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Abstract 
 

Much academic work asserts a relationship between the design of a complex system 

and the manner in which this system evolves over time.  In particular, designs which are 

modular in nature are argued to be more “evolvable,” in that these designs facilitate 

making future adaptations, the nature of which do not have to be specified in advance.  In 

essence, modularity creates “option value” with respect to new and improved designs, 

which is particularly important when a system must meet uncertain future demands. 

Despite the conceptual appeal of this research, empirical work exploring the 

relationship between modularity and evolution has had limited success.  Three major 

challenges persist: first, it is difficult to measure modularity in a robust and repeatable 

fashion; second, modularity is a property of individual components, not systems as a 

whole, hence we must examine these dynamics at the microstructure level; and third, 

evolution is a temporal phenomenon, in that the conditions at time t affect the nature of 

the design at time t+1, hence exploring this phenomenon requires longitudinal data. 

In this paper, we tackle these challenges by analyzing the evolution of a successful 

commercial software product over its entire lifetime, comprising six major “releases.”  In 

particular, we develop measures of modularity at the component level, and use these to 

predict patterns of evolution between successive versions of the design.  We find that 

modularity has a strong and unambiguous impact on design evolution.  Specifically, we 

show that i) tightly-coupled components are “harder to kill,” in that they have a greater 

likelihood of survival in subsequent versions of a design; ii) tightly-coupled components 

are “harder to maintain,” in that they experience more surprise changes to their 

dependency relationships that are not associated with new functionality; and iii) tightly-

coupled components are “harder to augment,” in that the mix of new components added 

in each version is significantly more modular than the legacy design. 
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1. Introduction 
What factors should influence the design of a complex system?  A variety of 

academic work has tackled this question, highlighting the critical importance of system 

design decisions to the creation and capture of value at multiple organizational levels.  

Design decisions have been shown to influence the structure of industries and the value 

created within (Baldwin and Clark, 2000); the likelihood of firm failure in the face of 

radical technological change (Henderson and Clark, 1990); the optimal level of product 

variety (Sanderson and Uzumeri, 1995); and the performance of products themselves 

(Ulrich, 1995).  A consistent theme in these studies is the notion that the design of a 

complex system involves a series of choices.  The output of these choices, in turn, 

dictates a system’s performance along multiple (often competing) dimensions. 

An important stream of research within this broader literature focuses on the link 

between system design decisions and system evolution (Simon, 1962).  Studies in this 

area argue that some designs are more “adaptable” than others, in that they facilitate the 

process of modifying or updating the system’s components to reflect changing conditions 

or circumstances.  This feature is valuable to the degree that a system must meet a variety 

of future requirements, the specifics of which cannot be predicted ex-ante (MacCormack 

et al, 2001).  In such situations, one must “design for uncertainty.” 

How do systems that are more evolvable differ from those which are not?  Prior work 

argues that this characteristic stems from designs that are “modular” in nature.   Modular 

designs are “loosely-coupled” in that the system’s functions are decomposed into 

relatively independent parts separated by well defined interfaces.  Loose-coupling allows 

each part to be modified, substituted or deleted with minimal impact on the rest of the 

system.  In essence, modularity creates “options” to adapt a design to meet unforeseen 

future requirements.  Given the widespread theoretical support for a link between 

modularity and evolution, one might imagine a wealth of empirical evidence confirms 

this association.  Yet a robust test of this relationship has proven elusive, due to the 

challenges in measuring modularity and assessing its impact on a design over time. 

This paper reports empirical data from a study that examines the relationship between 

modularity and design evolution.  In contrast to prior work which explores this topic at 

the system level, we focus instead on the microstructure of a design; the individual 
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components from which a system is built and the dependencies that exist between them.  

This is an important distinction given that complex systems comprise a mix of 

components, some of which are tightly-coupled to others and some of which are 

relatively independent.  Our work explores whether these different dependency structures 

explain differences in evolution.  In particular, we examine three different aspects of 

evolution; component survival, an indicator of the degree to which components can be 

removed or substituted over time; component maintainability, a measure of the stability 

of legacy components in a design; and component augmentation, a measure of the ease 

with which new components can be added to a design. 

Our research is situated in the software industry, an ideal context in which to study 

issues of design structure given the information-based nature of the product.  Software 

can be processed automatically to identify the constituent components of a design and the 

dependencies that exist between them, a technique that is not possible with a physical 

product.  Furthermore, we can track the evolution of a design over time, comparing each 

new version to its predecessor to reveal how components evolve.  We use these 

properties to help analyze the evolution of a successful commercial software product 

from first release to its current design.  The dataset encompasses six major versions 

released at varying intervals over a 15 year period. 

 Our results make an important contribution to literature that explores the design of 

complex systems, in that we find strong support for the existence of a relationship 

between component modularity and design evolution.  Specifically, we show that tightly-

coupled components have a higher probability of survival as a design evolves; in essence, 

they are “harder-to-kill.”  We also find that tightly-coupled components are harder to 

maintain, in that they are more likely to experience surprise design changes unrelated to 

newly added or removed functionality.  Finally, we show that tightly-coupled 

components are harder to augment, in that the mix of new components added in each 

version is significantly more modular than the legacy design.  These results have 

important implications for managers, highlighting the impact of design decisions made 

today on both the evolution and maintainability of a design in subsequent years. 

 The paper proceeds as follows.  We first review the prior literature that explores the 

relationship between modularity and design evolution.  We then outline our research 
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methods, which employs a technique called the Design Structure Matrix to analyze the 

evolution of a commercial software product.  Using this technique, we develop several 

hypotheses for the relationships that exist between component modularity and design 

evolution. Next, we describe our empirical data and the methods we use to prepare this 

data for analysis.  Finally, we provide the results of our hypothesis tests and discuss their 

implications for both academic researchers and designers of complex systems. 

  

2. Literature Review 
A growing number of studies contribute to our understanding of the design and 

management of complex systems (Holland, 1992; Kaufman, 1993; Rivkin, 2000; Rivkin 

and Siggelkow, 2007).  Many studies are situated in the field of technology management, 

exploring factors that influence the design of physical or information-based products 

(Braha et al, 2006).  Products are complex systems in that they comprise a large number 

of components with many interactions between them.  The scheme by which a product’s 

functions are allocated to its components is called its “architecture” (Ulrich, 1995; 

Whitney et al, 2004).  Understanding how architectures are chosen, how they perform 

and how they can be adapted are critical topics in the design of complex systems. 

Modularity is a concept that helps us to characterize different product architectures.  

It refers to the way that a product design is decomposed into different parts or modules.  

While authors vary in their definitions of modularity, they tend to agree on the concepts 

that lie at its heart; the notion of interdependence within modules and independence 

between modules.  The latter concept is referred to as “loose-coupling.”  Modular designs 

are loosely-coupled in that changes made to one module have little impact on the others.  

Just as there are degrees of coupling, hence there are also degrees of modularity. 

