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RECOGNIZING THE NEW: A MULTI-AGENT MODEL OF ANALOGY IN STRATEGIC DECISION-MAKING 
 
Abstract: In novel environments, strategic decision-making is often premised on analogy, and recognition 
lies at its heart. Recognition refers to a class of cognitive processes through which a problem is interpreted 
associatively in terms of something that has been experienced in the past. Despite recognition’s centrality to 
strategic choice, we have limited knowledge of its nature and its influence on strategic decision-making in 
individuals, much less in the multi-agent settings in which these decisions typically occur. In this paper, we 
develop a model that extends neural nets techniques to capture recognition processes in groups of decision-
makers. We use the model to derive some fundamental properties of collective recognition. These properties 
help us understand how the intensity of communication among group-members and some select structural 
characteristics of the group affect recognition outcomes in novel and structurally ambiguous worlds. In 
particular, we demonstrate that communication pressure can lead agents to converge to shared interpretations 
or recognitions that are new to each of them, thereby helping them recognize problems that are genuinely 
new. We also show that when communication is too intense, its beneficial aspects give way to the pathologies 
of “groupthink.” We conclude by discussing how our results are relevant to strategic choice, as well as how 
our model complements both other theories of choice that view the role of experience as central and recent 
work in population ecology that emphasizes cognitive processes.  
 
Keywords: recognition, analogy, collective decision-making, strategic choice, cognition, novel environments. 
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INTRODUCTION 

Strategic decision-making is most salient when firms face novel environments. It is particularly during times of 

change, in the early phases of a new industry, or after a discontinuity of some sort that firms must discover and 

pursue viable strategic positions.  At these times, the context of choice is typically hard to interpret: among other 

reasons, knowledge of cause and effect relationships is unavailable or difficult to obtain, the nature of industry 

participants is ambiguous, and opportunities are ill-defined. In the language of decision theory, states of the 

world and the probabilities over such states are not naturally given, and the strategic decision-maker cannot 

easily define them. Decision-makers are thus structurally ignorant. What underlies the intelligence of choice in 

these settings? We argue that recognition is essential to such choices. Recognition refers to a class of cognitive 

processes through which a problem or situation is interpreted associatively in terms of something that has been 

experienced before. In this paper, we develop a formal model that attempts to capture realistically the cognitive 

phenomenology of recognition for both individuals and groups.  The model allows us to identify some of 

recognition’s basic properties, and thereby to offer a set of answers to the question we posed above. Our 

argument follows from two premises.  

First, cognitively plausible accounts of strategic decision-making in novel worlds require us to move away 

from the imagery of rational choice, which portrays “model-based anticipation of consequences evaluated by 

prior preferences” (March, 2006: 202).  When agents are structurally ignorant, they can neither easily build 

models of hard-to-construct states of the world nor evaluate consequences based on such models (Gilboa and 

Schmeidler, 2000). Structural ignorance instead suggests an imagery of experience or analogy-based decision-

making, in which agents transfer wisdom or solutions that have a history of favorable outcomes from contexts 

that they believe are similar to the situation at hand. Central to this imagery is a logic of recognition, which 

places the interpretation of the new in terms of the old at the center of decision-making.1 The general advantage 

                                                 
1 Although we use analogy and recognition almost interchangeably, the two concepts do not fully overlap. Analogy is the transfer of 
wisdom from past situations that are considered similar to the problem at hand. Thus, analogy comprises two processes: recognition 
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of recognition is that it does not entail structural knowledge about the decision problem’s structure (Gick and 

Holyoak, 1980; Thagard, 1996). Instead, it involves some mapping between elements central to the old 

experience’s structure and features of the new problem that the decision-maker can readily “see,” and being 

cognizant of such features does not require the agent to have in-depth knowledge of the problem’s underlying 

causal structure (March and Simon, 1993: 10-13). In the domain of strategy, an example of this form of 

reasoning is the adoption of a multi-brand strategy by Lycos, an Internet portal firm. After Lycos’ managers 

chose to grow the firm quickly by acquiring other Internet firms, they decided Lycos should maintain multiple 

brands rather than become a monolithic entity such as Yahoo!. As documented by Gavetti and Rivkin (2007),2 

Lycos’ managers arrived at this solution after an off-site meeting during which they recognized that Lycos was 

operating in a setting that was similar to the media industry. As such, they viewed Lycos as a media company, 

and successful media companies such as Time Warner traditionally adopt multi-brand strategies. Lycos’ 

managers did not attempt to evaluate the likely consequences of various strategies in the Internet portal industry. 

Rather, the cognitive basis for their decision was analogy: they mapped from a “source” context of prior 

experiences to the current “target” context, and recognized the target in terms of the experience they envisioned 

as being most similar (Gick and Holyoak, 1980).  

Second, strategic decisions are rarely the product of individual strategists. As the Lycos example suggests, 

they frequently involve group effort, such as that of a top-management team or a consulting team. If analogical 

forms of reasoning are salient in novel situations, and group effort is the norm, the recognition of novel worlds is 

likely to occur collectively, as the result of multiple agents’ interactions. Such dynamics might affect the nature 

and quality of the recognition process, and therefore the nature and quality of the decisions stemming from it. 

Groups of analogizers can vary on several dimensions, including the overlap across their experiences, the 

                                                                                                                                                                       
(the interpretation of the “new” in terms of the “old,” generally referred to as “similarity mapping”) and transfer (the transfer and 
adaptation of past solutions to the new situation). In this sense, recognition is a central component of analogy. In this paper, we focus 
on the recognition aspect of analogy, and refer to recognition and analogy as if they were synonymous – what we mean by both terms 
is the process through which a new situation is interpreted, and therefore recognized, by its association with past experiences. 
2 See also “Lycos (A): The Tripod Decision,” HBS case study, Gavetti, Rivkin, and Johnson, 2002.  
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intensity of their communication, and the structure of their interaction. Little is known, however, about how 

such variables affect recognition and thus analogy’s quality. 

Although analogy and therefore recognition at both the individual and group levels are vital to decision-

making in settings that are relevant to strategists, strategy scholars have been relatively silent on the topic. Even 

recent work that develops the cognitive foundations of strategic choice (cfr., for instance, Simon, 1991; Ocasio, 

1997; Camerer and Lovallo, 1999; Huff and Huff, 2000; Gavetti and Levinthal, 2000; Denrell, Fang, and 

Winter, 2003), or, more broadly, work on organizational cognition and sensemaking (cfr., for instance, Weick, 

1995; Meindl, Stubbart, and Porac, 1996; Lant and Shapira, 2001) has largely neglected the role of analogy. 

Analogy-based forms of strategic decision-making fall in the middle ground of semi-rationality between the 

polar perspectives of deductive economic reasoning (Brandenburger and Stuart, 1996; Porter, 1996; Ghemawat, 

1999) and local, problemistic search (Cyert and March, 1963; Mintzberg, 1978; Levinthal, 1997; Winter, 2000). 

Yet, except for Gavetti, Levinthal, and Rivkin’s (2005) initial foray, little is known about how strategy-makers 

can navigate this middle ground, or how they can exploit the virtues of analogy and avoid its perils. In contrast, 

decision theorists (Gilboa and Schmeidler 2000), political scientists (Neustadt and May, 1986), and negotiation 

scholars (Thompson et al, 2003) have explored analogy’s potential more extensively. 

To sum up: analogy and its recognition logic are central to strategic choice, which typically occurs in multi-

agent contexts. We have limited knowledge about individual-level recognition in strategic decision-making, and 

virtually no knowledge about how its properties translate to multi-agent decision-making settings. These 

premises represent our point of departure, and the gaps they highlight chart the territory of our effort. In this 

paper, we derive a cognitively plausible model of the recognition processes that underlie strategic choice in 

novel settings. Our model seeks cognitive realism at three levels.  

First, we focus on recognition, thereby plausibly characterizing the cognitive mechanisms involved in 

interpreting novel realities, about which agents are structurally ignorant. More specifically, we characterize how 
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agents with a limited memory of past experiences recognize the current problem in terms of this memory. Our 

modeled agents’ recognition is governed by a memory that operates in associative terms over sets of features 

(Anderson and Bower, 1980). That is, these agents represent the problem at hand in terms of qualitative features, 

and recognize it by choosing the past experience that most closely matches the features they use to represent the 

current problem.  

