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Abstract 
 

Designers often seek modular architectures to 
better accommodate expected changes and to enable 
parallel development. However, we lack a formal 
theory and model of modularity and software 
evolution, which can be used for description, 
prediction, and prescription. According to Baldwin 
and Clark’s [1] theory, modular architectures add 
value to system designs by creating options to improve 
the system by substituting or experimenting on 
individual modules. In this paper, we evaluate their 
theory by looking at the design evolution of two 
software product platforms through the modeling lens 
of design structure matrices (DSMs) and design rule 
theory. Our analysis shows that DSM models and 
options theory can explain how real-world 
modularization activities  in one case allowed for 
different rates of evolution in different software 
modules and in another case conferred distinct 
strategic advantages on a firm (by permitting 
substitution of an at-risk software module without 
substantial change to the rest of the system). The 
experiment supports our hypothesis that these formal 
models and theory can account for important aspects 
of software design evolution in large-scale systems. 

 
1. Introduction 

Microsoft finally released Windows Vista, the new 
version of its Microsoft’s operating system, after more 
than three years of delay [5], [19]. The trade press has 
popularly attributed the delays to a deepening 
complexity disaster resulting from the system’s lack of 
modularity:  “With each patch and enhancement, it 
became harder to strap new features onto the software, 
since new code could affect everything else in 
unpredictable ways” [6].  Similarly, Michael 
Cusumano has called Vista a “60-m-lines-of-code 
mess of spaghetti” [18]. 

Designers have long recognized the value of 
modularity. Constantine’s low-coupling, high-cohesion 

principle has been well known since 1970’s [14]. 
Parnas’s famous information hiding criterion [11] 
similarly has remained influential for decades. 
Designers are educated to seek modular architectures 
to better accommodate expected changes and to enable 
parallel development.  

However, because these principles are informal, 
their successful application depends on the designers’ 
intuition and experience. Intuition and experience, in 
turn, do not prevent a big company, like Microsoft, 
from constantly grappling with unanticipated 
dependencies, modularity decay,  and delays in 
bringing software to market. Thus we are in need of a 
formal theory and models of modularity and software 
evolution that can capture the essence of these 
important but informal design principles and provide 
the power of description, prediction and prescription.  

Baldwin and Clark [1] proposed a theory to explain 
how modular architectures add value to system designs 
by creating options to improve the system by 
substituting or performing experiments on individual 
modules. Their theory is based on Steward’s [15] 
design structure matrix (DSM) modeling approach 
(described below). 

Baldwin and Clark also proposed that design rules 
can be used to resolve interdependencies and create 
modular architectures by specifying the interface 
between modules. Sullivan et al. [16] applied their 
design rule theory in Parnas’s [11] small but canonical 
Key Word in Context (KWIC) design example. They 
showed that DSM modeling and the design rule theory 
can precisely capture Parnas’s information hiding 
criterion. The KWIC experiment provides preliminary 
evidence of the model and theory’s descriptive power.  

In this paper, we evaluate the DSM model and 
design rule theory in large and complex software 
designs. We examine the design evolution of two 
software product platforms: (1) Tomcat, an open 
source web application server from the Apache 
Software Foundation; and (2) a proprietary application 
server from a company which remains anonymous. 
Both systems have been evolving for years. Their 
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designers have refactored the systems several times 
and released multiple versions.  

We examine the evolution procedure and 
refactoring activities for these two platforms through 
the lens of DSM models and design rule theory. We 
hypothesize that the theory can explain how 
modularization confers strategic advantage on firms by 
allowing codebases to evolve in particular ways. The 
experiment supports our hypothesis: a theory based on 
DSMs, design rules and options has the power to 
explain formally phenomena related to the evolution of 
large-scale software systems.  

The designers of the systems we examine made 
their decisions based on their own visions and prior 
experiences.  They did not use DSM models, design 
rule theory or options analysis. However, our case 
studies imply that this set of analytic tools and methods 
can be used for both prediction and prescription. For 
example, given two refactoring proposals, designers 
might use DSMs, design rules and options analysis to 
quantitatively determine which is better. They can also 
assess whether the proposals will enable substitution of 
code that is strategically problematic (because of 
licensing terms, for example.). Finally, DSM models 
can be used to see whether ex post outcomes match the 
ex ante goals of a refactoring effort. 

