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Abstract

We examine the golden age of U.S. innovation by undertaking a major data collection exercise
linking inventors from historical U.S. patents to Federal Censuses between 1880 and 1940 and
to regional economic aggregates. We provide a theoretical framework to motivate the micro
and macro-level stylized facts we uncover in the data. We show that inventors were highly
educated and that father’s income and education were important intergenerational transmis-
sion channels. Inventors tended to migrate to places that were conducive to innovation and
they were positively selected through exit early in their careers. New inventors received more
patent citations than incumbent inventors, suggesting a cycle of creative destruction. The
financial returns to technological development were high. At the macro-level we identify a
strong relationship between patented inventions and long-run economic growth, and use an
instrumental variables approach exploiting an historical shift in innovation activity during
World War II to show that this relationship could be causal. Finally, we document a U-shaped
relationship between top income inequality and innovation, yet innovative places tended to be
more socially mobile. Our new data help to address important questions related to innovation
and long-run growth dynamics.
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The Rise of American Ingenuity

1 Introduction

At the heart of the 25-year old endogenous growth literature is the premise that innovation and
technological progress are engines of long-run economic growth (e.g., Romer (1990), Aghion and
Howitt (1992)). An abundance of modern data has helped to inform theoretical perspectives on
key aspects of the growth process including the impact of firm entry and exit, reallocation, the
role of cities, the distribution of talent, and the relationship between inequality, social mobility,
innovation and growth (e.g., Duranton and Puga (2001), Banerjee and Duflo (2003), Klette and
Kortum (2004), Foster, Haltiwanger, and Syverson (2008), Bloom, Schankerman, and Van Reenen
(2013), Acemoglu et al. (2013), Hsieh et al. (2013), Hsieh and Klenow (2014), Jones and Kim (2014),
Aghion et al. (2015a), Akcigit and Kerr (2017)). Due to data limitations, however, evidence from
longer time horizons remains elusive, despite the large influence that innovations from history
such as light bulbs, air conditioners and storage batteries exert on modern society. Studying the
creators of these inventions has the potential to shed new light on the innovation and growth
literatures.

This paper develops a number of facts about the environment in which many of the essential
technologies used today were created, the life cycle of inventors who developed these inventions,
and how innovation relates to long run growth, inequality and social mobility. We generate a
novel data series matching inventors of patents in the United States to Federal Censuses from
1880 to 1940. Typically such data has only been available for broader populations in modern
time periods (Aghion et al. (2015b), Bell et al. (2015)) or historically for specific sub-samples of
inventors (e.g., Lamoreaux and Sokoloff (1999)). The new data allow us to examine who became
an inventor and the types of environments that were most conducive to innovation and long run
growth.

Developing new facts about economic growth has a long tradition going back to Kaldor (1961)
who presented six stylized facts around which the theory of economic growth developed. Jones
and Romer (2010) updated Kaldor’s facts to reflect the subsequent fifty years of data, providing
the empirical foundations for modern growth theory. Both papers have facilitated informed
discussion and permitted key breakthroughs in our understanding of economic growth. Klette
and Kortum (2004) and Banerjee and Duflo (2005) emphasized the discovery of new empirical
facts as being important for growth theory to progress. Our paper attempts to establish the
fundamental facts regarding the process of innovation during a critical period of U.S. economic
development.

The time period we cover is central to recent debates on innovation and growth. We analyze
the years that Gordon (2016) associates with the second industrial revolution, which produced
major innovations like electricity and the motor vehicle. As an overview of the underlying inno-
vation data, Figure 1 (Panel A) plots the time-series of log patents filed at the USPTO. It shows
that innovative activity (proxy measured by patenting) has been growing over time. In keeping
with the predictions of the large theoretical literature highlighting the central role of techno-
logical progress in endogenous growth we find a positive association between our innovation
measures and output growth over the long run.

Panel B shows that most U.S.-based inventors in 1880 developed technologies outside the
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The Rise of American Ingenuity

Figure 1: Long-Run History of Total Patents Filed in the USPTO

Panel A: Total Patents Panel B: Share of Corporate Patents
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Notes: Panel A: Excluding the exceptional years around World War II (1930-1950), a regression of annualized 5-year
GDP per capita growth rates on log patents yields a coefficient of 0.639, which is statistically different from 0 at the
10% level. The correlation between these five year growth rates and log patents is 0.392. Correlation between log
patents and log GDP per capita (levels) is 0.890, while the estimated linear relationship between the two is 0.751 (with
heteroskedasticity robust standard error 0.0325). Panel B: The share of U.S. patents assigned at their grant date proxies
for the amount of corporate patenting. Sources: USPTO, Maddison, Bureau of Economic Analysis, Klein (2013).

boundaries of firms. Over the subsequent 120 years, the share of patents assigned to corporations
rose substantially, reflecting the development of R&D labs inside the modern corporation. Given
the high share of unassigned patents in the historical data, the innovation process may be well-
understood through the life cycle of inventors.

Several famous case studies can motivate our approach. Born to a poor family in rural Ohio,
Thomas Edison (1847-1931) faced tight financing constraints in his early career. He ultimately
relocated to New Jersey, building the Menlo Park Lab in 1876, a pioneering research laboratory
where creative inventors could collaborate to develop new technical ideas. To develop his tech-
nologies further Edison accessed capital from a group of financiers, including J.P. Morgan. The
investment bank Drexel, Morgan & Co. (which later became J.P. Morgan & Co.) provided loans,
acted as a financial intermediary for Edison’s firm, and provided wealth management. Edison
was granted 1,093 U.S. patents, accruing great wealth in the process. His experience suggests
the importance of access to capital, population density, and human interactions in the innovation
process. Edison’s career also exemplifies the potential for strong financial returns to innovation,
and its possible link to social mobility.

Nikola Tesla (1856-1943), a Serbian immigrant, demonstrates the contribution of international
migrants to U.S. technological progress. After arriving in America in 1884 at age 28, he began
work at the Edison Machine Works in New York. Tesla’s career highlights how productivity
could change over an inventor’s life cycle: he was granted 64 of his 112 U.S. patents (57% of
the total) within a decade of his arrival. However, his patenting rate attenuated sharply, and he
acquired just 16 patents (14% of the total) after age 45. Tesla believed that private relationships
detracted from productive research time. He never built a family. His decision not to marry
shows that inventors faced trade-offs when it comes to time allocation.

Finally, Melvin De Groote (1895-1963), one of the most prolific inventors in U.S. history,
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received two degrees in Chemical Engineering. His highly-educated background was crucial for
turning his creativity into valuable innovations. De Groote was granted 925 U.S. patents, mostly
developing novel methods to separate crude oil emulsion into its oil and water components.
De Groote moved from his state of birth in West Virginia to various places in the U.S. where
innovative firms were located.1

The above case studies hint that myriad factors, such as immigration, social mobility, access
to capital, human interactions, education, and time allocation, might spur innovation. Our new
dataset can systematically document these patterns. To organize our exposition, we develop
a simple model of innovation using key insights from endogenous growth theory. The model
guides our empirics to the relevant correlations in the data, and aids interpretation of the results.

As a broad summary of our approach, we examine the basic demographic facts of inventors:
their education, migration decisions, life cycle and the private rewards to innovation by studying
the wages of successful inventors from labor income data in the 1940 Census (subject to the
limitations associated with the income data from the 1940 Census which we discuss in Section
2). Next, we establish a link between innovation and economic growth at the state level. Finally,
we investigate the societal consequences of innovation by establishing the correlation between
patenting activity and income inequality or social mobility at the state level.

Empirical Facts

Our analysis uncovers the following stylized facts about innovation:

Fact 1. Inventors were more educated on average and were most productive between the age
of 36 and 55.

Fact 2. Father’s income and father’s education were highly correlated with becoming an
inventor, especially through the effect on the level of a child’s education.

Fact 3. Inventors were more likely to have migrated from their state of birth. They moved to
states that were more conducive to innovation.

Fact 4. Inventors were positively selected through exit early in their careers, increasing the
average productivity (conditional of survival) of a cohort of inventors. However, they were less
productive and more likely to exit late in their careers.

Fact 5. The patents of new inventors received more citations on average, and were more
likely to be in the top decile of the citations distribution.

Fact 6. Successful patentees had substantially higher labor income, and produced higher
quality inventions. For younger inventors, future productivity predicts current income whereas
for older inventors, income is predicted by both past and future productivity.

Fact 7. More inventive states grew faster on average.

Fact 8. Broad measures of income inequality, such as the 90/10 ratio and Gini coefficient,
were negatively correlated with innovation at the state level, however, the top-1% income share
had a U-shaped relationship with innovation.

Fact 9. Innovation was strongly positively correlated with social mobility.

1De Groote was a consultant or employee to numerous corporations including Hachmeister Lind Chemical of
Pittsburgh, Procter and Gamble in Cincinnati, and Petrolite Corporation in Webster Groves, Missouri where he was
Vice President and Director of Research.
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More specifically, our analysis shows that inventors were not uneducated amateurs; rather
they were typically highly-educated individuals who were most productive between the age of
35 and 55. In turn, access to education can be related to the family background of inventors be-
cause those with high-earning, or more educated, father’s were more likely to become inventors
themselves. Equally, while we find that some inventors gained privileged access into a career as
an inventor, this effect operated only in the upper tail of the father income distribution. On the
intensive margin we find no effect of father’s income on patent productivity or quality.

To investigate personal characteristics further, we examine migration patterns and provide
evidence on the nature of re-location decisions. We find that inventors were significantly more
likely to have migrated from their state of birth than both high-skill and low-skill persons. We also
document that conditional on moving, inventors tended to relocate to more densely-populated
and financially-developed places that were more likely to foster innovation.

Our data show that the early exit of unproductive inventors led to positive selection, while
inventors produced their highest quality inventions (measured by patent citations) early in their
careers. Moreover, the probability of exit increased in late stages of the life cycle, as inven-
tors faced obsolescence through creative destruction. This type of churning activity can play
an important role in the growth development process, as shown by the empirical literature on
productivity and firm dynamics (e.g., Haltiwanger (2012)) and theoretical models on firm entry
and exit (e.g., Acemoglu et al. (2013), Jovanovic (1982) and Hopenhayn (1992)).

