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Abstract 

The modern industrial firm increasingly relies on software to support its competitive 

position.  However, the uncertain and dynamic nature of today’s global marketplace dictates that 

this software be continually evolved and adapted, to meet new business challenges.  This ability 

– to rapidly update, improve, remove, replace, and reimagine the software applications that 

underpin a firm’s competitive position – is at the heart of what has been called IT agility.  

Unfortunately, we have little understanding of the antecedents of IT agility, specifically with 

respect to the choices that a firm makes when designing its portfolio of software applications. 

In this paper, we explore the relationship between software portfolio architecture and IT 

agility.  In particular, we use modular systems theory to examine how different types of coupling 

impact the ability to maintain, retire and commission new software applications. We test our 

hypotheses with a unique longitudinal dataset from a large financial services firm.  Our sample 

comprises information on over 2,000 software applications observed over a 4-year period. 

We find that applications with higher levels of coupling cost more to maintain, are less 

likely to be retired, and are less likely to be commissioned.   However, we show specific types of 

coupling present greater challenges than others, in terms of their impact.  In particular, 

applications that are cyclically coupled (i.e., mutually interdependent) are the most difficult to 

manage, in terms of maintaining and updating the software portfolio.  Our results suggest that IT 

managers have a critical design role to play, in firms that seek enhanced digital agility. 

 

 
  



Digital Agility 
 

 2 

1.  Introduction 

Software is eating the world.  With this dramatic headline, Mark Andreessen, the 

influential venture capitalist and co-founder of Netscape, began a 2011 Wall Street Journal 

article on the impact that software was having on the global economy (Andreessen, 2011).  

Andreessen’s argument was compelling.  Software is not only increasingly embedded in 

products and services that are part of our daily lives; behind the scenes, it also plays a growing 

role in delivering the organizational capabilities needed to compete in a dynamic and uncertain 

world.  Software-focused companies are creating massive amounts of wealth.  But even 

traditional firms competing in the “physical world” now rely on software systems and services to 

power the critical operating capabilities needed to survive in a world of constant change. 

As this process of digital transformation has accelerated across the economy, software 

systems within firms have become correspondingly more complex. Today, even a moderately 

sized business maintains information systems comprising hundreds of applications and 

databases, running on geographically distributed hardware platforms, and serving multiple 

clients. These systems must be reliable, efficient and secure enough to meet today’s business 

challenges.  Yet they must also be flexible and adaptable, capable of evolving to meet the new 

and emerging challenges that will undoubtedly arrive tomorrow.  How should a firm design its 

portfolio of software applications to meet these potentially conflicting objectives? 

 Early academic work in this area focused on the first of these challenges: the design of 

an architecture optimized for a given set of business conditions and strategic choices.  The 

resulting field of study, Enterprise Architecture (EA), yielded conceptual frameworks, processes 

and tools that helped to achieve alignment between a firm’s business strategy and its IT system 

(Zachman, 1987; Weill, 2007).  More recently, a distinct stream of research has begun to explore 
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how a firm’s IT architecture can facilitate the development of new business capabilities 

(Orlikowski and Iacono, 2001; Sambamurthy, W. and Zmud, R. 2000). Those theories emphasize 

the need for systems that facilitate agility, through the use of layered, modular technologies (Yoo 

et al, 2010; Tanriverdi et al, 2010; Tiwana et al, 2010).  Firms with modular architectures quickly 

reconfigure software resources to respond to new challenges, ensuring the continuous alignment 

of IT assets with changing business needs (Sambumurthy et al, 2003; Hanseth and Lyytinen, 

2010).  The overarching goal for these firms is optionality, and not optimality. 

The studies cited above, and a host of others, have made strong conceptual and 

theoretical contributions to our understanding of the role of IT architecture in the modern firm.  

Unfortunately, robust empirical work exploring the link between IT architecture and agility has 

been rare and yields mixed results (Tiwana and Konsynski, 2010; Schmidt and Buxmann, 2011; 

Kim et al, 2011; Liu et al, 2013).  Several common challenges are observed in these studies.  

First, they rarely measure architecture directly, but instead capture broad-based perceptions of 

architectural characteristics (e.g., the extent of loosely-coupling).    Second, they tend to adopt 

the firm as unit of analysis, hence measures of IT function and architecture are assumed to be 

homogenous across the organization, ignoring the inherent heterogeneity in a portfolio of IT 

assets (e.g., the mix of legacy and new technologies).  Finally, they lack a consistent definition of 

agility, and seldom consider the fact that this ability is likely to encompass multiple dimensions 

of performance, associated with different types and levels of IT change. 

We address these gaps in the literature by exploring the relationship between software 

portfolio architecture and IT agility at the level of the individual applications in the portfolio.  In 

particular, we draw from modular systems theory to develop and test a series of hypotheses about 

how different types of coupling impact three dimensions of agility: the ability to maintain, to 
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retire and to commission new software applications.  Our methods, which are based upon 

network analysis, allow us to measure the precise level of coupling for all applications in the 

portfolio.  This contrasts with the broad perceptual measures often used in prior research. 

We test our hypotheses with data from a large financial services firm.  Our dataset 

comprises over 2,000 software applications and the dependencies between them.  Critically, we 

capture data at two distinct points in time, four years apart.  This approach allows us to identify 

changes in the portfolio, hence to develop measures of IT agility.  We supplement this data with 

figures on the cost of maintenance for all applications in the portfolio at the start of this period. 

We find differences in the level of coupling for applications explain large variations in IT 

agility.  Specifically, applications with high levels of coupling cost more to update, are less likely 

to be retired, and are less likely to be commissioned (i.e., added to the portfolio).  We show that 

the coupling between different applications has more power in explaining agility than the 

coupling between different layers in the IT architecture (e.g., between applications and 

databases).  Finally, we show the measure of coupling that best predicts agility captures whether 

applications are cyclically coupled (i.e., are part of a group of mutually interdependent 

applications).  These results deepen our understanding of how to design effective software 

portfolio architectures as well as improve existing architectures in order to enhance their agility. 

The paper is organized as follows. In section 2, we review the literature that motivates 

our work.  In section 3, we develop our theory and derive a number of hypotheses.  In section 4, 

we describe our methods, which make use of network analysis to measure the different types of 

coupling between software applications.  In section 5, we describe our empirical setting and our 

data.  In section 6, we provide the results of our statistical tests.  In section 7, we discuss the 

implications of our findings for academia and the world of practice. 
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2.  Literature Review 

2.1 IT Architecture Research 

Early studies of IT Architecture were motivated by critiques of Enterprise Architecture 

research which noted the overwhelming emphasis on processes and governance structures by 

which IT is managed, as opposed to features of the technology itself (Orlikowski and Iacono, 

2001; Tilson et al, 2010).  Furthermore, the rapid rise of the Internet, World Wide Web and use 

of digital technologies had brought a need to revisit prior conceptions for the role of IT, to reflect 

the new dynamics of a digital age with its rapidly shifting competitive landscapes (Hansen and 

Lyytinen, 2010, Woodard et al, 2013).  As a consequence, IT Architecture research has tended to 

focus more sharply on the “IT Artifact”, and in particular, features of architecture that facilitate 

the development of new capabilities (Sambamurthy and Zmud, 2000). 

Early work in the field focused on understanding desirable features of IT technologies, 

and in particular, the antecedents of a more flexible IT infrastructure. Duncan (1995) and Byrd 

and Turner (2000) defined several constructs that underpin such an infrastructure, emphasizing 

the need for systems with greater levels of compatibility, connectivity and modularity (i.e., loose 

coupling between applications, data and infrastructure).  Subsequent work sought to deepen our 

understanding of how these concepts should be operationalized in firms competing in a dynamic, 

digitally-connected world.  Sambamurthy and Zmud (2000) argued the organizing logic for IT 

architecture is the platform, encompassing a “flexible combination of resources, routines and 

structures” that facilitate agility by creating digital options and enhancing entrepreneurial 

alertness (Samburmathy at al, 2003).  Adomavicius et al. (2008) defined the concept of an IT 

“ecosystem,” highlighting the roles played by products, applications, component technologies 

and infrastructure technologies.  Finally, Yoo et al. (2010) described how pervasive digitization 
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has given rise to a new “layered-modular” architecture, comprising devices, network 

technologies, services and content.  Firms with layered, modular IT architectures can quickly 

reconfigure resources to respond to new challenges, creating a continuous stream of new 

capabilities (Tanriverdi et al, 2010; Tiwana et al, 2010).  Yet layered, modular IT architectures 

are not easy to build, nor the norm in firms with complex infrastructures (Parker et al, 2016). 