This paper is organized as follows: Section 2 
introduces DSM modeling and Baldwin and Clark’s 
design rule theory. Section 3 presents our evaluation 
methodology. Section 4 presents the case study of 
Tomcat. Section 5 presents the case study of the 
proprietary product platform. Section 6 discusses our 
results. Section 7 describes related work, and Section 8 
concludes. 
 
2. DSM Modeling and Design Rule Theory 

This section introduces DSM modeling and 
explains how design rules decouple otherwise coupled 
design decisions, create options, and enable 
independent substitution. In the rest of the paper, we 
will refer to the formal analysis of design rules and 
options as “design rule theory.” 

The design structure matrix (DSM) was initially 
conceived by Steward [15], and later developed by 
Eppinger et al. [4] as means of modeling interactions 
between design variables of engineered systems. A 
DSM is a square matrix, in which each design variable 
corresponds both to a row and a column of the matrix. 
A cell is checked if and only if the design decision 
corresponding to its row depends on the design 
decision corresponding to the column.  Figure 1 shows 
a simple DSM with three tasks. 

A B C

A X
B X
C X  

Figure 1:  A simple DSM with three design 
parameters, labeled A, B, and C.  In this example, 
A depends on B.  B depends on A.  C also depends 
on A.  No modules depend on C. 

 

Building on DSM models, Baldwin and Clark 
proposed the notion of design rules as a means of 
decoupling otherwise coupled design decisions.  
Design rules specify the interface between modules, 
and appear at the left-hand side of the DSM.  Figure 2 
demonstrates the refactoring of the sample DSM to 
resolve a cyclical dependency. The design rule (DR) 
specifies an interface between design decisions A and 
B, such that, once the DR is introduced, A and B no 
longer depend on each other. Instead, both depend on 
DR. In other words, through the agency of design 
rules, A and B become independent modules. Baldwin 
and Clark define the behavior of introducing design 
rules that decouple two modules as the Splitting 
operator.  

 

A B C

A X
B X
C X

DR A B C

A X
B X
C X  

Figure 2:  DSM transformation showing addition of 
a design rule (column “DR”) which specifies an 
interface between A and B, thus resolving their 
mutual dependency 
 

Given two modules, A and B, resulting from the 
Splitting operation, experiments on A and B may be 
performed independently. In other words, module A 
can be replaced with a better module with 
advantageous properties, such as higher performance 
or lower cost, without influencing B.  Module B can be 
similarly substituted with a better version without 
disturbing A. The ability to select the best candidate 
for each module increases the value of the entire 
system. Baldwin and Clark define the behavior of 
exchanging an existing module for a new module with 
advantageous properties as the Substitution operator. 
In other words, each module creates an option (to 
substitute), which will only be exercised when 
substitution is advantageous. Increasing the number of 
modules increased the number of options, which 
(under well-defined assumptions) results in higher 
value for the system as a whole.1  
                                                           
1 Baldwin and Clark proposed a collection of six “modular 
operators,” which together can account for most design structure 
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The effect of these operations can be captured 
precisely by DSMs. The introduction of design rules 
(DR) can be modeled by the left-most columns of the 
DSM; the effect of splitting is reflected by the absence 
of dependencies between two modules, and by the fact 
that the two modules only depend on  the design rules. 
Given two independent modules, substitution becomes 
possible within each module.  

Sullivan et al. [16] used DSM models to precisely 
capture Parnas’s [11] information hiding criterion, and 
used options analysis to show that the information- 
hiding design of KWIC generates a higher total value 
of the system. Their experiment provides preliminary 
evidence of the efficacy of DSM-cum-design-rules 
analysis based on small but canonical software 
examples.   

