = ⋅ ≡ ⋅ ∈∑ ∑ . (12)  

 
4.1.3 Profit Maximization 

 

Under these assumptions, the profit of a typical firm is 
 

 
( )
( ) 0

( )

( ) ( ) .

ij ij ij ij

ij ij ij ij

p c q

p c a b Q

π = − ⋅

= − ⋅ ⋅
 (13) 
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The first-order condition for profit maximization is 
 

 ( )0 0( ) ( ) ( ) ( ) ( ) ( ) 0ij
ij ij ij ij ij ij ij ij

ij

a b Q p c a b b a Q
p

π∂
⎡ ⎤′ ′= ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ =⎣ ⎦∂

, (14) 

where ij ij ija a p′ ≡ ∂ ∂  and ij ij ijb b p′ ≡ ∂ ∂ . 

Taken together, the set of first-order conditions for all firms in the cluster is a system of 
1

J

jj
N

=∑  

equations in the same number of unknowns—one price variable for each firm. A solution to this system 

that satisfies the second-order condition for each firm is a Nash equilibrium in prices. Our first 

proposition establishes the existence of such an equilibrium. 
 

Proposition 1. Under the assumptions of the general model, there is at least one pure-strategy 

Nash equilibrium in prices for every cluster configuration. 
 

Stronger conditions are needed to ensure a unique equilibrium for each configuration (see, e.g., 

Rosen, 1965). Since our main results concern the symmetric model presented in the next section, we defer 

further consideration of uniqueness for now. 

 
4.2 The Symmetric Model 

 

To derive our main results, we restrict the general model in three ways. First, let there be the 

same number of firms in each layer: jN N≡  for all [1, ]j J∈ . Second, let /ijc C J≡  for all firms ij, where C 

denotes the total cost of a system, which we assume to be invariant to both J and N, as well as to the 

particular product choices of individual consumers. Third, let ija  and ijb  be identical for all firms within a 

given configuration, so that, in a J N×  cluster, ij J Na a ×≡  and ij J Nb b ×≡  for all [1, ]i N∈  and [1, ]j J∈ . 

 
4.2.1 Profit Maximization Under Symmetry 

 

Our strategy to render the model analytically tractable even for large J and N is to solve the profit 

maximization problem for a single representative firm under the assumption that all firms choose the 

same product price, as we know must be true at a symmetric equilibrium. To indicate the situation in 

which all firms choose a particular price p, we can write each of the functions defined in the previous 

section using a single argument. We thus denote firm-level demand under symmetric pricing by 
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 0( ) ( )J N J N J Nq a p b p Q× × ×= . (15) 

Applying condition (10), it follows immediately that 
 

 1J Na N× = . (16) 

Note that we did not assume that p is an equilibrium price; this identity follows from symmetry alone. 

When we write down a single-variable equation for the equilibrium price in a J N×  

configuration, we need to ensure that its solution yields the same Nash outcome as solving the 

corresponding system of JN equations explicitly. To do this, we must be careful to maintain the 

assumption that each firm acts independently—in other words, that symmetry does not imply 

coordinated behavior. In particular, every firm must maintain the expectation that if it unilaterally raises 

or lowers its price, its competitors and complementors will not necessarily follow suit. 

From a modeling perspective this means we need to take derivatives of the profit functions and 

their components before imposing symmetry. Therefore let 
 

 
( )
( )

( )

( )

ij vk

ij vk

ij ij J N
p p p

ij ij J N
p p p

a p a p

b p b p

×
= =

×
= =

′∂ ∂ ≡

′∂ ∂ ≡
  

for all , [1, ]i v N∈  and , [1, ]j k J∈ .5 

These definitions and restrictions reduce the system of first-order conditions for Nash 

equilibrium defined in (14) to a single equation in one variable: 
 

 
0

0

( ) ( ) ( )

( ) ( ) ( ) ( ) 0

ij vk

ij
J N J N J N

ij p p p

J N J N J N J N

p a p b p Q
p

C
p a p b p b p a p Q

J

π
π × × ×

= =

× × × ×

∂
′ ≡ =

∂

⎛ ⎞ ′ ′⎡ ⎤+ − + =⎜ ⎟ ⎣ ⎦
⎝ ⎠

 (17) 

with the symmetric equilibrium price given by 
 

                                                           
5 To see that 

 ′a
J×N

≠ ∂a
J×N

∂p , note from (16) that   ∂a
J×N

∂p = 0  for all configurations, whereas condition (9a) requires 

  ′a
J×N

< 0  unless 1N = . For J Nb ×
′  and J Nb p×∂ ∂ , the sign of both should be negative but the magnitude of the latter 

will typically be larger because it represents the decrease in demand associated with an increase in price by a firm and 
its complementors rather than the firm on its own. 
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( ) ( )

( ) ( ) ( ) ( )
J N J N J N J N

J N
J N J N J N J N J N J N J N J N

a p b p C
p

a p b p b p a p J

∗ ∗
× × × ×∗

× ∗ ∗ ∗ ∗
× × × × × × × ×

−
= +

′ ′+
. (18) 

The following proposition establishes the existence and uniqueness of this equilibrium. While it 

does not rule out the existence of asymmetric price equilibria, it motivates our focus on the comparative 

statics of symmetric cluster configurations. 
 

Proposition 2. Under the assumptions of the symmetric model, equation (18) has exactly one 

solution, which is the unique symmetric Nash equilibrium in prices for a J N×  cluster. 

  
4.2.2 System Price, Total Demand, and Aggregate Profit 

 

We now define the system price, total demand, and aggregate profit for a J N×  modular cluster.  

The system price associated with a given product price for a J N×  cluster, denoted J NP × , is the 

sum of the prices of the J components that make up a whole system. By our symmetry assumptions, all of 

these component prices are the same, so we can simply multiply a representative product price, p, by the 

number of layers to obtain the system price. Conversely, we can “back out” a symmetric product price 

given a system price P: 
 

 
( )

( ) .
J N

J N

P p Jp

p P P J
×

×

=

=
 (19) 

Total demand, denoted J NQ × , is the sum of the demands for the products in each layer. Total 

demand is the same for every layer by (12), and by our symmetry assumptions is simply the product of 

N and J Nq × . By convention, we will always write J NQ ×  as a function of the system price and J Nq ×  as a 

function of the product price, yielding the following relationship: 
 

 
1

( ) ( ) ( )
N

J N J N J N
i

Q P q P J N q P J× × ×
=

= =∑  (20) 

where J Nq ×  is given by (15). Through (19) and (20), J NQ ×  is well defined for all system prices between 

zero and the price that leads both component and system demands to be zero. 

Aggregate profit for the J N×  cluster, denoted J N×Π , is also defined in terms of the system price: 
 

 ( )( ) ( )J N J NP P C Q P× ×Π = − . (21) 
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This function is zero if J NP ×  or J NQ ×  is zero, positive and continuous between those two bounds, and 

strictly quasiconcave.6 

 
4.2.3 The Conservation of Total Demand and Cross-Cluster Regularity Conditions 

 

The main purpose of the model is to compare prices and aggregate profits across different cluster 

configurations. In this section, we make assumptions that allow us to do this.  

First, in order to make meaningful comparisons, we need to hold external demand conditions 

constant while varying configurations. To do this, we assume that for any pair of cluster configurations, if 

system prices are the same then total demand will also be the same: 
 

 If J N K MP P× ×= , then J N K MQ Q× ×= , for all , , ,J N K M .  