Firms more often grapple with a mixture of systems of different vintages, designed using 

different frameworks, to meet the demands of different decision makers (Ross 2003).  Moving to 

a layered, modular architecture requires firms to embrace new frameworks for the role of IT, and 

new structures by which the technologies will work together (Ross and Westerman, 2004). 

2.2.1 Empirical Studies linking IT Architecture with IT agility 

Empirical studies linking IT Architecture to agility have been scarce and limited in scope.  

Most work to date has been case-based, or used firm-level survey measures of IT infrastructure 

to demonstrate correlation with performance (Salmela, 2015). Schmidt and Buxmann (2011) 

showed that higher quality enterprise architecture planning processes are associated with more 

flexible IT infrastructures, as captured by the constructs of connectivity, compatibility and 

modularity.  Kim et al (2011) showed measures of IT infrastructure flexibility, as captured by the 

constructs of compatibility, connectivity and modularity, are correlated with a firm’s ability to 

change existing business processes.  Conversely, Liu et al (2013) found IT infrastructure 

flexibility is not associated with agility, but contributes to performance only via its association 

with increased absorptive capacity (Cohen and Levinthal, 1990).   

An important study in this stream of work is by Tiwana and Konsynski (2010) who 

characterized IT Architecture on two dimensions: loose coupling and standardization.  They 

show that these measures are associated with an IT function that is perceived as agile, adaptive, 
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flexible and responsive.  While this work informs our knowledge of the features of IT 

architecture that contribute to IT agility however, we still lack insight on the precise mechanisms 

through which these effects are manifested.  The first challenge relates to the fact that in this and 

other studies, architecture is not measured directly, but is captured by the perceptions of 

organizational participants.  Yet prior studies have shown that perceptions can diverge 

significantly from the “real” (i.e., instantiated) architecture that a firm possesses.  There is often 

“hidden structure” that can be revealed only via more granular analysis (Baldwin et al, 2014). 

The second challenge relates to the fact that in many studies, the firm is the unit of 

analysis; hence measures of IT function and architecture are assumed to be homogenous.  But 

firms are not monolithic; they comprise differentiated organizational units, with different 

objectives and levels of flexibility (Lawrence and Lorsch, 1967).  Similarly, the components of a 

firm’s IT architecture are diverse, play different roles, are connected in different ways, and vary 

in the cost of adaptation (Sambumurthy and Zmud, 2000; Yoo et al, 2010). 

The final challenge relates to the fact that prior studies lack a consistent definition of 

agility, and seldom consider that this ability encompasses multiple dimensions of performance.  

A firm’s software applications must be maintained, improved, upgraded, ported to different 

platforms, decommissioned and/or replaced on a periodic basis.  These activities place different 

demands on a firm’s infrastructure, require different resources, and may be impacted differently 

by properties of the software portfolio. 

This study aims to address the limitations described above. In particular, we examine the 

impact of a firm’s software portfolio architecture at the level of the individual applications in the 

portfolio. Our approach captures the heterogeneity that exists across applications, and explores 

the impact of this heterogeneity on multiple dimensions of agility. 
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3.  Theory Development 

3.1 Modular Systems Theory 

Architecture is defined as the scheme by which a system’s functions are allocated to 

components and the way that these components interact (Ulrich, 1995; Whitney et al, 2004).  

Modularity is a concept that helps us to characterize different architectures (Sanchez and 

Mahoney, 1996; Schilling, 2000).  It refers to the way that a system is “decomposed” into parts 

or modules (Simon, 1962).  Although there are different definitions of modularity, authors agree 

on its fundamental features: the interdependence of decisions within modules, and the 

independence of decisions between modules (Mead and Conway, 1980; Baldwin and Clark, 

2000).  The latter is referred to as “loose-coupling.”  Modular systems are loosely coupled in that 

changes to one module have little or no impact on others (MacCormack et al, 2012). 

Modular systems theory is the name given to a body of theory that explores the design of 

systems and the costs and benefits that arise from modular designs (Sanchez and Mahoney, 

1996; Schilling, 2000; Baldwin and Clark, 2000).  This theory has been broadly applied, to the 

study of biological systems, technical systems and organizational systems (Kauffman, 1993; 

Weick, 2001; Langlois 2002; Berente and Yoo, 2012). A central tenet of the theory is that 

modular systems (i.e., systems with loosely-coupled modules or components) can be adapted 

with lower costs and with greater speed, given changes are isolated within modules.  Conversely, 

in a system with tight coupling, adaptation is costly and takes longer, given the potential for 

changes to propagate between different parts of the system. 

Below, we develop theory about the different types of coupling that exist between 

applications in a firm’s software portfolio architecture.   We then define three distinct measures 

of IT agility that might be impacted by these different types of coupling. 
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3.2 Types of Coupling between Software Applications 

The computer scientist David Parnas argued that, in technical systems, the most 

important form of linkage between components is a directed relationship he calls “depends on” 

or “uses” (Parnas, 1972).  If B uses A, then A fulfills a need for B. If the design of A changes, 

then B’s need may go unfulfilled.  B’s behavior may then need to change to accommodate the 

change in A. Hence change propagates in the opposite direction to use.  Parnas stressed that use 

is not symmetric.  If B uses A, but A does not use B, then B might change with no impact on A.  

Our first step in theory building is to relate Parnas’ concept of dependency to component 

coupling.  We define coupling as the property of being used (i.e., depended upon) by another 

component or using (i.e., depending upon) another component.  Component A is coupled with 

component B if B uses A (“Fan-in” coupling) or if A uses B (“Fan-out” coupling). 

Modular systems theory predicts the more coupled a component is, the more costly and 

time consuming it will be to change (Simon, 1962; Sanchez and Mahoney, 1996).  However, the 

components of a system can be coupled in different ways (Baldwin and Clark, 2000).  They can 

be coupled directly or indirectly; and they can be coupled hierarchically or cyclically. 

Furthermore, components that are hierarchically coupled may be located at the top or the bottom 

of the hierarchy (Clark, 1985); and components that are cyclically coupled may be members of a 

large or small cyclic group of components (Sosa et al, 2013).  For the purposes of theory 

development, we consider a single application (called “A”) within a firm’s IT architecture.  The 

question we explore is how does the presence of coupling (or the lack thereof) affect the cost of 

change for this application?   To answer this question, we consider four different patterns of 

coupling that can exist between applications in a software portfolio (see Figure 1). 
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Figure 1: Types of Coupling between Software Applications 

 

Figure 1.1 represents the base case, in which component A is not coupled to any other.  In 

Figure 1.2, component A is directly coupled with components B and C.  Modular systems theory 

predicts that components with higher levels of direct coupling are more costly to change, given 

the need to consider the potential impact of changing the coupled component on the dependent 

components (Simon, 1962). Hence we predict that component A would be more costly to change 

than a similar component with no coupling (e.g., as in Figure 1.1).  Support for such a 

relationship is found in empirical studies of software, in which the components are source files or 

classes, and dependencies denote relationships between them (Chidamber and Kemerer, 1994). 

Figure 1.3 depicts a more complex set of relationships between system components.  

Component A is directly coupled to B but indirectly coupled to C and D.  In this system, changes 

may propagate between components that are not directly connected, via a “chain” of 

dependencies.  While indirect coupling relationships are weaker than direct coupling 

relationships, they are not as visible to the system architect, hence more likely to produce 

unintended system behaviors.  Indeed, empirical work has shown that changes to one component 

in an IT system can often create unexpected disruptions or defects in operation in distant parts of 

the system (Vakkuri, 2013; MacCormack and Sturtevant, 2016). 

Figure 1.4 illustrates a third pattern of coupling between applications, called cyclic 

coupling (Whitney, et al, 2004; Sosa et al, 2013). In this system, A is coupled with B, B is 

coupled with C, and C is coupled with A.  These components form a cyclic group – a group of 
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components that are mutually interdependent.   In contrast to figure 1.3, there is no “hierarchy” 

or natural ordering of these components, such that one can be developed (or changed) before the 

others.  Rather, components in cyclic groups must often be developed (or changed) concurrently, 

to ensure that they work together effectively.  When cyclic groups are large, this presents a 

significant challenge, increasing the cost of change for components (Baldwin et al, 2014). 

3.3 Types of Coupling between Software Applications and other Layers 

Applications are the chief mechanism through which a firm’s IT infrastructure supports 

the delivery of core business capabilities (Ramasubbu and Kemerer, 2015).  However, the 

portfolio of software applications represents only one layer in a firm’s IT architecture. Other 

important layers exist, including databases, database hosts, application servers, and business 

groups that use the capabilities this infrastructure provides.  In addition to coupling relationships 

between applications, a firm’s agility may be impacted by coupling relationships between 

applications and these other layers.  In this study, we consider the layers immediately above and 

below the application layer.  In particular, business groups use applications and applications read 

from/write to databases (see Figure 2).  Modular systems theory suggests that applications with 

higher levels of coupling to these adjacent layers will be more costly and difficult to change. 