Modularity yields three types of benefit in a design process (Baldwin and Clark, 

2000).1  First, it increases the range of “manageable” complexity by decomposing the 

functions of a complex system into parts that can be developed independently.  Second, 

modularity allows designers to work in parallel, assuming that they adhere to the “design 

rules” that define the role of components in the system.  Finally, modularity 

                                                 
1 Here we focus on the benefits of modularity to a designer.  Modularity brings important yet different 
benefits to the manufacturers and users of a product (see Ulrich, 1995; Baldwin and Clark, 2000). 
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accommodates uncertainty in that changes to one part of the design have little impact on 

others.  This latter benefit is valuable both during a design process and after it is 

complete, given modules can be improved, substituted or removed as technical 

possibilities and market needs evolve.  In essence, modularity facilitates design evolution. 

The link between modularity and evolution was first made explicitly by Simon (1962) 

who argued that “nearly-decomposable” systems facilitate experimentation and problem-

solving.  A variety of researchers built on this foundation, articulating the dynamics of 

this relationship across both organizational and technical systems (Weick, 1976; Langlois 

and Robertson, 1992; Ulrich, 1995; Garud and Kumaraswamy, 1995; Sanchez and 

Mahoney, 1996; Schilling, 2000).  Recent work formalizes this reasoning by showing 

that modularity creates design “options” (Baldwin and Clark, 2000).  Within a system, 

modules are free to evolve in a decentralized manner; hence greater modularity is 

associated with an increase in the number of possible paths for future adaptations. 

While many studies make significant theoretical contributions to our understanding of 

the link between modularity and evolution, fewer studies explore this link empirically.   

The most important works are based upon descriptive case studies that illustrate how this 

relationship is manifested, but do not constitute a “test” of its existence.  For example, 

Langlois and Robertson (1992) highlight the role of modularity in shaping the evolution 

of the stereo component and microcomputer industries; and Sanderson and Uzumeri 

(1995) show how the success of Sony’s Walkman was enabled by the adoption of 

modular subsystems that could be reused across products and updated independently.  

Studies like these suffer from two problems:  First, they do not measure modularity or 

design evolution in a systematic or repeatable fashion; and second, they view modularity 

as a characteristic of a whole system, rather than of its constituent components.  Hence 

we do not know if components with differing levels of modularity evolve differently. 

The most promising technique for measuring modularity has come from the field of 

engineering, in the form of the Design Structure Matrix (DSM).  A DSM highlights a 

design’s structure by examining the dependencies that exist between its constituent 

elements in a square matrix (Steward, 1981; Eppinger et al, 1994).  These elements can 

represent tasks to be performed, parameters to be defined or actual components in a 

design.  A key contribution of the DSM literature has been in showing that modularity 
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depends not only on the number of dependencies between elements, but also on their 

pattern of distribution (Sosa et al, 2003; Sharman and Yasine, 2004; Rivkin and 

Siggelkow, 2007).  Complex systems comprise a mix of elements with different levels of 

dependency; DSMs can be used to reveal design differences at the microstructure level.  

In recent work, metrics which capture the degree of coupling in a system have been 

developed and used to compare different designs (MacCormack et al, 2006). 

 

2.1 Studies of Software Design and Evolution 

The most significant empirical studies exploring issues of design structure and 

evolution have come in the field of software.  The topic is of particular importance given 

how software is developed.  Rarely do software projects start from scratch.  Instead, the 

prior version is used as a platform upon which new functionality is built.  In many 

projects, the amount of “legacy code” exceeds new code, hence significant efforts must 

be devoted to maintenance.  Indeed, mature products often contain significant amounts of 

code from their earliest versions, even if major evolutions in design have since been 

made (e.g., MacCormack and Herman, 2000).  This dynamic creates unique challenges, 

in that today’s developers must bear the consequences of design decisions made years 

earlier.  Understanding how designs evolve, how they can be made more “evolvable,” 

and the role that modularity plays in this process are critical areas for attention. 

The formal study of software modularity began with Parnas (1972) who proposed the 

concept of information hiding as a mechanism for dividing code into modular units.  This 

required designers to separate a module’s internal details from its external interfaces, 

reducing the coordination costs involved in system development and facilitating changes 

to modules without affecting other parts of the design.  Subsequent authors built on this 

work, proposing metrics to capture the level of “coupling” between modules and 

“cohesion” within modules (e.g., Selby and Basili, 1988; Dhama, 1995).  Modular 

designs were asserted to have both low coupling and high cohesion.  This work 

complemented other studies which sought to measure product complexity for the 

purposes of predicting development productivity and quality (e.g., McCabe 1976; 

Halstead, 1976).  While measures of complexity focus on the number of elements in a 

design, measures of modularity focus on the pattern of dependencies between elements. 
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Efforts to measure software modularity empirically typically center on capturing the 

level of coupling between different parts of a design.   Two broad methods are employed.  

The first analyzes specific types of dependency between components, using these to 

assess a design’s structure.  For example, recent critiques of the Linux operating system 

have examined both the use of global variables (variables used by many parts of a design; 

Schach et al, 2002) and the use of function calls (calls between different parts of a design; 

Rusovan et al, 2005).  The second infers the presence of dependency by assessing which 

components must be changed in order to fulfill a modification request (MR).  For 

example, Eick et al (1999) show that code decays over time as measured by the number 

of files changed to complete a MR; while Cataldo et al (2006) show that the time required 

to complete a MR depends on the degree of alignment between team communication and 

the component dependencies implied by patterns of MR changes. 

The formal study of software evolution has its roots in empirical work by Lehman 

and Balady (1976; 1985) resulting in what are called the “laws of program evolution.”  

These laws build from rich observations of real world systems combined with theoretical 

insights from computer science to predict general patterns of system growth.    

Subsequent studies to verify these laws have produced mixed results (see Barry and 

Kemerer, 2007 for a comprehensive review).  Much of the problem may stem from the 

deterministic nature of these laws, which aim to describe “central tendencies” in system 

evolution.  In practice, many critical contingencies exist (such as the level of modularity) 

that might lead one to observe (or induce) different evolutionary dynamics. 

Studies seeking to link measures of modularity with system evolution have tended to 

focus on predicting the cost and frequency of changes across different systems.  Banker 

et al (1993) examine 65 maintenance projects across 17 systems and find that project 

costs increase with system complexity, as measured by average “procedure” size and 

number of “non-local” branching statements (a type of dependency).  Kemerer and 

Slaughter (1997) examine modification histories for 621 software modules and find that 

enhancement and repair frequency increase with module complexity, as measured by the 

number of module decision paths (McCabe, 1976) normalized by size.  Banker and 

Slaughter (2000) examine three years of modification data from 61 business applications 

and find that total modification costs increase with application complexity, as measured 
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by the number of input/output data elements per unit of functionality.  This relationship is 

mediated by the use of greater structure, as captured by the number of “calls” per unit of 

functionality.  Finally, Barry et al (2006) examine the evolution of 23 applications over a 

20 year period and find that an increase in the use of standard components (a proxy for 

modularity) is associated with a decline in the frequency and magnitude of subsequent 

modifications.  This dynamic is attributed to the localization of changes within modular 

components, which reduces the level of change for the system as a whole. 