This assumption in turn implies 
 

 ( ) ( ) ( )J N K MQ P Q P Q P× ×= ≡  (22a) 

and 
 

 ( ) ( ) ( )J N K MP P P× ×Π = Π ≡ Π . (22b) 

In other words, across all configurations, total demand and aggregate profit depend only on the system 

price, which we can denote simply by P. 

This assumption is restrictive, but it is fundamentally what allows us to compare equilibria across 

configurations. It also has a natural interpretation: it says that end users care only about system prices and not 

how the cluster is organized. Specifically, end users do not care how the components of their systems were 

divided up and assembled (the determinants of J), nor do they care about the levels of concentration in 

the component markets (the determinants of N). Regardless of the internal industrial organization of the 

cluster, for a given system price, the same total number of customers will show up and purchase the 

systems that most closely match their preferences. This condition relaxes Nalebuff’s (2000) assumption 

that the total number of customers remains the same regardless of system price. In our model, a higher 

                                                           
6 Strict quasiconcavity holds because firm profits are strictly quasiconcave (as shown in Appendix A.1), aggregate 
profit is JN times firm profit by symmetry, and quasiconcavity is preserved under monotonic transformations. 
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system price causes total demand to fall by the same amount in every configuration. 

When two clusters have the same system price, how are their component prices related? If the 

clusters have the same number of layers, then by (19), if J M J NP P× ×= , then J M J Np p× ×= . However, if the 

clusters have a different number of layers, then, the same system price must be split over a different 

number of components. In that case, it follows from (19) that 
 

 If K M J NP P× ×= , then K M J N

J
p p

K× ×= . (23) 

Thus when comparing component prices across clusters with different layer structures, we must re-

apportion the system price to the layers using equation (23). 

Finally, in addition to the critical assumption about the conservation of total demand, we impose 

four regularity conditions to ensure that demand is well-behaved under cluster reconfigurations. First, 

consistent with our strategy of decomposing the demand functions into separate terms reflecting 

horizontal competition ( ija ) and the vertical pricing externality ( ijb ), we assume that the marginal impact 

of horizontal price competition is not affected by the number of vertical layers, and symmetrically, the 

marginal impact of the vertical pricing externality is not affected by the number of firms in each layer: 
 

 ( ) ( ) for all , 1J N K Na p a p J K× ×′ ′= ≥  (24a) 

 ( ) ( ) for all , 1J M J Nb p b p M N× ×′ ′= ≥ . (24b) 

Second, we assume that as the number of firms per layer goes up, the marginal impact of horizontal 

price competition stays the same or gets stronger. And as the number of layers goes up, the marginal 

impact of the vertical pricing externality stays the same or gets stronger. In terms of the demand 

functions, this means that a′  becomes (weakly) more negative as the number of firms per layer increases, 

while b′  becomes (weakly) less negative as the number of layers increases: 
 

 ( ) ( ) if , for all 1J M J Na p a p N M J× ×′ ′≤ ≥ ≥  (24c) 

 ( ) ( ) if , for all 1J N K Nb p b p K J N× ×′ ′≥ ≥ ≥ . (24d) 

With the conservation of total demand and these regularity conditions providing the necessary 

linkages across configurations, we can now state and prove our main results. 
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4.3 Pricing and Profitability in Symmetric Clusters  
 

Returning to the thought experiment of Section 3.3, where we compared system prices and 

profits across different configurations, we now show that the pattern of prices in Table 1 and profits in 

Figure 8 is characteristic of the symmetric model as defined above. Our results establish that large 

clusters of firms can mimic the pricing behavior, and hence the profitability, of a monopoly. 

Proposition 3 shows that the pattern observed in Table 1—equilibrium system prices that 

decrease across each row and increase down each column—holds for all demand functions consistent 

with our model, and for clusters of any size. 
 

Proposition 3. (a) Consider two cluster configurations, J N×  and J M× , where 1 M N≤ < . 

Under the assumptions of the symmetric model, J M J NP P∗ ∗
× ×> . In other words, for any number of layers, 

equilibrium system prices are strictly decreasing in the number of firms competing in each layer. 

(b) Consider two cluster configurations, J N×  and K N× , where 1 J K≤ < . Under the 

assumptions of the symmetric model, J N K NP P∗ ∗
× ×< . In other words, for any number of firms in each layer, 

equilibrium system prices are strictly increasing in the number of layers. 
 

Next we find that for any number of layers, J, there is a number of firms per layer, N∗ , that yields 

an equilibrium system price close to the monopoly price, 1 1P∗
×  (in the sense that the monopoly price lies 

between 
J N

P ∗
∗
×

 and 
( 1)J N

P ∗
∗
× +

), and 
J N

P ∗
∗
×

 converges to the monopoly price as J grows large. An analogous 

result holds for every N and associated J∗ . 
 

Proposition 4. For every J, there is an N∗  such that 1 1 ( 1)J N J N
P P P∗ ∗

∗ ∗ ∗
×× × +

≥ > . Likewise, for every N, 

there is a J∗  such that 1 1 ( 1)J N J N
P P P∗ ∗

∗ ∗ ∗
×× + ×

≤ < . As J →∞ , 1 1J N
P P∗

∗ ∗
××

→ , and as N →∞ , 1 1J N
P P∗

∗ ∗
××

→ . 
 

Large clusters can thus mimic the pricing behavior of a monopoly. Because, under our 

assumptions, aggregate profit depends on the system price alone, it follows that large clusters can be just 

as profitable, in the aggregate, as a monopoly. This finding, which we formalize in our final proposition, 

explains and generalizes the existence of the striking “ridge” of monopoly-level profits visible in Figure 8. 
 

Proposition 5. For every J, aggregate profits increase as N approaches N∗  (as defined in 

Proposition 4), then decrease from 1N∗ +  onward. Similarly, for every N, aggregate profits increase as J 



COMPETITION IN MODULAR CLUSTERS  DECEMBER 20, 2007 

  

26 

approaches J∗ , then decrease from 1J∗ +  onward. As J →∞ , 1 1J N∗
∗ ∗

××
Π →Π , and as N →∞ , 1 1J N∗

∗ ∗
××

Π →Π . 
 

To recap, we have shown that the highest aggregate profit accrues to the cluster configurations 

that most closely approximate the pricing behavior of one big firm (Proposition 5). Large symmetric 

clusters can approximate monopoly pricing arbitrarily closely (Proposition 4), thus large clusters can in 

principle be just as profitable, in the aggregate, as a vertically integrated monopoly. An immediate but 

significant implication of this finding is that large clusters can generate more profit than either chains of 

monopolies ( 1J×  clusters) or vertically integrated oligopolies ( 1 N× ). 

 

 

5 Applications and Extensions 
 

In this section we apply and extend our model to various real-world phenomena. First, as 

indicated in Section 2, our model permits us to compare prices and profits across different standards 

regimes. We adopt Henderson’s (2005) typology and classify standards as (1) open, public; (2) closed, 

proprietary; or (3) open, proprietary. (Closed, public standards are typically developed and controlled by 

governments, and lie outside the scope of our model.) We compare open, public to closed, proprietary 

standards, and then consider the phenomenon of commoditization. Following that, we look at open but 

proprietary standards and platform monopolies, and the impact of horizontal and vertical mergers. We 

close this section by discussing how conflicts between the good of the firm and the good of the cluster 

may create strategic tension within the largest firms in a cluster. 