Figure 2: Types of Coupling between Software Applications and other Layers 
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3.4 Measures of IT Agility in Technical Systems 

Early work by Duncan (1995) and Byrd and Turner (2000) identified important 

constructs believed to underpin IT infrastructure flexibility, focusing on connectivity, 

compatibility and modularity.  Many studies assume these constructs to be proxies for IT agility 

(i.e., measures of output) and seek to identify their antecedents (Schmidt and Buxmann, 2011; 

Joachim et al, 2013). In contrast, other work considers these constructs to be features of an IT 

architecture (i.e., measures of input) and explores their impact on performance (Kim et al, 2011; 

Tiwana and Konsynski, 2010).  We share the view that constructs like modularity represent 

features of IT architecture, and are not direct proxies for IT agility.  In our work therefore, we 

define explicit measures of IT agility, to test the assertion that architecture impacts this ability. 

Our theory explores the impact of the coupling on individual applications; hence we 

define measures of IT agility at this level (i.e., and not for the firm as a whole).  In particular, we 

focus on three types of change that applications experience, as a business evolves over time.  

First, we measure the cost to maintain an application, encompassing changes to fix errors in 

operation, and incremental updates to its functionality. Maintenance involves the smallest degree 

of change to an application, hence requires the lowest amount of IT agility.  Second, we capture 

the likelihood of an application being retired (i.e., decommissioned) over a 4-year period.  

Retiring applications that are obsolete or no longer needed is a critical task in the modern firm, 

given a dynamic and changing marketplace (IBM, 2009).  Indeed, a recent study of firm software 

portfolios by Aier et al (2009) found that > 40% of applications were retired over a 4-year 

period.  This task involves not only the removal of functionality from the software portfolio, but 

also the removal of linkages between the application to be retired and those that remain.  Hence 

retiring an application requires a higher degree of change (hence agility) than maintaining it. 
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For our third measure of agility, we capture the commissioning of new applications for 

the firm’s portfolio.  As firms replace obsolete technologies, build new capabilities, and enter 

new markets, adding new applications is a critical capability.  This involves the development of 

new functionality, and the integration of this new functionality with existing applications and 

infrastructure. We argue that adding new applications represents the largest degree of change to a 

portfolio, requiring the highest level of IT agility. This is likely to be more difficult to the extent 

that new applications require high levels of coupling to other applications in the portfolio. 

3.5 The Relationship between Application Coupling and IT Agility 

We have identified different types of coupling that exist between the applications in a 

firm’s software portfolio, and defined three measures of IT agility, which can be captured for 

these applications.  Modular systems theory suggests that applications with higher levels of 

coupling will be more difficult and costly to change, hence measures of coupling will be 

negatively associated with these measures of IT agility.  Hence we state our hypotheses below: 

Hypothesis 1:  Applications with higher levels of coupling will be more costly to 

maintain, on average, than applications with lower levels of coupling. 

Hypothesis 2:  Applications with higher levels of coupling will be less likely to be 

retired, on average, than applications with lower levels of coupling. 

Hypothesis 3:  New applications added to the portfolio will have lower levels of 

coupling, on average, than the applications in the portfolio at the start of the period. 

We conduct empirical tests for the impact of all types of coupling defined above (i.e., 

direct, indirect, cyclical and between-layer coupling). We have no ex-ante predictions as to the 

relative strengths of these different types of coupling.  Rather, we rely on our empirical tests to 

identify which of them have more explanatory power for each dimension of agility.  
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4. Research Methods 

To develop measures of the coupling between applications, we use Design Structure 

Matrices (DSMs) a popular network-based method for analyzing technical systems (Steward, 

1981; Eppinger et al., 1994; MacCormack et al., 2006; 2012; Sosa et al., 2007). A DSM 

highlights the structure of a system using a square matrix, in which rows and columns represent 

system elements, and dependencies between elements are captured in off-diagonal cells. DSMs 

capture the direction of dependencies between elements, and hence can discriminate between 

incoming and outgoing dependency relationships.  Using a matrix to capture dependency 

relationships also facilitates the discovery of indirect and cyclical relationships between 

elements, which can be identified via well-known matrix operations. 

Baldwin et al. (2014) show that DSMs can be used to understand the “hidden structure” 

in software systems, by capturing the level of direct, indirect and cyclic coupling between source 

files, and classifying files into categories based upon the results.  Lagerström et al. (2013) and 

MacCormack et al (2016) show that this approach can be extended to study a firm’s enterprise IT 

architecture, in which a large number of interdependent software applications have relationships 

with other types of components, such as business groups, schemas, servers, databases and 

infrastructure.  In this paper, we build upon and extend this approach, by exploring how 

measures derived from the DSM of a firm’s software portfolio architecture predict IT agility. 

4.1 Measuring Direct Coupling in a DSM 

A DSM is a way of representing a network.  Rows and columns of the matrix denote 

nodes in the network; and off-diagonal entries indicate dependencies between nodes.  In the 

analysis of software portfolio architecture, the rows, columns, and main diagonal elements of the 

DSM correspond to software applications. Linkages between applications are represented by off-
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diagonal entries in the DSM (set to one) and indicate that a coupling relationship exists between 

two applications.  As a matter of convention, usage proceeds from row to column in our DSMs.  

Hence reading down the column of an application reveals all applications that depend upon it, 

and reading across the row reveals all the applications it depends upon. As a matter of definition, 

all main diagonal elements are set to one (i.e., applications “depend upon” themselves).   

The levels of “fan-in” and “fan-out” coupling for an application can be read directly from 

a DSM.   Specifically, for the ith application in a portfolio, the level of direct fan-in coupling is 

found by summing entries in the ith column.   The level of direct fan-out coupling is found by 

summing entries in the ith row. In general, these measures will be different, unless all the 

dependencies for a focal application are symmetric. If usage is symmetric (i.e., A uses B and B 

uses A), then off-diagonal entries in the DSM will be symmetric around the main diagonal. 

4.2 Measuring Indirect Coupling in a DSM 

Using a DSM, we can find the indirect dependencies between applications, which reflect 

the potential for changes to propagate in a system.  To identify indirect relationships, we apply 

the procedure of transitive closure to the direct dependency DSM and set all positive entries 

equal to one. The result is the “visibility” matrix (Sharman and Yassine 2004; MacCormack et 

al., 2006).  The visibility matrix captures all indirect dependencies between applications.1  In a 

similar fashion to the direct dependency DSM, the level of indirect fan-in and fan-out coupling 

for an application is captured in the row and column sums of the visibility matrix. 

The density of the visibility matrix, called propagation cost, measures the level of 

indirect coupling for the software portfolio as a whole.  Intuitively, the greater the density of this 

matrix, the more ways there are for changes to propagate across applications, and thus the higher 

the potential cost of change.  Large differences in propagation cost are observed across software 
                                                
1 Note by definition, the set of indirect coupling relationships also includes the direct relationships between elements. 
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systems of similar size and function (Baldwin et al, 2014).  These differences are predicted, in 

part, by the way that development activities are organized (MacCormack et al, 2012). However, 

empirical evidence also suggests that refactoring efforts aimed at making software more modular 

can lower propagation cost substantially (MacCormack et al., 2006; Akakine, 2009).  

4.3 Measuring Cyclic Coupling in a DSM 

The visibility matrix can be used to identify “cyclic groups” of applications, each of 

which is directly or indirectly connected to the others.  Mathematically, members of a cyclic 

group all have the same levels of indirect fan-in and fan-out coupling, given they are all 

connected directly or indirectly to each other.  Hence we can identify cyclic groups in a system 

by sorting applications by these measures and grouping components with matching values 

(Baldwin et al., 2014).  Prior work has shown the majority of software systems exhibit a “core-

periphery” structure, characterized by a single dominant cyclic group of components (the 

“Core”) that is large relative to the system as a whole as well as to other cyclic groups (Baldwin 

et al, 2014).  The components in such systems can be classified into four categories according to 

the levels of indirect coupling they exhibit, as compared to members of this cyclic group.  We 

apply the same classification process to the applications in a firm’s software portfolio. 

Core applications are members of the largest cyclic group, and have high levels of both 

fan-in and fan-out coupling.   Shared applications have high levels of fan-in coupling (i.e., they 

are “used,” directly or indirectly, by Core and other applications). Control applications have high 

levels of fan-out coupling, (i.e., they “use,” directly or indirectly, Core and other applications). 