Second, at a more micro level, we rely on models that mimic the neural mechanisms that are thought to 

underlie associative processes. Specifically, we rely on the formal apparatus of associative neural networks 

(Hopfield, 1982; Amit, Brumel, and Tsodyks, 1994), which is thought to capture the basic properties of the 

neural processes involved in associative memory (see Miyashita, 1988, and Fuster, 1995, for neurophysiological 

demonstrations of such properties, and Amit, Brumel, and Tsodyks, 1994, and McRae, de Sa, and Seidenburg, 

1997, for attempts to reproduce experimental observations of human memory by associative neural network 

models).  

Finally, we seek to realistically characterize decision-making settings by moving from the individual to 

multi-agent settings. Specifically, we use this microfoundation of analogical thinking at the individual level to 

explore collective processes of recognition. Building on Hutchins (1995), we construct “networks of neural 

networks” -- groups of communicating individual agents who recall memories and interpret their environment 

collectively. On this basis, we explore a few select dimensions of how groups are structured and operate, and 

these dimensions’ implications for the intelligence of recognition. 

Through this formal structure, we induce some core properties of recognition in groups of individuals. In 

particular, the model suggests that groups’ communicative pressure is a central determinant of recognition 

outcomes. We demonstrate that, within certain ranges, communication pressure leads agents to converge to 

shared interpretations or recognitions that are new to each of them. That is, these recognitions do not correspond 

to any prototype already stored in individual memories. This property is obviously important when agents face 
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novel problems that do not match any of their previous experiences: thanks to communication, novelty can be 

recognized as such. Communication pressure can also lead, however, to pathological outcomes. We 

demonstrate how, when its intensity is too strong, classic “groupthink” properties may emerge. 

The paper is structured as follows. In §2, we discuss our assumptions about recognition processes. In §3, we 

describe the model. §3.1 describes the model of individual-level recognition, which we extend to multi-agent 

settings in §3.2. In §4.1, we demonstrate, in closed form, some basic properties of the model. In §4.2, we 

articulate a more complex and realistic model in which agents have heterogeneous knowledge of their 

environment and signals from the world are noisy. Via computer simulation, we compare the performance of 

different communication structures and show some non-monotonic effects of communication on group 

performance. Finally, in §5 we discuss the model’s implications and avenues for future work. In particular, we 

discuss complementarities and associated opportunities for opening a dialogue between our approach and other 

conceptions of choice and action, such as case-based decision theory (Gilboa and Schmeidler, 2001) and 

appropriateness-based notions of choice and routines (March, Schulz, and Zhou, 2000; March and Olsen, 1976), 

which emphasize the importance of experience and associative processes. We conclude by briefly discussing the 

potential relevance of our work to recent developments in population ecology (e.g., Hannan, Pólos, and Carroll, 

2007), which have increasingly come to view cognitive processes akin to the kind that we consider here as 

central to how organizational forms emerge. 

 
PREMISES, ASSUMPTIONS, AND MODELING CHOICES 

The proposition “Problem B can be recognized as being similar to Problem A; thus, solution X, which was 

used successfully in A, can be transferred to solve problem B” represents the basic logic of analogical reasoning. 

We will call B the target problem, and A the source problem.  The core of analogy is the process by which the 

target is recognized as being similar to an experience the agent stores in her memory. How do individuals map 

from past experiences to current ones? How do they access their memory to retrieve experiences and associated 
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lessons that can be applied to the new context? Less abstractly, how can strategic decision-makers assess the 

similarity between, say, an emerging (and therefore novel and structurally unknown) industry and those they 

have experienced, either directly or indirectly? Our model focuses on this retrieval and mapping process, which 

underlies recognition. It builds on two central assumptions. 

First, we assume recognition is based on associative memory. Models of analogy-based decisions 

commonly assume some kind of exhaustive “brute force” search through individual memory. For example, 

case-based decision theory (Gilboa and Schmeidler, 2001) assumes that agents look through all cases stored in 

their memory, and Gavetti, Levinthal, and Rivkin’s (2005) computational model adopts a similar perspective. In 

the spirit of cognitive realism, we take a slightly different path, and assume retrieval is driven by associative 

memory (Anderson and Bower, 1980). Associative memory is a “content-addressable” process that, instead of 

involving the serial search through all possible direct and vicarious experiences that are stored in the agent’s 

long-term memory,3 directly retrieves one that closely matches the target along the dimensions guiding the 

search process. A classic example of associative memory is the way a flavor or smell can instantly evoke entire 

episodes from the past: a simple flavor can immediately lead to the recognition of a situation in terms of ones 

previously experienced, and not all memories have to be searched for these experiences to be evoked.  

Second, following a long tradition in cognitive psychology (Tversky, 1977; Rumelhart and Ortony, 1977; 

Gentner, 1983), we model individual representations of situations as clusters of features. Relatedly, consistent 

with work on categorization (Rosch and Mervis, 1975; Rosch, 1978), our model assumes that individual 

memory is organized in terms of prototypical situations, or experiences, that correspond to different clusters of 

correlated features. These features can be specific attributes of the situation, which are typically referred to as 

object features, or structural relationships among such attributes, which are typically referred to as structural 

                                                 
3 Long-term memory contains both direct and vicarious experiences. Students of memory refer to direct experiences as “episodic memory,” which 
comprises memories of specific episodes directly experienced by the agent. Yet long-term memory also comprises a semantic component. “Semantic 
memory” refers to “memory for facts, the vast network of conceptual information underlying our general knowledge of the world” (Sutton, 2003). 
For instance, to stay with the media industry example, the long-term memory of a strategy-maker might contain direct, episodic experiences of the 
media industry, or semantic knowledge of its central attributes, which the agent acquired vicariously.      
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features (see Gentner, 1983). For instance, in the media industry, typical examples of object features might be 

the nature of customers, the role of advertising, the nature of the product, the type of competition, et cetera. In 

contrast, a typical example of a structural feature might be “advertising is key because intrinsic product quality 

is hard to assess, and therefore customers’ taste is easily shapeable.” Independent of these features’ natures, 

Lycos’ managers would have stored the prototype media industry in their memory as a cluster of features. 

Although competing theories of analogical reasoning have disagreed on how much object features contribute 

vis-à-vis structural features when experiences stored in individual memory are accessed, there is experimental 

evidence that both types of features are important for accessing memory and retrieving experiences, with 

individuals tending to focus more on object features (Catrambone, 2002).4 

Neural networks techniques offer a family of formal approaches to capture both associative processes and 

feature-based conceptions of representations and memory (Hertz, Krogh, and Palmer., 1991). These techniques 

are empirically robust: when used to reproduce experimental observations on human memory, they consistently 

offer strong explanatory power (Amit et al., 1994 and McRae et al., 1997).5 Among the various neural network 

approaches, the Hopfield model (Hopfield, 1982) is the simplest and mathematically best understood model of 

content-addressable memory retrieval. As we explain below, Hopfield’s formal architecture represents both 

novel situations (the target) and prototypes stored in the agent’s memory (the source) as clusters or networks of 

correlated features. In this model, the memorized situation that is most similar to the input stimuli (the features 

of the target that the agent “sees”) is retrieved through a process that exploits correlations among features to 

converge to a single memory pattern without “visiting” the agent’s full memory, with a remarkable economy of 

                                                 
4 This debate is paralleled by a related debate on the relative effectiveness of object attributes versus relational ones in assessing similarity between 
source and target domains. Some scholars (e.g. Tversky, 1977) argue that the higher the overlap among object features is, the higher the similarity 
between a given source and target is. That is, ceteris paribus, if situation A shares a higher number of object attributes with situation B than it does 
with situation C, it will be more similar to situation B than it is to situation C. Others (e.g. Gentner, 1983) argue that structural features (i.e., 
relationships among features) offer a more reliable basis for similarity mappings. Our position is that, whenever possible, structural features are 
preferable to object features in assessing similarity. Representations that focus on relationships among features are more likely to capture the true 
causal structure underlying a given situation, thereby offering a deeper basis for similarity mappings. At the same time, structural mapping imposes a 
heavier burden on the individual: it requires a deeper understanding of some features of the target’s causal structure, which may be difficult to obtain 
in novel situations. Despite their obvious importance, our model abstracts from these prescriptive considerations.   
5 Our claim about neural networks’ empirical robustness is limited to their explanatory power vis-à-vis associative memory tasks. These models have 
performed less effectively when used to represent other cognitive functions (Pinker and Prince, 1988). 
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processing. Because the Hopfield model exhibits a combination of empirical robustness, correspondence with 

our assumptions, and mathematical tractability, we consider it appropriate for deriving a model of the 

recognition processes that underlie analogical reasoning.6  

 

THE MODEL 

In this section, we outline a cognitively grounded model of how groups of agents collectively recognize or 

interpret new situations or realities. We then use this structure as the microfoundational basis for deriving our 

group-level model.  