 
5.1 Open, Public Standards vs. Closed, Proprietary Standards 

 

Our model assumes full compatibility among components in different layers, so that a working 

system can be assembled using any combination of products from each layer. This kind of compatibility 

occurs when the underlying technology is characterized by what Henderson (2005) calls open, public 

standards. In such cases, the design rules or architectural standards that support compatibility are 

supplied as a public good, freely accessible to all. There is, by definition, no platform monopoly in such 

systems—no essential component controlled by a single firm. Most computer hardware works 

approximately this way: an end user can buy cases, power supplies, motherboards, memories, hard 
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drives, video cards, keyboards, monitors and mice from any of dozens of manufacturers and rely on them 

to work together thanks to standards like ATX, DDR, IDE, USB and VGA. And if end users do not want 

to assemble all the necessary components themselves, there are many system integrators willing to do it 

for them. The system integrators form another layer of the cluster: they compete with each other for 

customers, and their services are fully mix-and-matchable with the other components. 

The opposite case is a system based on closed, proprietary standards. In the starkest version of this 

case, a lead firm (often called an original equipment manufacturer or OEM) enters into contracts with a 

set of suppliers who agree to make components to its specifications. The lead firm then integrates the 

components and sells the resulting systems to end users, setting prices subject to horizontal competition 

from other OEMs. Profits are distributed via negotiations between the lead firm and its suppliers. The 

automotive industry has historically operated like this, with many key parts (e.g., dashboards, seat 

assemblies and braking systems) designed in close collaboration with the major automakers and 

manufactured by captive subsidiaries or independent suppliers under long-term contracts. 

Products designed to different proprietary standards are not technologically substitutable, and 

do not compete with one another. Thus closed, proprietary standards do not give rise to cross-price 

effects in the same way that open, public standards do. Under a regime in which each OEM sets its own 

standards, the final integrated products are effectively fixed bundles. For pricing purposes, the situation 

is equivalent to a modular cluster with one layer (the OEMs), hence product prices and aggregate profits 

will be the same as in a vertically integrated 1 N×  cluster.  

In contrast, under open, public standards, OEMs and their closed systems disappear and are 

replaced by system integrators, who are just one layer among many. The system integrators do not 

control the component makers’ access to the market, and their pricing decisions apply only to their own 

layer. Consequently system integrators’ incentives to cut prices are diminished relative to the OEMs’. 

Prices and profits will be that of a J N×  cluster. 

Our model thus predicts that moving from closed, proprietary standards to open, public 

standards will increase system prices and aggregate profits of the cluster as a whole. At first glance, this 

seems counter-intuitive, but it is perfectly logical given the assumptions of our model. In a cluster with 

full mix-and-match compatibility, as we have seen, the vertical pricing externality serves to offset the 

effects of horizontal competition. Open, public standards thus mitigate what Nalebuff (2000) calls 
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“bundle against bundle” competition, which occurs when oligopolists compete head-to-head by selling 

whole systems. In our model, as in his, “bundle against bundle is ferocious competition.” 

However, under open, public standards the dominant firm in each “silo” will no longer be able 

extract all of the available rents from its suppliers and complementors. Because complementary products 

are no longer tied to the technology of a single lead firm, profits will shift away from the dominant layer 

to other parts of the industry. Thus, although the totality of firms is better off operating under open, 

public standards, firms in the erstwhile dominant layer may be worse off. 

 
5.2 Commoditization of Layers 

 

Although different on the surface, the phenomenon known as “commoditization” leads to the 

same overall outcome as closed, proprietary standards. Practitioners speak of a layer becoming 

“commoditized,” when competition causes prices to fall to the point where no significant profits can be 

earned in that layer (Christensen and Raynor, 2003; Schrage, 2007). In our model, commoditization is 

equivalent to letting the number of firms in a layer grow large. With their prices driven to marginal costs, 

the pricing decisions for products in the commoditized layer no longer affect the demand for their 

complements. In terms of our model, the commoditized layer disappears from the cluster. Thus when a 

layer is commoditized, a J N×  cluster devolves into a ( )1J N− ×  cluster. 

Under the assumptions of our model, commoditization of a layer will cause system prices to fall. 

Aggregate profits in the rest of the cluster may go up or down, depending on where the pre- and post-

commoditization system prices lie relative to the “one big firm” system price (see Proposition 4). 

However, as multiple layers become commoditized, the cluster comes closer to the 1 N×  configuration, 

which has both low prices and low aggregate profits. In effect, the commoditization of layers brings the 

remaining firms into more intense competition with one another. In a cluster where most layers have 

been commoditized, the firms in the non-commoditized layers will mimic the effects of fierce “bundle 

against bundle” competition, even though they are selling components rather than actual bundles. 

Again, we must distinguish between the impact of commoditization on the cluster as a whole and 

the impact on individual firms. It is quite possible for firms in the surviving, non-commoditized layers to 

be better off, even though aggregate profits have dropped precipitously. Table 2 makes this point. It 

computes profit per firm for the array of configurations whose system prices and aggregate profits were 
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shown above in Table 1 and Figure 8 respectively. Profit per firm declines strictly down the columns, 

while aggregate profits are highest in the cells indicated by bold, italic numbers along the diagonal. The 

latter cells correspond to the ridge in Figure 8, where the aggregate profit of the cluster equals the profit 

of one big firm. 

 
Table 2 
Profit per Firm for Various Configurations of Symmetric Modular Clusters: 

{ }, 1, , 20J N∈ …  
 
Profit Firms in Each Layer (N)
per Firm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1000 309 160 98 66 47 35 28 22 18 15 13 11 10 8 7 7 6 5 5
2 444 230 132 85 59 43 33 26 21 17 14 12 11 9 8 7 6 6 5 5
3 250 167 106 72 52 39 30 24 20 16 14 12 10 9 8 7 6 6 5 5
4 160 119 83 61 45 35 28 22 18 15 13 11 10 8 7 7 6 5 5 4
5 111 85 64 50 39 31 25 20 17 14 12 11 9 8 7 6 6 5 5 4

Layers (J) 6 82 63 49 41 33 27 23 19 16 13 12 10 9 8 7 6 6 5 5 4
7 63 47 38 33 28 24 20 17 15 13 11 10 8 7 7 6 5 5 4 4
8 49 36 29 26 23 21 18 15 13 12 10 9 8 7 6 6 5 5 4 4
9 40 29 23 21 19 18 16 14 12 11 10 8 8 7 6 5 5 5 4 4

10 33 23 19 17 16 15 14 12 11 10 9 8 7 6 6 5 5 4 4 4
11 28 19 15 14 13 12 12 11 10 9 8 7 7 6 6 5 5 4 4 4
12 24 16 12 11 11 10 10 10 9 8 8 7 6 6 5 5 4 4 4 3
13 20 13 10 9 9 9 9 8 8 7 7 6 6 5 5 5 4 4 4 3
14 18 11 9 8 7 7 7 7 7 7 6 6 5 5 5 4 4 4 3 3
15 16 10 8 7 6 6 6 6 6 6 6 5 5 5 4 4 4 4 3 3
16 14 9 7 6 5 5 5 5 5 5 5 5 5 4 4 4 4 3 3 3
17 12 8 6 5 5 4 5 5 5 5 5 5 4 4 4 4 3 3 3 3
18 11 7 5 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3
19 10 6 5 4 4 3 3 3 4 4 4 4 4 4 3 3 3 3 3 3
20 9 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2  
 

The table shows that under the assumptions of our numerical example, individual firms benefit 

from the commoditization of their complementors. From the perspective of an individual firm or a 

particular layer of firms, the cluster’s aggregate profitability is an externality, and thus, in general, we 

would not expect individual firms to eschew commoditization in order to keep their complementors in 

business. But the difference between what is best for the cluster and what is best for individual firms may 

give rise to strategic tension between firms and their investors. We will return to this issue in Section 5.5. 