We also find that inventors had high incomes, even after controlling for their observable
characteristics. Inventors had three times higher labor income on average and had a steeper
earnings profile over their life cycle. Fully 59% of inventors were in the top decile of the overall
income distribution. We identify strong returns to the quality of innovation: inventors with
higher citation-adjusted patents received higher wage income. Furthermore, we find that wage
income is related to the life cycle of invention. Young inventors with a longer career ahead of
them were paid in anticipation of future productivity whereas for older inventors both future
and past productivity predict wage income.

We find strong evidence to suggests that inventive activity translated into faster economic
growth. We study the relationship between patented inventions and long-run growth across
states over 100 years between 1900 and 2000. Our results show that the link has been strongly
positive and economically sizable. Estimates suggest that if two states had the same initial GDP
per capita in the beginning of the period and one state was at the 10th percentile and the other
at the 90th percentile of the innovation distribution (Mississippi vs New Jersey, for instance), this
could lead to 26% higher GDP per capita in the innovative state after 100 years. We attempt to
establish causality by exploiting a major shift in innovation activity during World War II when the
Office of Scientific Research and Development funded a program of unanticipated technological
developments.

Finally, we study regional income dynamics as an outcome measure in relation to prior-
period patenting activity. We focus on various measures of inequality: the 90/10 ratio, the Gini
coefficient and the top-1% income share. We also construct a measure of social mobility using
information in the 1940 Census that focuses on the fraction of those with a low-skill father who
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themselves have a high-skill occupation. We find that innovative regions in the U.S. had lower
income inequality measured as the 90/10 ratio or the Gini coefficient, yet the top income share
features a U-shaped relationship with state innovation. In general, the most innovative states had
higher levels of social mobility.

Overall, our analysis uses novel historical microdata linked to regional aggregates to provide
key micro and macro-level facts to inform critical questions in the study of technological progress
and long-run economic growth. The remainder of the paper is organized as follows. Section 2
outlines our data. In Section 3, we present a simple theoretical framework to inform our empirical
exploration. Section 4 presents our micro-level empirical results and Section 5 presents the macro
findings. Section 6 concludes. Appendices A to D provide a detailed description of the data used,
our matching methodology and additional robustness checks.

2 Data Construction

Patents, Technology Areas and Citations

Patents are a commonly used measure of innovation in the empirical literature on technological
change. A patent entry shows the surname, first name, middle initial(s) where relevant, state,
city, county, and country of the applicant when the patent was granted. For example, Figure
2 shows the famous USPTO patent 223,898 for an electric lamp granted to Thomas Edison in
Menlo Park on January 27, 1880. As patents represent transferable property rights, they may be
assigned to an individual or firm other than the inventor; if this is the case, the assignee is also
recorded on the document.2 Figure 1 (Panel B) shows that the share of American patents that
were assigned in this manner grew over time.

Using a combination of machine learning techniques and hand entry, we build a comprehen-
sive collection of over 6 million U.S. patents granted between 1836 and 2004, which allows us
to gain unique insights into the characteristics of U.S. inventive activity over long time horizons.
The construction of these patent data are described in Appendix B.

In addition, we augment the information available from the original patent documents with
two datasets. First, we use the USPTO’s classification of patents to isolate the technology area
of inventions. Whenever a new classification is introduced, existing patents are retroactively re-
classified; therefore, this classification is consistent over time. Although patents may list several
technological components, we only use the primary classes and subclasses for each invention.
Second, we use historical patent citations to identify the most influential technological develop-
ment. Our data include 3.7 million citations to patents granted between 1880 and 1940 from the
population of patents granted between February 1947 (when front page citations began to be
systematically recorded) and September 2008. Following Hall et al. (2001), we adjust citations to
account for bias due to truncation or aggregate fluctuations in citation propensity.3

Several aspects of patenting are worth highlighting in the context of our link between inven-
tors and the Census records. First, access to patenting was widespread. The cost of obtaining a
U.S. patent was very low by international standards. Lerner (2002) estimates that to hold a patent

2Edison’s patent was unassigned at the grant date.
3Details of the citation adjustment are provided in Appendix B.1.
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Figure 2: Pages of USPTO Patent Number 223,898

to a full term of 17 years in the United States in 1875 cost just 5% of the amount in the United
Kingdom. Meanwhile, this cost in the U.S. was just 11% and 10% of the UK cost in 1900 and 1925,
respectively. Moreover, inventors were actively encouraged to innovate and file for patents by
the way the application process was configured. They could mail documents to the U.S. patent
office in Washington, DC through the extensive network of post offices connecting the country
(Khan (2009), Acemoglu et al. (2016b)), or use a large network of intermediaries (patent agents
and lawyers) to administer the patenting process (Lamoreaux and Sokoloff, 1999).

Second, although patents could be sold in a market for technology that had flourished since
the middle of the nineteenth century (e.g., Lamoreaux and Sokoloff (1999), Akcigit et al. (2016a)),
the location of the original inventor is still recorded on the patent document. U.S. patent law
stipulated that the “first and true inventor" be listed in the patent application even if the patent
was assigned to another individual or firm at its grant date.

Third, the date of a patent application and the date of its eventual grant—when we observe
the applicant’s location—were quite close, at least for the early years of our study. In 1880 an
average of 170 days elapsed between the filing and grant date; in 1900, 343 days elapsed. For
this time period there is a reasonable alignment between the patent grant year and when an
individual was observed in the Census year. By 1910, however, the average patent pendency
period was almost a year-and-a-half (536 days). In 1930 it had extended to over 1,000 days and
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it was still over 800 days in 1940.4 We would therefore expect to see more measurement error in
our matching ceteris paribus for later years. Schmookler (1966) reports that it took about one-and-
a-half years for an invention by an independent inventor to be produced.

Census Data

The release of the complete-count Census data by the Minnesota Population Center (IPUMS)
provides an opportunity to examine a number of questions related to the historical development
of innovation in the United States. We use the decennial Censuses in 1880, 1900, 1910, 1920,
1930, and 1940.5 Our patent-Census matching exercise begins in 1880 because that is the first
year a reasonable number of patent observations become available. Around 11,400 patents were
granted to inventors residing in the U.S. in that particular year. The Census Bureau’s 72 year lag
release rule implies that the latest available Census is from 1940.

We view these data analogously to modern studies using administrative records such as Bell
et al. (2015) who uncover major new facts about the nature of U.S. innovation. Not only is it
possible to link the historical Census data with patent records (as we show below) but data
on the entire population permits analysis of inventor life cycles relative to other sub-groups of
individuals—for instance with different occupational skill levels. This type of systematic infor-
mation across large groups of individuals for the entire United States has never before been
available for long historical horizons. Nevertheless, although the Censuses present an especially
useful source of data, it is also worthwhile to understand its potential limitations.

First, the quality of the Census records varies over time. While the Census included quality
control procedures in an effort to ensure consistent enumeration, much depended on the way
the Censuses were generally administered. For example, the 1920 Census was conducted in the
winter (January 1st 1920) whereas the 1910 Census had been conducted in the spring (April
15th). Winter enumeration had a large effect on seasonal occupations like agricultural labor and
movement to cities. Although we show in Appendix C that our match rate is lower for 1920 than
for other years, the level of underenumeration is not sufficient to bias our results. Dorn (1937)
estimates underenumeration in the native white population (which would be most relevant to
the inventors in our dataset) of between 1% and 1.1%.

Second, beyond standard variables like the name and location of individuals, the information
contained in the Censuses varies widely over our period of interest. Although a number of
variables are commonly recorded across Census years such as age, race, gender and marital
status, other variables are recorded in one year only to be dropped in another. As an example,
occupation is listed in 1880 but not in 1900 or 1910. Generally, a wider array of variables are
available in later years. Beginning in 1920, for instance, enumerators asked specifically about
education (school attendance) and home ownership.

4By comparison, the average difference between a patent application and grant date for U.S. patents granted
between 2008 and 2015 was 1,278 days.

5For a full description of the Census datasets, the variables they contain, and our attempts to clean them, see
Appendix A. The 1890 Census was largely destroyed in a fire in 1921, while others records from this Census were
destroyed under the intransigent Federal record management polices in place at the time. Only a limited set of 1890
Census schedules survived.
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Third, some variables are subject to measurement error. An advantage of the 1940 Census is
that it questioned individuals about income. Prior to the availability of these data, researchers
routinely imputed incomes by assigning individuals the median income in their reported occu-
pational category (Abramitzky et al., 2014). But, the income data must be carefully interpreted.
Enumerators were instructed to report annual incomes of greater than $5,000 at $5,000+. Hence,
the data are “top-coded." For example, Melvin De Groote, the superstar inventor profiled above,
reports this level of income in the 1940 Census (average income was $1,368). Furthermore, Petro
(2016) finds that “if a farmer worked for himself and sold his crops, he did not report that money"
in the 1940 Census. By the same token we assume that inventors selling their inventions would
not have reported this as income.

Approach to Matching Patent and Census Records

The main challenge associated with matching inventors on patent documents to individuals
listed in the Census is the absence of a unique identifier across datasets. The first Social Security
number was issued in 1936. Although a supplementary question was asked in the 1940 Cen-
sus about whether a person had a Social Security number, the number itself was not recorded.
Furthermore, Social Security numbers were not included in patent documents at the time.

In both the patent and Census datasets we observe variables denoting surname, first name,
initial, state, city and county. This vector of information provides a basis for our matching. Of
course, the challenge of matching observations without unique identifiers is self-evident, but we
can still limit the likelihood of matching “false positives” by restricting our analysis to only those
observations where we match precisely across a range of our matching variables. We proceed in
two steps. First, we adopt a “basic” matching approach where the criterion for matching is that
the inventor listed on the patent has the same first name and surname as the individual in the
Census, and lives in the same state. Naturally, this leads to repeated individuals in some cases.

