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Abstract 

Organizations in science and elsewhere often rely on committees of experts to make 

important decisions, such as evaluating early-stage projects and ideas. However, very little 

is known about how experts influence each others’ opinions, and how that influence affects 
final evaluations. Here, we use a field experiment in scientific peer review to examine 

experts’ susceptibility to the opinions of others. We recruited 277 faculty members at 
seven US medical schools to evaluate 47 early stage research proposals in biomedicine. In 

our experiment, evaluators: (1) completed independent reviews of research ideas, (2) 
received (artificial) scores attributed to anonymous “other reviewers” from the same or a 

different discipline, and (3) decided whether to update their initial scores. Evaluators did 
not meet in person and were not otherwise aware of each other. We find that, even in a 

completely anonymous setting and controlling for a range of career factors, women 

updated their scores 13% more often than men, while very highly cited “superstar” 

reviewers updated 24% less often than others. Women in male-dominated subfields were 
particularly likely to update, updating 8% more for every 10% decrease in subfield 

representation. Very low scores were particularly “sticky” and seldom updated upward, 

suggesting a possible source of conservatism in evaluation. These systematic differences 
in how world-class experts respond to external opinions can lead to substantial gender and 
status disparities in whose opinion ultimately matters in collective expert judgment. 
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1. Introduction 

Individuals and organizations undertake many important decisions with input from experts. 

Experts may be asked to evaluate the quality or future performance of investment 

opportunities, job candidates, and other uncertain but potentially highly consequential 
choices. Expert evaluations are particularly common in scientific research, where deep 

expertise is needed to parse the content of funding applications, research outputs, 
promotions, and awards (Chubin & Hackett, 1990; Stephan, 2015). These evaluations can 

make or break careers, shape the direction of scientific discovery, and require a significant 
outlay of personal and institutional time, effort and resources (Herbert, Barnett, & Graves, 

2013; Kovanis, Porcher, Ravaud, & Trinquart, 2016). 

A central question in the design of evaluation processes is how to best aggregate information 

from multiple experts. It is widely recognized that combining the expertise of multiple 

individuals can improve judgments, but the optimal aggregation approach can be context-
sensitive and difficult to know a priori (Armstrong, 2001, pp. 417–439; Mannes, Larrick, & 

Soll, 2012). A decision-maker could aggregate multiple judgments using a simple formula, e.g. 
average, and many organizations do precisely this. However, other organizations, such as the 

U.S. National Institutes of Health (NIH), National Science Foundation (NSF) and other 
scientific bodies, frequently choose to enable experts to deliberate with one another, 

presumably expecting improved judgment quality through interaction. 

 
Whether deliberation improves or harms expert judgment depends crucially on social 

influence: who influences whom, and why (Cialdini & Goldstein, 2004). Social influence can 
lead to superior decisions, if individuals who are incorrect tend to learn and adopt the views 

of the correct ones. Yet social influence may also make collective judgements worse, if 
individuals are swayed by incorrect views (Asch, 1956; Lorenz, Rauhut, Schweitzer, & 

Helbing, 2011). Despite a multitude of existing studies on social influence, the subjects in the 
studies are nearly universally novices, i.e. college students with limited knowledge not only 

of the task, but of their own skills and expertise (Sears, 1986). Consequently, whether existing 
findings generalize to experts needs to be investigated, particularly due to the widespread 
use of expert committees in the scientific enterprise.  

Here, we report an experiment that explores, for the first time, influence among a sample at 
the very right-tail of the expertise distribution – faculty at US medical schools – in the context 

of an intellectually demanding and highly consequential task -- evaluation of early-stage 

research proposals. The field experiment intervenes in the peer review process of a real 

competition for research funding by layering on it an unconventional step. After reviewers 
evaluated ideas independently, we exposed them to scores from anonymous “other 

reviewers.” The scores and disciplinary identity of the other reviewers was randomly 

manipulated. Reviewers could then update their initial scores. The entire process was 
conducted through an online platform. Unbeknownst to the reviewers, awards were based 
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only on the initial scores, thus preventing the experimental manipulations from influencing 
actual funding outcomes.  

 

Using this novel approach and expert sample, we examine two of the most reliable predictors 
of social influence among novices – shared group membership (Abrams & Hogg, 1990) and 

social characteristics (Berger, 1977). These are thought to moderate influence in distinct 

ways, group membership through perceptions of similarity, and social characteristics 
through perceptions of competence.  

 

Shared group membership - disciplines 

A key tendency of social cognition is to categorize others into “us” and “them” (Dovidio & 

Gaertner, 2010). Social identity theory (Tajfel, 1981), and the self-categorization theory that 

elaborates it (Hogg & Terry, 2000; Turner, Hogg, Oakes, Reicher, & Wetherell, 1987), specify 
the psychological mechanisms underlying this tendency, including stereotyped perception of 

out-group members and favorable perception of in-group members. These mechanisms are 
oriented towards enhancing and clarifying one’s self-concept and lead people to prefer 

information from in-group members. Experiments with novice subjects, as well as 
observational studies with experts (Lamont, 2009; Li, 2017; Porter & Rossini, 1985; 

Teplitskiy, Acuna, Elamrani-Raoult, Körding, & Evans, 2018; Travis & Collins, 1991), often 
find empirical support for this in-group favoritism . In addition to the goal of self-concept 

maintenance, experts may discount out-group information for an epistemic reason. Experts, 
unlike novices, are likely to have very fine-grained maps of intellectual space, and a nuanced 

understanding of the task. For example, experts reviewing a grant application may interpret 

the task as evaluating the application only on the dimension on which they are expert. 

Consequently, they may view information from more distant, out-group experts as irrelevant 
to the task.  

 

Alternatively, standard statistical models of decision-making suggest that out-group 

information is typically more valuable (see Supplementary Information, “Model of 
updating”). This is because in-group members tend to have a more redundant knowledge-

base and are thus likely to make correlated errors (Mannes et al., 2012; Yaniv, 2004). Experts 
with years or decades of experience may more closely approximate normative models than 
novices.  

 

Social characteristics – gender and professional status 

Competence is a fundamental dimension along which individuals assess one another (Fiske, 

Cuddy, & Glick, 2007). In addition to membership in social groups, individuals often use social 
characteristics such as gender as cues of competence of others and themselves (Berger, 1977; 

Eagly & Wood, 2012; Ridgeway & Correll, 2004). In most professional domains, and 
particularly in science, stereotypes of competence tend to favor men and high-status 

individuals (Moss-Racusin, Dovidio, Brescoll, Graham, & Handelsman, 2012; Williams & Best, 
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1990). Accordingly, individuals tend to weight the opinions of men and high-status 

individuals more highly than those of others (Fiske, 2010; Ridgeway, 2014).  