Peripheral applications have low levels of both fan-in and fan-out coupling.  In a software 

portfolio, Shared, Core and Control applications are called “Main Flow” applications.  Peripheral 

applications, being only loosely coupled to other applications, lie outside this main flow. 
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4.4 Capturing Hierarchy in a DSM 

When used as a planning tool in a design process, a DSM indicates a possible sequence 

of design tasks, i.e., which components to design before which others (Steward, 1981; Eppinger 

et al, 1994). In general, it is desirable to place early design tasks at the top of a DSM, with later 

tasks below. That is, the first components to be designed should be those that other components 

depend upon.  Reflecting this discussion, we place the most used applications (i.e., Shared 

applications) at the top of the DSM and the largest users of other applications (i.e., Control 

applications) at the bottom.  The resulting DSM has a “lower diagonal form,” with most 

dependencies below the diagonal, above diagonal entries indicating the presence of cyclic 

coupling (Sosa et al, 2013).  This reveals the hierarchy of relationships between applications. 

Figure 3 illustrates the steps in our analysis method for a simple system: (A) shows the 

direct dependency DSM; (B) shows the visibility matrix, which reveals all indirect dependencies; 

(C) shows the visibility matrix, sorted into the four indirect coupling categories; and (D) shows 

the direct dependency DSM, with components sorted by these four categories.2 

Figure 3:  The DSM Analysis Method applied to an Example System (Linux v0.01). 

 
  

                                                
2 In this example, we show a fifth category called “Isolates.”  These are components with no dependencies to any other components 
in the system.  As such, they are not a part of the network graph.  In prior work, these have been analyzed separately, or included in 
the Peripheral category, given that they have zero coupling with other components (MacCormack and Sturtevant, 2016). 
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5. Empirical Setting 

We test our hypotheses using a unique dataset from the software portfolio of a large 

European bank. The data was gathered as part of an initiative to develop a better understanding 

of how linkages between software applications affect application performance.  Each quarter, the 

bank asks application owners to enter information in a database. Data is collected for each 

application on the departments that use it, the operating systems that it supports, the databases 

that it uses, and the dependencies that it has with other applications.  In order to test our 

hypotheses, we captured data on active software applications for two time periods: 2008 and 

2012.  We were also provided with data on application maintenance costs for 2008. 

Sample Data for 2008 

The 2008 software portfolio consists of 1,558 active applications. Of these, 1,247 

contained reliable data on application dependencies. 3  Thus, our sample consists of 1,247 

applications and 3,482 dependencies. Using the methods described earlier, we identified all 

direct and indirect coupling relationships between applications in the portfolio, and classified 

applications into the four indirect coupling categories.   We find the 2008 software portfolio has 

a large Core of 447 applications (36% of the portfolio) which are mutually interdependent. 120 

applications (10%) are classified as Shared (i.e., they are used, directly or indirectly, by many 

applications). 175 applications (14%) are classified as Control (i.e., they use many other 

applications, directly or indirectly). Finally, 505 applications (41%) are classified as Peripheral 

(i.e., they have low levels of indirect fan-in and fan-out coupling to other applications).  Figure 4 

shows the firm’s software portfolio architecture in DSM form for 2008 and 2012. 

 

                                                
3 In 2008, the collection of data on the software portfolio was fairly new and consequently, data was not available for all applications. 
We were told, in general, that missing data was more likely for applications that were smaller and less important. 



Digital Agility 
 

 19 

Figure 4: The Firm’s Software Portfolio Architecture in 2008 and 2012 

 

Sample Data for 2012 

The 2012 software portfolio contains 1,251 applications and 3,969 dependencies. All 

applications contain sufficient data for analysis in this period, hence our sample represents the 

entire population.   The analysis of the 2012 portfolio reveals a large Core of 441 applications, 

representing 35% of the system. 80 applications (6%) are classified as Shared, 298 applications 

(28%) are classified as Control and 432 applications (35%) are classified as Peripheral.  Table 1 

shows a comparison of the firm’s applications grouped by category, in 2008 and 2012.  The total 

number of applications is similar, and the number in each category is also consistent.  However, 

this analysis hides significant changes in the application portfolio, as discussed below. 

Table 1:  Comparison of Applications by Category for 2008 and 2012 

	 2008	 2012	
Category	 Number	 %	 Number	 %	
Shared	 120	 9.6%	 80	 6.4%	
Core	 447	 35.9%	 441	 35.3%	
Control	 174	 14.0%	 298	 23.8%	
Peripheral	 505	 40.5%	 432	 34.5%	
TOTAL	 1247	 100.0%	 1251	 100.0%	
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5.1 Portfolio changes between 2008 and 2012 

Between 2008 and 2012 there were substantial changes in the software portfolio. In 

particular, the firm went through a merger with another bank, and as a result, there was a 

substantial rationalization of the application portfolio. As one manager remarked: 

“There where massive changes in the IT landscape, resulting from the 

decommissioning of redundant or outdated applications.  Furthermore, a 

number of applications from [the acquired bank] were taken over.  Finally, 

data had to be migrated between the two.”  – Senior Enterprise Architect. 

Thus, during the years between 2008 and 2012, many software applications were retired, 

new applications were commissioned, existing applications were updated (and hence may have 

moved category), and data was collected for applications where none existed in 2008.  Table 2 

shows the movement of software applications across the portfolio from 2008 to 2012. It includes 

active applications with missing data in 2008, for which data became available in 2012. 

Table 2:  Movement of Applications across the Software Portfolio from 2008 to 2012 

Category	 2008	
Application	
Retired	

Application	
Added	

Moved	
Category	(Net)	

New	Data	
Available		

2012	
(Row	Sum)	

Shared	 120	 -53	 14	 -19	 18	 80	
Core	 447	 -121	 72	 -8	 51	 441	
Control	 175	 -87	 110	 +28	 72	 298	
Peripheral	 505	 -469	 227	 -1	 170	 432	
Missing	Data	 311	 N/A	 N/A	 N/A	 -311	 N/A	
TOTAL	 1,558	 -730	 423	 N/A	 N/A	 1251	

 

5.2 Data on Maintenance Cost for Applications 

Data on annual maintenance costs was available for 376 of the 1,247 applications for 

which we have data in 2008.  For other applications, application owners either did not provide 

the cost data, did not possess the cost data, or could not identify the unique costs attributable to 
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an application (e.g., because data were aggregated across multiple applications).  The 

applications for which maintenance cost data is available are not randomly distributed, but are 

biased towards more important applications.  Hence we must control for this bias in our tests. 

We control for the non-random nature of missing maintenance cost data by rebalancing 

our sample for testing hypothesis one, to ensure it has the same characteristics as the population.   

Table 4 presents data on how we do this.  Consider, the sample of applications in 2008 for which 

we have data is 1,247, of which 505 (40.5%) are classified as Peripheral.  But we only have cost 

data for 19 of these applications.  Of the 376 applications for which we have cost data, only 5.1% 

are Peripheral, a far lower proportion than in the 2008 population overall. In order to create a 

sample for testing, we therefore oversample observations in underrepresented categories, to 

match the proportions of the 2008 population.4  For example, we replicate the 19 observations of 

Peripheral applications, to produce a total of 266 applications in this category.  Our final sample 

for testing hypothesis one contains 660 observations, as shown below. 

Table 4: Constructing a Representative Sample for Testing Hypothesis One 

Category	
2008	

Applications	
%	by	

Category	
Apps	with	
Cost	Data		

%	by	
Category	

With	Re-
Sampling	

%	by	
Category	

Shared	 120	 9.6%	 37	 9.8%	 74	 11.2%	
Core	 447	 35.9%	 249	 66.2%	 249	 37.7%	
Control	 174	 14.0%	 71	 18.9%	 71	 10.8%	
Peripheral	 505	 40.5%	 19	 5.1%	 266	 40.3%	
TOTAL	 1247	 100.0%	 376	 100%	 660	 100%	

 

5.3 Empirical Measures 

Table 5 below describes our measures of IT agility, control measures that may impact 

measures of agility, and measures of both between-layer and between-application coupling. 

  

                                                
4 See http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/. 
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Table 5: Measures used in the Study 
Dependent	Variables:		Measures	of	IT	Agility	

Cost	–	The	maintenance	cost	for	an	application,	defined	as	the	“cost	that	an	application	produces	for	maintaining	it,	i.e.	fixing	
errors	and	making	minor	changes	needed	to	keep	the	current	state	of	requirement-fulfillment.”	(Mocker,	2009).	

Retired	–	We	capture	whether	an	application	was	Retired	(1)	or	Survived	(0)	between	2008	and	2012.			

New	–	We	capture	data	on	new	applications	added	to	the	portfolio	between	2008	and	2012.	