Therefore, we next adopt a “refined” matching approach. In addition to the criterion in
our basic match we require additionally that individuals listed on the patent document and
individuals in the Census reside in the same county. Then, if there are still many observations
for a given inventor, we first check if there is an inventor which has the same middle initial in
both the patent and Census datasets, and we keep that inventor if there is a match. We then
keep only Census inventors who live in the same city or township as is listed on the patent
document, if one exists. Next, we ask if there is any matched inventor between 16 and 85 years
old. If so, we keep that inventor only. Finally, we repeat the age refinement, keeping only
matched inventors between 18 and 65 years old, if one exists. In other words, to be in our final
dataset requires that individuals match systematically on surname, first name, (where relevant
initial), state, and county. Although there are still data matching issues we cannot overcome—for
example, sometimes the Census uses registration areas (e.g., Precincts or Districts) rather than
cities, making it impossible for us to identify the right individual by location—our matching rates
are encouraging overall. We match an average of 46 percent of patentees in the Census with a
high of 62 percent in 1880 and a low of 34 percent in 1920. A detailed description of the matching
process is provided in Appendix C.
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2.1 Summary Statistics

As a precursor to the main analysis we present descriptive statistics on our data. In keeping with
our approach of examining U.S. innovation from micro and macro perspectives, we structure
these data to characterize inventiveness at both the individual inventor and state levels.6

Micro-level Summary Statistics

Table 1 shows inventors were more likely to be white males. During our time period women’s
involvement in the labor market was generally restricted to positions like office and clerical
work (Goldin (2006)). Khan and Sokoloff (2004) found only one female inventor in their list of
400 superstar U.S. inventors who were born before 1886. Cook (2011) finds that while African
American inventors often made important technological discoveries during the nineteenth and
early twentieth centuries, they were much less likely to do so in closed environments such as
places that implemented segregation laws.

Table 1: The Characteristics of

Inventors

Inventors Full U.S.
Percent White 97.9% 89.4%
Percent Black 1.8% 9.1%
Percent Male 97.9% 51.0%
Single 16.1% 27.7%
Married 80.2% 65.4%
Percent 19-25 8.4% 22.6%
Percent 26-35 23.8% 27.5%
Percent 36-45 31.0% 22.5%
Percent 46-55 24.1% 16.6%
Percent 56-65 12.7% 10.8%
Av. # Children: ≤ 35 yrs old 1.9 2.3
Av. # Children: > 35 yrs old 3.2 4.7
Percent Interstate Migrant 58.8% 42.8%
Percent International Migrant 21.1% 17.4%
Percent Of Population 0.02% 99.98%

Notes: We use all matched census records to con-
struct this table. Age, race, marital status, and
migrant status are reported for all years. Fertil-
ity is reported only in 1910 and 1940. Source:
1880 through 1940 Historical Census Data, USPTO
patent records.

Figure 3: Family Decisions:
Probability of Being Married
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Notes: This figure plots the probability that an individual is
married over their life cycle using data averaged across our six
census years. Source: 1880-1940 Historical Census Data, USPTO
patent records.

Inventors tended to be married, middle-aged, and had fewer children early in their careers.
Theoretical models specify that commitment to a spouse soaks up time and effort, and that if
married partners did not gain from a union then they would remain single (e.g., Becker (1974)).
To the extent that inventors’ life cycle dynamic created tradeoffs with respect to time allocation,
one might expect inventors to delay fertility and marriage.

Anecdotally, some of the most prolific inventors were against marriage. Nikola Tesla com-
mented in the New York Herald in 1897 “I do not believe an inventor should marry, because he

6Due to space constraints, we report a limited amount of summary statistics here. More details can be found in
the NBER Working Paper Version of our paper Akcigit et al. (2017b).
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has so intense a nature, with so much in it of wild, passionate quality, that in giving himself to a
woman he might love, he would give everything, and so take everything from his chosen field.”
Tesla went on to argue that “I do not think you can name many great inventions that have been
made by married men.” However, other great inventors did marry. Elias Howe (1819-1867), the
inventor of the sewing machine, married when he was 21 years of age. Thomas Edison married
first at age 24 and within a year had developed the revolutionary quadruplex telegraph for send-
ing multiple messages simultaneously over a single wire. Following the death of his first wife,
Edison married again at age 39.

Figure 3 shows that inventors delayed marriage relative to the population as a whole, al-
though inventors did marry (or stay married) at a higher rate than non-inventors at older ages.
Figure 3 also plots the probability of marriage for those working in a high-skill occupation, such
as doctors and lawyers. The figure shows that inventors’ marriage decision mirrors that of this
group almost one-for-one. This comparison suggests that inventors’ difference from the rest of
the population along this dimension is driven by underlying skill differences and human capital
investment choices. This similarity in observable marriage patterns with high-skill workers can
be reconciled with theoretical models of marriage markets like Bergstrom and Bagnoli (1993),
where high-wage men gain by delaying marriage relative to low-wage men because accumulated
income is a signal of quality when searching for the best partner.

Table 1 indicates that inventors delayed fertility relative to the average American: 72.9% of
inventors had a child before the age of 35, while 80% of non-inventors had a child by this time. Of
course the relationship between delayed marriage and fewer children is mechanical. As Becker
(1974, p.22) points out, “the age of entry [into marriage] would be earlier the larger the number
of children desired.”

Table 1 also shows higher levels of interstate and international migration among inventors.
Migrants can bring new ideas, expertise, and specialized labor to an area, all of which can fa-
cilitate the production of patented innovations. For example, Moser et al. (2014) estimate that
German emigres who fled the Nazi regime provided a significant boost to U.S. invention during
the twentieth century. In a companion study (Akcigit et al., 2017a) we explore the role of interna-
tional migrants, finding that technology areas with higher levels of foreign-born expertise grew
much faster between 1940 and 2000 than otherwise comparable technology areas.

Finally, the base of Table 1 shows that inventors represented a very small share of the
population—just 0.02%. By comparison, in all years for which occupation data is reported in
the Census, 0.46% of the working age population was a doctor or a lawyer. When knowledge
diffuses rapidly, inventors developing breakthrough inventions can have a large influence on
economic growth. During the U.S. golden age and major epochs of economic development more
generally, the technological ingenuity and innovative capabilities of the minority tended to matter
the most (e.g., Squicciarini and Voigtlaender (2015)).

Macro-level Summary Statistics

At the state-level, Figures 4A and 4B illustrate the geography of inventiveness defined as patents
and inventors per 10,000 people in 1940. Both figures reveal concentrations of activity in rust-belt
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manufacturing areas, which mirrors the distribution of industrial activity at the time (Glaeser,
2011). California also stands out as a center of innovation for most of the years we observe. This
is not caused by sparse population counts mechanically inflating the patent and inventor counts.
While Los Angeles ranked as the 36th largest city in the U.S. in 1900, it was ranked number 10
in 1920 and number 5 in 1940. Figures A-7 and A-8 in Appendix D show that the geographic
patterns displayed in Figure 4 are remarkably stable across our six census years.

Figure 4: The Geography of Inventiveness

Panel A: Patents per 10,000 People Panel B: Inventors per 10,000 People

Notes: Figure maps the number of patents (panel A) or inventors (panel B) per 10,000 residents in each state of the
mainland U.S. in 1940. Darker colors represent more inventive activity per resident. Patent data come from the
USPTO’s historical patent files, while population counts are calculated using the U.S. Census. Appendix D reports
similar maps in different decennial census years.

Some states, by virtue of favorable resource endowments, institutions or culture may have
been particularly conducive to inventive activity overall. Figure 5 highlights the importance
of commonly postulated drivers of innovation: population density, financial development, geo-
graphic connectivity and social structure measured by association with slavery.

Panel A shows population density was much higher in the most inventive states.7 This finding
is consistent with human interaction being key for human capital accumulation and economic
growth (e.g., Lucas (2009), Alvarez et al. (2013), Lucas and Moll (2014), Perla and Tonetti (2014),
Akcigit et al. (2016b)). The agglomeration literature asserts that physical proximity can promote
creativity and the exchange of ideas among inventors (Carlino and Kerr (2015)).

Panel B shows a strong positive correlation between financial development and innovation.
Although private transactions between investors and inventors are not observable systematically,
and most later stage R&D is financed by firms internally, we can measure the general health of
a state’s financial sector using Federal Deposit Insurance Corporation data on bank deposits per
capita in 1920. We find that a healthier financial sector is correlated with greater innovation levels.
Higher levels of financial development are typically associated with faster rates of economic
growth (e.g., King and Levine (1993)).

7Because the Census adopts a low threshold for urbanization as places that encompass at least 2,500 people, we
repeated the analysis at different thresholds with similar results. When we use a threshold of 5,000 people the slope
coefficient is 0.061 and at 10,000 people the slope coefficient is 0.056. All are significant at the 1% level.
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Figure 5: State Characteristics and Innovation

Panel A: Urbanization Panel B: Financial Development
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Panel C: Non-western Transportation Cost Panel D: Slave Ownership
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Notes: Panel A shows the relationship between the percent of individuals living in an urban area in the 1940 census
and average patents per capita between 1940 and 1960. Panel B shows the relationship between the amount of deposits
per capita in 1920 dollars and average patents per capita between 1920 and 1940. Banking data originate from the
FDIC dataset, downloaded from the University of Michigan’s ICPSR repository (number 0007). We use 1920 data
to remove the influence of the Great Depression from our data. In both panels Delaware excluded as an outlier to
for visibility. Panel C plots the relationship between outgoing shipment costs and innovation. The horizontal axis
measures the number of standard deviations below the mean cost of transporting one ton of goods to other states.
As Western states were less integrated in the national economy at the time, the figure only plots the relationship for
states with average outbound transport cost under $18 per ton. Panel D plots the relationship between the percent of
families which owned slaves in the 1860 census, and average patents per capita between 1880 and 1940. Sources: U.S.
Census, FDIC, Donaldson and Hornbeck (2016), USPTO patent records.