 
The strength and salience of gender stereotypes varies across organizational settings, 

knowledge-domains, and countries (Banchefsky & Park, 2018; Nosek et al., 2009). Local 

numerical composition can be an important proxy of stereotypes and acceptance therein 
(Reskin, McBrier, & Kmec, 1999). For example, gender underrepresentation can signal to 

women how accepting the setting would be of them (Inzlicht & Ben-Zeev, 2000; Murphy, 
Steele, & Gross, 2007) or how competent they might be in it(Eagly & Wood, 2012). In graduate 

school cohorts that are more male-dominated than usual, female students quit at rates higher 
than usual (Bostwick & Weinberg, 2018). Given our context of biomedicine, we expect the 

gender composition of subfields to vary substantially and to proxy the strength and salience 

of gender stereotypes.  
 

In the context of our experiment on scientific peer review the preceding literature is adapted 
by using cues of the  reviewers’ disciplines as salient in- and out-groups and their gender and 
professional status as salient social characteristics.  

 

Additionally, it is unknown whether experts respond differently to opinions that are more 

negative or positive than their own. Negative-positive asymmetries in weighting of 
information have been observed in other domains, such as evaluation of persons (Peeters & 

Czapinski, 1990; Reeder, 2007), and may have important consequences for collective expert 
evaluation. If negative information is more influential, then it may be more important for 
applicants to avoid negative reactions than to attract positive ones.  

 

Contributions 

Our study makes two key contributions. First, influence is a fundamental aspect of collective 

decisions and the study illuminates drivers of influence among an elite population of experts. 

Studies with such a population are rarely possible, and the extent to which existing findings 

generalize to it is unknown. Second, the study contributes to understanding of resource 

allocation in science and other expert domains. With so many billions of dollars and 
thousands of careers resting on the decisions of experts deliberating with one another, it is 

striking how little is known about the mechanics, and possible biases, of these deliberations 
(Derrick, 2018). The few existing studies provide either a close, qualitative examination of a 

small number of observed panels (Lamont, 2009; Rivera, 2017; Travis & Collins, 1991) or 

statistical examination of panel outcomes, without examining internal processes (Bagues, 

Sylos-Labini, & Zinovyeva, 2017; Li, 2017). Our study directly attacks internal processes by 
stripping them down to one particularly crucial component – influence.  
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Materials and Methods 

Description of seed grant process 

In cooperation with Harvard Medical School, we intervened in the review process of research 
proposals. The competition called for proposals of computational solutions to human health 
problems. Specifically, the call asked for applicants to 

Briefly define (in three pages or less) a problem that could benefit from a computational 
analysis and to characterize the type or source of data. 

The competition was advertised nationwide by Clinical and Translational Science Awards 

(CTSA) Centers, open  to the public, and applications were accepted from 2017-06-15 to 
2017-07-13.  

The call yielded 47 completed proposals. The vast majority of applicants were faculty and 

research staff at US hospitals (one application was submitted by a high school student). 
Clinical application areas varied widely, from genomics and oncology, to pregnancy and 

psychiatry. Twelve awards were given out to proposals with the highest average scores, eight 
awards of $1000 and four awards of $500. Reviewers were aware of the award size and that 
multiple projects would be selected. 

Reviewer selection 

Reviewers were selected according to their expertise. The proposals were grouped by topic 
(17 topics), with oncology the largest group (14 proposals), and institutional databases were 

used to identify and recruit reviewers with expertise in those topics. Submissions were 

blinded and reviewed by internal reviewers - Harvard Medical School faculty (211 
individuals) - and external reviewers from other institutions (66 individuals). Harvard-based 

reviewers were identified using the “Harvard Catalyst Profiles” database. Keywords, 
concepts, Medical Subject Headings (MESH) terms1, and recent publications were used to 

identify reviewers whose expertise most closely matched the topic of each proposal.. Non-
Harvard reviewers were identified using the CTSA External Reviewers Exchange Consortium 

(CEREC). The proposals were posted to the CEREC Central web-based tracking system, and 
staff at the other hubs located reviewers whose expertise matched the topics of the proposals. 

Our study sample thus consists of 277 faculty reviewers from seven US medical schools with 
76% of the reviewers originating from Harvard Medical School. Each proposal was reviewed 

by a mean of 9.0 reviewers (min=6, max=13, SD=1.51). Most reviewers (72%) completed just 

one review, and about 15% completed three or more reviews. 

                                                        
1MESH terms are a controlled vocabulary of medical terms widely used as keywords in the biomedical 

literature.  https://www.ncbi.nlm.nih.gov/mesh. Accessed 2019/03/15. 

https://www.ncbi.nlm.nih.gov/mesh
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Experimental design 

The review process, conducted online, was triple-blinded: applicants were blinded to the 

reviewers’ identities, reviewers were blinded to the applicants’ identities, and reviewers 
were blinded to each other’s identities. The anonymity is a critical feature of our 

experimental  design. In typical face-to-face situations, individuals may choose to adopt or 
reject others’ opinions to achieve not only accuracy but also social goals, such as to fit in or 

not make a scene (Cialdini and Goldstein 2004). For example, a number of subjects in Asch’s 
classic conformity experiments revealed in debriefing sessions that they publicly reported 

obviously incorrect answers in order to not “foul up” the experimenter’s results or to “arouse 
anger” in confederates (Asch, 1956, pp. 45–46). Anonymity thus limits or eliminates any 

social pressure to update scores and isolates informational influence from normative 
influence (Deutsch & Gerard, 1955). 

Reviewers were asked to score proposals on a similar rubric used by NIH, with which they 

are broadly familiar. The following criteria were scored using integers 1=worst to 6=best2: 
clarity, data quality, feasibility, impact, innovation. They were also asked to provide an overall 

score (1=worst, 8=best), rate their confidence in that score (1=lowest, 6=highest) and their 
expertise in the topic(s) of the proposal (1=lowest, 5=highest).  

After recording all scores, reviewers in the treatment condition proceeded to a screen in 

which they observed their scores next to artificial scores attributed to other reviewers. 
“Other reviewers” were randomly assigned to be described as either scientists with MESH 

terms like yours or data science researchers. The first treatment signals that other reviewers 
are life scientists who work in a similar area as the reader. We coded the expertise of the 

reviewers as being either in the life sciences or data science3.  Relative to their own expertise, 
the stimulus thus signals same discipline (in-group) or different discipline (out-group).  

Reviewers in the control condition were simply shown their own scores again and given the 

opportunity to update. This condition was designed to account for the possibility that simply 
giving reviewers the opportunity to update may elicit experimenter demand effects, resulting 

in updating behavior that is coincidental to, not caused by, the external information.  