We hypothesize that such analysis also has the 
potential to explain large-scale software evolution 
phenomena, for example, why some software 
platforms can survive after many years of evolution, 
but others can not, and whether a particular 
modularization effort, such as refactoring, is 
successful.  The next section introduces our evaluation 
methodology.  
 
3. Methodology 

In this section, we introduce our overall evaluation 
methodology.   

 
3.1 Two Software Systems  

We examine two software systems: (1) Tomcat, an 
open source web application server from the Apache 
Software Foundation; and (2) a proprietary application 
server, which has been analyzed with the permission of 
the company that develops and sells it. We will refer to 
this company as “Company 2,” and to its software 
system as “Server 2.” 

We chose the Tomcat server because it is a 
successful open source software system in which 
different parts of the system can be expanded or 
improved independently.  Many major software 
platforms do not have this beneficial property. We 
hypothesize that DSM modeling and design rule theory 
can shed light on the properties of this successful, 
evolvable large-scale software system. 

We chose Server 2 because the first author 
witnessed and participated in a strategic refactoring 
that addressed a real problem in a commercial software 
company. We hypothesize that DSM modeling and 
design rule theory can show formally what the 
                                                                                          
transformations. Splitting and Substitution are the two most 
important operators. 

refactoring accomplished and how it benefited the 
company.  

The systems are both web application servers, 
which implement all or part of the Java 2 Enterprise 
Edition (J2EE) specification.  Server 2 is a much larger 
software system than Tomcat, by almost an order of 
magnitude. Tomcat implements only a portion of the 
J2EE specification, while Server 2 implements the 
entirety. Server 2 also includes many application 
“framework” components, which serve as a platform 
for Company 2’s entire product family. 

Using methods described below, we analyzed 
multiple versions of each system to study their 
evolutionary properties. All versions studied were 
production releases, and are therefore known to be 
stably functioning versions of the software. We 
examined these two software systems using a DSM 
model based on source code dependencies. Thus our 
investigation uses static software analysis to extract the 
dependency relations within software source code.  

 
3.2 Dependency Extraction 

Both systems are Java-based projects, and we used 
an open-source tool, Dependency Finder, written by 
Jean Tessier [17], to extract code dependencies. The 
basic unit of analysis for our investigation is the Java 
class. We examined the following kinds of class-to-
class dependencies:  

• If class A is a subclass of B, then A depends on 
B.  The parent class is necessary to compile its 
children. 

• If any portion of class A makes explicit 
reference to B as a variable, then it also 
depends on B. 

• If a function in class A calls or makes reference 
to a function or data member of class B, then A 
depends on B. 

Java classes are grouped together into “packages.”  
A Java package is a collection of classes which 
together implement a larger unit of related 
functionality.  The packages are named hierarchically, 
with each portion of the package name progressively 
narrowing the scope of the code contained in it.  For 
example, software from the Apache Foundation is 
contained within other packages starting with 
“org.apache,” and the core functionality of version 3.0 
of the Apache Tomcat server is contained in the 
subpackage “org.apache.tomcat.” These class-to-class 
dependencies are then aggregated hierarchically into 
package-to-package dependencies.   
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3.3 DSM Generation 
We now use DSMs to represent the software 

dependency relationships.  Each row and each column 
of the DSM corresponds to a class, and each 
dependency is denoted by a mark in the row 
corresponding to the dependent class and the column 
corresponding to the depended-upon class. All of the 
DSMs contained in this paper were rendered using 
DSAS, the Design Structure Analysis System, created 
by John Rusnak [12].  

The DSMs depicted for the two systems contain 
several hundred to several thousand classes, and we 
use black dots to show class dependencies.  To make 
them more comprehensible, classes in the same 
package are delineated within a square.  Packages in 
the same parent package are surrounded with another 
square, and so on, to create a hierarchical view.  As 
results are presented, relevant portions of the DSM 
will be labeled with the subsystems that they represent. 

Authors such as Steward [15] and Eppinger et al. [4] 
have observed the importance of sequence in DSM 
representations of task structure, where marks above 
the diagonal represent iterative cycles.  Similarly, if the 
elements of a software DSM are ordered so that, 
wherever possible, a class follows the classes on which 
it depends, then marks above the diagonal will 
represent cyclic dependencies. 