Control	Variables	

Age	–	measures	the	age	of	an	application	(the	number	of	years	since	the	first	go-live	date).		

State	–	indicates	if	an	application	is	in	production	(1)	or	still	in	development	(0).	

#	OS	–	indicates	the	number	of	operating	systems	supported	by	an	application;	two	or	more	(1)	or	one	(0).	

Vendor	–	indicates	whether	an	application	is	from	an	external	vendor	(1)	or	was	developed	in-house	(0).	

Independent	Variables:		Coupling	Between	Applications	and	other	Layers	

#	DBMS	–	number	of	database	management	systems	application	is	linked	to;	one	or	more	(1)	or	none	(0).	

#	Users	–	indicates	the	number	of	business	departments	that	use	an	application.	

Independent	Variables:	Coupling	Between	Applications	

Direct	FI	–	measures	the	number	of	applications	that	directly	depend	upon	the	focal	application	(fan-in	coupling)	

Direct	FO	–	measures	the	number	of	applications	that	a	focal	application	directly	depends	upon	(fan-out	coupling).	

Shared	–	indicates	whether	an	application	is	in	the	Shared	category	based	upon	its	level	of	indirect	coupling	(1)	or	not	(0).	

Core	–	indicates	whether	an	application	is	in	the	Core	category	based	upon	its	level	of	indirect	coupling	(1)	or	not	(0).	

Control	–	indicates	whether	an	application	is	in	the	Control	category	based	upon	its	level	of	indirect	coupling	(1)	or	not	(0).	

Peripheral	–	indicates	whether	an	application	is	in	the	Peripheral	category	based	upon	its	level	of	indirect	coupling	(1)	or	not	(0).	

Main	Flow	–	indicates	whether	an	application	is	in	the	Shared,	Core	or	Control	categories	(1)	or	in	the	Peripheral	category	(0).	

 
5.4 Descriptive statistics 

In Table 6, we provide descriptive statistics for the samples used to test hypotheses one 

and two.  The samples are different for each test, given the need to rebalance the sample to 

reflect biases in the availability of maintenance cost data.  (Note that the test for hypothesis three 

involves a comparison of the coupling characteristics for new applications in 2012 versus the set 

of all applications that exist in 2008 – the sample for the latter is the same as Hypothesis 2).  

Correlation tables for these two samples are provided in the Appendices. 
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Table 6:  Descriptive Statistics for Hypotheses 1 and 2 
	 A:		Sample	for	Hypothesis	1		 B:		Sample	for	Hypothesis	2		

	
Min	 Max	 Mean	 St	Dev	 Min	 Max	 Mean	 St.Dev	

Cost	 0	 5,776.50	 314.66	 569.60	 - - - - 
Retired	 - - - - 0	 1	 0.56	 0.50	

Age	 1	 29	 7.13	 4.64	 0	 31	 8.73	 5.03	
State	 0	 1	 0.99	 0.09	 0	 1	 0.98	 0.15	

#	OS	 0	 1	 0.08	 0.27	 0	 1	 0.06	 0.23	

Vendor	 0	 1	 0.40	 0.49	 0	 1	 0.52	 0.50	
#	DBMS	 0	 1	 0.60	 0.49	 0	 1	 0.45	 0.50	

#	Users	 1	 26	 4.33	 6.17	 1	 30	 4.68	 6.69	
Direct	FI	 0	 85	 3.43	 6.46	 0	 85	 3.17	 6.97	

Direct	FO	 0	 35	 3.62	 5.92	 0	 79	 3.25	 6.36	

Main	Flow	 0	 1	 0.60	 0.49	 0	 1	 0.63	 0.48	
Shared	 0	 1	 0.11	 0.32	 0	 1	 0.10	 0.30	

Core	 0	 1	 0.38	 0.48	 0	 1	 0.40	 0.49	
Control	 0	 1	 0.11	 0.31	 0	 1	 0.14	 0.34	

	
n=660	 n=9575	

 
First, we note the maintenance cost data is skewed; hence we use a log transformation for 

this variable in statistical tests.  Second, the rate at which applications are retired between 2008 

and 2012 is 56%.  This mirrors other empirical work in this area that demonstrates a high 

turnover in software portfolios (Aier et al, 2009).  The average age of applications is 8.7 years.6  

Age is also skewed; hence we use a log transformation for this variable in statistical tests.  

Almost all applications are in production (98%) and support only one operating system (94%).  

Vendor provided applications constitute 52% of the population and 45% of applications are 

linked to at least one database.  Finally, there are 4.7 users (i.e., departments) on average per 

application.  This variable is also skewed; hence we use a log transformation in statistical tests. 

  

                                                
5 Control variable data was not available for all 1257 applications.  Hence our sample for H2 is n=957. 
6 We report data here for the sample used to test hypothesis 2, given this represents the full set of applications (as opposed to the 
sample for hypothesis 1, which contains oversampled data, as noted earlier). 
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6. Empirical Results 

6.1 Hypothesis 1: The Relationship between Coupling and Maintenance Cost 

Table 7 presents a series of models predicting the maintenance cost for each application, 

using control variables and the predictor variables described above.  Note that we use a log 

transformation for the dependent variable given maintenance cost is skewed. 

Table 7: Models Predicting the Cost of Application Maintenance  

Ln	(Cost)	 Model1	 Model2	 Model	3	 Model	4	 Model	5	 Model	6	

Constant	 0.341	 -0.992	 -0.765	 -1.664	 -1.57	 -1.621	
Ln	(Age)	 0.643***	 0.427*	 0.142	 0.186	 0.188	 0.386†	

State	 2.777*	 3.132**	 3.32**	 3.704**	 3.624**	 3.277**	

#	OS	 1.059**	 0.702†	 0.685†	 0.57	 0.588	 0.755†	
Vendor	 -1.348***	 -0.656**	 -0.497*	 -0.537*	 -0.553*	 -0.212	

#	DBMS	
	

1.452***	 1.122***	 0.87***	 0.854***	 0.707**	
Ln	(#	Users)	

	
0.266*	 0.212*	 0.268*	 0.264*	 0.219*	

Ln	(Direct	FI)	
	 	

0.212†	 	 	
	Ln	(Direct	FO)	

	 	
0.289*	 	 	

	Main	Flow	(MF)	
	 	

	 1.409***	 	 1.307***	

Shared	
	 	

	 	 1.524***	
	Core	

	 	
	 	 1.417***	

	Control	
	 	

	 	 1.265***	
	MF	x	Ln	DFI	

	 	
	 	 	 0.162	

Periph	x	Ln	DFI	
	 	

	 	 	 -0.233	

Periph	x	Ln	DFO	
	 	

	 	 	 1.691***	
Adj.	R-square	 0.085	 0.135	 0.153	 0.177	 0.175	 0.195	

F-statistic	 16.34***	 18.15***	 15.93***	 21.25***	 16.53***	 17.01***	
n=660;	†	p<0.1,	*	p<0.05,	**	p<0.01,	and	***p<0.001	

 

Model 1 includes only control variables, all of which are significant.  Older applications, 

applications in production, applications that support multiple operating systems, and applications 

developed in-house cost more to maintain.  In total, these variables explain 8.5% of the variance 

in maintenance cost.  In model 2, we add between-layer coupling variables, both of which are 

significant.  Applications used by more business departments and connected to a database 
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management system cost more to maintain.  In total, these coupling variables increase the 

variation explained to 13.5%.  Models 3-6 explore the predictive power of various measures of 

between-application coupling.  Model 3 includes measures of direct fan-in and fan-out coupling.  

We use a log transformation for these variables given they are skewed.  Only one of the variables 

is significant.  The R-squared for this model increases from 13.5% to 15.3%.7  In model 4, we 

remove direct coupling variables, and instead include the main-flow variable – which indicates 

whether an application is in the Shared, Core, or Control category.  This variable is significant, 

and increases the model R-squared from 13.5% to 17.7%, as compared to model 2. 

In model 5, we split main-flow applications into its three component categories – Shared, 

Core and Control.  All three are significant.  However, the model fit does not improve over 

model 4, and the coefficients are not statistically different from each other.  We cannot include 

measures of direct coupling in models 4 or 5, given the high correlations between direct and 

indirect coupling (see the Appendices). We note however, that measures of indirect coupling 

have a higher correlation with cost than measures of direct coupling, and a greater level of 

significance in our models.  We conclude that indirect coupling measures have more power than 

direct coupling measures in explaining cost – our first dimension of IT agility.   