Our review of this literature suggests several criteria must be met to explore the 

relationship between modularity and design evolution in a robust fashion.  First, the study 

should use longitudinal data, given the need to relate structural attributes of a design at 

time t to subsequent patterns of change and the resultant design at t+1.  Second, the study 

should explore these dynamics at the microstructure level, given that modularity is a 

property of individual components rather than the design as a whole.2  And third, the 

study must account for different aspects of evolution, given that prior studies show 

modularity may influence each in different ways.  Consider that if modular components 

are more easily adapted than others we might expect them to be substituted, removed or 

augmented more frequently over time.  However, prior work also shows that modular 

components are easier to maintain, hence may be less likely to experience design changes 

associated with “corrective” actions (i.e., “churn”).  A study must differentiate between 

these different types of change in order to explain observed patterns of evolution. 

These criteria can be met by applying the technique of Design Structure Matrices 

(DSMs) to analyze the relationship between modularity and design evolution.  DSMs 

provide a robust and repeatable way to analyze and measure the characteristics of a 

design at the component level, and to track evolution over time.  Recent work explores 

the use of DSMs to both model alternative software design choices ex-ante and examine 

the impact of intentional re-design efforts ex-post (Sullivan et al, 2001; Lopes and 

Bajracharya, 2005; MacCormack et al, 2006; La Mantia et al, 2008).  We apply this 

technique to analyze the evolution of a successful commercial software product. 

                                                 
2 To illustrate, consider two designs with eight components:  in one, each component is tightly-coupled to 
just one other, forming four two-component modules; in the other, four of the components form a single 
tightly-coupled module, whereas the others have no dependencies with any component.  Both these designs 
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3. Research Methods and Hypotheses 
Below, we describe how we apply DSM methods to software and develop several 

measures of component modularity that can be derived from a DSM.  We then formalize 

our approach to analyzing design evolution and develop hypotheses for the relationships 

that exist between component modularity and three different aspects of evolution:  

component survival, component maintainability and component augmentation. 

    

3.1 Applying DSMs to Software3 

There are two choices to make when applying DSMs to a software product:  The level 

of analysis and the type of dependency.  With regard to the former, there are several 

levels at which a DSM can be built:  The directory level, which corresponds to a group of 

source files that pertain to a specific subsystem; the source file level, which corresponds 

to a collection of related processes and functions; and the function level, which 

corresponds to a set of instructions that perform a specific task.  We analyze designs at 

the source file level for a number of reasons.  First, source files tend to contain functions 

with a similar focus.  Second, tasks and responsibilities are allocated to programmers at 

the source file level, allowing them to maintain control over all the functions that perform 

related tasks.  Third, software development tools use the source file as the unit of analysis 

for version control. And finally, prior work on design uses the source file as the primary 

level of analysis (e.g., Eick et all, 1999; Rusovan et all, 2005; Cataldo et al, 2006). 

There are many types of dependency between source files in a software product.4  We 

focus on one important dependency type – the “Function Call” – used in prior work on 

design structure (Banker and Slaughter, 2000; Rusovan et al, 2005).  A Function Call is 

an instruction that requests a specific task to be executed.  The function called may or 

may not be located within the source file originating the request.  When it is not, this 

creates a dependency between two source files, in a specific direction.  For example, if 

FunctionA in SourceFile1 calls FunctionB in SourceFile2, then we note that SourceFile1 

depends upon (or “uses”) SourceFile2.  This dependency is marked in location (1, 2) in 

                                                                                                                                                 
have the same number of dependency relationships, but in one, each component has the same level of 
coupling whereas in the other, there are two completely different levels of coupling. 
3 The methods we describe here build on prior work in this field (see MacCormack et al, 2006 for details). 
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the DSM. Note this does not imply that SourceFile2 depends upon SourceFile1; the 

dependency is not symmetric unless SourceFile2 also calls a function in SourceFile1. 

To capture function calls, we input a product’s source code into a tool called a “Call 

Graph Extractor” (Murphy et al, 1998).  This tool is used to obtain a better understanding 

of system structure and interactions between parts of the code.5  Rather than develop our 

own extractor, we tested several commercial products that could process source code 

written in both procedural and object oriented languages (e.g., C and C++), capture 

indirect calls (dependencies that flow through intermediate files), run in an automated 

fashion and output data in a format that could be input to a DSM.  A product called 

Understand C++6 was selected given it best met all these criteria. 

The DSM of a software product can be displayed using the Architectural View. This 

groups each source file into a series of nested clusters defined by the directory structure, 

with boxes drawn around each successive layer in the hierarchy.  The result is a map of 

dependencies, organized by the programmer’s perception of the design.  To illustrate, the 

Directory Structure and Architectural View for Linux v0.01 are shown in Figure 1.  Each 

“dot” represents a dependency between two particular components (i.e., source files). 

 
Figure 1:  The Directory Structure and Architectural View of Linux version 0.01. 

 

   

                                                                                                                                                 
4 Several authors have developed comprehensive categorizations of dependency types (e.g., Shaw and 
Garlan, 1996; Dellarocas, 1996).  Our work focuses on one important type of dependency. 
5 Function calls can be extracted statically (from the source code) or dynamically (when the code is run).  
We use a static call extractor because it uses source code as input, does not rely on program state (i.e., what 
the system is doing at a point in time) and captures the system structure from the designer’s perspective. 
6 Understand C++ is distributed by Scientific Toolworks, Inc. see <www.scitools.com> for details. 
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3.2 Measuring Component Modularity 

In order to assess the impact of component modularity on design evolution, we 

develop two measures of the degree to which components are coupled to each other.  

First, we assess the number of direct dependencies that a component possesses, a 

measure we call “Direct Connectivity.”  Second, we assess the number of both direct and 

indirect dependencies that a component possesses, a measure known as “Visibility” 

(Sharmine and Yassine 2004; Warfield 1973).  In both cases, we use separate measures 

for dependencies which flow into a component (called “Fan-In”) from those which flow 

out of it (called “Fan-Out”) reflecting the asymmetric nature of dependency relationships. 

To illustrate, consider the example system depicted in Figure 2 in both graphical and 

DSM form.  We see that element A depends upon (or “calls functions within”) elements 

B and C, so a change to element C may have a direct impact on element A.  In turn, 

element C depends upon element E, so a change to element E may have a direct impact 

on element C, and an indirect impact on element A, with a “path length” of two.  

Similarly, a change to element F may have a direct impact on element E, and an indirect 

impact on elements C and A with path lengths of two and three, respectively.  There are 

no indirect dependencies between elements for path lengths of four or more. 

 

Figure 2:  Example System in Graphical and DSM Form 

 

 

  A B C D E F 

A 0 1 1 0 0 0 

B 0 0 0 1 0 0 

C 0 0 0 0 1 0 

D 0 0 0 0 0 0 

E 0 0 0 0 0 1 

F 0 0 0 0 0 0 

 

The measures of Direct Connectivity (DC) are derived directly from the DSM.  For 

example, element A has a DC Fan-Out of two, given it depends upon elements B and C;  

and it has a DC Fan-In of zero given that no elements depend upon it.  To identify the 

Visibility of each element, we use the technique of matrix multiplication.  Specifically, 
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by raising the DSM to successive powers of n, we obtain the direct and indirect 

dependencies that exist for each successive path length n.  Summing these matrices yields 

the visibility matrix V, which shows the direct and indirect dependencies between 

elements for all possible path lengths up to the maximum, defined by the size of the 

DSM.7   Figure 3 illustrates the derivation of this matrix. 