 
5.3 Open, Proprietary Standards and Platform Monopoly 

 

The opposite of commoditization is the domination of a layer by a single firm. This occurs when 

the standards of compatibility are open, i.e., available to all, but proprietary, i.e., owned by a single firm. 

The proprietor of this essential component is typically said to control “the platform.” If it succeeds in 

dominating the platform layer, it has a “platform monopoly.” 

We can represent a cluster with a platform monopoly as a ( )1J N− ×  cluster “attached to” a layer 

with a single firm (see Figure 9a). In some cases, however, the platform may be split into two or more 
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complementary layers. This is approximately the situation in the personal computer market where 

Microsoft and Intel control different complementary standards, hence there are two platform monopolies 

(see Figure 9b). In this section, we examine the case of a single platform monopoly, using the bilinear 

model of Section 3, and describe how the analysis can be extended to multiple platform layers. 

 
Figure 9 
Two Types of Proprietary Platform 
 

Platform Monopoly Microsoft APIs
Intel instruction set

(a) Platform (b) Split Proprietary
Monopoly Platform  

 

We begin by looking back at equations (1) and (2). In the case of a single proprietary platform (a 

platform monopoly), there will be one firm (subscripted “11”) for whom 1N = , while for the rest of the 

cluster (subscripted “ij”), 1N > . The profit functions for these two types of firm are, for the platform 

monopoly: 
 

 ( )( )11 11 11 01 1 kp r p J p Qπ = − ⎡ + − ⎤⎣ ⎦  (25a) 

and for the other firms in the cluster: 
 

 ( ) ( )( )11 0

1
1 2ij ij vj ij k ijp s p p r p J p p Q

N
π ⎡ ⎤ ⎡ ⎤= + − − + − +⎢ ⎥ ⎣ ⎦⎣ ⎦

 (25b) 

where 11p  and ijp  are the prices of the platform and a representative component. 

Deriving the first-order conditions and imposing symmetry, we obtain a system of two equations 

in the two unknown prices: 
 

 ( )111 2 1 0ijrp r J p− − − =  (26a) 

 ( )( )11

1
1 1 0ij ij ij

r
sp r p J p p

N N
⎛ ⎞ ⎡ ⎤− − + − − =⎜ ⎟ ⎣ ⎦⎝ ⎠

. (26b) 

We can use (26a) to solve for 11p  in terms of ijp : 
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 11

1 1
( 1)

2 ijp J p
r
⎡ ⎤= − −⎢ ⎥⎣ ⎦

. (27) 

Substituting this expression into (26b) obtains: 
 

 ( ) 2 1 1
1 0ij ij

J
J rsp r s p

N N
+⎛ ⎞− − + + =⎜ ⎟

⎝ ⎠
 (28) 

which is identical to (4) except for the replacement of J  by 1J −  in the quadratic term. We can use (28) to 

obtain a closed-form solution for equilibrium ijp∗ , and substitute that expression into (27) to obtain 11p∗ : 
 

 ( )( ) ( )2

11

1 1 1
1 4 1

4 4 4
J

p J r Ns J Nrs
r Ns Nrs

∗ +
= − + + + − −  (29a) 

 
( ) ( ) ( )

( )( ) ( )21 1 1
1 4 1

2 1 2 1 2 1ij

J
p J r Ns J Nrs

J r J Ns J Nrs
∗ +
= + − + + − −

− − −
. (29b) 

Using the same numerical parameter values as before, we can then obtain, for any combination of 

J and N, (1) the platform price and profit; (2) the prices and profits of the rest of the system; and (3) the 

system price and aggregate profit of the cluster. Moreover, this procedure generalizes to platforms with 

any number of layers. 

Exhaustive analysis of the full array of platform configurations lies beyond the scope of the 

paper. The results are by and large consistent with those derived for symmetric clusters. For example, as 

we would expect, the platform monopoly’s price and profit increase as the number of firms per layer ( N ) 

in the other layers goes up, converging on the 1 1×  system price and profit as N  grows large. In other 

words, not surprisingly, as the other layers become more competitive, an ever-larger share of the cluster’s 

value is appropriated by the platform owner. 

Interestingly, fixing the number of firms per layer reveals a possible “counterattack” by the rest 

of the cluster.7 As the number of layers in the rest of the cluster increases, the vertical pricing externality 

they impose creates pricing pressure on the platform monopoly. As long as the number of layers does not 

become too high, profits will shift from the platform monopoly to the component makers. For example, 

Figure 10 shows that increasing J from 4 to 11, while holding N fixed at 10, maximizes the profit of the 

component firms while driving down the profit of the platform owner by about 50%. 
                                                           
7 The word “counterattack” should not be taken literally, however. The firms in the rest of the cluster are, by 
assumption, decentralized and uncoordinated. 
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Figure 10 
Increasing the Number of Layers Benefits Component Makers and Harms the 
Platform Monopoly 
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5.3.1 Platform Envelopment 

 

In the simple bilinear case, there is no difficulty in splitting a proprietary platform into several 

complementary layers. This in turn allows us to model the impact on prices and profit of a strategic 

option that Eisenmann et al. (2007) call “platform envelopment.” As they explain, platform envelopment is 

“entry by one platform provider into another’s market, combining its own functionality with the target’s 

in a multi-platform bundle.” They go on to observe that “[d]ominant firms that otherwise are sheltered 

from entry … due to strong network effects and high switching costs may be vulnerable to an adjacent 

platform provider’s envelopment attack.” Indeed, in 30 examples of platform competition, Eisenmann et 

al. found that 13 involved platform envelopment. It was the most common strategic move by a wide 

margin. 

In our scheme, platform envelopment involves a reduction in the number of layers, for example a 

transition from the configuration in Figure 9b to the one in Figure 9a. Because it mitigates the vertical 

pricing externality (by reducing the number of layers), platform envelopment causes system prices to fall. 

To the extent that the effect shown in Figure 10 generalizes to the real world, platform envelopment will 
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always tend to benefit the enveloper though it may harm the rest of the cluster. Even in the stark 

theoretical form of our model, this observation provides a plausible explanation for why so many firms 

with proprietary platforms have found envelopment to be an attractive strategic option. 

 
5.4 Horizontal and Vertical Mergers 

 

We now consider the impact of horizontal and vertical mergers on cluster pricing and profits. 

Our basic results are intuitive and consistent with prior work (see, e.g., Lafontaine and Slade, 2007 and 

references therein). Basically, in our model, a series of horizontal mergers (one in each layer to preserve 

symmetry) raises prices and may raise or lower aggregate profit depending on where the pre- and post-

merger prices fall in relation to the price charged by a vertically integrated monopoly. Conversely, a 

series of vertical mergers reduces prices and again may raise or lower aggregate profit. 

From a public policy perspective, therefore, horizontal mergers unambiguously reduce consumer 

welfare. In contrast, consistent with the analysis of the Chicago School (cf. Bork, 1978), vertical mergers 

increase welfare by lowering prices. (In our model, costs are fixed by assumption, and thus mergers have 

no impact on efficiency.) These basic concepts are well known, and have been extensively discussed in 

the literature (Farrell and Weiser, 2003). 