Another important dimension for innovation is access to other geographical regions. This
could increase both the market size for innovation and the flow of knowledge spillovers. Don-
aldson and Hornbeck (2016) measure the increased level of market access caused by an expansion
of the U.S. railroad network while Perlman (2016) finds strong effects on invention and agglom-
eration from the nineteenth century development of railroads. In Panel C we find a strong rela-
tionship between a state’s geographic connectivity and its level of patenting in the older, more
integrated East Coast and Midwestern states where economic activity was concentrated.

Cultural differences may be an important determinant of a region’s innovative activity and
growth. An especially important aspect of openness of a society to innovation and economic
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growth could be seen from its approach towards slavery. Panel D highlights that states with
high slave populations in 1860 were disproportionately among the least inventive in the United
States between 1880 and 1940. A lack of cultural freedom to deviate from established norms
can strongly inhibit innovation. Innovative places tend to be more open to unconventional and
disruptive technological ideas (e.g., Florida (2002), Acemoglu et al. (2014)).

3 A Motivating Theoretical Framework

These data provide us with multiple directions for novel empirical investigation. To frame our
analysis, we present a simple model of innovation that integrates insights from standard theories
in the existing endogenous growth literature. Our aim is not to develop a new model, but rather
to use existing frameworks in the growth literature to organize our empirical analysis.

Basic Environment. Time is continuous. At any instant t, the final good Yt is produced
according to the following Cobb-Douglas production function in a perfectly competitive market

Yt = exp
(∫ 1

0
ln yjtdj

)
(1)

where yjt denotes the quantity of variety j at time t. We normalize the price of the final good to 1
at every instant t without any loss of generality. Each variety is produced by a monopolist who
owns the best technology in variety j according to the following production function

yjt = qjtljt.

In this expression, ljt is the amount of production workers hired by monopolist j at time t and qjt

is labor productivity. This production function implies that the marginal cost of producing one
unit of yjt is

MCjt = wt/qjt,

where wt is the wage rate paid to each production worker.

Innovation improves labor productivity by moving firms up a quality ladder, in a manner
similar to the model of Aghion and Howitt (1992) and Grossman and Helpman (1991). More
specifically, a new innovation in a particular variety j increases labor productivity of workers in
that variety by a multiplicative factor (1 + λ). Therefore, during a small time interval ∆t, quality
improves according to the following law of motion

qjt+∆t =

{
(1 + λ) qjt if there is a successful innovation,
qjt otherwise.

When there is a new innovation in j, the latest inventor and the previous incumbent enter into
Bertrand price competition.

Profits. Now we solve for equilibrium profits, which in turn determine the incentives for in-
novation. Note that the Cobb-Douglas final good production function (1) generates the standard
unit-elastic demand for each variety, as yjt = Yt/pjt. Given this demand, Bertrand competition
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implies that the market leader chooses to set the price of variety j to be the marginal cost of the
previous incumbent. Since innovation increases labor productivity by a constant multiplicative
factor (1+ λ), the previous incumbent’s productivity is given by qjt/ (1 + λ) . Therefore, we may
express the price of variety j as pjt = (1 + λ)wt/qjt.

Imposing this pricing strategy yields the optimized profit for an incumbent firm

πjt =
[
pjt −MCjt

]
yjt =

λ

1 + λ
×Yt. (2)

This expression implies that profits will be independent of the variety index j. Note that Yt

increases the demand for each variety and hence leads to higher monopoly profits through an
increased market size effect. We will return to this feature below.

Substituting the monopoly quantity into (1) , we find that the wage rate is simply

wt =
Qt

1 + λ
(3)

where Qt ≡ exp
(∫ 1

0 ln qjtdj
)

is the aggregate quality index of this economy. This implies that
the equilibrium level of output is simply

Yt = Qt × LP (4)

where LP is the measure of production workers in the economy.

Innovation. We now turn to the dynamics of the model. There is a mass 1+ L of individuals
in this economy. A measure 1 of these individuals operate as business owners as described above.
The remaining measure L may choose to be a production worker i ∈ LP or innovator i ∈ LI such
that LI ∪ LP = L and LI ∩ LP = ∅. Production workers earn the wage rate wt. If individual i
decides to become an inventor, he/she pays a cost ciQt and receives a patentable innovative idea
with probability η. For tractability, we assume that the cost is known to the agent before they
make their career choice, and is uniformly distributed between 0 and β : ci ∼ U [0, β]. Note that
every person in the economy is more likely to draw a high cost when β increases, therefore β

proxies for macro-level factors that affect innovation.

Let us denote the value of a successful innovation by Vt. In this case, a person decides to
become an inventor if and only if the expected value of becoming an inventor is greater than the
outside option of being a production worker:

ηVt − ciQt > wt.

This implies that there is a cut-off c∗ = (ηVt − wt) /Qt below which individuals decide to become
inventors:

i =

{
inventor if ci < c∗,

production worker otherwise.
(5)
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Using the equilibrium wage rate (3) , this cut-off is simply

c∗ = η
Vt

Qt
− 1

1 + λ
. (6)

Value of Production. Let ρ be the common rate of time preference of the household that
has logarithmic utility over consumption in the economy, and denote the flow of new patents
by τ ≡ ηLI = ηL c∗

β . Since every new patent displaces an incumbent, τ is also the rate at which
incumbents are replaced by new entrants. Therefore incumbents discount future payoffs at the
rate ρ + τ, so that the value of holding a patent as an incumbent is8

Vt =
πt

ρ + τ
. (7)

Let the share of the population that works as inventors be given by s ≡ LI/L. We may combine
(2) , (4) , (6) , and (7) to express implicitly the equilibrium fraction of inventors s in the society:

(1− s) λ

1 + (1 + λ) βs
− s︸ ︷︷ ︸

≡F(s,β,λ)

=
ρ

ηL
(8)

Note that the left-hand side of this equation, which we define as F (s, β, λ), is increasing in the
innovation step size λ, and decreasing in both the share of inventors in the population s, and
the maximum of the inventor cost distribution β. Finally, it is straightforward to show9 that the
growth rate of aggregate output (g = Ẏ/Y) is increasing in the number of patents produced

g = τ × ln(1 + λ). (9)

Discussion of the Model

In this model, η increases the likelihood of innovation, so that those with a higher probability of
successful innovation will be more likely to innovate. Empirically, the highest-skilled individuals
in an economy, possessing an intimate knowledge of their field, may therefore be most likely to
innovate. This suggests a strong relationship between education and innovation, as confirmed
anecdotally by the example of Melvin De Groote (see also Fact 1):

dPr(Being an inventor)
dEducation

> 0.

In addition, expression (5) shows that there are micro-level factors ci that determine the

8More formally, the value function (Hamilton-Jacobi-Bellman equation) of being an incumbent is

rVt − V̇t = πt − τVt.

Imposing the fact that in steady state we have V̇t = gVt, and that the household has logarithmic utility first delivers
ρ = r− g and then equation (7).

9Note from equation (4) that g = Q̇t/Qt. Moreover ln Qt =
∫ 1

0 ln qjtdj. Since every line receives a new innovation
at the rate τ, after a small time interval ∆t we get ln Qt+∆t = ln Qt + τ∆t ln(1 + λ). Subtracting ln Qt from both sides,
dividing by ∆t and taking the limit as ∆t→ 0 delivers the result.
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probability of becoming an inventor. If a person faces a higher idiosyncratic cost, he/she would
be less likely to become an innovator. These individual-level costs may be lower for those with
additional institutional knowledge of the innovation process, such as those with a father as an
innovator. Likewise, favorable parental income could lower the cost of financing or introduce a
child to the social networks necessary to market a new innovation (see Fact 2). We can summarize
this theoretical implication as:

dPr(Being an inventor)
dMicro costs

< 0.

Relatedly, the innovativeness of an economy is also falling in macro-level cost parameter β,
which governs the distribution of the fundamental costs inventors face. Specifically, the model
predicts that dτ

dβ = ηL ds
dβ < 0. This result in intuitive. Increases in β imply that individuals in

the economy face a higher cost of innovation on average. Empirically, such costs might arise due
to a lack of sufficient financing, or from social stigma and an unwillingness to accept disruptive
ideas (recall Figure 5 and see also Fact 3). Therefore,

dPatents
dMacro costs

< 0.

Additionally, in this standard model innovation incentives decline strongly once an entrant
becomes an incumbent. This is also known as the Arrow’s replacement effect in the endogenous
growth literature. We study this empirically, by considering how innovation quality changes as
an inventor becomes well-established (see Fact 5):

Innovativeness of new inventors > Innovativeness of incumbents.

A number of additional interesting predictions of this model can also be studied empirically.
For instance, the return to innovation πjt increases in the quality of innovation λ (see equation
(2)). This implies that inventors’ compensation should increase in patent quality (see Fact 6 for
empirical evidence):

dInventor′s compensation
dPatent quality

> 0.

In this model, better technologies are introduced through new patented innovations which
makes production workers more productive. Therefore equation (9) predicts that patenting
should be strongly correlated with aggregate growth. Motivated by this observation, our em-
pirical analysis (e.g., Fact 7) examines the link between patents (τ) and economic growth (g):

dEconomic growth
dPatents

> 0

Finally, our model also implies that in the absence of innovation, every person holds the
same position in the economy, i.e., business owners will remain business owners and assembly
line workers will remain assembly line workers. However, innovation generates turn-over in
society. Therefore our model implies that more patenting should relate to more social mobility
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in society (see Fact 9):
dSocial mobility

dPatents
> 0.

In sum, the model acts as a guide to our empirical work by underscoring key micro and
macro-level relationships that are important to explore in the data.

4 Inventors’ Background, Lifecycle and Earnings

We now use our dataset of patents matched to the Censuses to explore factors influencing the
probability of becoming an inventor. We examine the personal background of inventors, paying
special attention to their educational attainment and age, migration decisions, and entry and exit
over the cycle of their inventive career.

Fact 1 Inventors were more educated on average and were most productive between the age of
36 and 55.

One of the main channels through which education affects economic growth may be its impact
on innovation. Figure 6 shows the number of inventors per 10,000 people within each education
group.