DSMs in this paper that are labeled as sorted have 
been reordered in a way that strictly preserves the 
hierarchical structure of the packages and 
dependencies, but also minimizes marks above the 
diagonal.  DSMs sorted in this way can help to reveal 
layered software design structures, as well as cyclical 
dependencies.  

In order to evaluate whether substitution has 
occurred in a module, the following metric, 
architectural change ratio is used.  It is a coarse 
metric, which is based on the number of classes added 
or removed from a module between two release 
versions: 
 
changeRatio(versioni→ versionj) =  
 

i

jj

CounttotalClass
ssCountremovedClauntnewClassCo )()( +

 

That is to say, the change ratio is simply the sum of the 
number of new classes added and the number of 
classes removed, divided by the number of classes in 
the previous version of the module.  This metric 
captures changes in the class structure, but not code 
changes within the classes themselves.  

The next two sections report our experimental 
results, showing how DSM modeling and design rule 

theory can precisely explain software evolution and 
modularization activities.  

 
4. Tomcat Case Study 

We first consider the Apache Tomcat project. 
Tomcat underwent a change of project structure from 
commercial to open-source development in 1999. 
Subsequent to its open-source transition, the Tomcat 
codebase was partially rewritten, and again 
“refactored” – redesigned to create a cleaner, more 
efficient architecture – in its next major release.  

We studied five versions of Tomcat: from v3.0, the 
first open-source version of the server, to v5.0.28. We 
modeled each version using a DSM, and computed the 
change ratio from the previous version. Figure 3 shows 
the DSM generated for Tomcat 3.0.  

 

 
Upon examination of the DSM, it is immediately 

clear that there are two major and distinct functional 
modules in the codebase, corresponding to the Tomcat 
server core (“Tomcat-main”), and a separate module, 
named Jasper, which processes Java Server Pages.  

The fact that there are two distinct functional 
modules in turn enables a desirable property of the 
architecture: the two modules can evolve separately. 
This fact can be shown quantitatively, by observing 
rates of change of the two modules across successive 
versions of the code.  

Table 1 shows the change ratios of Tomcat-main and 
Jasper for each version examined relative to the 
previous version. It shows that from version 3.0 to 
version 3.3.1, and again from version 3.3.1 to version 

Figure 3: DSM for Tomcat 3.0, showing two 
independent modules.  The DSM is sorted to show 
module hierarchy 
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4.0, Tomcat-main was almost entirely rewritten or 
rearchitected (change ratio >= 1.0), while the Jasper 
module underwent only minor changes (change ratio = 
0.2). Across multiple versions of the product, each of 
the two modules experienced at least one redesign, but 
these occurred at different points in time. Thus the 
change metrics reveal that there was a different rate of 
experimentation in the two modules. 
 
version v3.3.1 v4.0 v4.1.31 v5.0.28
Tomcat-main change ratio 1.0 1.1 0.5 0.4
Jasper change ratio 0.2 0.2 0.5 0.5  
Table 1:  Architectural change ratios of the 
Tomcat-main and Jasper module across versions of 
the software. 

The DSM in Figure 3 leaves the impression that 
Tomcat-main and Jasper are almost totally separated 
systems because they are only connected at two points. 
This is not the case, however. The two modules belong 
to the same system and are not two pieces of unrelated 
software.  

Direct examination of the Tomcat source code 
shows that the points of connection in the DSM are 
only calls to a utility function. The real interface 
between the two chunks of code is defined within the 
J2EE Servlet API, the specification to which Tomcat 
conforms.  Thus the initial DSM, derived from the 
source code of Tomcat alone, does not depict the 
complete relationship between these two modules.  