 

Figure 3:  The Derivation of the Visibility Matrix 

 

 
The measures of Visibility are derived directly from the visibility matrix. Visibility 

Fan-Out (VFO) is obtained by summing along the rows.  For example, element A has a 

VFO of six, meaning it depends upon all other elements, directly or indirectly.  Visibility 

Fan-In (VFI) is obtained by summing down the columns.  For example, element A has a 

VFI of one meaning it is visible only to itself.8  For comparative purposes, VFO and VFI 

can be expressed as a percentage of the number of elements in the system. 

Note that our two measures represent the opposite ends of a continuum along which 

levels of coupling can be measured.  The first captures only direct links between 

components.  The second captures all direct and indirect links between components, 

giving them equal weight regardless of path length.  In this respect, our research design 

sheds light on a variety of potential measures that lie in-between these two extremes. 

 

                                                 
7 Note that we choose to include the matrix for n=0 (i.e., a path length of zero) when deriving the visibility 
matrix, implying that an element will always depend upon itself. 
8 The mean visibility of all components provides an indication of the coupling for the system as a whole.  
This measure is referred to as Propagation Cost in prior work (MacCormack et al 2006). 
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3.3 Analyzing Design Evolution using DSMs 

Our analysis approach involves using DSMs to track the evolution of a design at the 

component level, assessing how these dynamics are affected by the levels of coupling 

between components.  In order to formalize this approach, we consider the DSMs of two 

successive versions of a design, as depicted in Figure 4.  Version A contains N 

components, each of which may have dependencies with other components in the design.  

Version B, its successor, inherits X “legacy” components while N-X components “die.”  

In addition, Y new components are added.  These new components may have 

dependencies with each other as well as with the legacy components.  The dependencies 

among the legacy components may also have changed in version B. 

 

Figure 4:  Analyzing Design Evolution Using DSMs 

 

Version A Version B

(N) Components

(X + Y) Components

Destined to Live
= (X)

Destined to Die = (N-X)

Legacy
Components

= (X)

New Components
= (Y)

Integration:
“New uses Old”

Integration:
“Old uses New”

Version A Version B

(N) Components

(X + Y) Components

Destined to Live
= (X)

Destined to Die = (N-X)

Legacy
Components

= (X)

New Components
= (Y)

Integration:
“New uses Old”

Integration:
“Old uses New”

 
 

Our first hypothesis concerns the nature of the components that “die” in the transition 

from one version to the next.  This dynamic occurs for two reasons: The functionality a 

component provides is superseded by a new component and it is substituted; or the 

functionality a component provides is no longer needed and it is excluded (Baldwin and 

Clark, 2000).   These actions represent major adaptations, in that the older component no 

longer exists in the new version.  Such adaptations are likely to be more difficult to the 

degree that a component is tightly-coupled to other components in the design.  In essence, 

tightly-coupled components will be “harder to kill.”  Hence our first hypothesis: 
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H1:  The likelihood of survival between two versions is positively associated with a 

component’s level of Direct Connectivity and Visibility in the earlier version.9 

 

Our second hypothesis concerns changes to the dependency relationships between 

legacy components, a dynamic we refer to as “churn.”  Consider that in each new version 

of a design there are many changes to the dependency relationships between components.  

These can be divided into those which are “expected” (i.e., they are associated with 

newly added or removed components) and those which are “surprises” (i.e., they are 

associated with legacy components).10  Prior work has shown that tightly-coupled 

components are harder to maintain, in that they generate more frequent and costly design 

modifications associated with correction or repair.  These components are therefore more 

likely to be a source of “surprise” dependency changes.  Hence our second hypothesis: 

 

H2:  The likelihood of “churn” between two versions is positively associated with a 

component’s level of Direct Connectivity and Visibility in the earlier version.11 

 

Our third hypothesis concerns the nature of the components that are added to a design 

as it evolves.  Prior work argues that modular components are easier to develop and add 

to a design, given they can be built and tested independently and integrated with existing 

components more easily.  Of course, in any new version it is likely that a mix of 

components with different levels of coupling will be added to the design.  However, the 

proportions of each are likely to differ, as compared to the legacy components inherited 

from the prior version.  Hence our third hypothesis: 

 

H3:  New components added to a design are likely to have lower levels of Direct 

Connectivity and Visibility than legacy components inherited from the prior version. 

 

                                                 
9 The null hypothesis is that the likelihood of survival is independent of the level of coupling.  If all 
components in a design are equally likely to be substituted or excluded, this would be true. 
10 Note that with this definition, surprises can only occur among the X legacy components. 



 16

4. Description of the Data 
The dataset comprises six major releases of a successful commercial software 

product.  The six releases date from the early 1990s to 2006, each representing a new 

version of the product that was marketed and sold to consumers.  Our objective was to 

capture new “platform” versions, not intermediate releases or updates.  While the design 

continued to evolve in-between each version, the intermediate states were not fully tested 

or sold as a whole, hence do not represent stable or complete designs.  We obtained the 

source code for each release from the vendor, and processed the code to extract the 

function call dependencies between each source file in each version.  We used this data to 

calculate measures of modularity for each source file in each version.  Table 1 gives 

descriptive data for each version (the DSMs are shown in Appendix A). 

 

Table 1:  Descriptive Data for Each Version12 

Version (V) A B C D E F 
Source Files 156 284 1407 1857 2434 2756 
Dependencies 1409 2806 7025 8727 10424 11128 
Density of DSM 5.57% 3.49% 0.36% 0.25% 0.18% 0.15% 
Survivors (in V+1) 116 170 1261 1296 2330 n/a 
Survival Rate 74.4% 59.9% 89.6% 69.8% 95.7% n/a 
 

Two observations are apparent from this data.  First, the early versions of the product 

are much smaller than later versions and have a higher density of dependencies between 

files.  Second, the extent to which the design is changed varies significantly from version 

to version.  For example, only 60% of the files in Version B survive to Version C.  By 

contrast, almost 90% of the files in Version C survive to Version D.  These differences 

are driven by variations in the release cycle (the time between versions); the maturing of 

the product; and the particular goals for each release.  Our empirical approach involves 

testing our hypotheses within each version, as well as for an aggregate model which 

pools all observations, controlling for inter-version differences by the use of dummies. 

Table 2 and Table 3 display descriptive data for measures of component modularity. 

The data reveals that the distributions of these measures are non-normal.  In particular, 

                                                                                                                                                 
11 The null hypothesis is that the likelihood of a “surprise” dependency change is independent of the level 
of coupling.  If all legacy components are equally likely to experience “churn,” this would be true. 
12 There is no “successor” to version F, which is the current design sold in the market. 
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standard deviations often exceed the mean and median values are often significantly 

lower than the mean.  The skewed distributions are illustrated in Appendix B, which 

shows the histograms of values from version C.  We observe that Direct Connectivity has 

an exponential distribution, while Visibility has a Bi-Polar distribution.  The latter pattern 

can be traced to a feature of this design that is visible in the DSM.  Specifically, it 

appears to contain a dense “core” of files that are highly visible to one another.  If a file 

has a dependency with one file in the core, it is, in turn, visible to all others. 