Figure 6: Education and Probability of Becoming an Inventor

Panel A: Inventors per 10,000 by Education Panel B: Percent of Inventors in

Each Education Category
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Notes: Figure plots the education of inventors and non-inventors in the 1940 census, the only census in our sample
to provide sufficiently granular education information. Panel A plots the inventors per 10,000 people by education
category. Panel B plots the percent of inventors and non-inventors that fall into each educational category. Source:
1940 Historical Census Data, USPTO patent records.

While education seems to be an important determinant of becoming an inventor, the effect
is particularly strong at the college degree level. Although the 1940 Census tended to overstate
education levels (Goldin, 1998) the differences we see between categories are large. For example,
an individual with at least a college degree is four times as likely to become an inventor than
an individual with just a high-school diploma. Indeed, 40% of inventors had a college degree in
1940, compared with just 10% of the non-inventor population.
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The opportunity cost of education is time spent in an active career. In theoretical models of
education, individuals face a tradeoff between the benefits of higher education, which accumu-
late over the life cycle, and the costs which are incurred early on (Becker (1967)). By extension
economic growth can be affected by the tradeoff inventors face between acquiring human capital
to innovate and the potential delays this creates in the production of new technological discover-
ies that, in turn, benefit society. Jones (2010) argues that if true breakthroughs are developed by
younger cohorts of individuals, the growth-slowing delay effect can be pronounced, especially if
more human capital is required for the production of creative ideas as the demands of developing
novel innovations increases over time. He finds that the age of great invention shifted upwards
by about half a decade over the twentieth century.

Figure 7: Probability of Innovation by Age
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Notes: Figure shows the average life cycle of inventiveness over the years 1880 to 1940. It plots the number of inventors
per 10,000 individuals by gender. The dark blue bars plot the number of male inventors per 10,000 males against the
left axis, while the bright red bars plot the number of female inventors per 10,000 females against the right axis.
Source: 1880-1940 Historical Census Data, USPTO patent records.

We find that inventors were most productive between ages 35-55 as illustrated in Figure 7.
This is true for males and females, although female inventors were rare at this time. Interestingly,
as shown by Sarada et al. (2016) the average age of invention in 1900 was approximately 40 years
old, about what it is today.

Fact 2 Father’s income and father’s education were highly correlated with becoming an inventor,
especially through the effect on the level of a child’s education.

We now examine family backgrounds. Does parental affluence matter for the propensity to
become an inventor? If so, through what mechanisms might this operate? In this section we rely
heavily on our parent-child matched dataset.10 Because this covers individuals residing in the
same household, we are capturing inventors early in their career. Home-leaving ages increased
noticeably during the early twentieth century only starting to decline after World War II. Using
Census data Gutmann et al. (2002) find that in 1940 the median home-leaving age for white males

10For details of its construction, see appendix A.2.
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was 24 whereas 85% of unmarried white males lived at home between ages 15 and 29.11

Figure 8 illustrates the relationship between parental affluence and the propensity to become
an inventor. Panel A shows a strong association between the probability of becoming an inventor
and father’s income, especially for the highest-income fathers. Because this figure illustrates the
contemporaneous relationship between the income of the father when the inventor had already
entered their career, Panel B reproduces the result of Panel A using father’s education to proxy
for income when the inventor was a school-age child. The convex relationship between parental
income (measured directly or using our proxy measure) and the propensity to become an inven-
tor is striking in its ubiquity. Aghion et al. (2015b) and Bell et al. (2015) document remarkably
similar patterns in modern data from Finland and the United States, respectively. The persis-
tence of this relationship across time periods, geographies, and institutions is among the most
noteworthy facts in this new literature on the backgrounds of inventors.

Figure 8: Parental Affluence and the Probability of Becoming an Inventor

Panel A: Father’s Income Percentile Panel B: Father’s Education
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Notes: Figure plots the number of inventors per 10,000 people by their father’s percentile of wage income in the 1940
census (Panel A) or their father’s education level (Panel B). Only individuals successfully matched to their fathers
are included in this plot. Wage income percentiles are calculated using the full sample of matched fathers in the U.S.
Source: 1940 Historical Census Data, USPTO patent records.

Several mechanisms can plausibly drive the patterns illustrated in Figure 8. If education was
an important determinant of innovation, then the fact that only wealthy individuals had access
to education could imply that credit constraints were binding for low-income families (e.g., Celik
(2015)). Furthermore, credit constraints may inhibit the ability of prospective inventors to raise
starting capital to develop their ideas. Alternatively, it is possible that high income parents
interact in better-connected social circles, permitting their children to access high-quality funding,
labor, and marketing resources. Finally, high income parents may have useful skills, knowledge,
or genes which they pass on to their children.

We provide insight into some of these potential mechanisms through Table 2, which examines
the relationship between fathers and sons using linear probability regressions. The dependent

11The focus on individuals who still live with their parents makes our study of family dynamics comparable to that
of Bell et al. (2015), who limit themselves to a study of young inventors aged 28-32 in 2012.
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variable is an indicator for being granted at least one patent, scaled by a factor of 100 for leg-
ibility, and in each regression, we include controls for race, sex, migration status, a quadratic
in age, state fixed effects and father’s age. Column 1 establishes a strong positive correlation
between the father being an inventor and the child being an inventor. Column 2 adds contem-
poraneous parental income as measured in the 1940 Census.12 Those with an inventor father are
0.16 percentage points more likely to become an inventor than those without an inventor father.
Similarly, those with a father in the top 5 percent of the income distribution are 0.008 percentage
points more likely to become an inventor. Given that just 0.02% of all individuals were inventors,
these constitute large effects.

Table 2: Who Became an Inventor?

(1) (2) (3) (4) (5)
Father Inventor 0.161∗∗ 0.159∗∗ 0.154∗∗ 0.159∗∗ 0.155∗∗

(0.075) (0.076) (0.076) (0.075) (0.075)
Father Income 90th − 95th %ile 0.003∗∗ -0.001

(0.001) (0.001)
Father Income 95th %ile and above 0.008∗∗∗ -0.000

(0.002) (0.002)
Father: High School Graduate 0.005∗∗∗ -0.002

(0.001) (0.001)
Father: At least Some College 0.009∗∗∗ -0.002∗∗

(0.002) (0.001)
Self: High School Graduate 0.006∗∗∗ 0.006∗∗∗

(0.001) (0.001)
Self: At least Some College 0.028∗∗∗ 0.028∗∗∗

(0.004) (0.004)
Observations 82810258 82810258 82810258 82810258 82810258
Mean of Dep. Var. 0.011 0.011 0.011 0.011 0.011

Notes: Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects,
and controls for race, sex, migration status, a quadratic in age, and father’s age. Columns (2) through (5) include
indicators for father being between the 50th and 75th percentile of income, and between the 75th and 90th percentile
of income as independent variables. The omitted categories are below median income and less than high school
eduction. Source: 1940 Historical Census Data, USPTO patent records.

Column 3 includes the child’s own education. The effect of parental income disappears,
instead loading on the child’s own education. Those with at least some college education were
0.028 percentage points more likely to become an inventor than those with less than a high
school degree. These patterns are repeated in columns 4 and 5. Column 4 shows the effect
of father’s education—as a proxy for income when the child was young—is highly statistically
significant but this effect largely disappears when including the child’s own education in column
5. One explanation of these results is that parental income affected the probability of becoming
an inventor largely through its impact on children’s access to education.13

12In all regressions with father’s income, we include indicators for the father being between the the 50th and 75th

percentile of income, and between the 75th and 90th percentile of income as independent variables, but do not report
their coefficients due to space constraints.

13The patterns presented here can not be explained by differences in occupation choice, as shown by Appendix
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While Table 2 focuses on the extensive margin—the characteristics of those becoming inventors—
Table 3 considers the relationship between an inventor’s background and his productivity on the
intensive margin, measured by the number of career patents he generates. Column 1 shows a
weak and statistically insignificant positive effect of the father being an inventor. Contrary to the
results of Table 2, columns 2 and 4 do not exhibit a strong effect of father’s income or father’s
education. Columns 3 and 5 introduce the child’s own education. Again, college attendance is
strongly correlated with long run inventiveness, with college-educated inventors receiving 0.286
more patent grants than their counterparts with less than a high school education on average, an
increase of 21% of a standard deviation. These patterns are robust to measuring inventiveness
by an inventor’s log career citation counts (see Appendix Table A-9). The most highly-educated
inventors tended to be the most productive.

Table 3: Individual Background and Career Patent Counts

(1) (2) (3) (4) (5)
Father Inventor 0.219 0.236 0.098 0.213 0.061

(0.703) (0.662) (0.655) (0.673) (0.673)
Father Income 90th − 95th %ile -0.331 -0.320

(0.232) (0.233)
Father Income 95th %ile and above 0.026 -0.041

(0.199) (0.193)
Father: High School Graduate 0.060 -0.044

(0.113) (0.117)
Father: At least Some College 0.188 0.064

(0.142) (0.128)
Self: High School Graduate 0.039 0.038

(0.039) (0.039)
Self: At least Some College 0.286∗∗∗ 0.286∗∗∗

(0.044) (0.044)
Observations 9032 9032 9032 9032 9032
Mean of Dep. Var. 1.581 1.581 1.581 1.581 1.581
S.D. of Dep. Var. 1.365 1.365 1.365 1.365 1.365

Notes: Table reports coefficients from a regression in which the dependent variable is log career patent counts for the
sample of inventors in our matched sample. Standard errors clustered at the state-level reported in parentheses. All
regressions include state fixed effects, and controls for race, sex, migration status, a quadratic in age, and father’s age.
Columns (2) and (3) include indicators for father being between the 50th and 75th percentile of income, and between
the 75th and 90th percentile of income as independent variables. The omitted income category is below median
income, and we omit an indicator for the individual having less than a high school education. ∗,∗∗ ,∗∗∗ represent that
coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical Census, USPTO patents.