 
5.5 Strategic Tensions: The Firm vs. the Cluster 

 

Our model brings to the fore the contrast between what is good for the cluster vs. what is good 

for an individual firm. As discussed above in the section on commoditization, there is a pecuniary 

externality embedded in the cluster form of industrial organization. In general, individual firms are better 

off (1) merging; (2) commoditizing their complementors; and/or (3) promulgating closed, proprietary 

standards. But the most profitable cluster configuration (other than one big firm) has many differentiated 

firms in many complementary layers operating under open, public standards. From the perspective of 

aggregate profitability, the configurations to avoid lie toward the edges of the configuration array: the 

1 N×  form of system-to-system competition and the 1J×  chain of monopolies. 

The conflict between the good of the cluster and the good of individual firms in turn means that 

the incentives of firms and their investors are not always well aligned. Investors, who can hold portfolios 
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of firms, tend to prefer large, multi-layered clusters organized around open standards because such 

configurations, according to our model, can closely approximate the pricing and profits of one big firm. 

This conflict, we think, is real and generates strategic tension within the larger firms in a cluster, 

particularly the platform firms. Specifically, the larger firms have the greatest potential to harm the 

cluster through mergers, commoditization, and the imposition of closed, proprietary standards. But these 

firms are also responsible to and often governed by portfolio investors (e.g., venture capitalists) who are 

interested in the success of the cluster as a whole. Thus senior managers of these firms will feel pressure 

to be stewards—not only of their own companies, but of the cluster as a whole.8 

Recent empirical analysis of platform competition provides some evidence of strategic tension 

within large, platform firms. We offer two examples. First, Iansiti and Levien (2004), who studied 

Microsoft in detail, argue that large groups of firms should be viewed as “ecosystems.” Large firms and 

especially platform providers have a long-term interest in the diversity of their ecosystems. Therefore, 

they argue, enlightened self-interest dictates that such firms should support and channel resources to 

smaller, dependent firms in complementary layers. 

Second, Gawer and Henderson (2007) describe conflicts within Intel over entering new markets 

based on the Intel processor platform. To address the concerns of developers that Intel might leverage its 

proprietary intellectual property to gain advantage over its complementors in adjacent markets, the 

company created a separate organizational unit, the Intel Architecture Lab (IAL), which was “explicitly 

structured as a cost center and rewarded for its success in ‘promoting the health of the ecosystem’ as a 

whole” (p. 3). At the same time, the company committed not to commoditize these markets entirely by 

frequently entering them through product groups that were publicly expected to earn profits. On balance, 

Intel managed to support its ecosystem “by making money but not too much” (p. 18, emphasis in original). 

In summary, with respect to major strategic moves such as the promulgation of standards, the 

commoditization of complements, and especially mergers and acquisitions, the value of individual firms 

and the aggregate profit and value of the cluster as a whole may be diametrically opposed. Managers of 

large firms, especially platform providers, may feel this conflict keenly. When managers are aware of this 

                                                           
8 Even managers that do not feel this pressure from external stakeholders may believe that their own firm’s long-term 
interests lie in being part of a large, profitable cluster. 
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conflict—even if they do not fully understand its root causes—they will feel compelled to balance the 

welfare of their own firm with the general welfare of the cluster. We can see evidence of these cross-

pressures in the organizational structure and practices of firms like Microsoft and Intel. 

 

 

6 Conclusion 
 

In this paper we investigated the possibility that pressures to reduce prices within horizontally 

differentiated product markets can be offset by pressures to increase prices in markets for complementary 

goods. The recognition of this possibility is not new—in fact, it underlies the models and results of 

Economides and Salop (1992), Rey and Stiglitz (1995), Nalebuff (2000), and Casadesus-Masanell et al. 

(2007), among others. This work has hinted at the fact that a disaggregated cluster of firms might be able 

get closer to the prices and profitability of a single firm than a chain of monopolies or a set of vertically 

integrated oligopolies. We have sought first to clarify and generalize these results by constructing a 

model that is both simpler at its core and more “scalable” than those of the existing literature, in the sense 

that it can be extended to symmetric clusters of arbitrary size. Our main contribution has been to isolate 

the offsetting price effects in a model, and show how they might operate in large as well as small clusters 

of firms.  

We then used our model to gain insight into a set of real-world phenomena: open vs. closed 

standards regimes, the commoditization of layers, platform monopolies, and horizontal and vertical 

mergers. In some cases, e.g., mergers, our results are consistent with prior work. In other cases, our 

results are somewhat surprising: for example, our model shows that clusters operating under open, 

public standards may have higher prices and profits than those operating under closed, proprietary 

standards. 

Our model has many limitations. It is entirely static; in particular, the dynamics of entry and exit 

lie outside the scope of the model. For the sake of tractability, it assumes a higher degree of symmetry 

across firms and layers than is characteristic of the real world. (As we showed in Section 5, the model can 

be extended to deal with simple forms of asymmetry, such as platform monopoly, but even the 

extensions rely heavily on symmetry.) We do not consider potential cost differences across cluster 
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configurations; by assumption, all configurations are equally efficient. We also model product variety in a 

very simplistic way, and do not consider how different configurations may affect the range of systems 

available to customers. Moreover, we neglect the specific nature of contracts between firms in a cluster, 

which might affect prices, demand and profit. 

Despite its limitations, the model opens up several avenues for future research. First, from a 

theoretical perspective, it would be interesting to relax the symmetry assumptions further and to consider 

the dynamics of price formation in conjunction with changing cluster structures. In particular, the Nash 

equilibrium condition places high demands on common knowledge and the speed of price adjustment, 

and it would be interesting to explore whether adaptive firms in large clusters with changing structures 

can find (or come close) to an equilibrium. Future work in this direction may need to rely on 

computational experiments. 

Empirically, our model makes one provocative prediction: that clusters based on open standards 

(either public or proprietary) in general have higher system prices and aggregate profits than clusters 

based on closed, proprietary standards. This prediction, while crisp, is difficult to test because of the 

many confounding factors left out of our model. But in principle, the hypothesis might be tested on 

industry sector-level data, by looking for natural experiments, or through case studies. 

In terms of organizational theory, our model motivates and explains a type of strategic tension 

that has already been observed by Iansiti and Levien (2004), Gawer and Henderson (2007), and others. 

The tension made stark by the model is between the good of an individual firm and the good of the 

cluster. Strategic moves such as mergers, commoditization of complements, and the promulgation of 

closed, proprietary standards are profitable for individual firms, but if widely adopted, can destroy a 

cluster and its profits. Thus there is a potential collective action problem (Olson, 1971) in maintaining a 

cluster’s size and diversity. In the absence of antitrust regulation, clusters would devolve into one big 

firm—the 1 1×  configuration. However, if horizontal mergers are disallowed but vertical mergers 

allowed, then there is a risk that a cluster might devolve into a single-layer oligopoly—the 1 N×  

configuration. 

This problem in turn causes the interests of firms to be in conflict with the interests of their 

investors. Large firms and platform firms must decide how to deal with this tension. And it is possible 

that, in a dynamic setting where firms can choose between different platforms, the most successful large 
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firms will be those who place significant weight on the welfare of the cluster in forming their strategies. 