The artificial “stimulus” scores were presented as a range, e.g. “2-5”, and the entire range was 
randomly assigned to be above or below the initial overall score given by a reviewer. The 

stimulus scores thus appeared as originating from multiple reviewers (although we did not 
indicate how many), whose opinions were unanimously different from those of the subjects 

in the experiment. This presentation was chosen because previous research has shown that 
the degree to which individuals utilize external information increases with the number of 

                                                        
2 The instructions used a reversed scale, 1=best to 6=worst, in order to match review processes for 

NIH and NSF. We reversed this and all other scales in the analysis for ease of presentation. 
3 For details see Supplementary Information, “Coding reviewer expertise” 
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independent information sources and their unanimity (Nemeth and Chiles, 1988; Asch, 
1955). 

Materials presented to the treatment and control reviewers can be found in in the 
Supplementary Information Figures S.2 to A.5. 

Key measures 

Professional status  

Status is typically understood as a position in a hierarchy that results from, and produces, 
deference from the lower status individuals to the higher status (Gould, 2002; Sauder, 

Lynn, & Podolny, 2012). In science, citations are a convenient and omnipresent indicator 
of status. The h-index, a popular measure of both productivity and citation impact of 

scientists (Hirsch, 2005), is thus a plausible measure of position in the scientific status 
hierarchy. Junior and relatively unimpactful scholars tend to have low h-indices, while 
senior and highly impactful scholars have h-indices in the top percentiles.  

Although status and quality are distinct concepts, they are often correlated, with the degree 
of correlation varying from setting to setting (Lynn, Podolny, & Tao, 2009). To measure the 

unique role of professional status, as opposed to quality, in social influence, we control for 
the quality of information reviewers provide in the following way.  

Review quality 

We measure quality of a review as the absolute value of difference between its overall score 

and the mean of the scores given to the same application by other reviewers. We interpret 

the mean overall score of an application as its ground-truth quality or, alternately, the 
prevailing expert consensus. Deviation from this mean then denotes erroneous or highly 

unconventional judgment. Review quality of male and female reviewers was statistically 
similar (Mmale=1.33, Mfemale= 1.22, t=1.24, p=0.22), and it was largely uncorrelated with 
reviewer h-index (ρ = 0.058, p=0.23).  

Subfield gender composition 

To measure the gender composition of scientific subfields, we used as a proxy the gender 
composition of the reviewers evaluating each application. The median number of reviewer 

per application was 9 (min=6, max=13). Most reviewers worked at a Harvard-affiliated 
hospital, so this proxy may reflect the gender composition of their local workplace 

interactions better than statistics that are aggregated at the national or international level.  
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Results 

Use of external information 

Reviewers responded to the external scores. In the treatment condition, they updated initial 
scores in 47.1% of reviews. In the control condition, 0 reviews were updated (χ2(1) = 22.43, 

p < 0.001). Thus, we conclude that the external information, rather than the opportunity to 
update, induced the substantial updating. In all but one case, reviewers revised scores in the 

direction of the external scores, suggesting that they did not attempt to strategically “counter-
balance” external scores to reinforce their own. Reviewers who chose to update did so most 
often by +/- 1 point (n=162, 86.6% of updates)4 

These seemingly small updates can have dramatic implications for funding outcomes when 
paylines are low. In such cases, winning requires a positive evaluation from all, or nearly all, 

reviewers, and even a single reviewer switching his or her score from very positive to only 
moderately so can “torpedo” an applicant’s chances.  In the present case, relying on post- 

rather than pre-exposure scoring would have led to only about 33% (2 out of 6) winners 
remaining winners.  

 

Although a Bayesian perspective suggests that individuals, unless they are extraordinarily 
more skilled than others, should always update (see Supplementary Information, “Model of 

Updating”), the sub-100% rate is consistent with underweighting of external advice routinely 
observed in more novice populations (Bonaccio & Dalal, 2006). We note underweighting even 

in this expert population, but focus primarily on heterogeneity around the average rate of 
47%.  

 
Disciplines 

Reviewers did not update systematically more or less depending on the disciplinary source 
of the information. First, there was not a significant main effect of disciplines: when external 

scores were attributed to “life scientists with MESH terms like yours,” reviewers updated in 
46.5% of cases, and when attributed to “data science researchers,” reviewers updated in 

47.2% of cases (χ2(1) = 0.002, p = 0.97). Thus, neither discipline consistently induced more 
updating. Second, in out-group reviews where the external information was attributed to a 

discipline different to that of the reviewer, reviewers updated in 95/206 = 46.1% of cases, 
versus 90/187 = 48.1% of cases for in-group discipline (χ2(1) = 0.089, p = 0.77). We thus 

observe neither an in- nor out-group preference. We address possible interpretations in the 

Discussion. 
 

                                                        
4 18 reviews were updated by +/- 2 points (9.6% of updated treatment reviews), and only 1 review 

was updated by -3 points (0.5% of updated treatment reviews). 
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Stimulus direction 

Reviewers who gave scores in the middle of the range (3-6) and, consequently, were eligible 

to receive a stimulus with randomized direction, updated at similar rates (50.0% vs 47.9%, 
χ2(1) = 0.055, p = 0.82). However, very high and very low scores, where stimulus could only 

go in one direction, were updated at substantially different rates (discussed below). However, 
it is possible that updating of these scores is explained by selection of different types of 

reviewers into those scores. Consequently, we analyze updating heterogeneity in a regression 
analysis with extensive controls, as follows.  

Regression analysis 

Updating behavior in the study appears to be a “yes-or-no” decision: reviewers choose to 

update or not, and if they do, it is nearly always in the direction of the stimulus by 1 point. 
We model the yes-or-no decision with a linear probability model5 the full specification of 

which is the following:  

𝑌𝑖𝑗 = {0 = 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑢𝑝𝑑𝑎𝑡𝑒,  1 = 𝑢𝑝𝑑𝑎𝑡𝑒𝑑}

= 𝛽0𝑜𝑢𝑡_𝑔𝑟𝑜𝑢𝑝 + 𝛽1𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑥 𝑚𝑖𝑑𝑑𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 + 𝛽2𝑓𝑒𝑚𝑎𝑙𝑒

+  𝛽3𝑓𝑒𝑚𝑎𝑙𝑒 𝑥 𝑝𝑒𝑟𝑐𝑒𝑛𝑡_𝑓𝑒𝑚𝑎𝑙𝑒 + 𝛽4𝑠𝑡𝑎𝑡𝑢𝑠
+ 𝛽5𝑚𝑖𝑑𝑑𝑙𝑒_𝑠𝑐𝑜𝑟𝑒+ 𝛽6ℎ𝑖𝑔ℎ_𝑠𝑐𝑜𝑟𝑒 + 𝛽7𝑋𝑟𝑒𝑣𝑖𝑒𝑤 + 𝛽8𝑋𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠

+ 𝛽9𝑋𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑟 + 𝛼𝑗 + 𝜖 

Yij is an indicator of whether reviewer i of application j updated his or her score. In a linear 
probability model it is interpreted as the probability of updating. β0 measures the treatment 

effect of exposing reviewers to an epistemic out-group stimulus. β1 measures the treatment 
effect of stimulus direction (for those reviewers who gave medium scores). β2 and β3 measure 

the associations between updating and female and the interaction of female with 
percent_female, respectively. 𝛽4 measure the association with status. β5 and β6 measure the 

association with a middle or high initial score, respectively. 𝛽7, 𝛽8, 𝑎𝑛𝑑 𝛽9 measure 
associations with vectors of controls for the review, the stimulus and the reviewer. αj is a 

fixed effect for application j and 𝜖  is the error term. Application fixed effects absorb the effect 

on updating of all factors embodied in the applications, such as their topic or quality, and 
enable us to assess how updating varies for different reviewers of the same application. We 

do not include reviewer fixed effects due to the limited number of reviewers who completed 
more than one review. 