However, we can extend the DSM by adding the 
J2EE interface, thereby obtaining the larger DSM 
shown in Figure 4.  From this DSM, we observe that 
the interface between these modules can be considered 
a “design rule,” in the sense proposed by Baldwin and 
Clark [1]. First, it defines a basic specification, to 
which both modules must conform: this can be seen 
from the presence of dependencies in the columns of 
the J2EE Servlet API and the rows of Tomcat-main 
and Jasper.  As long as both modules conform to this 
interface, they can interoperate. Second, the interface 
does not itself depend on either Tomcat-main or 
Jasper: this is apparent from the absence of 
dependencies in the columns of the two modules and 
the rows of the Servlet API.  Finally, the Tomcat-main 
and Jasper modules are effectively independent, each 
depending only on the interface design rule (except for 
two calls to a utility program).  

It is important to note that the existence of these 
design rules was not immediately observable at the 
outset. We first observed the highly modularized 
structure through the DSM shown in Figure 3, and 
then discovered the key enabler of this desirable 
characteristic, the J2EE Servlet API as design rules. In 

many cases, design rules are implicit, such as a data 
structure agreed among modules (as exemplified by 
Parnas’s KIWC sequential design [11]). Without a 
formal model like DSM, their existence and their 
important roles are difficult to recognize.  
 

 
Figure 4 The extended design structure of Tomcat 
3.0, showing the Servlet API classes as design rules.  
The DSM is sorted to show module hierarchy 

The two distinctly decoupled modules, as shown in 
the DSMs, allow for the asynchronous evolution of the 
two modules.  This is an example of the Substitution 
operator proposed by Baldwin and Clark [1] at work in 
the software domain.  Subsequent to Tomcat’s 
donation to the Apache Software Foundation, and its 
transformation into an open-source project, Apache 
members redesigned and rewrote the Tomcat-main 
module.  This branch, initially named “Catalina,” 
competed with the older version of Tomcat, and 
Apache members contributing to the Tomcat project 
voted to select Catalina as the new primary version of 
Tomcat (v4.0). In this process, Jasper was only slightly 
changed.  

It is difficult to assess the exact reasons why one 
version was selected over the other (and, indeed, 
different members may have chosen the new version 
for different reasons). However, we can infer from the 
process itself, and from the result that a new 
architecture for Tomcat-main was selected, that some 
advantage was conferred by substituting a new version 
of the Tomcat-main module (v4.0) for the older 
version (v3.x). In other words, there was inherent 
value in the option to substitute at the module level. 

Had the two modules, Tomcat-main and Jasper, 
been tightly coupled by strong code dependencies, 
changes in one would necessarily have forced changes 
in the other.  Any substitution would then have 
involved both modules, and been inherently more 
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difficult (and perhaps more contentious). In this case, 
the ability conferred by the code architecture to 
substitute a software module was useful in the context 
of open-source software development. 

The evolution of parts independently of the whole is 
a critical property of a well-modularized architecture. 
DSM modeling can reveal whether a complex system 
is well modularized and explicitly reveal the design 
rules that enable the separation. Conversely, if the 
DSM model of a system does not appear to have 
distinct modules, it may be desirable for architects of 
the system to further modularize it by identifying 
additional design rules, and applying the splitting 
operator.   
 
5. Server 2 Case Study 

In the second case study, we examine a closed-
source, commercially available product.  Company 2’s 
product line is a family of web-based applications – 
software applications that run on a server and allow 
user interaction through web pages.  Examples of web-
based applications include bulletin-board systems that 
allow users to post and read messages; travel sites that 
allow users to make and view reservations; commerce 
sites with “shopping cart” functionality; or any web 
site that integrates information stored on other systems 
such as databases.  (These examples do not necessarily 
correspond to Company 2’s actual product offerings.)  

Company 2’s applications are based on its product 
platform.  The platform in turn consists of (1) a J2EE 
Application Server; (2) an application framework, 
which implements basic services used by all of its 
applications; and (3) a business logic engine, which 
implements more advanced services also used broadly 
within the product family.  Figure 5 shows a module 
block diagram of this structure. The platform 
components are shown at the bottom of the diagram, 
with the applications sitting on top.  Arrows indicate 
dependency relationships: the applications depend on 
the platform components, and the higher-level platform 
components depend on the server/framework 
component at the bottom. 