 

Table 2:  Descriptive Data for Measures of Direct Connectivity by Version13 

 Mean StdDev DCFO StdDev DCFI Median DCFO Median DCFI 
Version A 8.9 7.2 13.7 7 4 
Version B 9.9 9.0 18.6 7 4 
Version C 5.9 8.8 17.5 1 1 
Version D 4.7 8.7 19.6 1 1 
Version E 4.3 8.0 23.4 1 1 
Version F 4.0 7.8 23.9 1 1 
 
Table 3:  Descriptive Data for Measures of Visibility by Version14 

 Mean StdDev VFO StdDev VFI Median VFO Median VFI 
Version A 107.7 42.0 54.3 124 135 
Version B 176.4 69.0 110.6 203 246 
Version C 172.4 197.8 271.3 1 1 
Version D 172.2 205.4 315.1 1 1 
Version E 172.6 203.7 377.9 1 1 
Version F 164.5 202.0 387.9 1 1 
 

To account for these non-normal distributions we apply a transformation to each 

measure.  For Direct Connectivity, we use a log transformation, reflecting the fact that 

the impact of each added connection is likely to decline as values increase.  For 

Visibility, we transform the measures into a binary form by observing whether the values 

exceed a threshold, defined as the midpoint between zero and the maximum level of 

visibility (which varies by version).  We then allocate each file to one of four different 

“types” based upon their levels of visibility (see Table 4) allowing us to examine whether 

these different types play different roles in explaining system evolution. 

 

                                                 
13 The mean of CFO and CFI are identical, given each “call” out is matched by a corresponding “call” in. 
14 The mean of VFO and VFI are identical, given each “call” out is matched by a corresponding “call” in. 
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Table 4:  Different File “Types” based upon levels of Visibility 

High VFI and VFO Files with high visibility on both dimensions are “Core” files.  
They are both “seen by” many files and “see” many files. They 
are often linked directly or indirectly to all other core files. 

High VFI only  Files with high VFI are seen by many other files, but do not see 
other files.  They often represent system “Buses,” which provide 
shared functionality to many different parts of the system. 

High VFO only Files with high VFO see many other files, but are not seen by 
other files.  These often represent system “Brokers,” which direct 
the flow of program control into the system “Core.” 

Low VFO and VFI Files with low visibility on both dimensions are “Periphery” files. 
They are neither seen by many files nor see many files.   They 
are often “singletons” which execute independently of other files. 

 
 

Note that our measures of direct connectivity and visibility are likely to be correlated, 

given that the visibility matrix includes direct dependencies.  The relationship between 

these two variables however, is subtle.  While a zero value for direct connectivity, by 

definition, leads to low visibility, the opposite is not true.  High values of visibility stem 

not from the number of connections a file has, but the particular files to which it is 

connected.  This can be seen by reflecting upon the “core–periphery” nature of the 

design.  A single connection to the core will yield high visibility; by contrast, many 

connections to non-core files may yield low visibility. 

To deal with potential correlation we use an empirical approach driven by the data.  

Given that we make no prediction as to whether Direct Connectivity or Visibility is 

dominant in explaining evolution, we test the power of each and define the strongest as 

our primary predictor.  We then normalize the second measure to remove that part of its 

variance explained by the first, making our secondary predictor orthogonal to the first.  In 

the results tables that follow, the secondary predictor is denoted by the use of italics. 

 

5.  Empirical Results 
 

5.1 Hypothesis One: Component Survival 

We test our first hypothesis by looking at the impact of measures of component 

modularity on the likelihood of survival in the next version.  In particular, we examine 

whether components that are more tightly coupled to other components are harder to kill 
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(i.e., more likely to survive).  Table 5 contains the results of a logistic regression model 

predicting component survival for each of the five versions, as well as for all versions 

considered in aggregate.  The aggregate model includes dummies for each version to 

control for differences in version survival rate related to unobservable factors.15 

 

Table 5:  Logistic Regression Models Predicting Source File Survival16 

VERSION A B C D E ALL 

Survival Rate 74.4% 59.9% 89.6% 69.8% 95.7%  

Constant -0.9 -3.1*** 1.6**** 0.5**** 2.8**** 2.81**** 

Version A n/a n/a n/a n/a n/a -3.14**** 

Version B n/a n/a n/a n/a n/a -3.76**** 

Version C n/a n/a n/a n/a n/a -1.05**** 

Version D n/a n/a n/a n/a n/a -2.39**** 

High VFI Only 3.2** 4.1**** 1.5** 1.4**** 31.9**** 1.74**** 

High VFO Only 1.1 1.7 1.8**** 0.6**** 1.0**** 0.71**** 

High VFI and VFO 2.4*** 4.4**** 3.0** 1.1**** 1.2*** 1.72**** 

Connectivity FI -0.1 0.0 0.3 0.3** 0.5* 0.24*** 

Connectivity FO 0.8*** 0.2 0.7** 0.4**** 0.0 0.39**** 

McFadden R-square 13.5% 27.3% 13.0% 4.5% See text 18.7% 

Estrella R-square 15.2% 34.9% 8.9% 5.5% See text 16.5% 

Sample Size (N) 156 284 1407 1857 2434 6138 
**** p<0.1%, *** p<1%, ** p<5%, * p<10% 

 

The results show support for our first hypothesis.  While the strength of the effects 

varies across versions, all four measures of modularity are significant at p=0.001 in the 

                                                 
15 Note that the aggregate model may include the same source file more than once.  Each version represents 
a separate observation of whether a component survives, as predicted by its coupling to other components.  
This is appropriate given the measures of coupling for each component may change in each version.  For 
example, a component may have high VFO in version A, zero VFO in version B, and die in version C.  
This would yield two data points: a file with high VFO that survived; and a file with low VFO that died. 
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aggregate model.  Components which are more tightly-coupled to other components have 

a higher probability of survival than those which are loosely-coupled. In the aggregate 

model, measures of modularity predict 16% to 19% of the variation in outcomes. 

The pattern of results across versions reveals additional insights.   The measures for 

High VFI Only and High VFI and VFO are always significant.  By contrast, the measure 

for High VFO Only is only significant in later versions.  This suggests that fan-in 

visibility is more dominant in explaining survival.  Intuitively, adapting a file when 

others depend upon it is difficult, whereas adapting a file when it depends upon others 

may be easier.  This interpretation is supported by the coefficient on the measure for High 

VFI and VFO, which is similar in magnitude to that for High VFI Only.  That is, a file 

that is highly visible on both dimensions has a similar probability of survival to a file 

with only a high fan-in visibility.  There is no added impact for high fan-out visibility. 

The pattern of results for the normalized measures of direct connectivity is less clear.   

The fan-in measure is significant (with p=0.05) in one version as well as the final model.  

The fan-out measure is significant in three versions as well as the final model.  While the 

results suggest that direct connectivity may have an effect on survival that is distinct from 

its association with visibility, this conclusion needs further testing. 