Finally, our model opens up interesting avenues of research in the field of innovation. Beginning 

with Schumpeter (1942), many economists have argued that high levels of innovation are consonant with 

relatively large firms with market power, who can earn enough quasi-rents to pay for their investments 

in new products and processes. (See Baumol, 2002 for a recent version of this argument.) But, at the same 

time, some management scholars claim that very high levels of innovation are characteristic of clusters of 

firms operating under modular product architectures. (See Langlois and Robertson, 1992; Sanchez and 

Mahoney, 1996; Teece, 1996; and Langlois, 2002 for versions of this argument.)  

Our model gives theoretical support to the latter claim: we show that because of the way they 

offset horizontal competition and the vertical pricing externality, large, decentralized clusters can be as 

profitable in aggregate as a vertically integrated monopoly, and more profitable than a one-layer 

oligopoly or a chain of monopolies. Moreover, in a large cluster, the system is broken up into many small 

components, hence clusters make it relatively easy for capital-constrained firms and entrepreneurs to 

gain a foothold with a modular innovation that is limited in scope. 

Cluster forms of industrial organization may not be conducive to all kinds of innovation, 

however. In particular, innovations that add new layers of functionality to the system, and thus increase 

total demand, will not be adequately rewarded relative to the value they create. The reason is akin to the 

vertical pricing externality: the benefits of increased demand will be spread over all layers and thus only 

part of the value created will be captured by the innovator, even if it is a monopoly in its own layer. 

Gawer and Henderson (2007) observe that Intel actively channels resources to innovations at other firms 

that it believes will increase the total demand for its platform. Similar behavior has been documented in 

some two-sided markets, as for example, when platform firms subsidize the creation of new forms of 

content (Hagiu, 2006). Understanding how cluster configurations affect incentives to supply different 

forms of innovation, and how firms respond to these cross-layer dependencies in formulating their long-

term strategies, seems to be a promising avenue for future research. 
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Appendix 
 

A.1 Proof of Proposition 1 
 

The standard theorems on the existence of a pure-strategy Nash equilibrium in a normal-form 

game require the set of each player’s feasible actions to be a compact and convex subset of a Euclidean 

space, and the payoffs to be continuous in the vector of actions and quasiconcave in the action of each 

player (see, e.g., Fudenberg and Tirole, 1991, p. 34). Here the actions are price choices ijp . Although we 

have not set a finite ceiling on prices, the compactness of the action sets can be ensured by mapping the 

real line onto a closed and bounded interval (Debreu, 1952). The payoffs ijπ ∈  are continuous by the 

continuity of ija  and ijb . We now show that ijπ  is quasiconcave in ijp . 

Since ijπ  is differentiable, we can establish quasiconcavity by showing that for any pair of distinct 

prices u and v in the domain of ijπ , ( ) ( )ij ijv uπ π≥  implies ( )( ) 0ij u v uπ ′ − ≥ . (The prices of the other firms 

are taken as fixed, so we omit them from the notation to reduce clutter.) Consider two cases: v u> , where 

u lies on the upward slope of the profit function, and u v> , where u lies on the downward slope. 

In the first case, let x v u= − . Then rewrite ( ) ( )ij ijv uπ π≥  as ( ) ( )( ) ( ) 0ij ij ij iju x c q v u c q u+ − − − ≥ . 

Rearranging terms and dividing by v u−  yields 
 

 ( ) ( ) ( )
( ) 0ij ij

ij ij

q v q u
q v u c

v u

−
+ − ≥

−
.  

By the mean value theorem, the fraction in this expression is the value of the derivative of the demand 
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function for some ( , )z u v∈ . Letting z u y= +  and expanding ijq  according to (8), we have 
 

 ( )0 0( ) ( ) ( ) ( ) ( ) ( ) 0ij ij ij ij ij ij ija u x b u x Q u c a u y b u y b u y a u y Q⎡ ⎤′ ′+ + + − + + + + + ≥⎣ ⎦ . (A1) 

To show that this expression implies ( )( ) 0ij u v uπ ′ − ≥ , we divide the latter by v u−  and expand ijπ ′  

according to (14): 
 

 ( )0 0( ) ( ) ( ) ( ) ( ) ( ) 0ij ij ij ij ij ij ija u b u Q u c a u b u b u a u Q⎡ ⎤′ ′+ − + ≥⎣ ⎦ . (A2) 

Noting that 0 y x< < , we have ( ) ( ) ( )ij ij ija u a u y a u x> + > +  and ( ) ( ) ( )ij ij ijb u b u y b u x> + > + , since ija  and 

ijb  are monotonically decreasing in firm ij’s price by assumptions (9a) and (11a); ( ) ( )ij ija u a u y′ ′≥ +  and 

( ) ( )ij ijb u b u y′ ′≥ +  by the assumed concavity of ija  and ijb . It follows that (A1) implies (A2) for all u v> . 

The second case proceeds analogously, but instead we let x u v= −  and z u y= − . This yields 
 

 ( )0 0( ) ( ) ( ) ( ) ( ) ( ) 0ij ij ij ij ij ij ija u x b u x Q u c a u y b u y b u y a u y Q⎡ ⎤′ ′− − + − − − + − − ≤⎣ ⎦ . (A3) 

Again, we need to show that this implies ( )( ) 0ij u v uπ ′ − ≥ . Diving by v u−  and expanding ijπ ′  as before: 
 

 ( )0 0( ) ( ) ( ) ( ) ( ) ( ) 0ij ij ij ij ij ij ija u b u Q u c a u b u b u a u Q⎡ ⎤′ ′+ − + ≤⎣ ⎦ . (A4) 

Now 0 y x< < , so we have ( ) ( ) ( )ij ij ija u a u y a u x< − < −  and ( ) ( ) ( )ij ij ijb u b u y b u x< + < +  by assumptions 

(9a) and (11a), as well as ( ) ( )ij ija u a u y′ ′≤ −  and ( ) ( )ij ijb u b u y′ ′≤ −  by the concavity of ija  and ijb . It follows 

that (A3) implies (A4) for all v u> . Taking this result together with the first case, we conclude that ijπ  is 

quasiconcave in ijp  over its entire domain, and thus a Nash equilibrium exists.  
 

In fact, ijπ  is strictly quasiconcave in ijp  since (A2) and (A4) hold with strict inequalities. We use 

this fact in the proof of Proposition 3 below. 

 
A.2 Proof of Proposition 2  

 

Recall that (18) expresses the first-order condition for a symmetric equilibrium. To show that it 

has a unique solution, we define a new function h with the property that ( ) 0h p =  if and only if J Np p∗
×= : 

 

 
( ) ( )

( )
( ) ( ) ( ) ( )

J N J N
J N

J N J N J N J N

a p b p C
h p p p p

a p b p b p a p J
× ×∗

×
× × × ×

= − = + −
′ ′+

.  

Since 0J Np∗
× ≥  exists by Proposition 1, (0) 0h ≤ . We now show that h is monotonically increasing in p. 
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Taking the derivative of h with respect to p and rearranging terms yields 
 

 
( )

2 2 2 2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 1

( ) ( ) ( ) ( )

J N J N J N J N J N J N J N J N

J N J N J N J N

a p b p b p b p b p a p a p a p
h p

a p b p b p a p

× × × × × × × ×

× × × ×

′ ′′ ′ ′′⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦′ = +
′ ′+

.  