The following controls were used in the regressions and are described in Supplementary 

Information Tables S1, S2, and S4: professional rank, confidence in initial score, expertise in 
the application’s topic(s), intensity of the stimulus, data science expertise, stimulus type and 

                                                        
5 We choose linear probability models for ease of interpretation. Estimates from a conditional logit 

regression model yield qualitatively identical results and are show in Supplementary Information 
“Alternate specifications.”   



11 

deviation. For estimating the models, we used only the 393 reviews assigned to treatment, as 

only these reviews received stimuli6. The 30 control reviews were used only to compare 

updating between the stimulus and no-stimulus conditions. Estimates from these regressions 
are shown in Table 1 below.  

Gender 

We found that female reviewers updated their scores 13.9% more often than males (Model 
1a, β=0.139, SE=0.056, p<0.05). Adding extensive controls reduced this coefficient only 

slightly to 12.5% (Model 1b, β=0.125, SE=0.054, p<0.05). This is not simply a seniority effect, 
as Model 1b includes controls for career stage, h-index, and a other characteristics, but the 

female coefficient is only slightly reduced.  
 

Furthermore, there is a significant interaction between female and percent_female. Women 
updated particularly often in male-dominated subfields: for every 10% increase in female 

representation, women updated 8.0% less often. The gender difference in updating 
disappeared for fields that were approximately 60% female. To visualize this interaction, we 

estimate separate regressions for men and women, removing proposal fixed effects as 

percent_female is collinear with them. As Figure 1 demonstrates, men’s decisions are 
insensitive to a subfield’s gender composition, whereas women’s probability of updating 

decreases substantially with increasing representation. 
 

 

                                                        
6 8 treatment reviews had missing female, status or stimulus information, and were excluded from 

analysis. 
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Figure 1: Probability of updating as a function of how male-dominated subfields are. Green points denote 

men’s {0, 1} choices of whether to update and purple points denote women’s choices. The points have been 

jittered to improve visibility. Solid lines are predictions for men and women from a logistic regression with  

the same specification as in Table 1, Model (4), but without proposal fixed effects. Shaded regions are +/- 1 

SE  prediction intervals. 
 

Status 

Status (h-index) is negatively associated with updating: for every unit increase in h-index, 

reviewers updated 0.3% less (Model 2, β=-0.003, SE=0.001, p<0.01). However, the variable 
is highly left-skewed. For better interpretability, we partition h-indices into 0-50th (h-index 

< 27), 50-75th (h-index 27-45), 75-90th (h-index 45-68), and 90-100th (h-index > 68) 

percentiles of the full sample of study participants. Model 3 shows that lower updating for 
high-status individuals is driven by individuals within the top 10% of an already elite 

population – a sub-sample we call the “superstars” (Model 3, β=-0.268, SE=0.093, p<0.01)  

Low vs high scores 

Model (4) adds to the previously described variables two binary variables that partition the 

range of pre-treatment overall scores into low scores (0, 1), medium scores (3, 4, 5, 6), and 
high scores (7,8). The coefficients of the dummies indicate that relative to reviewers who 

gave the lowest scores, reviewers who gave medium or high scores were more likely to 
update their scores by 36.2% (SE=0.100, p<0.01) and 27.5% (SE=0.099, p<0.01), respectively. 

Low scores are thus relatively “sticky” – once reviewers score an application poorly, they are 
very unlikely to change that assessment.  
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Table 1. Estimates from OLS regressions predicting updated_score={0,1}. The linear probability 

model is chosen for ease of presentation. Estimates from a conditional logistic model are qualitatively 

similar and provided in the Supplementary Information. 

  

 Dependent variable: Updated score=1 

  

   

 (Model 1a) 
(Model 

1b) 
(Model 2) (Model 3) (Model 4) 

  

female 0.139** 0.125**   0.418*** 

 (0.059) (0.057)   (0.153) 

female x 

percent_female 
 

 
  

-0.797** 

(0.358) 

Status (h-index)   -0.003***   

   (0.001)   

[Reference category:  

status bottom 50%] 
 

 
   

     status top 1-10%  
 

 -0.268*** -0.261*** 

    (0.094) (0.104) 

     status top 10-25%    -0.092 -0.030 

    (0.081) (0.093) 

     status top 25-50%    -0.088 -0.101 

    (0.069) (0.073) 

[Reference category:  

low scores (1-2)] 
 

 
   

   middle scores (3-6)     0.362*** 

     (0.092) 

   high scores (7-8)     0.275*** 

     (0.093) 

Controls N Y N N Y 

  

Observations 385 385 385 385 385 

R2 0.018 0.119 0.028 0.027 0.210 

Adjusted R2 -0.119 0.041 -0.108 -0.116 0.052 

F Statistic 
6.180** (df = 

1; 337) 

4.682** (df 

= 17; 321) 

9.677*** (df = 

1; 337) 

3.044** (df = 

3; 335) 

4.732*** (df = 

18; 320) 

  

Note: Standard errors are clustered at the reviewer-level. *p<0.1; **p<0.05; ***p<0.01 

 

Discussion 

The results indicate that reviewers were responsive to the evaluations of (artificial) others, 

updating their initial scores 47% of the time. Updating was far from universal, however, 
suggesting a sizable overvaluing of one’s own opinion. This overvaluing by expert reviewers 
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is consistent with studies of novices (Moore & Healy, 2008; Yaniv & Kleinberger, 2000), 

although the psychological causes of overvaluation are the subject of debate (Bonaccio & 

Dalal, 2006).  
 

Our results are consistent with reviewers being insensitive to the discipline of the external 

information. This null effect should be interpreted with care because a number of 
explanations may account for it. First, our manipulation of disciplines may have failed. 

Second, reviewers’ own expertise, which was used to define in- and out-groups, may have 
been measured with error. It is possible that our assignment of reviewers to “data science” 

and “life science” categories based on their daily work was noisy or did not match their self-
categorizations. Third, the manipulation may have seemed unnatural and was ignored. 