In model 6, we use interaction terms to evaluate the impact of direct coupling measures 

within different indirect coupling categories.  In particular, we interact main-flow and peripheral 

variables, with the level of direct coupling.  For peripheral applications, we find the measure of 

direct fan-out coupling adds significant explanatory power to our model.  In total, our final 

model explains 19.5% of the variation in cost. Control variables explain 8.5%, between-layer 

coupling variables explain 5%, and between-application coupling variables explain 6%. 

                                                
7 We note that direct fan-in and direct fan-out coupling are strongly correlated (see the Appendices). 
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6.1.1 Exploring the Impact of Indirect Coupling on Application Maintenance Cost 

To explore the dynamics of how indirect coupling categories impact cost we further 

analyzed their relationship with the outcome.  Table 8 presents data on the mean, standard 

deviation, and skewness of maintenance cost by category. (We present here the raw data, not the 

transformed data used in our statistical models).  We observe that cyclically coupled Core 

applications have the highest cost, followed by Shared, Control, and then Peripheral applications. 

Core applications also experience higher variations in cost than applications in other categories.  

The implication is that cyclically coupled applications are harder to predict (and hence to budget 

for) with respect to maintenance cost and more likely to be outliers on this dimension of agility. 

Table 8:  Differences in Maintenance Cost by Indirect Coupling Category 
	 Maintenance	Cost	
	 Mean	 St.	Dev	 Skewness	

Shared	 344.86	 452.48	 2.21	
Core		 497.54	 753.80	 3.55	
Control		 255.37	 468.93	 3.86	
Peripheral		 143.41	 293.11	 3.11	
 

In sum, the evidence we present suggests that hypothesis one is supported.  Applications 

with higher coupling cost more to maintain.  We find support for the predictive power of both 

between-layer coupling variables (i.e., the number of departments and database connections) as 

well as between-application coupling variables.  We show that indirect coupling categories are 

better predictors of maintenance costs than measures of direct coupling.  While our statistical 

models cannot differentiate between the impact of different types of indirect coupling (i.e., 

Shared, Core and Control), we show that cyclically coupled Core applications have the highest 

maintenance costs, and experience the highest variation in these costs. 
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6.2 Hypothesis 2: The Relationship between Coupling and Application Retirement  
 

Table 9 presents a series of logistic regression models predicting the probability of an 

application being retired between 2008 and 2012. 

Table 9: Logit Models Predicting Application Retirement  

Retire	(1-0)	 Model	1	 Model	2	 Model	3	 Model	4	 Model	5	 Model	6	 	

Constant	 -0.423	 0.930†	 0.141	 2.481***	 2.187***	 0.968	 	
Ln	(Age)	 0.395***	 0.481***	 0.776***	 0.569***	 0.664***	 0.652***	 	

State	 -0.973†	 -1.237*	 -0.893	 -0.968	 -0.866	 -0.631	 	

#	OS	 -0.938**	 -0.524	 -0.563	 -0.454	 -0.533	 -0.519	 	
Vendor	 1.812***	 1.137***	 0.625***	 0.497**	 0.438*	 0.322†	 	

#	DBMS	
	

-1.679***	 -0.990***	 -1.178***	 -1.025***	 -0.913***	 	
Ln	(#	Users)	

	
-0.150†	 0.029	 -0.080	 -0.043	 0.021	 	

Ln	(Direct	FI)	
	 	

-0.638***	 	 	
	

	
Ln	(Direct	FO)	

	 	
-0.359***	 	 	

	
	

Main	Flow	(MF)	
	 	

	 -2.664***	 	 -1.491***	 	

Shared	
	 	

	 	 -2.536***	
	

	
Core	

	 	
	 	 -3.063***	

	
	

Control	
	 	

	 	 -2.157***	
	

	
MF	x	Ln	DFI	

	 	
	 	 	 -0.437***	 	

Periph.	x	Ln	DFO	
	 	

	 	 	 -1.94**	 	

Chi-square	 189.56***	 297.07***	 411.23***	 446.88***	 462.31***	 479.71***	 	
Cox&Snell	R^2	 0.180	 0.267	 0.349	 0.373	 0.383	 0.394	 	

Nagelkerke	R^2	 0.241	 0.358	 0.468	 0.500	 0.514	 0.528	 	
n=975;	†	p<0.1,	*	p<0.05,	**	p<0.01,	and	***p<0.001	

 

Model 1 includes only control variables, three of which are significant.  Older 

applications and applications from vendors are more likely to be retired.  Applications that 

support more operating systems are less likely to be retired.  In total, these variables explain 

24.1% more variation than the null model (i.e., a model with no predictors).8  In model 2, we add 

between-layer coupling variables; one is strongly significant (p<0.1%), the other only marginally 

so (p<10%).  Applications that make use of database management systems are less likely to be 

                                                
8 We use Nagelkerke’s pseudo R-squared statistic to compare models.  This mirrors the Cox & Snell statistic, but is adjusted so that 
a perfectly fitted model would yield a 100% value (the Cox & Snell statistic cannot take a value of 100%). 
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retired. Applications with more users may be less likely to be retired.  In total, these variables 

increase the variation explained to 35.8%.  Model 3 includes measures of direct coupling.  (We 

use a log transformation for these variables as before.)  Both variables are strongly significant, 

with the model showing an increase in the variation explained over the null model to 46.8%.  In 

model 4, we remove direct coupling measures, and include the variable for main-flow 

applications.  This variable is strongly significant, and increases the model fit to 50.0%. 

In model 5, we split main-flow applications into its three component categories – Shared, 

Core and Control.  All three are significant.  In addition, the model fit improves over model 4, 

and the coefficients on the variables are statistically different from each other.  Specifically, Core 

applications are the least likely to be retired, and Control applications are the most likely to be 

retired (but still significantly less likely than Peripheral applications – the baseline).  We cannot 

include measures of direct coupling in models 4 or 5, given the high correlations between direct 

and indirect coupling (see the Appendices). We note however, that measures of indirect coupling 

have a higher correlation with retirement than measures of direct coupling, and a greater level of 

significance in our models.  We conclude that indirect coupling measures have more power than 

direct coupling measures in explaining retirement – the second dimension of IT agility.   

In model 6, we use interaction terms to evaluate the impact of direct coupling measures 

within different indirect coupling categories.  In particular, we interact main-flow and peripheral 

variables, with the level of direct coupling.  For main-flow applications, we find the measure of 

direct fan-in coupling adds significant power to our model. For peripheral applications, we find 

the measure of direct fan-out coupling adds significant power to our model.  In both cases, higher 

levels of coupling within a category are associated with a lower likelihood of being retired.  In 

total, our final model explains 52.8% more of the variation in retirement than the null model.  
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Control variables explain 24.1% of the improvement in model fit, between-layer coupling 

variables explain 11.7% and between-application coupling variables explain 17%. 

6.2.1 Exploring the Impact of Coupling on Application Retirement 

To explore the dynamics of how indirect coupling categories impact retirement we 

further analyzed their relationship with the outcome.  Table 10 presents data on the number of 

applications by category in 2008 and the number retired between 2008 and 2012, expressed as an 

absolute number, and as a percentage.  We observe first, that Peripheral applications have a large 

probability of being retired.  Of the 505 peripheral applications in 2008, almost 93% are retired 

by 2012 (compared to 58.5% for the sample overall).  This highlights the huge turnover for 

applications with little or no indirect coupling in the software portfolio.   Second, by contrast, the 

percentage of cyclically coupled Core applications that are retired between 2008 and 2012 is 

only 27%.  In sum, Peripheral applications are retired at 3X the rate of Core applications.  

Finally, we note the rate at which Shared and Control applications are retired over this time 

period is similar, at 44.2% and 49.7% respectively.  

Table 10:  Differences in Application Retirement by Category 

	

Applications		
in	2008	 Retired	by	2012	 Percentage	Retired	

Shared		 120	 53	 44.2%	
Core	 447	 121	 27.1%	

Control	 175	 87	 49.7%	

Peripheral	 505	 469	 92.9%	
TOTAL	 1247	 730	 58.5%	

 

In sum, the evidence we present suggests that hypothesis two is supported.  Applications 

with higher coupling are less likely to be retired.  We find support for the predictive power of 

both between-layer coupling variables (i.e., the number of departments and database 
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connections) as well as between-application coupling variables.  We show that indirect coupling 

categories are better predictors of retirement than measures of direct coupling.  And our 

statistical models show that Core applications are much less likely to be retired than other 

categories.  The descriptive analysis highlights this result, while showing the extremely high rate 

at which Peripheral applications are retired over the same period. 

6.3 Hypothesis 3: The Relationship between Coupling and New Applications 
 

Our third hypothesis asserts that new applications added to the software portfolio 

between 2008 and 2012 will have lower levels of coupling compared to the set of all applications 

in the portfolio at the start of the period.  To test this assertion, we compare the distribution of 

applications by category for 2008, to that of new applications added to the portfolio thereafter.  