Noting that ( ) 0J Na p× ≥  and ( ) 0J Nb p× >  by definition, ( ) 0J Na p×′ <  and ( ) 0J Nb p×′ <  by assumptions (9a) and 

(11a), and ( ) 0J Na p×′′ ≤  and ( ) 0J Nb p×′′ ≤  by the concavity of J Na ×  and J Nb × , we find that ( ) 0h p′ >  for all p. 

Since h is continuous and monotonic, by the intermediate value theorem it must pass through 

zero exactly once, yielding a unique solution to (18). This solution is, by definition, a symmetric Nash 

equilibrium, and since (18) is a necessary condition, it is the only one.  

 
A.3 Proof of Proposition 3 

 

Our strategy is to “test” the equilibrium component price of one configuration against the 

equilibrium first-order condition of the other. In part (a), we show that the J M×  marginal profit function 

evaluated at the J N×  equilibrium component price is positive, therefore the J N×  equilibrium price is 

on the rising slope of the J M×  profit function. It follows that the J M×  equilibrium system price is 

higher than the J N×  equilibrium system price. Thus equilibrium system prices go down as the number of 

firms per layer increases. 

Similarly, in part (b), we show that the K N×  marginal profit function is positive when evaluated 

at the J N×  equilibrium system price re-apportioned over K  layers. It follows that the K N×  equilibrium 

system price is higher than the J N×  equilibrium system price. Thus equilibrium system prices go up as 

the number of layers increases. 

The proof requires the following lemma: 
 

Lemma. Under the conservation of total demand, ( / ) ( / )K M J Nb P K b P J× ×= . 
 

Proof. Expanding (22a), using (19) and (20), we have 
 

 ( ) ( ) ( ) ( )K M K M K M J N J N J NQ P Mq p Nq p Q P× × × × × ×= = =  

where ( )K Mp P P K× =  and ( )J Np P P J× = . Substituting for the q terms from (15): 
 

 0 0( ) ( ) ( ) ( )K M K M K M K M J N J N J N J NM a p b p Q N a p b p Q× × × × × × × ×= . 



COMPETITION IN MODULAR CLUSTERS  DECEMBER 20, 2007 

  

41 

But in a symmetric cluster, 1/J Ma M× =  and 1/J Na N× = . Substituting again and canceling terms obtains 

the result.  
 

We now proceed to the proof itself. 

Part (a). From (17), the marginal profit function of a firm in a J M×  symmetric cluster is 
 

 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )J M J M J M J M J M J M J M

C
p a p b p Q p a p b p b p a p Q

J
π × × × × × × ×

⎛ ⎞′ ′ ′⎡ ⎤= + − +⎜ ⎟ ⎣ ⎦
⎝ ⎠

 (A5) 

with ( ) 0J M J Mpπ ∗
× ×′ =  by the first-order condition. 

We wish to determine the sign of (A5) when p is the product price in a J M×  cluster 

corresponding to the equilibrium system price in a J N×  cluster. To do this, we need to convert the 

J M× -subscripted terms in (A5) to their J N×  equivalents. We have five cross-cluster conditions that 

together permit this conversion.  

First, from equation (23), since the two clusters have the same number of layers: 
 

 J Np p∗
×= . 

Second, from equation (16): 
 

 
1

( ) ( )J M J N J N

N
a p a p

M M
∗

× × ×= = . 

Third, from the lemma: 
 

 ( ) ( )J M J N J Nb p b p∗
× × ×= . 

Fourth, from equation (24c): 
 

 ( ) ( )J M J N J Na p a pγ ∗
× × ×′ ′=  

where γ  is a scaling parameter such that 0 1γ< ≤ . (Recall from Section 4.2.3 that adding firms to a layer 

weakly strengthens the cross-price elasticity of demand.) 

Fifth, from equation (24b): 
 

 ( ) ( )J M J N J Nb p b p∗
× × ×′ ′= . 

Substituting these five conditions into equation (A5) obtains 
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0

0

( ) ( ) ( )

( ) ( ) ( ) ( ) .

J M J N J N J N J N

J N J N J N J N J N J N J N J N J N

N
p a p b p Q

M
C N

p a p b p b p a p Q
J M

π

γ

∗ ∗
× × × × ×

∗ ∗ ∗ ∗ ∗
× × × × × × × × ×

′ = +

⎛ ⎞ ⎡ ⎤′ ′− + ⋅⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

 (A6) 

This expression is the marginal profit that a firm in a J M×  configuration would obtain at the J N×  

equilibrium system price. Through the cross-cluster conditions, all the elements are now expressed in 

terms of J N× -subscripted functions. 

We can now substitute into (A6) an explicit expression for the J N×  cluster’s equilibrium product 

price, which is given by equation (18): 
 

 
( ) ( )

( ) ( ) ( ) ( )
J N J N J N J N

J N
J N J N J N J N J N J N J N J N

a p b p C
p

a p b p b p a p J

∗ ∗
× × × ×∗

× ∗ ∗ ∗ ∗
× × × × × × × ×

−
= +

′ ′+
. (A7) 

Making the substitution and collecting terms yields 
 

 
0

0

( ) ( ) ( )

1 ( ) ( )

J M J N J N J N J N J N

J N J N J N J N

N U
p a p b p Q

M D
M U N

a p b p Q
N D M

π ∗ ∗ ∗
× × × × × ×

∗ ∗
× × × ×

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (A8) 

where 
 

 ( ) ( ) ( ) ( )J N J N J N J N J N J N J N J N

N
U a p b p b p a p

M
γ∗ ∗ ∗ ∗

× × × × × × × ×′ ′≡ + ⋅  

 ( ) ( ) ( ) ( )J N J N J N J N J N J N J N J ND a p b p b p a p∗ ∗ ∗ ∗
× × × × × × × ×′ ′≡ + . 

Because 1γ ≤  and M N< , / 1MU ND <  and the leading term of (A8) is positive. Since the terms 

( )J N J Na p∗
× ×  and ( )J N J Nb p∗

× ×  are positive and 0Q  is positive, the entire expression is positive. 

Because the profit function is strictly quasiconcave in prices (see Appendix A.1), this means that 

J M J Np p∗ ∗
× ×> , i.e., the equilibrium component price in the J M×  configuration is greater than the 

equilibrium component price in the J N×  configuration. Multiplying both sides by J yields J M J NJp Jp∗ ∗
× ×> . 

It follows immediately from the definition of the system price that J M J NP P∗ ∗
× ×>  for all M and N such that 

1 M N≤ < .  
 

Part (b). We now test the J N×  equilibrium system price in the marginal profit function of a 

K N×  cluster, where 1 J K≤ < . Using (17) again, the marginal profit function is 
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 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )K N K N K N K N K N K N K N

C
p a p b p Q p a p b p b p a p Q

K
π × × × × × × ×

⎛ ⎞′ ′ ′= + − +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
. (A9) 

As before, we wish to determine the sign of (A9) when p is the product price in a K N×  cluster 

corresponding to the equilibrium system price in a J N×  cluster. Again, to do this, we need to convert the 

K N× -subscripted terms in (A5) to their J N×  equivalents, which a slightly different set of cross-cluster 

conditions will enable us to do. 

First, from equation (23), because the two clusters have different numbers of layers: 
 

 J N

J
p p

K
∗
×= . 

Second, from equation (16): 
 

 
1

( ) ( )K N J N J Na p a p
N

∗
× × ×= = . 

Third, from the lemma: 
 

 ( ) ( )K N J N J Nb p b p∗
× × ×= . 