Fourth, it is possible that the effect of favoring out-group information on statistical grounds 

was offset by an in-group bias on the psychological grounds of favoring one’s in-group to 

clarify or enhance one’s self-concept (Hogg & Terry, 2000; Tajfel, 1981). Taken together, 
these considerations signal the need for more research on influence across disciplinary 

boundaries. 
 

In contrast to disciplines, updating was strongly associated with reviewers’ own social 

characteristics. Women updated 13% more than men, particularly in male-dominated fields. 
Individuals with particularly high academic status – superstars – updated 24% less than 

others. These associations were practically and statistically significant, despite including 
controls for reviewer’s professional rank, self-reported confidence in the initial score, self-

reported expertise in the topic(s) of the application, discipline, stimulus attributes, initial 
score, all aspects of the applications, and, most importantly, and review quality.  

 
Gender and status 

Our experimental design helps illuminate the mechanisms at work. First, in non-anonymous 
settings of collective decision-making, individuals seek to achieve not only accuracy but non-

accuracy objectives such as to minimize discord or maximize acceptance within a desirable 
social group (Cialdini & Goldstein, 2004). Existing research suggests that the weight placed 

on such “affiliation” objectives is likely to differ by gender and status. Meta-analyses of small 
groups research have found reliable and nontrivial gender differences in many aspects of 

interaction (Eagly, 1995), including conformity (Eagly, 1978). Similarly, lower status 
individuals devote more attention to the preferences and opinions of others (Fiske, 2010; 

Magee & Galinsky, 2008). Thus, in settings like face-to-face interactions, susceptibility to 

influence may be caused purely by “affiliation” objectives, rather than assessments of 
competence.  

Our design, on the other hand, featured a fully anonymous pipeline. Reviewers did not know 

the identities of the (artificial) other reviewers, and no one, except the staff administering the 
competition, knew of their scores or updates. The design should thus minimize the salience 
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of explicit and conscious non-accuracy goals. However, to the extent that affiliation goals are 

internalized (Wood, Christensen, Hebl, & Rothgerber, 1997) and non-conscious, they may 
drive updating behavior even in an anonymous setting. 

In contrast to updating to achieve social goals, updating to achieve accuracy entails assessing 
the quality of one’s own information versus others’. Our controls for review quality and 

career stage, though imperfect, should capture underlying differences in quality of 
information. Remaining differences in updating can thus be attributed to faulty subjective 

assessments of the competence of oneself, others, or relative competence. The experimental 

design enables us to rule out faulty self-assessment relative to some objective standard, i.e. not 
involving comparison to others. For example, gender differences in updating could arise if 

men overestimated, or women underestimated, their competence regardless of the presence 
of others. Equivalently, differences in updating could occur if men and women reviewed 

equally well but held themselves to different standards for what counts as a good review – a 
reviewing double-standard (Foschi, 2000). Both of these possibilities are distinguished from 

attribution because they do not necessarily entail comparisons to any other particular social 
or epistemic group. However, we do not find differences by gender or status in pre-treatment 

self-reported confidence in one’s review. Pre-treatment, men and women report similar 
amounts of both confidence (Mmen=4.76, Mwomen=4.66, t=1.12, p=0.27) and expertise 

(Mmen=3.59, Mwomen=3.54, t=0.50, p=0.62). Additionally, the regression results in Table 1 show 

differences in updating by gender and status even after controlling for self-reported 
confidence and expertise.  

 
We thus rule out that differences in updating by gender or status are driven by differences in 

self-assessment in a “social vacuum” and conclude, instead, that it is self-assessment relative 
to (imagined) others that is key. A plausible mechanism is that individuals use imperfect self-

knowledge and local cultural stereotypes as substitutable sources of information about one’s 
competence. Consequently, even highly accomplished women in male-dominated subfields 

may assess themselves to be less competent relative to others (primarily men) in the subfield. 
This finding is consistent with empirical work on less expert individuals that underscores the 

importance of gender representation in local environments for self-perception and 
achievement (Bostwick & Weinberg, 2018). 

 

Asymmetry in updating 

Existing research has overlooked the potential role of information direction - whether, for 

example, external estimate is higher or lower than one’s own - on whether the information is 

utilized7. Our regression analyses show that medium and high scores are between 28% and 

                                                        
7 For instance, a prominent review of the advice-taking literature does not address directionality at all 

(Bonaccio & Dalal, 2006). 
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36% more likely to be updated than low scores. Further research is necessary to replicate 

and explain this finding. Yet a plausible explanation has to do with social costs of different 

error types. Utilizing external information that is different from one’s own implies admitting 
to different kinds of errors. If one adopts a more negative external valuation, one admits to 

having been overly “liberal” initially, perhaps by having overlooked important flaws. 

Conversely, adopting a more positive valuation implies admitting to having been overly 
“stringent” initially. If individuals perceive the social or other costs of making these two types 

of mistakes – being overly liberal vs. stringent – to be different, they will try to avoid the more 
costly mistake. Recent research has began to unpack how evaluators’ social context affects 

their judgment (Mueller, Melwani, Loewenstein, & Deal, 2017) and it is an important avenue 
for future research. 

 

Asymmetric updating can have important implications for whether applicants choose to 

submit risky or conservative projects. From the applicant’s perspective, it is crucial to avoid 
receiving very bad scores, because these are highly unlikely to change during updating; 

achieving high scores is comparatively less important as they are less likely to stay high 
during updating. If high risk (and high reward) proposals are those more likely to polarize 

reviewers, yielding both high and low scores, asymmetry in updating will tend to bring down 

the average scores of these proposals. Asymmetric updating can thus make conservative 
projects – those that avoid low scores – comparatively attractive. This line of argumentation 

may help illuminate a paradox of science policy – funding agencies describe the projects they 
desire as high risk, high reward, but applicants view the selection process as favoring projects 
that are conservative (Nicholson & Ioannidis, 2012). 

Implications for bias in evaluations, and beyond 

Differential updating by gender and status can result in disparities in influence on group 

decisions. These disparities can be highly consequential: previous research has found that 
evaluators tend to champion applicants to whom they are intellectually or socially connected 

(Lamont, 2009; Li, 2017; Teplitskiy et al., 2018). Even small but systematic biases in scoring, 
such as the +/- 1-point swings observed in our study, can easily shift applicants above or 

below paylines. The disproportionate influence of men and superstar scientists on collective 
evaluations can thus result in substantial bias toward “their” applicants. 
 