The basic setup: Individual level 

Basic intuition. Our model of the individual builds on the Hopfield model, arguably the prototype of most 

associative neural networks (Hopfield, 1982; Hertz, Krogh, and Palmer, 1991). The agent in this model is given 

a novel input (i.e. the target problem or situation) that she needs to recognize and that she represents in terms of 

features that might or might not exist. For instance, in the media industry, “economies of scale in marketing” 

might be present, but “buyers’ switching costs” might be absent. Recognition is modeled as an associative 

process, and thus rests on the agent’s memory, which in turn is modeled as a collection of prototypical 

experiences (or source problems). Experiences are stored in the individual memory as a neural network, with 

each node of the network representing a feature, and the connections among nodes or features encapsulating the 

agent’s experiences. Specifically, the higher the correlation between two given features across the agent’s 

experiences is, the “heavier” the connection between such features is. That is, if features x and y tend to be 

jointly present or jointly absent across the agent’s experiences, their connection will be heavier than it would be 
                                                 
6 From a neurophysiological perspective, it is important to recognize that neural network models, including the Hopfield model, offer only a partial 
representation of the brain’s complex phenomenology. Nevertheless, even in their simplest form, they seem to capture some basic properties of the 
brain’s functioning beyond what we noted (Anderson, 1995; Hopfield, 1982; Hertz, Krogh, and Palmer, 1991; Smolensky and Legendre, 2006). In 
particular, they capture what is regarded as a central mechanism underlying cognition: how information is transmitted across neurons, resulting in 
neurons’ activation or inhibition. Recently, there have been attempts to blend basic neural associative memory with high-level symbol processing to 
seek higher levels of cognitive realism. Some of these models (cfr. Kokinov and Petrov, 2001 and Hummel and Holyoak, 2003) are particularly 
interesting for their attempt to provide an explicit formal account of structural features in analogy. These attemps are promising, and merit special 
attention. For our purposes, however, particularly given our intent to characterize multi-agent settings, which implies an extra layer of analytical 
complexity, we privilege mathematical tractability and simplicity, and thus focus on the simpler Hopfield model. 
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if the two features did not co-occur. With this setup in mind, it might be useful to regard the nodes of the 

network as hypotheses about the presence or absence of corresponding features. When the agent is given a new 

situation to recognize, the network will be initialized to reflect the new situation (e.g., each node will reflect 

hypotheses about the presence or absence of features according to how the agent perceives the new reality). This 

event is the starting point of an updating process during which the network will modify its configuration, 

thereby correcting the agent’s initial perception of the reality, according to the consistency between the 

hypotheses the network is currently considering and the agent’s memory. This iterative process will continue 

until the network converges to one of the experiences the agent stores in her memory.  

A simple visual example will help clarify the nature of the associative recall process. Consider a memory 

that stores two prototypical patterns, as in Figures 1a and 1b.   

 
INSERT FIGURE 1 ABOUT HERE 

 

Each configuration can be represented as a vector of 25 “nodes” (the little squares of which patterns are 

made). Once the memory is stimulated by a new visual input (Figure 1c), it progressively modifies the state of 

its nodes until it converges after a few iterations to the stored configuration that matches most closely the new 

input (Figure 1e).  

The model has three basic components: environmental states (i.e., the new reality to be recognized or target 

problem), which are coded as situations (i.e., configurations of features); agents’ memories, which we model as 

limited repertories of situations stored in associative neural networks; and network dynamics, which are 

triggered when new environmental states that start associative recall are presented as inputs to agents. We 

describe them in turn. 

Situations. Following the first premise we laid out above, we assume that agents ordinarily represent 

situations (new realities to be interpreted or experiences in the agent’s memory) as networks of features. We 

assume that the set of such features, F= {f1,f2, .. ,fn}, is finite (n=N). Thus, each situation can be encoded by a 
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vector s of n binary state variables that take on value 1 when the feature is present and –1 when it is absent.  

Consequently, there are 2N conceivable situations. 

Memory. Individuals store a repertoire of situations in their limited memories (see Gilboa and Schmeidler, 

2001 for a closely related assumption). We assume that the set of situations stored in an individual memory (M) 

is a subset of the set Z of all conceivable situations, and that the former has much lower cardinality than the latter 

does. Thus, M⊂Z and #(M)<<#(Z).  

We model an individual memory as a neural network, which is made of nodes (i.e., the “artificial neurons”) 

that can “fire” or become active when incoming stimuli exceed some threshold. Consistent with the 

interpretation we suggested above, a given node or neuron fires when the hypothesis is accepted that the feature 

associated with it exists. Nodes are connected by arcs (i.e., the “artificial synaptic connections”) that pass stimuli 

from node to node. In our model, there is a node for each feature, and the network is fully connected by 

symmetric arcs (see Figure. 2). The network graph can be conveniently translated into a pair (s,W) where s 

represents the nodes’ states, and W, the matrix of weights, represents the adjacency network of the network 

graph. Formally, s is a vector of N binary variables si that take on values {1,-1}, and W is a symmetric N×N 

matrix of real-valued weighted connections wij.  

INSERT FIGURE 2 ABOUT HERE  
 

Network dynamics. The neural network has dynamics represented by how, given a matrix of connection 

weights W, nodes update their state once a new situation is presented as an input to the network. When a new 

situation is presented, each node takes as its initial state the value consistent with the state of the corresponding 

situation. In other words, the set of features (as perceived by the agent) is directly translated into the nodes’ 

activation. Then, the update process is based on a classical principle of neural network models: each node si of 

the network takes as an input the activation state of each other node j≠i, weighted by the strength of the 

connections from the j-th node to the i-th node. At this point, such inputs are simply summed up. If the sum of 
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inputs is above a given threshold, the node becomes (or stays) active. Otherwise it becomes (stays) inactive. The 

update process proceeds sequentially for each node si. The simplest way to model this principle in a network in 

which a node state of 1 stands for activation and –1 stands for inactivity is to take the sign of the aggregate input 

to determine the value of the i-th node (see also Figure. 3): 

(1) si = sgn( w ij s j
j

∑ )  

INSERT FIGURE 3 ABOUT HERE  

Rule (1) has two useful properties: 

1) It has been proved that it always leads the network to a configuration in which no node state is perturbed 

any longer (a fixed point). Because of this property, the agent’s memory can be represented as a set of situations 

stored as fixed points. 

2) When a new input is presented to the network, rule (1) guarantees convergence to the memorized 

situation that is most similar to the perceived input in terms of features (technically speaking, to the fixed point 

with the lowest Hamming distance). Thus, memory recall is a feature-matching process that associates new 

situations with memorized ones according to similarity. Visually, the stored situations can be represented as 

decomposing the space of conceivable situations in basins of attraction that are determined by this similarity 

metric. Figure 4 (adapted from Hertz, Krogh, and Palmer, 1991) shows an idealized 2-D representation of such 

decomposition in basins of attractions around the stored situations.7  

Appendix 1 offers a simple example of the model’s basic mechanics.  

INSERT FIGURE 4 ABOUT HERE 

Storing situations. Although nodes update their state during the recall process, the matrix W of connection 

weights is kept constant. Thus, the connection weights are the parameters of the network dynamics. This 

condition implies that a situation can be memorized by appropriately tuning the W matrix. In the language of 

                                                 
7 The space of features is a highly dimensional hypercube in which the corners are the binary states of feature variables. The two-dimensional 
Euclidean space representation in Figure 4 only hints at the “basins of attraction” imagery. 
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neural networks, this memorization process corresponds to the tuning of the synaptic connections’ strength. 

There are two ways to store situations in agents’ memory. One is to allow them to learn the weights 

experientially (for instance, through learning procedures such as the Hebbian rule, which provides an effective 

way to learn the appropriate weights (Hertz, Krogh, and Palmer, 1991)). Alternatively, we can directly 

“engineer” the storage of situations as fixed points in agents’ memory. Because our focus is not on how agents 

learn to memorize situations, but rather on how a given memory is used to interpret new situations, we adopt the 

latter approach.8  

 

From the individual to the group 

Elements of the model. Building on the model for individual agents, we characterize the group as a set of 

agents with a communication structure among them. Specifically, agents in a group share a common coding of 

the environment (i.e., they have the same number of nodes, corresponding to the same set of features), but may 

differ in terms of their memories’ content (e.g. the repertoire of stored situations). Further, we assume that 

agents: a) have no conflicting interests; b) can differ in terms of the environmental features they pay attention to; 

c) can occupy different positions in the communication structure. 