To further illustrate these results, Appendix C provides data on component survival 

rate, split by file type as identified by levels of visibility.  We note that files with low 

visibility have a uniformly lower survival rate than others.    The effect is most notable in 

versions with high turnover.  For example, only one of the 24 files with low visibility 

survives the transition from version B to version C.  By contrast, the survival rate for files 

with high visibility is noticeably higher than the mean.  For example, only four of the 357 

files with high visibility die in the transition from version C to version D. 

To understand the size of effects in our aggregate model, we substitute values and 

observe the differences in predicted survival rate.  Table 6 displays the actual survival 

rates for each version as well as predicted survival rates for i) a file with low visibility on 

both dimensions and ii) a file with high visibility on both dimensions (i.e., a “core” file). 

    

                                                                                                                                                 
16 We report two measures of R-square to assess goodness of fit (McFadden, 1984; Estrella, 1998). 
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Table 6:  Actual and Predicted Survival Rates for Files with Different Visibility 

VERSION Actual Survival Rate: 
All Files 

Predicted Survival Rate: 
Low Visibility 

Predicted Survival Rate: 
High Visibility 

A 74% 42.1% 80.0% 
B 60% 28.1% 68.6% 
C 90% 85.4% 97.0% 
D 70% 60.6% 89.6% 
E 96% 94.4% 98.9% 

 

Two observations can be made from this table.  First, the differences in survival rate 

are large in magnitude, especially when there is a high rate of turnover in a specific 

version (i.e., the survival rate is low).  For example, in versions A and B, files with high 

visibility have around twice the likelihood of survival as those with low visibility; in 

version E, by contrast, the likelihood of survival is similar given that most files survive 

(note that there are large differences in the likelihood of “dying”).  Second, the likelihood 

of survival for high visibility files is uniformly high.  In only one version does the figure 

drop below 80%.  Tightly-coupled files are truly hard to kill. 

We note again that our aim was not to explain the large variation in survival rate 

between versions, except to the degree that these are associated with the mix of files with 

differing levels of modularity.  Version survival rates are affected by a variety of other 

factors, including differing release intervals, the maturing of the product and specific 

market and technological challenges at the time.  Our sample spans a 15-year period over 

which fundamental changes were occurring in software; from the rise of object-oriented 

programming to the advent of the Internet.  How and when the firm chose to tackle such 

challenges would have had a major impact on the survival rate for specific versions. 

 

5.2 Hypothesis Two: Component Maintainability 

We test our second hypothesis by looking at the impact of measures of modularity on 

component maintainability.  In particular, we examine whether components that are more 

tightly coupled to other components are more likely to experience “churn” – surprise 

dependency changes that are unrelated to newly added or removed functionality.  The 

sample for testing this hypothesis differs to that for hypothesis one.  Specifically, we 

consider only the legacy components that survive from one version to another, given 

these represent the set of components which may experience maintenance. 
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Changes in the dependency relationships of legacy components come in two forms:  

Those which remove dependencies; and those which add dependencies.  While both these 

actions represent types of churn, they have very different effects.  Removing 

dependencies tends to increase system modularity whereas adding dependencies has the 

reverse effect.  All else being equal, increasing the modularity of the legacy functions in a 

system is often seen as desirable, hence this type of churn may not be problematic, and 

may even be planned.  We therefore focus on dependency additions, given these 

represent the most problematic type of change to legacy components. 

Table 7 gives descriptive data relevant to testing hypothesis two for each release. 

 
Table 7:  Descriptive Data for Each Release 

VERSION (V) B C D E F 

Source Files 284 1407 1857 2434 2756 
Legacy Source Files (LSF) 116 170 1261 1296 2330 
LSF with Dependency Additions 101 149 391 520 341 
Churn Rate 87.1% 87.6% 31.0% 40.1% 14.6% 
      
Dependencies 2806 7025 8727 10424 11128 
Dependency Changes (from V-1) 2415 8079 4652 8795 1706 
 of which “Surprise” Changes  348 1184 1937 2386 640 
  of which, Dependency Additions 220 336 720 940 364 
Surprises as % All Changes 14.4% 14.7% 41.6% 27.1% 37.5% 
Additions as % All Surprises 63.2% 28.4% 37.1% 39.4% 56.9% 
 

Three observations can be made from this data.  First, the churn rate declines over 

time, indicating that legacy components are increasingly stable.  While the trend is not 

uniform, it is marked in nature; from 87% in early versions to less than 15% in the final 

version.  Second, the number of surprise dependency changes is a significant portion of 

the total number of changes in each new version, ranging from just under 15% to over 

40%.  To the degree that development effort is correlated with dependency changes, the 

data suggests that significant resources must be devoted to maintaining legacy functions.  

Finally, while the proportion of surprises associated with dependency additions varies 

from 28.4% to 68.2%, the mean is 39.4%.17   This suggests that maintenance efforts, 

considered individually, tended to increase the modularity of the legacy functions. 

                                                 
17 Of the 6,495 surprise dependency changes since version A, there were 3,915 reductions and 2,580 
additions.  On balance therefore, these efforts have tended to increase the modularity of the legacy design. 
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Table 8 contains the results of a logistic regression model predicting the churn rate of 

legacy components in each version, as well as for all versions considered in aggregate.  

The aggregate model includes dummies for each version to control for differences in 

churn rate that are related to unobservable factors. 

 

Table 8:  Logistic Regression Models Predicting Source File Churn18 

VERSION19 B† C† D E F ALL 

Churn Rate 87.1% 87.6% 31.0% 40.1% 14.6%  

Constant -38.1 49.0**** -2.87**** -2.46**** -3.94**** -4.10**** 

Version B n/a n/a n/a n/a n/a 2.71**** 

Version C n/a n/a n/a n/a n/a 2.50**** 

Version D n/a n/a n/a n/a n/a 1.01**** 

Version E n/a n/a n/a n/a n/a 1.85**** 

High VFI Only 40.42 -48.11**** 3.23**** 2.80**** 2.48**** 2.88**** 

High VFO Only 39.38 -47.14**** 2.31**** 3.06**** 2.10**** 2.51**** 

High VFI and VFO 42.28 -46.50**** 3.75**** 4.27**** 4.33**** 4.17**** 

Connectivity FI  2.75** -0.18 0.85**** 0.31*** 0.91**** 0.68**** 

Connectivity FO 1.37* 1.43**** 1.17**** 1.03**** 0.54**** 0.84**** 

McFadden R-square 45.1% 14.5% 37.0% 40.6% 36.6% 43.8% 

Estrella R-square 37.0% 11.0% 43.6% 50.4% 31.6% 50.1% 

Sample Size (N) 116 170 1261 1296 2330 5173 
**** p<0.1%, *** p<1%, ** p<5%, * p<10%    † See discussion of model robustness in the text 

The results show strong support for our second hypothesis.  While the strength of the 

effects varies across versions, all four measures of modularity are significant at p=0.001 

in the aggregate model.  Legacy components that are more tightly-coupled have a higher 

likelihood of experiencing dependency additions.  In the aggregate model, measures of 

modularity predict 40% to 50% of the variation in outcomes. 