 Our analysis focuses on the server/framework 
platform component, upon which the entire product 
family depends. This component is a J2EE-compliant 
application server.  If that were its only role, then 
another, third-party, J2EE-compliant application server 
could be substituted for this portion of the software. 
However, the server/framework component also 
contains framework elements—basic services that the 
whole product platform and family rely on for 
functionality.  Therefore, a commercially-available 

third-party application server cannot be substituted 
wholesale for the server/framework component. 

 

 
Figure 5:  Block architectural diagram of Company 
2’s product family, including both platform and 
application components.  

We model the original dependency structure of 
Server 2 at the time of our case study using the DSM 
shown in Figure 6. From the DSM, we observe a large 
block of highly entangled classes. The highly coupled 
structure is partially due to the following reason: the 
server/framework platform component contained code 
that Company 2 licensed from another vendor, and the 
licensed code was spread throughout the codebase and 
could not be readily separated from the rest of the 
platform.  

This situation created distinct strategic risks for 
Company 2. Upon expiration of the license agreement, 
the licensor could prohibit Company 2 from releasing 
new versions of its software containing the licensed 
code. Or it could raise the price of the license, thereby 
creating a classic “holdup” scenario. Because the 
licensed code was intertwined with Company 2’s 
product family, such events could place Company 2’s 
entire product family, revenue, and profitability at risk! 
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Figure 6: DSM of Server 2, before splitting.  Note 
that the server/framework component is primarily 
composed of a single, large module. Licensed 
components are spread throughout this module. 

 
5.1. Splitting and Substitution  

To address this problem, the company performed a 
limited restructuring of the server/framework platform 
component. The design goal of the restructuring was to 
isolate the licensed code into a separate module, for 
which a different third-party software product could be 
substituted at a later date.  As envisioned, this 
substitution could be performed by Company 2 or by 
customers in the field.  The secondary goals of the 
restructuring effort were to separate the licensed code 
with minimal engineering effort, minimal code 
changes, and minimal technical risk. 

In order to achieve these goals, engineers first 
determined what code was subject to license 
restrictions.  This set of Java classes is denoted by L, 
the licensed code. 

L = {code under license} 
The set L had to be separated from the rest of the 
codebase.  

The engineers also identified all Java classes that 
required the licensed code, a set denoted by RL. 

RL = {all classes that require some class in L} 
However, all of RL could not simply be split off, 
because some of it was also required for the rest of the 
platform and/or applications.   

Once RL had been identified, the classes in RL were 
individually examined by a group of engineers, who 

used their knowledge of the platform and applications 
to decide what should and should not be excluded from 
the platform.  Any code that was required by other 
platform and application components could not be 
excluded from the platform, and thus had to be 
separated from the licensed code.2 

In this fashion, a cleaving line was determined that 
split the server/framework platform component into 
two separate modules. The code was then rewritten to 
eliminate dependencies that violated the constraints of 
separation. 

 

 
Figure 7:  DSM of Server 2, after splitting.  
Components under third-party license have been 
separated into a new top-level module. The licensed 
components depend on company components, but 
no company component depends on the licensed 
components. 

Figure 7 shows the DSM of the component after 
splitting. Following the engineering work to resolve 
the problematic dependencies, the server/framework 
component was indeed separated into two separate 
blocks (modules): a new server/framework component 
and licensed server components. Furthermore, no 
element in the new server/framework component 
depended on any part of the licensed code. (This is 
evident from the absence of dependencies in the upper 
rectangular quadrant of the DSM.)   

In the lower left part of the DSM, we observe that 
there are significant dependences from the licensed 
code to the platform components, indicating that the 
                                                           
2 In this case it was most expedient for engineers to make the 
determination simply by examining the list.  However, the operation 
could also be performed using formal dependency analysis. Please 
refer to LaMantia [8] for details.  
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platform component cannot be substituted 
independently. These dependencies exist because the 
licensed server components have evolved 
interdependently with Company 2’s own code, and it 
was not necessary to resolve these dependencies in 
order to make the licensed code module substitutable.  
This outcome was acceptable because only the licensed 
code module was at risk.  