Two findings emerge when taking Table 2 and Table 3 together. First, the importance of
education holds both at the extensive and intensive margins, which is consistent with a human
capital explanation of invention. Second, both father inventor status and parental income matter
on the extensive margin but not on the intensive margin, which suggests that the existence of
credit constraints might have undermined inventiveness. This second finding is related to a long
line of research in the family firm and management practice literatures, showing that privileged

Table A-8, which introduces occupation fixed effects to every column of Table 2.
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access to career paths (e.g., inherited CEO roles) is associated with under performance (e.g.,
Perez-Gonzalez (2006), Bloom and Van Reenen (2007), Caselli and Gennaioli (2013)).

Fact 3 Inventors were more likely to have migrated from their state of birth. They moved to
states that were more conducive to innovation.

Individuals migrate in order to seek better job prospects in their destination state. This
argument may apply particularly strongly for inventors, since environmental factors shift both
the costs and benefits of innovation. The example of Thomas Edison illustrates this point. Not
only did he stand to gain more from marketing his inventions in the larger market of New
Jersey and New York but he also benefitted from the larger supply of skilled labor and financial
development there. When inventors systematically move to such places, this generates spatial
concentration giving rise to agglomeration externalities.

Figure 9: Interstate Migration Rates by Age
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Notes: Figure plots interstate migration rates by age of individual for the population of high skill individuals. An
individual is defined to be an interstate migrant if their birth state is different from their current state of residence.
Each point represents a 5-year forward-looking bin. For example, the point at age 20 measures the average migration
rate for 20 to 25 year-olds. Figure uses data averaged across the four census years for which we have occupation
information: 1880, 1920, 1930, and 1940. Source: 1880, 1920-1940 Historical Census Data, USPTO patent records.

Figure 9 confirms that Edison’s example is representative of the broader inventor population.
The figure shows that inventors were most likely to move after the age of 35: the beginning of
their most innovative period according to Figure 7. The high migration rate for inventors does
not simply reflect their higher average skill level. Highly skilled individuals in non-inventor
occupations migrated significantly less than do inventors.14

Conditional on moving to a new location, where did inventors go? To answer this question,
Figure 10 plots the characteristics of geographic origin and destination amongst inventors who
move across state lines in our matched dataset of inventors to the Census. We highlight two key
variables strongly correlated with innovation in Figure 5. Panel A shows that inventors generally

14The difference between inventors and high skill non-inventors is statistically significant at the 10% level for 20-25
year olds, at the 5% level for 25-30 year olds, and at the 1% level thereafter.
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Figure 10: To Where did Inventors Move?
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Notes: Figure shows distribution of difference in characteristic between source and destination states for migrant
inventors. The leftmost percentage on each graph corresponds to the share of migrant inventors who move to locations
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the share that move to locations with a higher value of this variable. For instance, 30.9% of inventors move from a
more urban state to a less urban state, leaving 69.1% of inventors to move to more urban states. Source: 1860, 1940
Historical Census Data, FDIC, USPTO patent records.

moved from less to more urbanized regions. Panel B shows that inventors moved toward regions
where deposit ratios were higher, suggesting that access to finance could have played a role in
their migration decisions. Both of these figures suggest that inventors generally migrated to
regions whose characteristics were well-suited to innovation.

Fact 4 Inventors were positively selected through exit early in their careers, increasing the av-
erage productivity (conditional of survival) of a cohort of inventors. However, they were less
productive and more likely to exit late in their careers.

If inventors approximate the life cycle of firms, some should enter, develop and succeed
whereas others should fail and exit—entrepreneurial churn is an essential feature of a well-
functioning innovation sector (Haltiwanger, 2012). Figure 11 plots the career cycle of inventors
using the universe of inventor data, as opposed to just the inventor data matched to the Census.
Panel A plots the exit rate for inventors over their life cycle, where an inventor is said to have
exited in period t if they file no successful patent applications in every period t′ > t. Panel B
plots the average number of patents conditional on survival for inventors over their tenure in the
data. In both panels, the horizontal axis plots the number of years since the inventor filed his
first successful patent application.

The figure reveals both similarities and differences with the life cycle dynamics of firms. We
find evidence for both positive selection through exit, and eventual obsolescence of inventors.
Panel A of Figure 11 shows that inventor exit rates exhibit a U-shape, while Panel B shows that
the number of patents conditional on survival has an inverted-U shape over the life cycle. Positive
selection occurs early in an inventor’s career, where low productivity inventors stop applying for
patents. This yields a decreasing exit rate and increasing average productivity over the average
inventor’s life cycle. In later years of life, however, skill obsolescence and old age set in, reducing
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Figure 11: Inventors’ Career Dynamics

Panel A: Exit Rates Panel B: Productivity Cond. on Survival
40

50
60

70
80

E
xi

t r
at

e 
(%

)

0 10 20 30 40
Years since first patent

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

M
ea

n 
N

um
be

r 
of

 p
at

en
ts

 g
ra

nt
ed

0 10 20 30 40
Years since first patent

Notes: In each panel, the horizontal axis plots the number of years since the inventor’s first patent application. Panel
A plots the exit rate for inventors over their life cycle, where an inventor is said to have exited in period t if they file
no patent applications in every period t′ > t. Panel B plots the average number of patents conditional on survival for
inventors over their tenure in the data. Source: USPTO disambiguated inventor data 1920-2006, constructed by the
authors using the algorithm of Li et al. (2014).

inventor productivity, and increasing exit rates. In the limit, biological constraints ensure that the
inventor exit rate converges to one. Since new inventors can displace the ideas of older inventors,
these life cycle results are consistent with creative destruction.

Fact 5 The patents of new inventors received more citations on average, and were more likely to
be in the top decile of the citation distribution.

Next, we investigate the quality of the patents granted to inventors over their career cycle. We
proxy a patent’s quality and influence using citation counts, adjusted following the method of
(Hall et al., 2001). Figure 12 plots various moments of the patent quality distribution measured
each year of an inventor’s career, conditional on survival. Panel A plots the probability that a
patent applied for t years after the inventor’s first successful patent application lies in the bottom
quartile; Panel B repeats the same exercise with the top quartile of citations received. Specifi-
cally, the figure plots coefficients from a patent-level regression in which the dependent variable
is an indicator for whether the patent lies in a particular citation quartile, and the independent
variables are indicators for whether a patent application came t years after the inventor’s first
patent, as well as individual and technology-year fixed effects. Both panels show that patents
granted to new inventors are more likely to be highly cited than patents granted to inventors
with a long record of patenting, mirroring the dynamics of innovative firms found in the pre-
vious literature. Patent applications in the first year of an inventor’s inventive tenure are 4.74
percentage points more likely to lie in the top quartile of patent citations, and 3.3 percentage
points less likely to be in the bottom quartile than are patents granted 6 or more years after the
inventor’s first patent, conditional on individual and technology-year fixed effects. These plots
are especially striking since they are conditional on survival, given that Figure 11 shows positive
selection among inventors who continue to innovate over a long career.
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Figure 12: Patent Quality over an Inventor’s Life Cycle
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Notes: Figure plots regression coefficients from an OLS regression of the panel title on indicators for whether a patent
application came t years after the inventor’s first appearance in the patent data. All regressions include individual and
technology-year fixed effects. Grey bands indicate 95% confidence interval around point estimates, using standard
errors which are clustered at the technology class-year level. Source: USPTO disambiguated inventor data 1920-2006,
constructed by the authors using the algorithm of Li et al. (2014).

Table 4 repeats the same analysis in a regression framework. Column 1 regresses the log
number of citations on an indicator that is equal to 1 if the patent is applied for within the first
two years of an inventor’s career and 0 otherwise. It shows that patents obtained early in the
career are of higher quality, receiving 7.7% more citations on average. Columns 2 to 5 replace the
dependent variable with an indicator equal to 100 if the patent belongs to the relevant citation
quartile, and 0 otherwise. Again, on average, we see that inventors produce more influential
work early in their career.

Table 4: Panel Relationship between Entry and Patent Quality

Log Patent in quartile (coefficients sum to 0):
Citations First Second Third Fourth

(1) (2) (3) (4) (5)
Patent granted in first 0.077∗∗∗ -1.791∗∗∗ -1.087∗∗∗ 0.350∗∗∗ 2.528∗∗∗

two years of inventor career (0.002) (0.093) (0.092) (0.096) (0.091)
Inventor Fixed Effects Y Y Y Y Y
Class × Year Effects Y Y Y Y Y
Observations 4290376 4765684 4765684 4765684 4765684

Notes: Table reports regression coefficients from an OLS regression of log citations and whether a patent was in a
particular quartile of the citation distribution on an indicator for whether a patent was granted in the first two years
of a career. All regressions include individual and technology-year fixed effects. Standard errors are clustered at the
technology class-year level. Source: USPTO disambiguated inventor data 1920-2006, constructed by the authors using
the algorithm of Li et al. (2014).

Fact 6 Successful patentees had substantially higher labor income, and produced higher quality
inventions. For younger inventors, future productivity predicts current income whereas for older
inventors, income is predicted by both past and future productivity.

We now turn to the private returns to innovation. Schmookler (1966) argued that the expec-
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tation of pecuniary gain was implicit to most inventors’ careers, citing Thomas Edison whose
motivations were largely commercial. Because our wage data come from the 1940 Census two
caveats are important to consider. First, labor income is not recorded for all observations in the
Census;15 and second, labor income itself provides only a partial measure of the total financial
returns to innovation. The discovery of new inventions may permit individuals to start their own
business and earn a return on new capital assets. Non-wage factors, which are unmeasurable to
us, may be an important benefit of self-employment (Hurst and Pugsley (2011)).

Based on the wage data we do observe, Figure 13 plots the distribution of wage income for
inventors and non-inventors. Panel A plots the unconditional CDF of log wage income for both
groups. Unsurprisingly, inventors have relatively high incomes. Indeed, the inventors’ income
distribution first order stochastically dominates that of non-inventors.