                                                 
18 We report two measures of R-square to assess goodness of fit (McFadden, 1984; Estrella, 1998). 
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We note that the models for versions B and C behave abnormally with respect to 

statistical significance and the size of the coefficients. To understand why, we examine 

data on churn rate split by file type, as identified by levels of visibility (see Appendix D).  

It is instantly apparent why these versions present problems: low visibility files are rare.  

In version B, only three of the 116 legacy files have low visibility, while in version C, 

only one of the 170 legacy files has low visibility.  These models are therefore not robust.  

Only in versions D and later are there a large number of legacy components with low 

visibility.  In these versions, the churn rate for these files is extremely low, between 2% 

and 9%.  By comparison, the churn rate for high visibility files is always above 50%. 

To understand the size of effects in our aggregate model, we substitute values and 

observe the differences in predicted churn rate.  Table 9 displays the actual churn rates 

for each version as well as predicted churn rates for a file with low visibility on both 

dimensions and a file with high visibility on both dimensions (i.e., a “core” file). 

 

Table 9:  Actual and Predicted Churn Rates for Files with Different Visibility 

VERSION Actual Churn Rate: 
All Files 

Predicted Churn Rate: 
Low Visibility 

Predicted Churn Rate: 
High Visibility 

B 87.1% 18.8% 93.8% 
C 87.6% 16.4% 92.7% 
D 31.0% 4.4% 74.8% 
E 40.1% 9.6% 87.3% 
F 14.6% 1.6% 51.7% 

 

Several observations can be made from this table.  First, the differences in predicted 

churn rate are dramatic.  The likelihood of a low visibility file experiencing churn is 

always less than 20%, and less than 10% in the later versions with more robust data.  By 

contrast, the likelihood of a high visibility file experiencing churn always exceeds 50%.  

Second, the churn rate declines over time, independent of component visibility.  While 

this trend is not uniform, the decrease is distinct for both file types.  Finally, the churn 

rate for high visibility files remains high, even at the end of the period.  Despite the 

product’s maturity, these files are still more likely than not to experience dependency 

additions.  By contrast, the churn rate for low visibility files is close to zero. 

                                                                                                                                                 
19 There is no analysis for version A given this is the first version of the design so all components are new. 



 25

5.3 Hypothesis Three: Component Augmentation 

Our third hypothesis looks at differences in the levels of modularity between new and 

legacy components.  In particular, we test whether new components are more loosely-

coupled than legacy components.  For measures of Direct Connectivity, we conduct a 

Mann-Whitney-U test of population differences.20  For measures of Visibility, we 

conduct a Pearson’s Chi-square test, which assesses whether new and legacy components 

differ in the frequency with which they have high visibility.  Table 10 displays the results 

of our tests by version (non-significant results are shaded). 

 
Table 10:  Differences in Modularity between New and Legacy Source Files21 

VERSION B C D E F 

  New Legacy New Legacy New Legacy New Legacy New Legacy

DCFI Mean 1.46 2.10 0.78 0.93 0.61 0.97 0.52 0.95 0.37 0.76 

 Test Stat. U=6683**** U=38785**** U=440k**** U=899k**** U=625k****

DCFO Mean 1.87 2.25 1.0 2.19 1.0 1.15 0.88 1.20 0.65 1.07 

 Test Stat. U=7425**** U=45753**** U=408k **** U=870k **** U=617k ****

High VFI Frequency 105 of 
168 

98 of 
116 

248 of 
1237 

151 of 
170 

54 of 
596 

365 of 
1261 

91 of 
1138 

321 of 
1296 

6 of 
426 

406 of 
2330 

 Test Stat. χ2=16.3**** χ2=348.0**** χ2=91.6**** χ2=121.2**** χ2=72.7****

High VFO Frequency 138 of 
168 

108 of 
116 

455 of 
1237 

148 of 
170 

234 of 
596 

521 of 
1261 

381 of 
1138 

628 of 
1296 

99 of 
426 

990 of 
2330 

 Test Stat. χ2=7.1*** χ2=154.3**** χ2=0.7 χ2=56.0**** χ2=55.8****

Sample N 284 1407 1857 2434 2756 
**** p<0.1%, *** p<1%, ** p<5%, * p<10% 

The results show strong support for our third hypothesis.  In almost all versions, there 

are significant differences between new and legacy components on all measures. New 

components have both lower direct connectivity and visibility than legacy components. 

                                                 
20 The measures of Direct Connectivity are not normally distributed as determined by a Shapiro-Wilk’s test.  
Hence we use a non-parametric test of whether the two samples come from the same distribution. 
21 All components in version A are new and therefore there is no analysis for this version. 
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To illustrate the nature of this effect, we plot the mean number of direct connections 

for new and legacy components by version in Figure 5.22  The chart shows that the level 

of coupling for all components declines over time, suggesting that the design as a whole 

is becoming more modular.  Critically however, the level of coupling for new 

components is always lower than that for legacy components, even as the overall level of 

coupling declines.  We conclude that not only are new components significantly more 

modular than legacy components, but in addition, the mix of new components becomes 

increasingly more modular over successive versions of the product. 

 

Figure 5:  Differences in Modularity between New and Legacy Components 
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6. Discussion 
Our results confirm the existence of a relationship between component modularity 

and design evolution that is both statistically significant and large in magnitude.  In 

particular, we show that measures of modularity predict three different aspects of design 

evolution: component survival, component maintainability and component augmentation.  

Tightly-coupled components are more likely to survive from one design version to the 

next, implying that they are less adaptable via the processes of exclusion or substitution; 

they are more likely to experience “surprise” dependency additions unrelated to new 

functionality, implying that they demand greater maintenance efforts; and they are harder 

to augment, in that the mix of new components is more modular than the legacy design. 

                                                 
22 We focus on the number of direct connections given this is more comparable across versions than the 
measure of visibility.  The value of visibility changes significantly over time as the system grows in size. 
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In aggregate, our results paint a broad picture of how a design evolves.  The core 

components of a system are defined early in its life.  These components are destined to 

both be long lasting and require greater maintenance efforts.  As the system matures, new 

versions add successively fewer core components, instead placing greater emphasis on 

peripheral functions.  While these may still represent critical additions to the design, they 

are likely to be restricted in their impact.  In essence, the difficulty in adding tightly-

coupled components constrains the evolutionary path for a mature system. 

It is important to consider alternative explanations for the dynamics we observe.  In 

particular, it might be argued that tightly-coupled components are more important to a 

system than other components, and it is this that explains their higher rate of survival.  

Indeed, we believe that tightly-coupled components are typically more important than 

others, in that they often form part of a system’s core functions.  However, this does not 

explain why these components are less likely to be adapted through exclusion or 

substitution.  On the contrary, if they are core to the system’s function, we might expect 

them to be adapted more frequently, as designers strive to improve performance by 

deploying technical advances that make some components obsolete and others candidates 

for replacement.  As a result, we believe our results are explained, in the main, by the 

difficulty in adapting tightly-coupled components. 