We model communication among agents through the architecture introduced by Hutchins (1995) and 

further developed by Marchiori and Warglien (2005). In this architecture, agents communicate by sending 

signals to each other about their current recognition of the environment (as represented by the current 

configuration of their memory network). Signals focus on specific features (nodes). For instance, if agent 1 and 

2 communicate, and agent 1 believes fi is present, she transmits a signal to agent 2 about the presence of fi. This 

                                                 
8 One way to do so (Hertz, Krogh, and Palmer, 1991) involves defining W as the sum of the “outer products” of each stored situation vector sk with 
itself. In formal notation: 

  
W = si o si

i
∑

   
whereo  is the outer product of two vectors 
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message adds to the input received by agent 2 on fi. Figure 5 shows a simplified, two-agent communication 

structure (dotted lines), in which agents communicate over two features.  

INSERT FIGURE 5 ABOUT HERE 

This structure allows us to control three basic parameters. First, communication can be more or less intense, 

which we capture by modulating the weight of the signal transmitted among agents. Thus, high intensity 

corresponds to a high impact of the messages to the receiving agent. Second, communication can be more or 

less dense, as dictated by which agent talks to which other agent within a group. Third, communication among 

agents can differ in scope. That is, a pair of agents can communicate over a more or less extensive set of 

features.  

The last two parameters, density and scope of communication, allow us to model alternative group 

structures that correspond to different communication patterns. For each group structure, we can then tune 

intensity of communication. For instance, we can capture a “full network structure” of communication by 

having each agent communicate with each other. Alternatively, a “star” structure can be obtained by having 

each agent communicate to only a “central” agent. In turn, these structures can take on two forms: 

communication is complete if agents communicate on all features; it is specialized if they communicate on a 

subset of features, perhaps reflecting cognitive division of labor, with agents’ areas of expertise being 

complementary. Because we focus on group structures in the simulation analysis, we provide more details in 

section 4.2. 

Formal Specification. The group-level model could be described as a “network of networks.” In fact, the 

whole group is itself a larger associative memory net.  Consider n agents with m feature-nodes each.  Each agent 

k is associated with a vector of states sk of length m. Appending such vectors to each other will generate a vector 

s of length m*n, which represents all nodes in the group. Each node of s will be connected to both “within-

agent” nodes and, via communication, other-agents’ nodes. We will keep the symbol wij (which, when 



 14

necessary, is supplemented by a superscript for each agent k) to represent within-agent connections, and we will 

use the symbol γ to indicate the intensity of a generic between-agent connection. For simplicity, and without loss 

of generality, we will assume that the value of γ (and therefore the intensity of communication) is the same for 

all between-agent connections. In concrete terms, the parameter γ indicates how influential an agent k’s 

interpretation of a given feature is over another agent’s interpretation of the same feature, with high levels of γ 

meaning high influence, and low levels denoting low influence. Given our assumption that it is the same for all 

between-agent connections, γ reflects a group-level property of communication – the level of influence that 

members of the group have on each other. By tuning γ, we can therefore obtain groups characterized by various 

degrees of “internal influence,” which correspond to various degrees of communication intensity (e.g., low 

influence/weak communication vs. high influence/intense communication groups). γ can be interpreted as a 

proxy summarizing the potentially infinite and diverse factors that determine the influence of communication 

among group members.  

The matrix W of all such connections is a symmetric square matrix that has the (shaded) blocks constituted 

by each agent’s internal connections Wk (i.e., individual memories) on its main diagonal, and the blocks 

representing communication among agents outside the main diagonal (see Figure 6). 

     INSERT FIGURE 6 ABOUT HERE   

Once communication is introduced, the update rule (1) for a single feature-node of a single agent becomes: 

(2)    si
k (t +1) = sgn wij

k s j
k (t) + γ si

p (t)
p=1
p≠k

n

∑j∑
⎧ 
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ANALYSIS 

Collective Recognition: Three fundamental questions (and associated properties) 



 15

Our model is designed to explore groups of decision makers' collective recognition of new realities, particularly 

regarding how the environment and group characteristics (such as intensity of communication, structure of 

interaction, and level of cognitive heterogeneity among group members) affect recognition.  

By "collective recognition," we mean that the group converges to a stable state in which no agent has reason 

to modify individually her current interpretation of the environment. We do not require all agents to share the 

same interpretation -- they might agree to disagree. More technically, there may be fixed points of the “group 

network” in which agents have different beliefs about specific features. Instead, we require each member of the 

group to reach, by repeatedly adjusting her own current interpretation to those of others, an acceptable individual 

interpretation that balances the pressures coming from her own internal mental states with those from others' 

interpretations– a kind of collective reflective equilibrium (Goodman 1955, Rawls 1971). Nonetheless, shared 

recognition, in which all agents reach the same interpretation, is an important type of collective recognition that 

plays a major role in our subsequent analysis.  

A model of collective recognition should address a few fundamental questions. The first, most obvious 

question is the “existence problem:” can collective recognition as defined above be achieved? Without a positive 

answer, our modeling effort would be meaningless. The second question is about “creativity:” does a collective 

recognition have to reflect a pre-existing interpretation of at least one agent in the group, or can genuinely new 

interpretations or recognitions emerge from communication among agents? If new recognitions can emerge, a 

group-level analysis can go beyond merely investigating which individual interpretation might eventually 

prevail. The third question concerns the potentially dysfunctional aspects of group activity, which can generate 

conformity and judgmental arbitrariness – a tendency to unanimity that overrides the goal of realistically 

appraising situations (Janis, 1972). Can the model express such "groupthink" or related pathologies? Below, we 

provide a general, "closed form" answer to these questions.  
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We rephrase the "existence" question in terms of whether a network of interacting associative memories can 

preserve the "fixed point properties" of individual associative memories (i.e., whether the group can converge to 

a stable collective recognition of the environmental input). The answer is positive, and we express it as: 

  

Proposition 1 (existence). Given a network of associative memories (s, W) and the update rule (2), there is 

always at least one collective recognition for any input received by the agents. 

 

The formal proof is elaborate, and can be found in Appendix 2. An intuitive explanation can, however, be 

outlined by referencing Figure 6 and expression (2): the group model has exactly the structure of a Hopfield 

network, with the usual update rule extended to include other-agents’ nodes weighted by communication 

connections. In other words, the group is a “collective associative memory” that merges the individual ones and 

adds between-agent interactions among nodes to within-agent ones. It follows that the group model inherits the 

main properties of the individual model, especially the existence and local stability of fixed points, which act 

literally as group memory states. Such memory states might not reflect agreement among group members, but 

their existence guarantees that by adjusting some individual interpretations to others’ via communication, the 

group will achieve a collective recognition.  

We now move to the “creativity” question. Can genuinely novel interpretations emerge out of agents’ 

communication efforts? Consider two extreme cases. First, consider agents who are fully cognitively 

homogenous (i.e., their memories store the same set of situations). Second, consider agents who are fully 

heterogeneous (i.e., there are no overlapping situations stored in different agents’ memories). In the first case, 

agents who perceive the same input from the environment do not need to communicate in order to converge on 

the same memorized situation because the recognition outcome (e.g., the fixed point toward which the 

recognition will converge) depends entirely on the dynamics of individual memories. In the second case, agents 
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will be able to reach an agreement only by some form of communication, which in this case is essential to 

collective recognition. Given our interest in how communication affects a group’s recognition effort, we focus 

here on the latter case.9 

In situations of full heterogeneity, the group can reach an agreement (a stable shared “state of mind”) in one 

of two possible ways: it can associate the new reality with one experienced by a group member, or it can 

interpret the novel reality as a novel situation that does not fully match any of the group members’ experiences. 

In this case, the group would generate an entirely new, shared state of mind. Below, we show how 

communication can induce a genuinely new shared state of mind, thereby demonstrating the potential “creative” 

effects of collective recognition efforts relative to individual ones.  

The starting point is expression (2) above, which defines how each node in an individual’s memory is 

updated given the states of that agent’s own nodes and the state of others’ nodes as mediated by communication. 