Now that no portion of Company 2’s platform or 
applications depends on the licensed server 
components module, another implementation can be 
substituted for it, as long as the substitute module 
conforms to the underlying design rules which specify 
the interface between the product family and the 
licensed code module.  In this case, the design rules are 
defined by the J2EE API module.   After the licensed 
code is replaced by a third-party product, the 
dependencies in the lower left part of the DSM 
disappear, and both platform components and the 
third-party product become independent modules. 

Thus a third-party J2EE application server can be 
used for this purpose, and, in fact, Company 2 supports 
this configuration today. This substitution scenario is 
illustrated by the block diagram in Figure 8. The 
company’s product platform is unchanged, but the 
licensed server components are acquired from a third-
party J2EE-compliant server:  

 

 
Figure 8:  Block diagram of the restructured 
Company 2 product family, in which a third-party 
product has been substituted for licensed 
components previously contained in the platform.  
 
5.2. Strategic value of design structure 

Like the Tomcat example, the case of Company 2 
illustrates how the splitting of software into modules 
can facilitate substitution.  However, in this case, the 
split was deliberately engineered to obtain a specific 
strategic benefit, namely to protect the company’s 

product platform against the loss of licensed 
components. 

There is a difference between the design structure of 
Tomcat and the modified Company 2 product 
platform: Whereas the two major modules of Tomcat 
were effectively independent, relying only on the 
underlying specification as design rules, Company 2’s 
platform structure is layered. The newly separated 
“licensed server components” module relies on the 
platform core.  This is acceptable because the 
component that needs to be substitutable is the 
dependent module.  Nothing else in the product family 
depends directly upon it. Once a third-party product is 
plugged in, the dependencies are removed and the two 
modules become independent.   

While this restructuring addressed the problem of 
having licensed code in the platform, it did not address 
the vulnerability of the platform to changes in the 
J2EE specification itself. The entire product family 
depends, directly or indirectly, on the J2EE 
specification classes. In this sense, the J2EE 
specification is a design rule for the entire product 
family. Company 2 does not control the specification, 
thus changes in it may expose the product platform to 
strategic risk.  

From the DSM in Figure 7, we can still observe a 
large entangled block of the server/framework 
platform component, which suggests the opportunity 
and necessity of further modularization, by splitting 
and substitution, to mitigate strategic risk.  
 
6. Discussion 

In both the Tomcat and Company 2 case studies, the 
DSM models reveal a key characteristic of modular 
architectures: the design rules must be explicitly 
defined so that otherwise dependent modules can be 
decoupled (splitting) and each independent module can 
thus be replaced with a better version (substitution) 
without unwanted perturbations.  

For a well modularized system, like Tomcat, the 
DSM shows the loose coupling characteristic of 
subsystems by aligning modules as blocks along 
diagonals, and by the absence of dependences across 
blocks. By studying the change ratios of multiple 
versions along its evolutionary path (Table 1), we 
observed that this architecture has enabled different 
rates of experimentation in different subsystems, and 
that the key enabler of this highly flexible architecture 
is the design rules embodied in the J2EE specification.  

The case of Company 2 additionally demonstrates a 
real-world scenario where the modular partitioning of 
a software product platform had concrete and 
quantifiable strategic value. The company significantly 
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reduced its strategic risk by deliberately splitting 
elements of a codebase and eliminating problematic 
dependencies. Comparing the DSMs before and after 
the refactoring of Server 2,  we can see that the 
platform no longer depends on the licensed code. This 
means that licensed code can be replaced without 
jeopardizing the functionality of the company’s own 
code, suggesting that refactoring has succeeded.  

The DSM of Server 2 also reveals that rest of the 
system is still not well-modularized. With a theory of 
design rules in mind, we can come up with splitting 
and substitution strategies for further improvement. 
For example, the new server/framework platform still 
depends on the J2EE specification. In the future, it 
might be advantageous to separate all of the 
application framework and logic that does not require 
the J2EE specification into its own layered hierarchy 
of modules. 