Our results have important implications for managers.  Above all, they highlight the 

importance of design decisions made early in the life of a complex system.  Choices 

about levels of component modularity are typically founded upon the trade-offs this 

entails within the current version of a design (e.g., in terms of superior performance 

versus increased reliability).  Yet our results reveal the long-lasting and potentially 

irreversible nature of these choices.  Tightly-coupled components are harder to kill hence 

their choice implies a reduction in future flexibility.  And they are harder to maintain, in 

that they experience more corrective design changes in subsequent versions.  The 

challenge for a decision-maker is that these longer term costs are neither as easy to 

calculate nor as salient as the near term benefits that may stem from tighter coupling.  As 

a result, managers are likely to systematically under-invest in modularity. 

These problems are magnified in the context of software, given that legacy code is 

rarely re-written, but instead forms a platform upon which new versions are built.  In 
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such a system, today’s developers bear the consequences of design decisions made long 

ago.  Yet the first designers of a system have different objectives from those that follow, 

especially if the first of its type in a particular market segment.  The emphasis is on 

product performance and time to market; speed is of the essence.  Future “adaptation” is 

rarely an important consideration when there is no guarantee the product will succeed.  

These problems are compounded by the fact that designers rarely document design 

choices well, and may not be employed by the firm when these decisions must be revised. 

Our results also make an important contribution to the academy, representing one of 

the first empirical studies to confirm a link between modularity and design evolution. Our 

research is distinct from prior work on evolution in two respects.  First, we adopt a 

research design that sheds light on these dynamics at the microstructure level and 

analyzes the impact of differing choices using longitudinal data.  And second, we link 

measures of modularity to three different aspects of design evolution, all of which must 

be understood in order to fully describe evolutionary dynamics.  The result is a detailed 

understanding of how designs evolve over time, and the role played in this process by the 

myriad of individual choices about levels of component modularity. 

Our study has several limitations which must be considered in generalizing the 

results.  First, we examine a single product in the software industry, hence cannot be sure 

that the findings apply to other industries or to other products within this industry.  With 

respect to the latter concern, we note that similar analyses on other software to which we 

have access produces similar results, although the strength of effects differs.  Second, our 

analysis examines only one type of dependency between components, with the 

assumption that this is a proxy for the overall level of coupling between parts of a system.  

If different dependencies generate different dynamics, our results may not capture these 

effects.   Finally, our analysis treats each component as a “black box” in that we focus 

only on its relationships with other boxes, as opposed to what happens within the box.  

To the extent that these dynamics play a role in explaining patterns of evolution, further 

work is needed to connect the two levels of analysis. 

Our work generates a number of promising avenues for future study.  First, we need 

to understand the extent to which design choices vary, for example, across products that 

perform similar functions.  If designs are, to a large degree, dictated by function, the 



 29

ability to improve on the dynamics we observe may be limited.  Second, work is needed 

to expose the broader organizational influences on design.  Prior work asserts that 

products tend to mirror the organizations that develop them (Conway, 1968; Henderson 

and Clark, 1990).  This “duality” implies there are implicit constraints on design choices 

which must be better understood.  Finally, the methods we develop can be used to assess 

the degree to which regular patterns occur in system design and evolution.  Much work 

asserts that systems comprise a central core around which are arranged peripheral 

components (Tushman and Murmann, 1998).  Future research could explore the 

prevalence of such patterns and identify the factors that most explain differences between 

them.  Ultimately, this agenda promises to help understand the choices available to a 

designer, and the impact of their choices on both product and organizational performance. 
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APPENDIX A:  DSMs FOR EACH VERSION OF THE PRODUCT23 
 

Version A Version B 

 
 

Version C Version D 

 
 

Version E Version F 
 

  
                                                 
23 Note that these DSMs are drawn with different scales.  The system grows considerably in size over time:  
the first DSM has 156 elements; the final DSM has 2,756 elements. 
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APPENDIX B:  DISTRIBUTION OF MODULARITY MEASURES (VERSION C) 
 
 
Direct Connectivity Fan-Out  Direct Connectivity Fan-In 
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APPENDIX C:  SOURCE FILE SURVIVAL BY LEVEL OF VISIBILITY  
 

Version File Type Files Survive 
Survival 

Rate  
Ratio to 

Version Mean 
       
A High VFI and VFO 113 91 80.5%  1.08 
 High VFI Only 11 10 90.9%  1.22 
 High VFO Only 22 12 54.5%  0.73 
 Low VFI and VFO 10 3 30.0%  0.40 
 All Files 156 116 74.4%   
       
B High VFI and VFO 189 148 78.3%  1.31 
 High VFI Only 14 10 71.4%  1.19 
 High VFO Only 57 11 19.3%  0.32 
 Low VFI and VFO 24 1 4.2%  0.07 
 All Files 284 170 59.9%   
       
C High VFI and VFO 357 353 98.9%  1.10 
 High VFI Only 42 40 95.2%  1.06 
 High VFO Only 246 237 96.3%  1.07 
 Low VFI and VFO 762 631 82.8%  0.92 
 All Files 1407 1261 89.6%   
       
D High VFI and VFO 367 302 82.3%  1.18 
 High VFI Only 52 45 86.5%  1.24 
 High VFO Only 388 291 75.0%  1.07 
 Low VFI and VFO 1050 658 62.7%  0.90 
 All Files 1857 1296 69.8%   
       
E High VFI and VFO 370 362 97.8%  1.02 
 High VFI Only 42 42 100.0%  1.04 
 High VFO Only 639 625 97.8%  1.02 
 Low VFI and VFO 1383 1301 94.1%  0.98 
 All Files 2434 2330 95.7%   
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APPENDIX D:  LEGACY SOURCE FILE CHURN BY LEVEL OF VISIBILITY24 
 

Version File Type Files Churn 
Churn 
Rate  

Ratio to 
Version Mean 

       
B High VFI and VFO 91 85 93.4%  1.07 
 High VFI Only 10 7 70.0%  0.80 
 High VFO Only 12 9 75.0%  0.86 
 Low VFI and VFO 3 0 0.0%  0.00 
 All Files 116 101 87.1%   
       
C High VFI and VFO 148 132 89.2%  1.02 
 High VFI Only 10 7 70.0%  0.80 
 High VFO Only 11 9 81.8%  0.93 
 Low VFI and VFO 1 1 100.0%  1.14 
 All Files 170 149 87.6%   
       
D High VFI and VFO 353 234 66.3%  2.14 
 High VFI Only 40 23 57.5%  1.85 
 High VFO Only 237 91 38.4%  1.24 
 Low VFI and VFO 631 43 6.8%  0.22 
 All Files 1261 391 31.0%   
       
E High VFI and VFO 302 250 82.8%  2.06 
 High VFI Only 45 26 57.8%  1.44 
 High VFO Only 291 183 62.9%  1.57 
 Low VFI and VFO 658 61 9.3%  0.23 
 All Files 1296 520 40.1%   
       
F High VFI and VFO 362 206 56.9%  3.89 
 High VFI Only 42 10 23.8%  1.63 
 High VFO Only 625 95 15.2%  1.04 
 Low VFI and VFO 1301 30 2.3%  0.16 
 All Files 2330 341 14.6%   

                                                 
24 This table shows only legacy source files, given these are the only files which experience churn. 
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