All else being equal, one would predict that new applications should mirror the distribution of all 

2008 applications, in terms of their coupling characteristics (the “null” hypothesis). 

Table 11 shows the distribution of applications by indirect coupling category for the 2008 

portfolio, as well as for new applications added between 2008 and 2012.9  For example, in 2008, 

there were 120 Shared applications, representing 9.6% of the portfolio.   Of the 423 new 

applications added between 2008 and 2012 however, only 14 (i.e., 3.3% of them) were Shared.  

If new applications were added in a way that mirrors the characteristics of all 2008 applications, 

we would expect 9.6% of the 423 new applications (i.e., 40 applications) to be Shared.  The 

actual outcome is significantly below what is expected. The ratio of the actual to expected 

outcome is 0.34.  This ratio reflects the degree to which the number of new applications either 

falls short of (<1) or exceeds (>1) the expected number in each category. 

 
                                                
9 Note in this analysis, we count only new applications added to the software portfolio between 2008 and 2012.  We do not include 
the 311 active applications that existed in 2008, but which were missing data and hence were not assigned a coupling category. 
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Table 11:  Number of Applications by Category for 2008 and for New Applications  

	

Applications	in	the		
2008	Portfolio	

New	Applications	
added	2008-2012	

Ratio	of	Actual	
to	Expected		

Shared	 120	 9.62%	 14	 3.30%	 0.34	
Core	 447	 35.85%	 72	 17.02%	 0.47	
Control	 175	 14.03%	 110	 26.00%	 1.85	
Peripheral	 505	 40.50%	 227	 53.66%	 1.32	
TOTAL	 1247	 100%	 423	 100.00%	 1.00	
Chi-Square	(df=3)	 90.723***	

***	p	<	0.001	

 

We find that new applications occur less frequently than expected in the Shared and Core 

categories. By contrast, new applications occur at a greater rate than expected in the Control and 

Peripheral categories.  The results make intuitive sense. Adding new applications that have little 

or no coupling relationships with other applications (i.e., Peripheral applications) should be 

relatively easy.  Furthermore, adding new applications that use or “depend upon” legacy 

applications should be easier than adding new applications that are used by or “depended upon” 

by legacy applications.  In essence, new applications can take advantage of existing functionality 

provided by legacy applications, but the reverse is more difficult to achieve. 

To test whether the differences reported above are significant, we run a Chi-Square test 

of independence between the distribution of applications across categories for 2008 and for all 

new applications.  The test statistic demonstrates that the distribution across categories is 

statistically different (i.e., the Chi-Square statistic exceeds a threshold value of 33.94).  We 

conclude that hypothesis three is supported.  New applications have a significantly lower number 

of applications in high indirect coupling categories.  In particular, they are more likely to be 

Peripheral or Control applications, and less likely to be Shared or Core applications. 
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7.  Discussion 

The distinctive contribution of this paper is in developing better theory about the 

relationship between a firm’s software portfolio architecture and its level of IT agility.  

Specifically, we find a strong link between the level of coupling of applications in the portfolio, 

and the degree to which these applications can be changed.  Applications with higher levels of 

coupling are more costly to maintain, less likely to be retired and less likely to be commissioned. 

A unique feature of our work is that it explores different types of coupling that impact 

applications, and hence can potentially affect IT agility.  Specifically, we examine coupling 

relationships within the application layer, as well as between this layer and others in the IT 

architecture.  With respect to the former, we find that indirect coupling relationships have a 

stronger association with IT agility than direct coupling relationships. With respect to the latter, 

we find that the number of users (i.e., business groups) for an application, and the number of 

databases to which it is connected, are also strong predictors of the cost and likelihood of change.  

We note that the best models predicting maintenance costs and application retirement include 

measures of all types of coupling: direct, indirect, cyclic and between-layer coupling. 

In order to highlight the power of the different measures of coupling, we conduct a 

decomposition of variance analysis for hypotheses one and two.  Table 12 shows the amount of 

explained variance for each outcome that is attributable to control variables, between-layer 

coupling variables, and between-application coupling variables.  We break the latter into three; 

first showing the variation explained by direct coupling measures, next showing the variation 

explained by indirect coupling measures, and finally showing the variation explained by all 

measures combined (i.e., models which include interaction terms). 
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Table 12:  Decomposition of the Variance Explained by Type of Variable 

	
Maintenance	Cost	H1	 Application	Retirement	H2	

Control	Variables	 8.5%	 8.5%	 8.5%	 24.1%	 24.1%	 24.1%	

Between	Layer	Coupling	 5.0%	 5.0%	 5.0%	 11.7%	 11.7%	 11.7%	
Direct	Coupling	 1.8%	 	 	 11.0%	 	 	

Indirect	Coupling	 	 4.2%10	 	 	 14.6%11	 	
Direct	and	Indirect	 	 	 6.0%	 	 	 16.0%	

TOTAL	VARIANCE	 15.3%	 17.7%	 19.5%	 46.8%	 50.0%	 52.8%	

 

Several observations are apparent from this analysis.  First, while control variables 

explain a sizeable amount of the variance in our models, measures of coupling explain more.  

Second, while both between-layer and between-application measures of coupling are significant, 

the latter have more power in predicting IT agility. This result reveals a paradox confronting IT 

managers as they direct efforts to enhance IT agility.   While their focus is often on better 

structuring the relationship between applications and other layers in the IT architecture (e.g., 

databases and infrastructure), our results suggest their attention is better directed elsewhere. In 

particular, they must pay greater attention to the application portfolio itself, and specifically, the 

patterns of coupling that exist between the components of this portfolio. 

Returning to the analysis of variance, we find measures of indirect coupling have more 

power than measures of direct coupling.  This mirrors the results of similar studies looking at the 

impact of design decisions within software systems (MacCormack and Sturtevant, 2016).  Direct 

relationships between components are more easily visible to a system architect, hence can be 

explicitly managed.  They may not be problematic if constrained to a small group of 

components.  Indirect relationships however, bring the potential for changes to propagate from 

one component to another via chains of dependencies.  These chains are not easily visible by 

                                                
10 The baseline for this data is model 4 in Table 7, which includes main-flow as the predictor variable.  Breaking main-flow into its 
three constituent components, as is done in model 5, yielded a decrease in the variance explained. 
11 The baseline for this data is model 5 in Table 9, which includes the variables indirectly coupled, cyclically coupled and indirectly 
dependent as predictors.  This model explains more variance than a model that just includes main-flow as a predictor.   
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inspection of an application’s nearest neighbors. They represent “hidden structure” that can only 

be revealed by an analysis of indirect pathways in a system (Baldwin et al, 2014).12 

Of the different types of indirect coupling present in the portfolio, our work suggests that 

cyclically coupled Core applications present the toughest challenges to managers.  These 

applications have the highest average cost, and the highest variation in cost.  They are also less 

likely to be retired and less likely to be commissioned, suggesting it is both costly and difficult to 

perform these tasks.  In the firm we studied, 35% of applications were cyclically coupled in 2008 

and 2012, meaning 440 applications were mutually interdependent in both periods.  Making 

changes to a set of Core applications of this size would be a complicated endeavor, given any 

change to a single application could potentially propagate to affect many others. 

For the academy, our work contributes to the stream of research exploring the role of IT 

Architecture in a dynamic and digitally-connected world (Sambamurthy and Zmud, 2000; 

Samburmathy at al, 2003; Yoo et al., 2010; Tanriverdi et al, 2010; Tiwana et al, 2010).  In 

particular, we build upon and extend existing empirical contributions, which have examined the 

role of modularity and loose-coupling in IT systems (e.g., Tiwana and Konsynski, 2010; Kim et 

al, 2011), by showing the precise mechanisms through which coupling impacts performance.  

Our distinct contribution is to conceptualize and operationalize different forms of coupling that 

impact the evolution of a firm’s IT systems, and to examine their association with multiple 

dimensions of IT agility.  Importantly, we achieve these objectives using absolute measures of a 

firm’s software portfolio architecture, in contrast to the perceptual measures used in prior 

studies.  And we do this at a more granular level of analysis than is the norm in prior studies (i.e., 

we focus on individual software applications instead of a firm’s entire infrastructure). 
                                                
12 Note, the best model in each case includes both types of measures.  In essence, measures of direct coupling help to explain the 
variations in each outcome that remain within each of the indirect coupling categories. 
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Our study has distinct implications for managers.  First of all, our methodology provides 

a road map for measuring the real software portfolio architecture that a firm possesses, as 

opposed to the high level conceptual representations often found in documents depicting a firm’s 

IT systems.  The insights that this approach generates should prove useful in several ways, 

including i) helping to plan the allocation of resources to different applications, based upon 

predictions of the relative ease/difficulty of change; and ii) monitoring the evolution of the 

software portfolio over time, as new applications and/or dependencies are introduced.  However, 

we also believe that the specific results we find in this study can help managers better direct their 

efforts to improve software portfolio architecture, and hence to enhance their digital agility. 