Fourth, from equation (24a) and the concavity of J Na × : 
 

 ( ) ( )K N J N J Na p a pγ ∗
× × ×′ ′=  

where 0 1γ< ≤ . (Note that ( ) ( )K N J Na p a p× ×′ ′=  by (24a), but J Np p∗
×≤  since J K< , so by the concavity of J Na ×  

we have ( ) ( )J N J N J Na p a p∗
× × ×′ ′≥  and thus ( ) ( )K N J N J Na p a p∗

× × ×′ ′≥ .) 

Fifth, from equation (24d) and the concavity of J Nb × : 
 

 ( ) ( )K N J N J Nb p b pλ ∗
× × ×′ ′=  

where 0 1λ< ≤ . (Recall from Section 4.2.3 that adding layers to a cluster weakly moderates the impact of 

a price increase by the focal firm. Here we need the concavity of J Nb ×  for the same reason as above, but 

we have ( ) ( ) ( )K N J N J N J Nb p b p b p∗
× × × ×′ ′ ′≥ ≥  so we only need one parameter λ .) 

Substituting these five conditions into equation (A9) obtains 
 

 
0

0

( ) ( ) ( )

( ) ( ) ( ) ( ) .

K N J N J N J N J N

J N J N J N J N J N J N J N J N J N

p a p b p Q

J C
p a p b p b p a p Q

K K

π

λ γ

∗ ∗
× × × × ×

∗ ∗ ∗ ∗ ∗
× × × × × × × × ×

′ = +

⎛ ⎞ ′ ′⎡ ⎤− ⋅ + ⋅⎜ ⎟ ⎣ ⎦⎝ ⎠

 (A10) 

This expression is the marginal profit that a firm in a K N×  configuration would obtain at the J N×  



COMPETITION IN MODULAR CLUSTERS  DECEMBER 20, 2007 

  

44 

system price. Through the cross-cluster conditions, all the elements are again expressed in terms of J N× -

subscripted functions. 

We can now substitute into (A10) an explicit expression for the J N×  cluster’s equilibrium 

product price, using equation (18) and ( ) J Np J K p∗
×= . Making the substitution and collecting terms yields 

 

 0( ) 1 ( ) ( )K N J N J N J N J N J N

J J V
p a p b p Q

K K D
π ∗ ∗ ∗

× × × × × ×
⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 (A11) 

where 
 

 ( ) ( ) ( ) ( )J N J N J N J N J N J N J N J NV a p b p b p a pλ γ∗ ∗ ∗ ∗
× × × × × × × ×′ ′≡ ⋅ + ⋅   

 ( ) ( ) ( ) ( )J N J N J N J N J N J N J N J ND a p b p b p a p∗ ∗ ∗ ∗
× × × × × × × ×′ ′≡ + . 

Because , 1γ λ ≤  and J K< , / 1JV KD <  and the leading term of (A11) is positive. Since the terms 

( )J N J Na p∗
× ×  and ( )J N J Nb p∗

× ×  are positive and 0Q  is positive, the entire expression is positive. 

Because the profit function is strictly quasiconcave in prices (see Appendix A.1), this means that 

( )K N J Np J K p∗ ∗
× ×> , i.e., the equilibrium component price in the K N×  configuration is greater than the 

reapportioned equilibrium component price in the J N×  configuration. Multiplying both sides by K  

yields K N J NKp Jp∗ ∗
× ×> , from which it follows immediately that K N J NP P∗ ∗

× ×>  for all J  and K  such that 

1 J K≤ < .  

 
A.4 Proof of Proposition 4 

 

The two sets of inequalities follow from Proposition 3, which establishes the monotonicity of 

equilibrium system prices with respect to J and N. 

To show that 1 1J N
P P∗

∗ ∗
××

→  as J →∞ , we first show that N∗ → ∞  as J →∞ . Relaxing the 

constraint that the number of firms per layer be an integer, let N̂  be the real number for which ˆ 1 1J N
P P∗ ∗

××
= . 

( N∗  is thus the closest integer less than or equal to N̂ .) Using the fact that ˆ
ˆ1

J N
a N

×
=  by (16) and 

ˆ 1 1 1 1 1 1( ) ( )
J N

b P J b P∗ ∗
× × ××

=  by the lemma of Appendix A.3, we obtain after some algebra: 
 

 1 1 1 1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1

( )ˆ
( ) ( ) ( ) ( )

J N J N J N J N

b P
N J

a P J b P J b P J a P J

∗
× ×

∗ ∗ ∗ ∗
× × × ×× × × ×

⎡ ⎤′
⎢ ⎥=

′ ′+⎢ ⎥⎣ ⎦
  

where the term in brackets is strictly positive by the assumptions of the symmetric model, and does not 
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converge to zero as J →∞ . Therefore, as J grows large, N̂  and N∗  do also. 

Next, note that ( 1)lim 0J N J NN
P P∗ ∗

× × +→∞
− =  because J NP∗

×  is a strictly decreasing function of N (by 

Proposition 3) and is bounded below by zero. Since 1 1 ( 1)J N J N
P P P∗ ∗

∗ ∗ ∗
×× × +

≥ >  by construction, we conclude 

that the monopoly price is “squeezed” between 
J N

P ∗
∗
×

 and 
( 1)J N

P ∗
∗
× +

 as J →∞ . The proof that 1 1J N
P P∗

∗ ∗
××

→  

as N →∞  is directly analogous.  

 
A.5 Proof of Proposition 5 

 

The proof makes use of the following lemma, which establishes the monopoly profit as a 

benchmark for the highest aggregate profit attainable by a cluster, and the fact that it is attainable only by 

replicating the system price of a monopoly. 
 

Lemma. Consider two configurations with equilibrium system prices P′  and P′′ , and cluster 

profits ′Π  and ′′Π , respectively. If 1 1P P P∗
×′′ ′< <  or 1 1P P P∗

×′′ ′> > , then 1 1
∗
×′′ ′Π < Π < Π . Likewise, if 

1 1P P∗
×′ =  then 1 1

∗
×′Π = Π . 

 

Proof. Given the conservation of total demand and the other assumptions of the symmetric 

model, all configurations share a common cluster profit function, ( ) ( )P C Q PΠ = − . Since Q is continuous, 

downward-sloping and concave, Π  is strictly concave in its argument, the system price. (We need only 

consider prices for which for P C≥ , since by (18) equilibrium prices always exceed unit costs.) By 

definition, 1 1P∗
×  is the price that maximizes the cluster profit in the monopoly case, and thus for all 

configurations. Therefore, as the system price approaches 1 1P∗
×  from above or below, the cluster profit 

increases and approaches the maximum, 1 1
∗
×Π . If the system price equals 1 1P∗

× , then aggregate cluster 

profit equals the maximum profit, 1 1
∗
×Π .  

 

The existence of profit peaks near J N∗×  and J N∗ ×  configurations follows from Proposition 4 

and the lemma. For 1 N N∗′≤ < , 1 1J N J N
P P P∗

∗ ∗ ∗
′× ××
> ≥  and thus 1 1J N J N∗

∗ ∗ ∗
′× ××

Π < Π ≤ Π . For 1N N∗′′ > + , 

1 1( 1)J N J N
P P P∗

∗ ∗ ∗
′′× ×× +
< <  and thus 1 1( 1)J N J N∗

∗ ∗ ∗
′′× ×× +

Π < Π < Π . Similar reasoning holds for 1 J J∗′≤ <  and 

1J J∗′′ > + . The convergence result follows directly from Proposition 4 and equations (21) and (22).  
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