For a given shared recognition s* to be a fixed point, it must be true that, for all agents and all feature-nodes: 

           (3)    s*i
k = sgn wij

k s* j
k +γ s*i
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When this condition is satisfied, no single node can deviate from its current state. Now, if without 

communication (or with γ = 0, which is the same) s* is not a fixed point, it must be true for at least one feature-

node for each agent that: 

          (4)    sgn wij
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≠ sgn wij
k s* j

k

j∑{ } 

(otherwise s* would be a fixed point even with γ = 0).  Because s* is a shared recognition, s*i is the same for 

each agent; consequently (4) becomes: 

                                                 
9 Most real-life situations lie between these two extremes. We analyze more realistic settings through a simulation in the next section.  
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       (4b)     sgn wij
k s* j

k +γ(n −1)s*ij∑{ }≠ sgn wij
k s* j

k

j∑{ } 

This in turn can be decomposed into two conditions: 

         (5)    sgn γ(n −1)s*i{ }≠ sgn wij
k s* j

k

j∑{ } 

and  

          (6)       γ(n −1)s*i > wij
k s* j

k

j∑  

(5) is implied by the fact that, without communication, s* is not a fixed point. Because wij
k s* j

k

j∑  is always 

finite, it follows that one can always choose a γ large enough to verify (6).  By applying this reasoning 

repeatedly for each agent and each feature-node, it will be proved that: 

 

Proposition 2 (creativity).  If γ is large enough, there will always be a shared recognition that does not 

correspond to any of the situations stored in individual memories.  

Proposition 2 suggests how communication can induce a new stable state of mind in individual agents who 

represent situations they would not conceive of if communication was absent. It indicates a genuinely creative 

process for generating new interpretations of the environment. Communication can “force” an individual to 

break the internal consistency of her mental states (induced by the connections within her own memory) to 

establish a new interpretation that will account for the weight of others’ hypotheses. When communication 

weights are strong enough, they will lock the new mental state and make it stable.  Thus, new stable states of 

mind will arise from the recombination of different individual hypotheses. Critical to this process is a group’s 

degree of internal influence: groups whose members considerably influence each others’ interpretations of 

external inputs can end up recognizing new situations as truly different from anything they experienced before -- 

a whole new truth is created out of partial ones. Ironically, in this case, re-cognition may lead to new cognitions. 
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Yet, this property also implies that beyond a critical treshold of influence, communication can have 

deleterious effects.  The formal argument goes as follows. For a given agreed interpretation sα, let us call γα the 

minimal value of γ for which sα is a fixed point. This value will always exist since the “internal” weights of each 

individual memory are finite, and thus can always be overridden by the effects of communication. In a way, 

there is no unlimited individual stubbornness. This reasoning can be pushed further. It suffices to pick a γω that is 

the max of the set of the γα for each possible shared recognition to prove that: 

 

Proposition 3 (credulity). Provided that γ is large enough, ANY arbitrary shared recognition can be a fixed 

point.  

 

High-influence groups tend to be increasingly “credulous,” prone to agree on everything - a state 

reminiscent of the pathologies of groupthink. This result is significantly reinforced by a further proposition:  

 

Proposition 4 (consensus). Provided that γ is large enough, ALL fixed points must be shared recognitions.   

 

Proposition 4 establishes that, as communicative pressure increases, only conformist outcomes are possible: 

only perfect consensus can be stably sustained. The proof is only slightly more involved. Consider a fixed point 

that is not a shared recognition. Then, in light of (4), we must consider two different cases: 

a) For some agent k and some feature i, the majority of the other agents give i a sign opposite the one 

assigned to it by agent k. Thus: 

 sgn(s*i
k ) ≠ sgn γ s*i

p

p=1
p≠k
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If this is true, given (5), there will always be a γ for which this implies that  
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 s*i
k = −s*i

k  

which of course is incorrect; 

b) For some agent k and some feature i, the number of other agents that give i a sign opposite the one 

assigned to it by agent k equals the number of other agents that give i the same sign as the one assigned to it by 

agent k. Thus: 

 γ s*i
p

p=1
p≠k

n

∑ = 0  

In this case, whatever the value that
k
is * takes, that value will decide what the majority interpretation of 

feature i is; consequently, there will always be (n-1)/2 agents other than k (q≠k) who will find themselves in the 

“minority” position analyzed sub a). As we have seen, for a large enough γ, this condition would lead 

to s*i
q = −s*i

q . Thus, provided that γ is large enough, there can be no fixed points which are not shared 

recognitions. Besides the details of the proof, the interpretation of Proposition 4 is clear: when a group is in a 

very high influence condition, no individual agent will put her opinion against that of the majority in her group. 

Consensus overrides realism.  

In sum, propositions 2 through 4 suggest that an increase in groups' internal influence has both a positive 

and a negative effect on recognition outcomes. On the positive side, the creative properties of communication 

intensity (proposition 2) guarantee that genuinely new situations can be identified as such. If all agents’ 

representations of the environment are partially wrong, intense communication may help generate a new 

recognition that is closer to reality by compensating for individual errors with the collective wisdom that results 

from the composition of the right hypotheses, which are diffused among different agents. If communication was 

unable to induce new fixed points, this generation would be impossible (we exploit this property to discuss the 

noise-filtering effects of communication in section 4.2). On the negative side, as groups' internal influence 

surpasses a critical threshold, the pressure to conform can push the group to converge to any arbitrary 
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configuration. Thus, the positive effect of communication on group performance can be progressively eroded by 

conformism.  

 

Communication Structures, Division of Labor, and Recognition of Noisy Environments – A Simulation 

Analysis  

Above, we established some basic properties of collective recognition. These properties are obtained in a very 

stylized, abstract setting. We now refine our model to capture some select aspects of more realistic settings. For 

instance, as we noted at the outset, analogical interpretation is likely to be important in novel environments, in 

which agents are structurally ignorant and information about the environment may be unreliable, distorted, 

incomplete, or even inconsistent. Further, agents may vary in their level of specialization, and how they 

communicate can be quite different across settings. The goal of this refinement is not to analyze 

comprehensively the wide set of contingencies that might be relevant to collective recognition. Such analysis is 

well beyond the scope of this paper. We view our refinement and associated analysis as a first, meaningful step 

in this direction, one that hopefully demonstrates the usefulness of this line of inquiry. 

We refine the baseline model in three ways. First, we introduce noise. Agents perceive the environment 

more or less inaccurately, so that they always perceive states of the world that are different from the ones they 

already know, and different agents may hold different perceptions of the same, “true” state of the world. Second, 

agents have limited knowledge of the state space, and are initially unable to completely discriminate between 

alternative states of the world due to division of labor. Agents with different experiences and roles are inclined to 

pay attention to some features of the world, and are unable to make diagnostic use of others (Dearborn and 

Simon, 1958). Third, we consider alternative communication structures. Within this framework, we consider 

how different communication structures affect the accuracy and speed of collective recognition. For instance, is 
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a centralized structure of communication more or less effective than a decentralized one is in noisy 

environments?  

Augmented realism is costly. First, it requires us to move from closed-form analyses to computer 

simulations. Second, it implies the introduction of additional parameters, thereby creating a large parameter 

space, which we can only sample from rather than explore exhaustively. Out of the many conceivable 

communication structures and cognitive divisions of labor, we consider only two elementary types, although our 

analysis of noise and communication intensity is more systematic. 

Setup. Building on the structure we introduced above, our simulation model has three building blocks: an 

environment of situations; agents as associative memories; and communication structures among them. We 

describe them in turn.  

Environment. The environment is represented as a set of situations (cfr. §2), each described by 30 binary 

features. We consider 5 situations (that represent true states of the world) and designate them as equidistant in 

terms of Hamming (bit by bit) distance.10 The agents receive signals from the environment, which can be more 

or less noisy. Given the binary nature of the individual features, we model the effect of noise as a change in sign 

of the feature coding. So, if feature i has a “true” state -1, noise will make it be perceived as being in state 1. The 

level of noise depends on the probability that a given feature changes its state. For example, setting the noise 

parameter to prob = 0.2 translates into a 20% probability that any feature is perceived with the “wrong” sign.  

Agents. Each agent is modeled as an associative memory who stores a limited number of situations (in our 

model, the agent stores 5 situations), each consisting of 30 features.  Each agent stores different situations. We 

represent cognitive heterogeneity and the associated division of cognitive labor by assuming that each agent can 

discriminate states of the world in regard to a limited number of features, and the set of such features varies by 

agent according to her specialization. We express such “specialized blindness” by having each agent’s stored 

situations differ only by a limited number of features, the ones reflecting her specialized focus. The remaining 
                                                 
10 It can be shown that there is no loss of generality in assuming equidistance.  
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features have the same value in all memorized situations, and thus do not help discriminate states of the world. 