Figure 13: The Distribution of Labor Income by Inventor Status (1940)

Panel A: Unconditional Distribution Panel B: Conditional on Observables
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Notes: Figure plots the distribution of the natural log of wage income for inventors and non-inventors, as reported
in the 1940 census. Many individuals report 0 wages, and are excluded from this plot. Solid green lines plot the
distribution of inventors’ wages, while dashed red lines plot the distribution of non-inventors’ wages. Panel A
plots the unconditional CDF of log wages. Panel B plots the density of log wages residualized against observable
characteristics. Specifically, it plots the distribution of residuals from a regression in which the dependent variable
is log wages, and includes controls for race, education, sex, international migrant status, residence state fixed effects,
occupation fixed effects, and a quadratic in age. Source: 1940 Historical Census Data, USPTO patent records.

This result is expected given that inventors were better-educated, higher-skilled, and lived
in more urban states than non-inventors. Panel B therefore plots the distribution of wages for
inventors and non-inventors after conditioning on observables. Specifically, we regress an in-
dividual’s log wages on race, education, sex, international migrant status, residence state fixed
effects, occupation fixed effects, and a quadratic in age. We then plot the distribution of residuals
from this regression for inventors and non-inventors. Even after controlling for all observable
characteristics, inventors have higher wage incomes throughout the distribution.

Figure 14 further illustrates the inventor wage premium by showing the share of inventors
with wage income below each wage percentile. The 45-degree line represents perfect equality in
the income distribution where inventor wages mirror wages in the general population. Instead
we see that the inventor wage observations are distributed well-below the diagonal. For example,

15We drop all those individuals who report a wage income of zero from this analysis.
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only 10.8% of inventors have wages below the 50th percentile of the income distribution and
23.4% have wages below the 75th percentile. Meanwhile, fully 58.5% of inventors have incomes
in the top decile of earnings.

Figure 14: Share of Inventors with Incomes Below Each Income Percentile
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Notes: Figure plots the distribution of wages by income percentile for inventors relative to the general population. The
45-degree line represents perfect equality in the income distribution. Source: 1940 Historical Census Data, USPTO.

Inventors also have a steeper life cycle profile of wages. Figure 15 plots the average life cycle
of log earnings for inventors, non-inventors, and non-inventors in high skill occupations. This
figure is constructed from the cross-section of individuals at each age. Inventors have higher
earnings throughout their life cycle than non-inventors and high-skilled individuals. Table A-10
in the Appendix shows that the difference between the wages of inventors and high-skill non-
inventors is statistically significant at the 1% level from the age of 19 onwards. These figures
support the idea that invention was a key labor income differentiator.

Figure 15: The Life Cycle of Earnings by Inventor Status
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Notes: Figure plots the evolution of log average wage income over the life cycle. The solid green line plots the evolution
of inventors’ wage income, while the dashed red line plots the wage evolution of the universe of non-inventors. The
dotted blue line plots the life cycle of all high skill non-inventors. Source: 1940 Historical Census, USPTO patents.

27



The Rise of American Ingenuity

If the returns to invention reflected pecuniary gains from technological development we
would also expect to observe a correlation between labor income and the quality of patents, as
predicted by our model. The data shows a strong correlation between the quality of an inventor’s
patent portfolio and log wages. Panel A of Figure 16 plots the relationship between the number
of patents an inventor files over his lifetime and log average wages. Panel B mirrors Panel A,
except the horizontal axis now weights each patent in an inventor’s portfolio by the number of
citations the patent receives. Both panels exhibit a robust positive relationship between inventor
productivity and log wages, suggesting that the higher-quality inventors were compensated for
their inventions.

Figure 16: The Relationship between Innovative Productivity and Wages
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Notes: Figure plots the relationship between log average wages and the quantile of inventive activity, conditional on
being granted at least one patent. The median inventor is granted only 3 patents. Thus the unweighted patent count
has relatively few percentile points at the low end of the distribution: the first 24% of the distribution is contained in
the first percentile data point. Source: 1940 Historical Census Data, USPTO patent records.

There are two possible explanations for this positive relationship between wages and inventor
productivity. First, an inventor may simply be more productive as a result of his past inventions.
Alternatively, if invention is a signal of underlying worker type, an employer may pay an inventor
more of a financial premium in anticipation of future productivity.

To disentangle these two effects, we regress log wages, measured in 1940, on an inventor’s
innovative activity both before and after 1940. If the current productivity effect dominates, we
would expect pre-1940 innovation to have a strong effect on wages. However, if the anticipation
effect dominates, forward-looking innovative activity should predict an inventor’s wages, so long
as employers correctly anticipate an employee’s future productivity. The results are reported in
Table 5. Each regression controls for inventor demographics, education, and state. To account
for differences between young and old inventors, the table reports coefficients estimated for the
set of inventors both above and below the age of 35.

One might expect the anticipation effect to be stronger for young inventors who have a longer
career ahead of them at the point in time that they enter the most productive part of their careers
(see Figure 7). This prediction is borne out in the data. Young inventors see large gains from
future innovations, regardless of whether innovation is measured using citation-weighted or un-
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Table 5: What determined inventor income? Regressions of log wages on innovation measures

Age: Under 35 Age: Over 35
(1) (2) (3) (4)

Log Patents Pre-1940 -0.022 0.060∗∗∗

(0.018) (0.014)
Log Patents Post-1940 0.087∗∗∗ 0.040∗∗∗

(0.016) (0.011)
Log Citations Pre-1940 0.002 0.030∗∗∗

(0.009) (0.007)
Log Citations Post-1940 0.039∗∗∗ 0.030∗∗∗

(0.010) (0.008)
Observations 1602 1602 4458 4458
R-squared 0.482 0.480 0.302 0.302
Mean of Dep. Var. 7.275 7.275 7.765 7.765
S.D. of Dep. Var. 0.927 0.927 0.781 0.781

Notes: Table presents estimated coefficients from a regression of log wages on innovation measures. We restrict our
attention to the sample of inventors matched to the 1940 census. Standard errors clustered at the state-level reported
in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, occupation skill
level, education and a quadratic in age. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%,
and 1% level. Source: 1940 Historical Census Data, USPTO patent records.

weighted patent counts. This suggests that the anticipation effect is strong for them. Meanwhile,
there is no statistically distinguishable difference between the anticipation and past productivity
effects for older inventors. At this stage, it is worth reiterating the caveat that our data only con-
tain wage income information; older inventors with many patents may see unmeasured benefits
from capital income or entrepreneurship.

5 Economic Growth, Inequality and Social Mobility

As suggested by our theoretical framework in Section 3 the micro-level results we have presented
so far should also be linked to macro-level outcomes. Recall that in the model, technological
innovations make production workers more productive. The long-standing endogenous growth
literature builds on the premise that long-run growth is driven by innovation and technological
progress. But even though a large literature has studied the empirical determinants of macro-
level economic growth (e.g., Barro (1991)), to our knowledge no study has documented a causal
empirical relationship between innovation and growth for the U.S. over the long run.

We use state-level patents as a proxy measure of innovation. While not all inventions are
patented and unpatented process inventions like the assembly line can exert a powerful influ-
ence on economic growth, patents do provide a broad indicator of innovative activity. Further-
more, although the technology embodied in an individual patent might diffuse with some time
lag, the spillovers created during its production should be highly localized. Jaffe et al. (1993)
and Thompson (2006) both find evidence of localized knowledge spillovers from U.S. patents.
Localization should positively impact regional economic growth, as inventors interact in close
geographic proximity and learn from one another when developing new inventions.

29



The Rise of American Ingenuity

Fact 7 More inventive states and sectors grew faster on average.

Figure 17 shows the basic correlation between patents and economic growth is strongly pos-
itive. To account for the initial heterogeneity in income levels, we plot variables residualized
against 1900 log GDP per capita.

Figure 17: Innovation and Long-run Growth: U.S. States between 1900-2000
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Notes: Figure plots the total number of patents granted to inventors in each state between 1900 and 2000 on the
horizontal axis, and the annualized growth rate in state GDP per capita between 1900 and 2000 on the vertical axis.
Both horizontal and vertical axes plot the variables of interest residualized against 1900 log GDP per capita, to control
for conditional convergence. Source: BEA Historical Regional Economic Accounts, and Klein (2013).

Table 6 reports coefficients from growth regressions controlling for the long-run effects of
initial conditions and population density. The dependent variable in these regressions is the
annualized growth rate in state-level GDP per capita between 1900 and 2000.

Table 6: Innovation and Long Run Growth: U.S. States between 1900-2000
Annualized Growth Rate DHS Growth Rate

(1) (2) (3) (4)
Log Patents 0.066∗∗∗ 0.054∗∗∗ 0.031∗∗∗ 0.026∗∗∗

(0.013) (0.012) (0.008) (0.007)
Initial GDP per Capita -0.877∗∗∗ -0.891∗∗∗ -0.324∗∗∗ -0.330∗∗∗

(0.036) (0.036) (0.025) (0.026)
Population Density 1.145∗ 0.517∗

(0.588) (0.304)
Observations 48 48 48 48
Mean Growth 2.154 2.154 1.552 1.552
Std. Dev. of Growth 0.417 0.417 0.159 0.159

Notes: Table reports estimated coefficients from a regression in which the dependent variable is the state-level annu-
alized growth rate in real GDP per capita from 1900-2000. White heteroskedasticity robust standard errors reported
in parentheses. DHS growth rate refers to the growth rate measure as proposed by Davis, Haltiwanger, and Schuh.
Output data provided by Klein (2013) and the Bureau of Economic Analysis. ∗,∗∗ ,∗∗∗ represent that coefficients
statistically differ from 0 at the 10%, 5%, and 1% level.

We find that the log of patents granted between 1900 and 2000 had a consistently positive
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and statistically significant effect in columns 1 and 2. These results are robust in columns 3
and 4 to measuring the growth rate using the approach established by Davis et al. (1996) in the
employment literature that corrects for any potential bias associated with transitory shocks to
growth and mean reversion.16

The economic magnitude of these estimates is especially informative. Consider two states:
a low innovative state Mississippi (at the 10th percentile) and high innovative state New Jersey
(at the 90th percentile). Assume NJ and MS had the same initial GDP per capita in 1900 and
identical population densities. Our estimated coefficients imply that the gap between NJ and MS
would have increased dramatically. By the end of the century, NJ would be 26% richer than MS
just because of the differences in their innovativeness.