From a policy perspective, this study investigates an overlooked aspect of science and other 
domains of innovation. Evaluators of ideas or projects often pass judgment in social contexts 

in which they must simultaneously evaluate themselves and their peers (Derrick, 2018), and 

our study shows that inter-personal processes in these settings are likely to have the same 
shortcomings identified with younger and more novice populations. Ignoring these micro-

processes is likely to make investments into scientific or other projects less effective, and 
possibly more biased, than they could otherwise be. It is thus crucial to consider not only the 

composition of evaluation panels but also their deliberation process. 
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Finally, differences in self-assessment of relative competence can have even wider 

implications.  Many expert domains are highly competitive, and individuals who underrate 
(overrate) their competence may be less (more) likely to apply for grants, ask for resources, 

or seek recognition for their achievements. The psychological mechanisms underlying social 

influence, explored here for the first time with an extraordinarily expert and accomplished 
population, thus deserve further attention.   
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Supplementary Information 

Model of updating 

Consider a decision-maker who is presented with two estimates (“signals”) of some parameter 𝜇 ∈
 𝑹, where 𝜇 might be quality of a research idea. One of the signals might be the decision-maker 

herself. The two signals are x and y, and assume that 

𝑥 =  𝜇 +  𝜖𝑥 

𝑦 =  𝜇 +  𝜖𝑦 

Where 𝜖𝑥 ∼ 𝐹, 𝜖𝑦 ∼ 𝐺 for some distributions 𝐹 and 𝐺. Assume further that  

𝐸[𝜖𝑥] = 𝐸[𝜖𝑦] = 0 

and define 
var(ϵx) = σx 

var(ϵy) = σy 

cov(ϵx, ϵy) = σxy 

 

Consider the problem of optimally forming a linear combination of x and y, 

𝑧 = 𝑎𝑥 + 𝑏𝑦,  where 𝑎, 𝑏 ∈ 𝑹 

such that 

𝐸[𝑧] = (𝑎 + 𝑏)𝐸[𝜇] + 𝑎𝐸[𝜖𝑥] + 𝑏𝐸[𝜖𝑦] 

𝐸𝑧 = (𝑎 + 𝑏) + 0 + 0 
𝐸[𝑧] = (𝑎 + 𝑏) 

Imposing the unbiased constraint, 

(𝑎 + 𝑏)𝜇 = 𝜇 
𝑎 + 𝑏 = 1 

𝑏 = 1 − 𝑎 

 

The objective is to minimize the variance of z 

 

𝑣𝑎𝑟(𝑧) = 𝐸[(𝑎𝑥 + 𝑏𝑦)2] 
=  𝐸[𝑎2𝑥2 + 𝑏2𝑦2 + 2𝑎𝑏𝑥𝑦] 

              = 𝑎2𝐸[𝑥2] + 𝑏2𝐸[𝑦2] + 2𝑎𝑏𝐸[𝑥𝑦] 
= 𝑎2𝜎𝑥 + (1 − 𝑎)2𝜎𝑦 + 2𝑎(1 − 𝑎)𝜎𝑥𝑦 

 
The first-order condition is 

 
2𝑎𝜎𝑥 − 2(1 − 𝑎)𝜎𝑦 + 2(1 − 2𝑎)𝜎𝑥𝑦 = 0 

𝑎(𝜎𝑥 + 𝜎𝑦 − 2𝜎𝑥𝑦) − 𝜎𝑦 + 𝜎𝑥𝑦 = 0 
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Solving for a gives the optimal weights a* and b* 

𝑎∗ =
𝜎𝑦 − 𝜎𝑥𝑦

𝜎𝑥 + 𝜎𝑦 − 2𝜎𝑥𝑦
 

𝑏∗ = 1 − 𝑎∗ =
𝜎𝑥 − 𝜎𝑥𝑦

𝜎𝑥 + 𝜎𝑦 − 2𝜎𝑥𝑦
 

𝑧∗ = (
𝜎𝑦 − 𝜎𝑥𝑦

𝜎𝑥 + 𝜎𝑦 − 2𝜎𝑥𝑦
) 𝑥 + (

𝜎𝑥 − 𝜎𝑥𝑦

𝜎𝑥 + 𝜎𝑦 − 2𝜎𝑥𝑦
) 𝑦 

Update Distance 

Suppose the signals arrive sequentially, first 𝑥 then 𝑦. The update distance is 

𝑧 − 𝑥 = (1 − 𝑎∗)(𝑦 − 𝑥) 
= 𝑏∗(𝑦 − 𝑥) 

 

Given unique signals, the optimal estimate is different from the original x in almost all cases (𝑏∗ ≠
0). Only in the case that 𝜎𝑥 = 𝜎𝑥𝑦 does the optimal estimate equal the original. Also, note that the 

magnitude of the update is increasing in the magnitude of difference between 𝑥 and 𝑦.  

 

In this model updating depends on three parameters 𝜎𝑥 , 𝜎𝑦, and 𝜎𝑥𝑦. We consider three situations: 

the signals are of approximately equal quality, the signals are different and covariance is low, and 

the signals are different and covariance is high.  

 

Equally uncertain signals 

Suppose 𝜎𝑥 ≈ 𝜎𝑦. Then,  

𝑎∗ ≈ 𝑏∗ ≈
𝜎𝑦 − 𝜎𝑥𝑦

2𝜎𝑦 − 2𝜎𝑥𝑦
=

1

2
 

 

regardless of 𝜎𝑥𝑦. The last term of 𝑣𝑎𝑟(𝑧) is then  

 

2𝑎∗(1 − 𝑎∗) > 0 

 

and 𝑣𝑎𝑟(𝑧) is increasing in 𝜎𝑥𝑦. Thus, for signals of approximately equal quality, the optimal 

combination is a simple average, and the less correlation between them the better. In our context, 

without any information about reviewers it is plausible to assume that signals from different 

reviewers of the same application are approximately of equal quality. We thus view this case as the 

typical one. Here, a decision-maker choosing between correlated and uncorrelated signals would 

prefer the uncorrelated ones.  

 

Different uncertainty, low covariance 

Suppose that 𝜎𝑥𝑦 <  𝜎𝑥. Then the optimal estimate is towards 𝑦. Higher covariance in this region 

shifts the optimal estimate towards the signal with the smallest variance. Hence, the update distance 

will increase with covariance if 𝑦 has a lower variance, i.e. better signal. 
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Different uncertainty, high covariance 

Suppose that 𝜎𝑥𝑦 >  𝜎𝑥. Then the optimal weight on y is negative and updates entail moving away 

from 𝑦. If 𝜎𝑥 < 𝜎𝑦, higher covariance in this region shifts the optimal estimate further from 𝑦. If 

𝜎𝑦 < 𝜎𝑥, higher covariance in this region shifts the optimal estimate closer to 𝑥 in the direction of 

y. 

Implications for updating behavior 

Although we do not expect decision-makers to behave in perfect accord with the model, we expect 

some correspondence: the greater the update distance suggested by the model, the more decision-

makers should update. This assumption enables us to generate hypotheses for updating. 