In our model, agents are “blinded” over 3/5 of the features. We also tested a 2/5 ratio, with similar results. In 

addition to “specialists,” we introduce “generalists” for whom all features can be discriminating.  

Group Structure. We consider the full and star structures introduced above. For each, we consider 4 agents, 

three specialists and a generalist. In the full communication structure, all the agents communicate with each 

other. In the star structure, there is a central agent, who is a generalist, and three peripheral ones, who are 

specialists, and who can communicate only with the central agent. Groups’ degree of internal influence is 

modeled through γ as described above.   

 

Simulation Plan. This basic setup allows us to study collective recognition efforts generated by alternative 

communication structures under different conditions of noise and communication intensity. Specifically, we 

consider a 2x8x30 simulation design, which has the 2 prototypical communication structures we just described, 

8 levels of noise, and 26 levels of the γ parameter (in the 0-50 range). The noise parameter ranges between 0 (no 

noise) to 0.66 (66% probability that a node receives a random signal).  The situations stored in agents’ memory 

are the same in all of the 2x8x30 simulation conditions. For each cell of the simulation design, we generated 500 

independent runs. For each run, a true state of the world is generated at time 0. Each agent receives an input 

corresponding to the true state of the environment, corrupted by noise. Noise is independent for each agent (i.e., 

there is no systematic relationship between how noise distorts agent i’s and agent j’s perception). Once the 

agents have initialized their state according to the input received, both memory and communication dynamics 

are activated. At each step of each run, a single node of a single agent is randomly selected for updating 

according to (4), reflecting both the constraints of each agents’ internal memory and the state of corresponding 

nodes in other agents as mediated by communication links. The simulation stops after there are no changes in 

the state of the network for 150 consecutive steps. At that point, the interpretation is considered stable.  
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Results. We consider two focal performance metrics: the recognition error and the time to recognition. We 

express the former in terms of the sum of the group’s erroneous bits once a stable recognition is reached, and the 

latter as the number of steps that are needed to reach such an outcome. We first comment on properties 

emerging from the simulation that are common to both structures. We then focus on how differences in structure 

affect such basic properties.  

a. Convergence to shared interpretations as a result of communication intensity. The effects of 

communication intensity on collective recognition are most visible when noise is absent. As Figure 7 a-c shows, 

there is a high, stable level of error for low levels of communication intensity because agents tend to relax to 

their own memorized situation, thereby producing an erroneous interpretation: due to the division of cognitive 

labor, agents’ interpretations of the environment are only partially correct. As the intensity of communication 

increases, however, there is a rapid shift to total agreement on the correct interpretation. Communication helps 

assemble partial correct interpretations, thereby producing stable new states of mind in the individual agent. Not 

surprisingly, in transparent worlds, communication has decisive effects.  

b. Collective filtering of noise. As noise is introduced, the group must also filter out the possible distortions 

induced by it. Figure 7 a-c shows the following properties. First, communication filters noise: it reduces 

collective errors, although imperfectly (even with low levels of noise, some residual error persists). The basic 

intuition is that if there is at least some independence in the noise perceived by agents, the fact that multiple 

agents receive information about the same feature builds redundancy. Redundancy in information channels is 

exploited by communication: more observers have more chances in the aggregate to observe the right signal 

than a single observer does, and communication allows individual misperceptions to be corrected. Second, as 

noise increases, the ability of communication to correct distorted inputs diminishes. Importantly, this effect 

(particularly for high levels of communication) occurs not because agents develop diverging interpretations. 
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Rather, they increasingly converge to a wrong interpretation, thereby fitting noise. Table 1 shows how the ratio 

for cases of any type of convergence relative to cases of correct convergence changes only as γ increases. 

 
noise γ=10 γ=40 
0.13 0.81 0.69 
0.27 0,35 0,16 
0.40 0,18 0,1 
0.53 0 0,003 

Table 1: Ratio of correct to incorrect convergences 

This result can be better understood in light of properties P2, which allows convergence to new patterns, and 

P3, which says that any pattern can be a fixed point, as demonstrated above. In particular, it reflects the tendency 

to converge to arbitrary patterns, which increases with γ (credulity). Whether coordination on the wrong beliefs 

is better than no coordination at all is highly task-dependent – we do not deal here with this issue.  

Third, the effects of communication on noise reduction are non-monotonic. That is, for high levels of noise, 

low levels of communication intensity produce more error than no communication does. Once a critical level of 

communication intensity is achieved, error decreases. This counterintuitive result can be understood by 

reference to equation (4), which expresses the joint effect of memory and communication on individual nodes. 

When γ is not high enough to systematically correct for noise, it can still be high enough to accidentally alter the 

value of the states of single features. It thereby acts in ways similar to noise. Thus, under the effect of 

communication, agents may wander in the feature space without converging to the right belief; occasionally this 

wandering may lead agents out of the original path and toward some neighboring basin of attraction.  

All of these properties can be extended to the time needed to reach a stable state (time-to-recognition). 

Communication intensity reduces the time needed to reach a stable state; it does so less effectively as noise 

increases; and it does so non-monotonically (see Figure 8 b-d).  When γ increases, agents are more prone to 

align their beliefs with those that are held by their group members. Noise increases distances between individual 

perceptions and thus slows down convergence. Finally, the “wandering” effects of low γ affect time-to-
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recognition, as well as the error rate, for the same reasons. In fact, the effect is even stronger because in all cases 

in which wandering does not deviate, trajectories from the original basin of attraction are not reflected in error 

rates, but instead affect convergence speed.  

c. Comparing structures:   

Although some comparative patterns clearly emerge in Figure 7 a-d, they can be better captured by simple 

performance ratios for the full combination of parameters. Figure 8 a-b represents the ratio between the 

collective error and the time-to-recognition of the fully-connected and star structures, respectively. In both cases, 

ratio values below 1 indicate that the fully-connected structure performs better, and values above 1 indicate the 

opposite.  

Intuitively, the advantages of increasing communication intensity are stronger in structures that, keeping the 

number of agents constant, have denser communication networks. Fig. 8a shows that in a vast region 

characterized by high values of noise and communication intensity, the fully-connected structure enjoys a 

considerable error reduction advantage over the star structure. This advantage has at least two causes. First, the 

fully-connected structure is denser (there are more connections), which produces a pure multiplicative effect 

over γ. Second, each node in the fully-connected structure receives messages from a larger number of 

information sources (redundancy). This tendency increases the probability that a node will be reached by the 

“right” message. In contrast, in the corner characterized by low values of both parameters, the star structure 

enjoys a clear advantage. This result reflects the non-monotonicity of communication intensity effects, which 

are more marked in the communication-dense fully-connected structure. Further, another mild form of non-

monotonicity can be observed in the opposite corner of the parameter space. The relative superiority of the fully-

connected structure decreases for high noise and high communication intensity. This behavior reflects the fact 

that the denser communication network of the fully-connected structure exhausts the beneficial effects of 
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increasing γ more rapidly than does the star structure, which slowly catches up in performance as a 

consequence.  

We now consider time-to-recognition. Although the fully-connected structure maintains its basic superiority 

over a large area of the parameter space, there are important differences compared to the error-reduction 

performance. First, the corner in which the star structure enjoyed an error-reduction advantage also shows a 

time-to-recognition advantage. The corner is now broader, however, and the advantages more pronounced. 

Second, in the area in which the fully-connected structure enjoys superior error-reduction performance, the 

advantage in time-to-interpretation is considerably less marked, and it depends less on noise. Third, the star 

structure’s performance catches up (for high levels of γ) more rapidly to that of the fully-connected structure for 

all levels of noise. Until now, we have not considered how the cost of communication affects the relative 

performance of the two communication structures. Yet a major motivation for star structures is that they 

significantly economize on communication costs. As is well known, a fully connected network of n agents has 

n×(n-1)/2 communication links, but a star has only n-1 links. Because our model considers only the interpretive 

stage of decision-making, a direct cost/benefit comparison cannot be easily performed. Nonetheless, a simple 

qualitative argument suggests that as the cost of communication increases, not only will the corner of the 

parameter space in which the star is superior be enlarged, but the opposite corner might also “emerge,” giving 

rise to an interesting re-switch of structures due to the non-monotonicity phenomena noted above: the star might 

turn out to be superior not only for low noise and low communication intensity, but also for very high 

communication intensity. Furthermore, this process is bound to be more relevant to the extent that the speed of 

interpretation is more valuable than accuracy is. 