Although the modularization decisions in these two 
systems were based on the designer’s experiences and 
intuitions, by using DSMs we were able to capture, 
both formally and precisely, what the designers did 
that enabled the substitution of independent modules. 
Hence the two cases suggest that DSMs and design 
rule theory can be used as tools for understanding and 
describing existing software product architectures, and 
for finding ways to improve them. The patterns 
observed here in turn have the potential to serve as a 
model for the deliberate creation of software 
architectures that enable asynchronous evolution and 
substitution of modules.  Furthermore, they suggest 
directions to advance our notions of how specific 
modular decompositions and dependency structures 
can bring specific strategic advantages to the 
enterprise.  
   
7. Related Work 

Parnas [11] introduced the fundamental concepts 
which define software modularity.  He proposes the 
principle of “information hiding” as the basis for 
decomposing software into modules, and  defines a 
module as “a responsibility assignment rather than a 
subprogram.”  The essence of information hiding, he 
said, is to hide the design decisions that are likely to 
change, and to make the modules communicate only 
through interfaces.  

Sullivan et al. [16] applied DSM modeling and 
design rule theory to Parnas’s canonical example, 
showing that Baldwin and Clark’s [1] approach could 
be used to visualize and formalize Parnas’ theory. The 
dependencies are visualized in a DSM; the interfaces 
are formalized as design rules; the modules create 
options; and the risky (volatile) part of the system 

should be isolated in separate modules to obtain higher 
option value.  Lopes et al. [8] later employed similar 
methods to compare aspect-oriented design vs. object-
oriented design.   

Sangal et al. [13] used a commercial static analysis 
tool to recover dependency models from source code 
for the purpose of discovering and communicating 
software architecture. Rusnak and MacCormack et al. 
[10] used the DSM modeling techniques to compare 
two complex software systems, the Linux kernel and 
the Mozilla web browser.  

In contrast to prior work, our experiments show 
how design rules appear as structures in the DSMs of 
actual codebases. We also characterize the key 
properties for a system to be adaptive, and explain how 
splitting and substitution can be enabled by proactively 
inserting design rules and isolating parts of the system 
with high risk. By extracting DSMs before and after a 
modularization activity, we can formally confirm if the 
activity is successful.  

The DSM modeling approach is general enough to 
model decisions not only in source code, but also in 
the specification and design stages of codebase 
development. Cai’s [2][3] recent work concentrates on 
modeling design decisions and dependencies that span 
the software lifecycle using augmented constraint 
networks and automatically generating DSMs from 
logic models. This work shows that the DSM model 
has the potential to bridge the gap between design and 
implementation modularity by enabling conformance 
checking between the two. 
 
8. Conclusion 

Important software modularity principles, such as 
the information hiding criterion, have remained 
informal. DSM modeling and Baldwin and Clark’s 
design rule theory have the potential to formally 
account for how design rules create options in the form 
of independent modules and enable independent 
substitution.  

This paper evaluated the applicability of the model 
and theory to real-world large-scale software designs 
by studying the evolution of two complex software 
platforms through the lens of DSMs and design rule 
theory. The results showed that (1) DSM models can 
precisely capture key characteristics of software 
architecture by revealing independent modules, design 
rules, and the parts of a system that are not well 
modularized; (2) design rule theory can formally 
explain why some software systems are more 
adaptable, and how a modularization activity, such as 
refactoring, conveys strategic advantages to a 
company. 
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DSM modeling and design rule theory are general 
enough to model decisions other than those encoded in 
source code. Having shown the descriptive capability 
of these techniques, we envision that this approach 
also has the power of prediction and prescription. For 
example, designers can use DSM models proactively 
to design the architecture of a system or to plan a 
modularization (refactoring) that will increase the 
system’s option value. After the system is built or the 
refactoring concluded, they can use DSMs extracted 
from actual source code to check whether the initial 
architecture or the modularization plan was successful.   
[7].  
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