 

The typical case above (equal uncertainty) and the more atypical cases suggest the following 

implications:  

 

Updating frequency: A decision-maker should always use both signals. If one of the signals is the 

decision-maker’s own, she should always update it. 

 

In-group vs. out-group: If the signals are approximately equally uncertain, the decision-maker 

should value the less correlated (out-group) signals more. Although the optimal update distance 

doesn’t change with 𝜎𝑥𝑦, the utility of forming the combination (lower 𝑣𝑎𝑟(𝑧)) increases for 

uncorrelated signals, so we can expect the decision-maker to update more often when presented an 

out-group signal.  

 

If the signals are differently uncertain, the implications are ambiguous and depend on the degree 

of covariance, or equivalently, correlation. If the correlation between errors is low for both in- and 

out-group signals, with the out-group signals correlated less, then a decision-maker should, again, 

value the out-group signal more.  

 

If, on the other hand, the correlation is high, then the updating distance increases with increasing 

correlation, and a decision-maker should value in-group signal more. 

 

Empirically, correlation between errors in peer review evaluations are likely to be low. Peer review 

evaluations are notoriously noisy (Bornmann, Mutz, & Daniel, 2010), and even in the same 

discipline evaluations are correlated only slightly above chance (Pier et al., 2018).  

 

Disciplines as in- and out-groups 

In real settings, individuals rarely know precisely how much their estimates are correlated with 

others. In the domain of science, disciplines can serve as such cues. For instance, studies of peer 

review find that individuals systematically prefer work from their own disciplines (Porter & 

Rossini, 1985) and intellectually proximate peers (Li, 2017; Travis & Collins, 1991), and at least 

some of this preference is driven by similar judgment and taste (Lamont, 2009; Teplitskiy, Acuna, 

Elamrani-Raoult, Körding, & Evans, 2018). Empirical evidence directly linking disciplinary 

similarity to similarity in errors is more limited. However, in a study of forecasting macroeconomic 

indicators, forecasts averaged across economists from different schools of thought systematically 
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outperformed those of economists from more similar backgrounds (Batchelor and Dua, 1995). If 

similarity of discipline is a good predictor of correlated errors, individuals should privilege 

information from disciplines outside their own.. 

Description of the competition 

The call was circulated by Harvard Clinical and Translational Center (CTSA) among the Harvard 

community and was sent to 62 other CTSAs at other academic medical centers for dissemination 

to their faculty and staff. 

Description of reviewers 

All reviewers were faculty or research staff at US medical schools, and 76% of reviewers were 

employed by a Harvard-affiliated hospital. Reviewers were affiliated with a wide variety of 

departments, with the following five being most common: Pathology (17), Surgery (15), Radiology 

(13), Psychiatry (12), and Neurology (9). Table S1 displays the faculty ranks of the reviewers. The 

sample of reviewers is relatively senior, with 60% percent of individuals of Associate professor 

rank or higher. 

[ Table S1 about here ] 

 

Each review has a number of attributes, summarized in Table S2 below. A key variable is out 

group, which captures whether the disciplinary source of the stimulus matched or did not match 

their own expertise. 

[ Table S2 about here ] 

 

Table S3 describes the assignment of these reviews to each experimental conditions. Treatments 1 

and 2 are relatively large, consisting of 178 to 213 reviews, while the control arm is smaller, 

consisting of 30 reviews. 

 

[ Table S3 about here ] 

Gender 

69% of the reviewers were coded as male. Gender was coded using a combination of computational 

and manual approaches. First, we classified reviewers first names using an algorithm8. For the 68 

individuals whose first name could not be unambiguously labeled, we located each individuals 

professional website and coded gender based on which pronoun, him/his or her/her, was used in 

the available biographical information9. Overall, 69% of the reviewers were coded as male. 

Status 

                                                        
8 We used the Python package Genderizer, https://github.com/muatik/genderizer. Accessed 2018-05-04. 
9 When the webpage did not include biographical information or use a gendered pronoun, one of the authors coded 

gender based on the headshot picture. 
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We measured reviewers’ status – their professional standing in the field relative to other researchers 

– using the h-index (Hirsch, 2005). The h-index is a bibliometric measure that aims to 

simultaneously capture a researcher’s number of publications and their impact. It is calculated by 

ranking all of a researcher’s publications by their citation counts Ci and finding the largest number 

h such that the h top publications have at least h citations each, h ≥ Ci. Put simply, a researcher with 

an h-index of 3 has 3 publications with at least 3 citations each, whereas a researcher with an h-

index of 40 has 40 publications with at least 40 citations each. H-indices vary widely across fields 

and are generally in the single digits in the social sciences10. In the physical and life sciences, Hirsch 

estimated that “an h index of 20 after 20 years of scientific activity ... characterizes a successful 

scientist,” an h-index of 40 characterizes “outstanding scientists, likely to be found only at the top 

universities or major research laboratories,” and an h-index of 60 after 20 years or 90 after 30 years 

“characterizes truly unique individuals”(Hirsch, 2005, p. 16571). Physicists winning the Nobel 

Prize between 1985 and 2005 had h-indices that ranged between 22 and 79 (Hirsch, 2005, p. 

16571). 

 

We collected reviewers’ h-indices using the Scopus database. Figure S1 below displays the 

distribution of professional status and rank by gender. Applying Hirsch’s baselines to this sample 

suggests the presence of many outstanding and even truly unique scientists. 

[ Figure S1 about here ] 

 

Because the distribution of h-indices in our sample is skewed, we used dummy variables to partition 

its range into subsets. One coding scheme uses four subsets – 0th-50th percentile, 50th-75th 

percentile, 75th-90th percentile, and 90th-100th percentile. The h-indicies associated with these 

percentiles are shown in Table 4. We also report results from a coding scheme that partitions the 

sample of participants into terciles. 

 

Coding reviewer expertise (“data science researcher” vs. “other”) 

The reviewer pool consisted of three main types of researchers: life scientists, clinicians, and data 

scientists. To assess whether the disciplinary source of the external reviews – life scientists or data 

science researchers – constituted an in-group or out-group signal, we coded the computational 

expertise of reviewers into “data science” and “other,” where the latter included individuals whose 

primary expertise was life science or clinical11. Coding was performed using the individuals recent 

publications, MESH12 keywords, grants, and departmental affiliations to infer whether they worked 

in a setting that was primarily wet lab (“other” – life scientist), clinical (“other” – clinical), or dry 

lab/computer (“data science”). 50% of the reviewers were coded as data science researchers. 

 

                                                        
10 http://blogs.lse.ac.uk/impactofsocialsciences/the-handbook/chapter-3-key-measures-of-academicinfluence/. 