 
DISCUSSION AND CONCLUSION 

In novel worlds, strategic choice is often premised on analogy, and recognition lies at its heart. Yet despite 

recognition's centrality, we have only limited knowledge of its nature and its influence on strategic choice in 
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individuals, much less in the multi-agent decision-making settings in which these choices typically occur. In this 

paper, we begin to chart this territory, and offer three contributions. 

First, we derive a formal platform that plausibly captures recognition processes in groups of decision-

makers. Our map of this uncharted territory narrows attention to three pivotal coordinates. Most obviously, we 

propose that strategic choice in novel and structurally obscure environments can be fruitfully represented as 

recognition of the new in terms of the old. In addition, we put forth a conception of individuals as memories, and 

of groups as aggregates of interacting memories. Further, we conceive the linkages across such memories in 

terms of how readily individuals within a group influence each other through communication. All in all, our 

map offers a novel perspective on decision-making in novel worlds and group processes. Karl Weick (1990) 

reminds us that when no map is available, any map is useful, regardless of how accurate it is. Although 

behavioral realism drives our effort to develop a map that is as accurate as possible, we are sympathetic with 

Weick’s remarks. With just a few exceptions, which have focused mainly on individual rather than group 

processes (e.g., Gavetti, Levinthal, and Rivkin, 2005), analogical strategic choice is uncharted territory. 

Whatever its imperfections, we believe our map offers a useful guide to a better understanding of the reality of 

strategic choice.  

Second, we use this formal structure to derive some basic properties of collective recognition in novel 

worlds. Our analyses highlight how group-level characteristics affect recognition outcomes. The literature on 

groups and teams has focused on many parameters of group processes and outcomes (e.g., Gruenfeld et al, 

1996; Sundstrom, Busby, and Bobrow, 1997; Phillips, Northcraft, and Neale, 2006), but has not examined how 

analogy and recognition processes affect group decision-making. Our study posits a mechanism for transmitting 

influence across a network, and thus suggests how diverse individuals whose understanding of a problem is 

each limited and often mutually incongruent can “share” their beliefs and thereby converge toward a collective 

interpretation (Gruenfeld et al, 1996; Woolley et al, 2007). It also shows analytically how variables of 
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communication, such as its influence, intensity, and structure, affect group outcomes. Such findings are 

especially important to settings where groups are highly collaborative (Edmondson, Bohmer, and Pisano, 2001; 

Reagans, Argote, and Brooks, 2005). More fundamentally, our work is consistent with recent work in this 

domain that takes individual-level neural processes as the central primitive to shed new light on groups’ 

functioning (Woolley et al., 2007).   

In particular, we show, in closed form, that communication can induce agents to converge to shared 

recognitions that are new to each of them. Groups of decision-makers that operate in analogical terms and 

establish a culture of strong internal influence are more likely to converge on shared interpretations that do not 

correspond to any of their members’ prior experiences. This property suggests a crucial difference between the 

recognition efforts of individuals and teams of decision-makers. At the individual level, associative memory 

associates the novel reality with some memorized situation. In contrast, teams of decision-makers can be more 

creative: collective associative processes can lead to recognitions of novel realities that transcend the boundaries 

of individual memories. This property evokes an image of the group as operating in autonomy from its 

individual constituents, as if it was itself an individual who behaves according to her own (e.g. group-level) 

rules, generates her own outcomes, and even feeds back into the cognition of her individual constituents. 

Beyond these aspects, this property plays a particularly salient role when novelty constitutes a challenge for 

which past experience is insufficient. The notion that teams can be more creative than individuals are is not new 

(e.g., Hurst, Rush, and White, 1989), but our model suggests that the strength of this effect, particularly in 

groups of analogizers, is deeply affected by the group’s level of “internal influence.” This property finds some 

analogues in DeMarzo et al’s (2003) model of opinion formation in social settings. Similar to our model, 

DeMarzo et al’s model suggests that, in social contexts such as groups, “the beliefs of all agents converge over 

time to a weighted average of initial beliefs.” (DeMarzo et al., 2003: 913) Although DeMarzo et al develop a 

model that does not explicitly address recognition and its role in novel settings, their results are strikingly 
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consistent with ours. Despite these virtues, “internal influence” can take its toll. As the weight of 

communication increases, the group becomes more vulnerable to groupthink, which in turn may make 

interpretations largely arbitrary. 

We then tailor the model to explore, in simulation form, more specific conditions that better approximate the 

complications of real decision-making. Because the parameter space corresponding to this more realistic setting 

is expansive, we analyze only a small portion of it. In particular, we consider groups of agents that are affected 

by the cognitive blinders of division of labor and ask whether they can do better than individuals do in noisy 

worlds, where the information they receive is distorted and unrealiable. We show that communication can 

correct for the errors induced by the division of labor, and, pehaps more importantly, can filter the effects of 

noise. The effect of communication on the quality of recognition is, however, non-monotonic. Given groups’ 

tendency to fall into a conformist mode when internal influence is high, noise-fitting prevails over noise-filtering 

in these situations. We also compare the effects of alternative group structures on recognition outcomes, and 

find that groups’ communication density plays a central role. Different group structures imply different levels of 

communication density, and, ceteris paribus, higher levels of density amplify our results of the benefits and 

dysfunctions of communication on recognition outcomes.  

Beyond the specific details of our results, the simulation demonstrates that recognition outcomes are 

extremely sensitive to the group’s cognitive composition, communication structure, and intensity. We take this 

overarching pattern to delineate a fruitful path for future research, which we believe needs to couple a more 

extensive exploration of our model’s parameter space with experimental work. This research should have two 

main objectives. First, it should assess whether the model’s core predictions are empirically supported. In 

addition, it would be useful to replicate the gist of the simulation exercise via human-subject experiments. This 

line of inquiry would allow the model’s parameters to be calibrated more precisely vis-à-vis the outcomes of 
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interest, which is essential given the extreme sensitivity of recognition outcomes to such parameters. Indeed, we 

are currently engaged in a follow-up study that proceeds along these lines.  

Third, more prospectively, we believe this work can open a genuinely generative dialogue among theories 

of choice and action that, although not generally associated with strategic choice, emphasize similarity matching 

as the core cognitive mechanism underlying choice. We refer in particular to March and colleagues’ logic of 

appropriateness (cfr. March, Schulz, and Zhou, 2000, and March and Olsen, 2006), and Gilboa and 

Schmeidler’s case-based decision-theory (cfr. Gilboa and Schmeidler, 2001). Our formal effort and these 

theories have a lot to offer each other. Thus, opening a dialogue among them would benefit our understanding of 

choice, particularly strategic choice, in novel worlds.  

The logic of appropriateness applies when individuals and groups face uncertain situations. When they do, 

“the processes of reasoning are not primarily connected to the anticipation of future consequences (...) Actors 

use criteria of similarity and congruence, rather than likelihood and value.” (March and Olsen, 2006: 690) 

According to this view, agents choose by matching choices and behaviors to a given situation, and the 

repertoires of choices are idiosyncratic to individuals’ roles and identities in that situation. Decision-making is 

thus rule-based (March, Schulz, and Zhou, 2000); decision and action, in this view, are driven by programs, 

standard operating procedures, and routines (Nelson and Winter, 1982; March and Simon, 1993; March and 

Olsen, 2006). This perspective adds to our approach the idea that repertoires of behavior (in our language, the 

experiences that individuals store in their memories) and their rules of appropriateness are tied to individuals’ 

roles and identites, which in turn reflect institutional logics and memories. Our effort, on the other hand, is a first 

attempt to formally analyze the cognitive underpinnings of recognition at both the individual and collective 

level, thereby illuminating how repertoires are matched to novel situations. Although it captures only the 

essentials of a remarkably complex process, it is rich enough to show that the analogy-driven collective 

recognition of current situations is not based on a crude direct matching of present problems to stored 
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repertoires, but is instead mediated by processes of memory recall and communication that can significantly 

transform the original repertoires and generate new interpretations. We thus believe our perspective can both 

enrich rule-based notions of choice and contribute to a growing stream of theory about the mechanisms of 

routine formation and performance (Cohen and Bacdayan, 1994; Edmondson, Bohmer, and Pisano, 2001; 

Feldman and Pentland, 2003; Pentland and Feldman, 2005). 