In particular, we have shown that dependencies between applications are costly, while at 

the same time, they decrease a firm’s ability to make changes to these applications.   In 

developing new systems, managers must therefore closely monitor the creation of dependencies, 

to ensure that, i) they are necessary from the perspective of system performance, and ii) the 

patterns of indirect coupling they create are understood in terms of the potential to propagate.  

Moreover, our results suggest that managers should limit the number of cyclically-coupled 

applications in a software portfolio, to achieve a “Core” that is as small as possible. Of course, 

there are limits to what can be achieved in this respect, given the well-understood trade-offs 

between a system’s performance, and the degree to which its components are loosely-coupled 

(Ulrich, 1995).  We note however, that prior work exploring this phenomenon in software 

systems has found major differences in Core size, even for systems of similar size and function 

(MacCormack et al, 2012).  This implies that the designers of a firm’s software portfolio have 

considerable freedom to “manage” the level of coupling that exists between applications.  
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For a potent example of the power of decoupling in a software portfolio, it is informative 

to look at Amazon.  In 2001, the firm had a monolithic architecture, with many complex pieces 

of software combined in a single system.  As CTO Werner Vogels noted, “It couldn’t evolve 

anymore.  The parts that needed to scale independently were tied into sharing resources with 

other unknown code paths.  There was no isolation” (Vogels, 2006). Subsequently, the firm 

undertook an extensive restructuring of the software portfolio, transforming it into a distributed, 

decentralized, Service Oriented Architecture.  This facilitated a level of isolation that allowed the 

firm to build software components more rapidly and independently.  By 2006, Vogels stated, this 

transformation had “become one of our main strategic advantages” (Vogels, 2006). 

Ironically however, in this era of big data, the lack of granular data may be the largest 

barrier to the systematic investigation of software portfolio architecture.  In order to analyze 

architecture, organizations must capture rigorous data on the coupling between applications in 

the portfolio, and the way that this evolves over time. To use this data for improvement, they 

must also capture data on the cost of application change in a systematic fashion. In most 

organizations with which we have worked, this type of data does not exist. In some, like the firm 

we worked with, efforts have been made to collect this data manually.  However, there are many 

challenges associated with this approach, including the lack of proper incentives to provide 

accurate and/or timely information. As a consequence, we believe it is likely that many firms do 

not understand their “real” software portfolio architecture.  Instead, they place their faith in 

simplistic, idealized representations of IT architecture that likely obscure its most important 

characteristics, with respect to enhancing their digital agility. 

Our work opens up the potential for further research to explore the relationship between 

software portfolio architecture and IT agility.  For example, in this study, features of our dataset 
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made it difficult to disentangle the effects of different categories of coupling on some of our 

measures of IT agility. However, in other settings, this will not always be true.  We believe it 

important to study these mechanisms more deeply, to fully understand the relationships that 

different types of coupling have, with each other and with different types of change.  

Specifically, given the heterogeneity across firms’ IT systems, and the mix of new and legacy 

software that firms possess, we believe there is promise in longitudinal studies that examine 

these issues.  If firms discover that they possess a software portfolio architecture with 

undesirable characteristics, is there evidence that effective remedial action can be taken?  

Research that focuses on the impact of managerial interventions, like that taken by Amazon, 

would be invaluable, to assess whether the projected benefits from such actions can be realized 

in practice.  And if not, what might be the mediating factors that determine the value released? 

Finally, we note our study is subject to a number of limitations that must be considered 

when assessing the generalizability of results.  In particular, while our unit of analysis is the 

software application, for which we have over 2,000 observations, the data used to test our 

propositions comes from a single firm. Additional work is needed to validate that our results hold 

for other firms and industries.  We may find that different types of firm, or different managerial 

processes within firms, influence these results. Furthermore, studies across different 

organizations might reveal how measures of IT architecture impact firm-level performance.  This 

topic is promising, given the prior literature that argues for a link between IT architecture and 

firm-level agility.  Our hope is that this paper, and the methods that it describes, will allow us to 

answer such questions, with a rigorous approach that can be replicated across studies. 
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Appendix A:  Correlation Table for Data used to Predict Maintenance Cost (Hypothesis 1)  

	

Mcost	 Age	 State	 OS	 Vendor	 DBMS	 Users	 MainFlow	 Core	 Shared	 Control	 Dir	FI	 Dir	FO	

Mcost	 1	

	 	 	 	 	 	 	 	 	 	 	 	Age	 0.13*	 1	

	 	 	 	 	 	 	 	 	 	 	State	 0.09*	 0.17*	 1	

	 	 	 	 	 	 	 	 	 	OS	 0.08*	 -0.26*	 -0.10*	 1	

	 	 	 	 	 	 	 	 	Vendor	 -0.24*	 0.03	 0.04	 -0.09*	 1	

	 	 	 	 	 	 	 	DBMS	 0.32*	 0.09*	 -0.07	 0.17*	 -0.49*	 1	

	 	 	 	 	 	 	Users	 0.10*	 0.18*	 0.08*	 -0.09*	 -0.01	 -0.03	 1	

	 	 	 	 	 	MainFlow	 0.35*	 0.23**	 -0.07	 0.08*	 -0.29*	 0.49*	 0.02	 1	

	 	 	 	 	Core	 0.27*	 0.33*	 -0.04	 0.04	 -0.29*	 0.40*	 0.09*	 0.64*	 1	

	 	 	 	Shared	 0.09*	 -0.06	 0.03	 0.03	 0.06	 0.09*	 -0.01	 0.29*	 -0.28*	 1	

	 	 	Control	 0.05	 -0.09*	 -0.14*	 0.12*	 -0.08*	 0.05	 -0.10*	 0.29*	 -0.27*	 -0.12*	 1	

	 	Dir	FI	 0.27*	 0.47*	 0.05	 -0.07	 -0.18*	 0.37*	 0.17*	 0.58*	 0.70*	 0.09*	 -0.27*	 1	

	Dir	FO	 0.29*	 0.26*	 -0.02	 0.02	 -0.36*	 0.40*	 0.12*	 0.52*	 0.71*	 -0.33*	 0.04	 0.61*	 1	

n=660,	*	p<0.05,	italic=ln()	

Appendix B:  Correlation Table for Data used to Predict Application Decommissioning (Hypothesis 2)  

	

Retire	 Age	 State	 OS	 Vendor	 DBMS	 Users	 MainFlow	 Core	 Shared	 Control	 Dir	FI	 Dir	FO	

Retire	 1	

	 	 	 	 	 	 	 	 	 	 	 	Age	 0.09*	 1	

	 	 	 	 	 	 	 	 	 	 	State	 -0.01	 0.34*	 1	

	 	 	 	 	 	 	 	 	 	OS	 -0.12*	 -0.18*	 -0.08*	 1	

	 	 	 	 	 	 	 	 	Vendor	 0.41*	 -0.01	 0.04	 -0.04	 1	

	 	 	 	 	 	 	 	DBMS	 -0.48*	 -0.02	 -0.06	 0.14*	 -0.51*	 1	

	 	 	 	 	 	 	Users	 -0.04	 0.08*	 0.04	 -0.06	 -0.03	 -0.02	 1	

	 	 	 	 	 	MainFlow	 -0.58*	 -0.06	 0.02	 0.09*	 -0.53*	 0.51*	 0.09*	 1	

	 	 	 	 	Core	 -0.48*	 0.14*	 0.06	 0.01	 -0.45*	 0.49*	 0.12*	 0.62*	 1	

	 	 	 	Shared	 -0.08*	 -0.06	 0.03	 0.01	 -0.03	 -0.09	 0.09	 0.25*	 -0.26*	 1	

	 	 	Control	 -0.06	 -0.15*	 -0.08*	 0.01*	 -0.08*	 0.03	 -0.06*	 0.30*	 -0.32*	 -0.13*	 1	

	 	Dir	FI	 -0.51*	 0.19*	 0.09*	 0.07	 -0.46*	 0.51*	 0.20*	 0.62*	 0.76*	 0.09*	 -0.28*	 1	

	Dir	FO	 -0.50*	 0.10*	 0.04	 0.06	 -0.49*	 0.53*	 0.14*	 0.66*	 0.74*	 -0.23*	 0.06	 0.74*	 1	

n=957,	*	p<0.05,	italic=ln()	