Accessed 2018-09-20. 
11 Two authors first independently coded a sample of 28 reviewers, and agreed in 79% (21) of cases. After 

discussing coding procedures, one author coded the rest of the reviewers. 
12 MESH (Medical Subject Heading) terms are a controlled vocabulary of medical terms developed by the U.S. 

National Library of Medicine and used throughout the biomedical research literature to designate medical topics. 
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Table S4 summarizes the reviewer-level attributes used in the analysis. 

[Table S4 about here.] 

Materials and methods 

Stimulus scores 

A lookup table was generated where for each possible initial overall score, there was an associated 

range of artificial ”better” and ”worse” scores. At the time of review, the reviewer would be 

randomly assigned to be shown one of these ranges. If the initial overall score was at either end of 

the scale (1 or 2 at the low end, 7 or 8 at the high end), the stimulus scores were always in the 

direction of the opposite end of the scale. In addition to the overall score, a range of scores for each 

individual attribute was created as well, taking on values highly correlated with the overall score. 

 

Materials 

The following figures present screenshots from the online platform used in the experiment. Figure 

S2 shows the page for the initial review. Figure S3 shows the page used for the treatment – 

reviewers were randomly assigned to receive the wording “scientists with MESH terms like yours” 

or “data science researchers.” Figure S4 shows the page used to update reviews assigned to 

treatment. Figure S5 shows the page used to update reviews assigned to control. 

[ Figures S2 – S4 about here ] 

Alternate statistical models 

The estimates presented in Tables 6 to 8 were based on a linear probability model – a regular panel 

OLS regression that treats the binary outcome variable {0=not updated, 1=updated} as if it were a 

continuous probability. Although linear probability models are easy to interpret, they violate OLS 

assumptions, e.g. homoscedasticity (Greene, 2011, p. 727). Consequently, Table B.1 presents 

estimates from a conditional logit model (Greene, 2011, Sect. 18.2.3) using the full specification 

as in Section 5.5. The conditional logit model accounts for fixed effects of the applications, and 

includes the same controls as before. The direction, relative magnitude and statistical significance 

of all independent variables matches the earlier linear probability model results. 
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Fig. A1: A: Distribution of professional rank by gender. B: Distribution of h-index by gender. 
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Fig. S.2: Instructions for initial review. 
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Fig. S.3: Treatment T1 - other reviews are attributed to “Life scientists with MESH term likes 

yours.” Treatment T2, the other treatment arm, attributes other reviews to “data science 

researchers.” 
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Fig. S.4: Updating page shown to reviews assigned to treatment. 
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Fig. S.5: Updating page shown to reviews assigned to control. 
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Table S1: Professional ranks of reviewers. 

 

Faculty rank Fraction of sample (#) 

Professor 38% (106) 

Associate professor 22% (61) 

Assistant professor 26% (72) 

Other (research scientists, instructor, etc.) 14% (38) 



34 

Table S2. Summary of reviewer-level attributes used in the analysis. Reviewers assigned to both 

treatment and control are included. However, only those reviewers assigned to treatment were 

coded on data_expert. 

 

Variable Description Mean Min Max SD Count 

—Review variables— 

low score Initial overall score in range 1-2 16.8% 0 1  71 

medium score Initial overall score in range 3-6 70.0% 0 1  296 

high score Initial overall score in range 7-8 13.2% 0 1  56 

updated score {0=did not update overall score, 

1=updated overall score} 

43.7% 0 1  423 

confidence Self-reported confidence in initial 

score (1=lowest, 6=highest) 

4.73 1 6 0.91 423 

expertise Self-reported expertise in initial score 

(1=lowest, 5=highest) 

3.57 1 5 0.96 423 

deviation |overall score original - mean(all other 

overall scores of same 

application)| 

1.30 0 4.5 0.93 423 

—Stimulus variables— 

intensity Stimulus scores were presented as a 

range of Overall Scores, e.g. 3-6, 

attributed to “other reviewers” and 

chosen to be higher or lower than 

overall score original. stimulus 

intensity measures how much the 

midpoint of this range, e.g. 4.5, differs 

from the reviewers original overall:  

|𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑠𝑐𝑜𝑟𝑒_𝑜𝑟𝑖𝑔

− 1
2⁄ (ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

− 𝑙𝑜𝑤𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒)| 

2.75 1.00 3.50 0.82 389 

direction {0=Down, 1=Up} - Whether the 

stimulus scores are below or above the 

reviewers original overall score 

53.0% 0 1  389 

out group {0=false, 1=true} - True if the 

discipline of the stimulus (“data 

science researchers” or “life scientists 

with MESH terms like yours”) does 

not match the expertise of the reviewer 

(data expert) 

52.4% 0 1  393 
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Table S3. Assignment to experimental conditions. Assignment was done at the review, not 

reviewer, level – therefore reviewers could have been assigned to more than one Treatment 

condition. 

 

Condition Description # reviews 

(# reviewers) 

Control No exposure to external information 30 (30) 

Treatment 1 External information from “scientists with 

MESH terms like yours” 

213 (156) 

Treatment 2 External information from “data science 

researchers” 

178 (142) 
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Table S4. Reviewer-level variables  

Variable Description Mean Count 

female {0=male, 1=female} 31.0% 277 

data expert {0=no, 1=yes} - Main work involves data science 49.6% 248 

medium status {= 1 if h-index in the top 50-75% of the sample 

(27 to 45), = 0 otherwise} 

26.0% 274 

high status {= 1 if h-index in the top 10-25% of the sample 

(45 to 68), = 0 otherwise} 

14.4% 274 

very high status {= 1 if h-index in the top 10% of the sample (68 or 

greater), = 0 otherwise} 

10.5% 274 

professional 

rank 

{Professor, Associate professor, Assistant professor, 

Other} 

 277 
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Table S5. Log odds ratios from a conditional logistic model predicting Pr(updated score) 

Variable            Odds-ratio  

(SE) 

 

out-group 0.168 

(0.262) 

interior X direction -0.108 

(0.328) 

female 2.256∗∗∗ 

(0.815) 

female X percent female −4.285∗∗ 

(2.117) 

(relative to: h-index 0-50th percentile)  

    h-index 50-75th percentile -0.507 

(0.354) 

    h-index 75-90th percentile -0.178 

(0.474) 

    h-index 90-100th percentile −1.348∗∗ 

(0.537) 

medium overall score {3,4,5,6} 1.862∗∗∗ 

(0.540) 

high overall score {7,8} 1.382∗∗∗ 

(0.532) 

    

controls Y 

application FE Y 

N 385 

R2 0.183 

(max. possible R2) (0.597) 

Log Likelihood -138.083 

Wald Test 51.600∗∗∗ 

(df=18) 

LR Test 73.452∗∗∗ 

(df=18) 

Note: *, **, *** denote statistical significance levels of 0.1, 

0.05 and 0.01, respectively, for 2-sided tests. 
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