Case-based decision theory (CBDT) provides a more utilitarian, and formal, counterpart to the logic of 

appropriateness, but it rests on a similar logic. It is conceived to model how agents decide when they face 

problems for which they do not know the state space and its associated outcomes (structural ignorance). The 

guiding intuition is that, in such contexts, “the main reasoning technique that people use is drawing analogies 

between past cases and the one at hand.” (Gilboa and Schmeidler, 1995: 608). Gilboa and Schmeidler provide 

powerful formal foundations of a theory of individual decision-making with limited memory and reasoning by 

analogy. We view our model as complementary to CBDT for two reasons. On the one hand, Gilboa and 

Schmeidler offer a parsimonious full-fledged model of analogical decision-making, while we focus exclusively 

on the recognition aspect of such processes. On the other hand, we suggest a more plausible and efficient 

mechanism for implementing search in memory. Instead of the systematic scanning of memory records that 

CBDT implies, we model content-addressable memories that look at the content of present input stimuli to 

converge directly to the most similar memory template. Further, we suggest ways to move from individual to 

collective analogy-based decision making. 

Finally, in addition to these connections with existing theories of choice and action, we wish to point out 

parallels between our account of how recognition occurs in groups and that of recent work on the emergence of 

organizational forms. For instance, Hannan, Pólos, and Carroll (2007) consider audiences that are external to 

focal organizations as playing a decisive role in whether emergence occurs. They contend that “many categories 

and forms might have originated in fairly structured situations, those in which the audience has a well-developed 
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language (including schemata for categories). In these kinds of situations, new categories can be formed by 

analogy to existing ones (by making slight modifications in schemata), by merging a pair of categories, and so 

forth” (Hannan, Pólos, and Carroll, 2007: 37-38). In their account, as in ours, interaction among agents that are 

involved in what are essentially recognition processes is crucial to the phenomenon in question. Further, we 

believe recognition transpires even in the less-structured situations that this literature considers. When actors 

develop a new code to assess whether a set of organizations might cohere into a category, as beer enthusiasts did 

when they changed the code for breweries to reflect the type of producer as well as the product itself (Hannan, 

Pólos, and Carroll, 2007; cf. Carroll and Swaminathan, 2000), they typically do not develop these codes ex 

novo. More often than not, they use past memories of possible codes to recognize which ones are relevant to the 

situation at hand.  Our model was not originally designed to represent the emergence of organizational forms. 

Nonetheless, the cognitive phenomenology captured by our model is sufficiently aligned with what is thought to 

underlie forms’ emergence that we believe it can be tailored to contribute meaningfully to this debate. 

 

To conclude, we provide theoretical foundations for a largely understudied form of strategic choice. We 

believe our theoretical foundations, especially if coupled with theoretical approaches of a similar bent, promise 

to chart a territory that is fundamental to our understanding and improvement of strategic choice.
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FIGURE 1: ASSOCIATIVE RECALL: A VISUAL EXAMPLE 

 

b

c d e

a
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FIGURE 4: BASINS OF ATTRACTION 
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FIGURE 5: INTRODUCING MULTIPLE AGENTS 
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FIGURE 6: A MULTI-AGENT NEURAL NETWORK 
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FIGURE 7: SIMULATION RESULTS -- RECOGNITION ERROR AND TIME TO RECOGNITION  
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TABLE 2: AVERAGE RATIO OF STANDARD DEVIATION TO AVERAGE OF SIMULATION RESULTS (OVER ALL 

γ VALUES)  

 
Noise Full network Star 
0.0   
0.13 0.98 0.53 
0.27 0.56 0.37 
0.4 0.38 0.26 
0.53 0.26 0.20 
0.67 0.19 0.16 

 a: Team Error 
 
 

Noise Full network Star 
0.0  
0.13 0.41 0.41
0.27 0.34 0.37
0.4 0.32 0.35
0.53 0.30 0.35
0.67 0.29 0.32

 b: Time to Recognition 
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FIGURE 8A: SIMULATION RESULTS -- RECOGNITION ERROR (FULL/STAR) 
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FIGURE 8B: SIMULATION RESULTS -- TIME TO CONVERGENCE (FULL/STAR)  
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APPENDIX 1. AN EXAMPLE OF THE MODEL’S MECHANICS 
 
A simplified illustration of the network dynamics may help to show how the process of associative recall works. 
 
A network of 4 nodes (s1,s2,s3,s4) has memorized a pattern (1, 1, 1,-1) through the following matrix W of 
connection weights: 
 

    W =

.5 .5 .5 −.5

.5 .5 .5 −.5

.5 .5 .5 −.5
−.5 −.5 −.5 −.5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

 
Fig.A1 represents the network in an initial configuration (-1,1,1,-1) 
 

.5

-.5.5

-.5

-.5

.5

s3

s2 s4

= +1

= -1s1

 
  Fig. A1 
 

Imagine that node s1 is randomly picked up (fig. A2). This node will “receive” from each other node sj an input 
given by the state of the “sending” node weighted by the connection weight wsj between the former and the 
latter node. In the case of fig. A2: 
 

(1×.5) + (1×.5) + (-1×-.5) = 1.5 
 

The sign of the sum of the inputs is positive, so node s1 will switch to a +1 state. 
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Fig. A2 
 

 
 
 
 
Now node s4 is randomly picked up (fig. A3). Once more, it will “receive” from the other nodes an input given 
by the state of the node as it is weighted by the connection weight (in the example of fig. A3): 
 

(1×-.5) + (1×-.5) + (1×-.5) = -1.5 
 

The sign of the sum of the inputs is negative, so node s4 will stay in a -1 state. 
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Fig. A3 

 
It is easily verified that all nodes are now in a stable state, and that the memorized pattern (1, 1, 1,-1) has thus 
been associatively “retrieved” by the network 
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APPENDIX 2. PROOF OF PROPOSITION 1 
 
The existence of fixed points for a nework of associative memories (s, W) and the update rule (2) can be 
demonstrated by extending the usual proof of the fixed-point properties of a Hopfield network (we follow 
closely the proof in Hertz, Krogh, and Palmer. 1991). 
 
For notational simplicity, we will ignore the differences between agents by considering a generic vector of 
binary nodes s= (s1, s2, ..., sn ), which results from placing the different agents’ nodes into an ordered sequence. 
In a similar vein, we will ignore the notational differences between connections within individual memories and 
communication links by considering a generic connection wij between the elements of s, which includes both 
kinds of connections. 
 
We shall assume that nodes are not connected to themselves (i.e. wii=0), but the results also hold if the elements 
on the main diagonal of W are non-negative (indeed, it would make little sense to imagine hypotheses that are 
self-inhibiting!). 
 
The fixed-point property will be demonstrated by showing that rule (2) is a monotonic, non-increasing function. 
Given that the set of possible configurations of s is finite, this condition trivially implies that at least one fixed 
point exists and there is convergence to it in finite time. 
 
In order to prove rule (2’s) properties, one has to define instrumentally an “energy function” (Hopfield 1982) : 
 

E = −
1
2

wijsis j
ij
∑  

 
Intuitively, the function represents a measure of “tension” between the different hypotheses represented by the 
nodes’ states. Pairs of nodes that are in the same state and are related by negative (inhibitory) connections will 
increase the state of cognitive tension within the network. Pairs of nodes that are in opposite states and are 
related by negative connections will clearly satisfy the inhibitory nature of their connection, thus relaxing the 
amount of tension within the network. An analogous consideration applies to the case of positive connections. In 
other words, the lower the energy in the network is, the higher the degree of “coherence” within the system of 
hypotheses will be, as represented by the current state of the network. 
 
Because connections are symmetric, the energy function E can be rewritten as: 
 
E = − wijsis j

(ij )
∑  

where (ij) stands for an unordered pair of i and j (in other words, 12=21).  
 
Consider a new state of a node si: 
 

′ s i = sgn( w ij s j )
j

∑  
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Clearly, whenever s′i = si, nothing changes in the value of E. Thus, we have to analyze only what happens when 
s′i ≠ si. In that case: 
 
E '−E = − wij ′ s is j

j
∑ + wijsis j

j
∑  

(we focus only on changes in E related to a single i) 
 
Because in this case s′i = - si 

 

′ E − E = − wij (−si )s j
j

∑ + wijsis j
j

∑

= 2 wijsis j
j

∑  

Extracting si: 
 
= 2si wijs j

j
∑  

Since ′ s i = sgn( w ij s j )
j

∑ ,  whenever s′i ≠ si, either  si is positive and wijs j
j

∑  is negative, or vice versa,  

Thus, whenever s′i ≠ si, E′-E is always negative because whenever  s′i = si, E′-E is always zero. Because s has a 
finite number of elements and the weigths wij are finite, E is bounded and we can thus conclude that the iteration 
of the update rule (2) always has a fixed point and will converge to it in a finite number of steps. 
 
 

 
 