Instrumental Variables

We now attempt to identify a causal effect in our growth regressions using contracts for wartime
technological development as an instrument for innovation disbursed by the Office of Scientific
Research and Development (OSRD). A brief survey of the institutional setting along with quan-
titative tests lends support to the credibility of our instrumental variables approach.

The OSRD was established under an Executive Order from President Roosevelt in June 1941,
and operated until its termination in December 1947. Headed by Vannevar Bush at the Carnegie
Institution of Washington, the OSRD was responsible for major innovations that had an impact in
wartime and beyond, including miniature electronics like the proximity fuse, navigation systems,
solid fuel rockets, detonators and most famously the basic science used in the Manhattan Project.
Because of its significant impact, the OSRD spurred federal involvement in the development of
U.S. science and technology in the postwar years (Stephan, 2014).

The OSRD did not operate laboratories of its own; rather it contracted out the development
of inventions. This reflected a new way of mobilizing public funding for the development of
scientific resources. During World War I scientists had worked at rudimentary laboratories es-
tablished by the government on an ad hoc basis, and there was a long-standing concern among
scientists that federal involvement in their activities would threaten creativity and intellectual
independence. As Mowery (2010, p.1227) comments, “the contractual arrangements developed
by the OSRD during World War II allowed the office to tap the expanded range of private sec-
tor and university scientific and engineering capabilities that had developed during the interwar
period.”

However, the OSRD did not know ex ante which firms or academic institutions would be
successful because “the OSRD had long insisted that it was not working on materials or methods
of wide use in industry” (NAS, 1964, p.28). In fact, due to this uncertainty, the OSRD sometimes
contracted with multiple entities to solve the same problem. The OSRD spent $450 million
in total, about six and a half times the federal budget for science in 1940. Around this time
universities had been spending about $50 million on research of which around $6 million was
funded by the federal government to support mostly agriculture-related research (Payne, 1992,

16Figure A-6 in appendix D shows that this strong positive relationship between long run growth and innovation
holds for historical output calculated using the methodology of Martin (1939).
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p.145). The OSRD created a large boost to firm-level R&D. For example, Radio Corporation of
America invested heavily at its plants in Indiana and New Jersey (Chandler, 2001 p.27-28).

We collected data on all contracts granted by the OSRD. We observe 1,717 contracts across
39 U.S. States. The coverage of the OSRD contracts is wide. For example, Iowa State College
received 10 contracts and the University of New Mexico received 7 contracts. Firms and academic
institutions in the state of New York accounted for 30 percent of the total with the next largest
concentrations of contracts being in Massachusetts (13 percent) and Pennsylvania (11 percent).
The mean number of contracts per firm/academic institution was 4.3 and the median was 1.
The most awarded private firm was the Western Electric Company with 107 contracts. The most
prolific university was MIT which was granted 89 contracts.

Our strategy requires that these contracts were correlated with innovation, uncorrelated with
omitted determinants, and only influenced state growth rates through their effect on innovation.
Note that if the OSRD contracted with only the best firms or academic institutions (which it did
not), this would not be a violation of the exclusion restriction, so long as initial location decisions
were orthogonal to a state’s future growth rate.

Table 7 reports coefficients from a regression of post-war state-level growth in GDP per capita
for a four decade time horizon (1947-1987) on state innovation levels immediately following
World War II (1945-1950).17 In columns 1 and 2 we report OLS estimates controlling for the long-
run effects of initial GDP per capita and population density respectively. The corresponding IV
estimates in columns 3 and 4 include these controls and a control for long run past growth to
address the potential confound that contracts were just awarded to high growth areas. Column
5 reports the first stage regression of log patents on the number of OSRD contracts.

The first stage relationship is strongly positive and interesting in its own right. Barro (1981)
and Field (2008) show that general wartime spending had little impact on economic growth and
may have even crowded out private sector investment. Fishback and Cullen (2013) find that
“growth in per capita measures of economic activity [to 1958] showed little relationship with per
capita war spending" and Jaworski (2015) finds little effect of wartime spending on subsequent
growth rates in the U.S. South.

These studies suggest that our use of OSRD contracts as an instrument will not be invalidated
by any correlated contemporaneous response of GDP per capita to other forms of government-
spending. OSRD contracts were targeted towards innovation, which we would expect to be
related to long run growth, whereas more general government contract spending on combat-
related equipment, like aeroplanes and tanks, or incidentals, such as clothing, was not.

The OLS coefficients from Table 7 are broadly similar to the IV estimates, if also somewhat
smaller. In column 3 the IV estimate is about 26% larger than the corresponding OLS estimate in
column 2, which would be consistent with the OSRD financing innovations that had an especially
sizeable impact on economic growth, under a local average treatment effect interpretation. U.S.
technological leadership was tightly linked to economic growth in the post World War II years
(Nelson and Wright, 1992). Equally, because we do not take into account the positive cross-state

17The results are similar if we instead study the effect of patenting during the war, between 1940 and 1945. Addition-
ally, Table A-7 in Appendix D shows that the patterns are robust to measuring growth rates using the methodology
of Davis et al. (1996).
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Table 7: Innovation and Long Run Growth: U.S. States between 1947-1987
Annualized Growth Rate 1st Stage

OLS OLS IV IV OLS
(1) (2) (3) (4) (5)

Log Patents (1945-1950) 0.123∗∗∗ 0.101∗∗∗ 0.127∗∗∗ 0.082∗∗

(0.028) (0.031) (0.038) (0.039)
OSRD Contracts 0.698∗∗∗

(0.083)
Log GDP per Capita (1945) -1.655∗∗∗ -1.688∗∗∗ -1.738∗∗∗ -1.511∗∗∗ 0.250

(0.148) (0.148) (0.147) (0.125) (0.638)
Population Density (1945) 1.064 0.798 0.820 0.574

(0.652) (0.575) (0.588) (2.291)
1900-1940 GDP/cap. Annual Growth Rate 0.146∗∗ 0.391∗

(0.067) (0.214)
Observations 48 48 48 48 48
Mean Growth 2.501 2.501 2.501 2.501 6.698
Std. Dev. of Growth 0.439 0.439 0.439 0.439 1.502
F-Statistic 66.126

Notes: Table reports estimated coefficients from a regression in which the dependent variable is the state-level an-
nualized growth rate in GDP per capita from 1947-1987. White heteroskedasticity robust standard errors reported
in parentheses. The IV estimates are two-stage least squares estimates using the number of OSRD contracts in each
state during World War II. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level,
respectively.

spillovers from successful innovations, our state-level estimates (and IV estimates) will likely
understate the aggregate relationship between innovation and economic growth.

Table 8: Testing for Selection Effects in OSRD Contracts

t
1935-40 1930-1935

(1) (2)
Real GDP Growth (t) 0.017 0.230

(0.100) (0.139)
Real GDP Growth (t− 1) 0.118 -0.302∗

(0.150) (0.151)
GDP per Capita (t) 2.179∗ 1.240∗

(1.140) (0.658)
Population Density 11.546∗∗ 12.235∗∗

(5.120) (4.565)
Observations 48 48

Notes: Table reports coefficients from a regression in which the dependent variable is the number of OSRD contracts
in each state during World War II and the independent variables are pre-trend growth rates, population density, and
beginning of period GDP per capita. We consider growth rates from 1935-1940 (t) and 1930-1935 (t− 1) in column 1,
while in columns 2 we consider growth rates from 1930-1935 (t) and 1925-1930 (t− 1). White heteroskedasticity robust
standard errors reported in parentheses. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%,
and 1% level. The results do not change if we consider Davis, Haltiwanger, and Schuh growth rates. Source: Bureau
of Economic Analysis, USPTO patent records.

Finally, to evaluate the validity of the exclusion restriction, we provide quantitative tests of
the instrument in Table 8. Specifically, we check if contract allocation is correlated with pre-trend
growth. While we control for this source of endogeneity explicitly in column 4, Table 7 using a
variable for annualized state-level GDP per capita growth between 1900 and 1940 in Table 8 we
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focus on more recent periods between 1930 and 1940. We do not find a statistically significant
effect of pre-period growth rates on contracts for these adjacent years.

Fact 8 Broad measures of income inequality (90/10, Gini) were negatively correlated with inno-
vation, however, top-1 income share had a U-shaped relationship with innovation.

Our theoretical framework in Section 3 also suggests that innovation generates turn-over in
society. The impact of innovation on inequality and social mobility is especially relevant because
the existing empirical literature is divided on the topic. Aghion et al. (2015a) examine modern
U.S. data finding a positive causal effect of innovation-led growth on top incomes shares at the
state-level. However, they also find some sensitivity to measurement. The relationship between
inequality and patenting becomes much weaker at different thresholds like the top 10% share,
and they find a negative relationship when using the Gini coefficient, which considers all parts
of the income distribution rather than just the top share. By contrast Jones and Kim (2014) shows
theoretically that if innovations come from new entrants, the relationship between inequality and
innovation could be negative.

Our results in Figure 18 generally point to a negative relationship between income inequal-
ity and inventiveness. The vertical axis plots the state-level 90/10 ratio and Gini coefficient as
measured in the 1940 Census, while the horizontal axis plots backward-looking average patents
per capita between 1920 and 1940. Both of these measures of inequality are strongly negatively
associated with regional inventiveness.

Figure 18: Relationship between Wage Income Inequality and Inventiveness

Panel A: Ratio of 90th
to 10th Percentile Panel B: Gini Coefficient
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Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and the
state-level wage income inequality observed in the 1940 census. Panel A measures income inequality with the ratio
of the 90th percentile to the 10th percentile of income, while panel B uses the Gini coefficient as its measure. Delaware
excluded as an outlier for visibility. Source: 1940 Historical Census Data, USPTO patent records.

Table 9 reports the results from a state-level regression of 1940 wage income inequality on
average patents per capita between 1920 and 1940, and the state’s occupation mix. All indepen-
dent variables in the regression are standardized to have zero mean and unit standard deviation.
Column 2 shows that increasing the number of patents per capita by one standard deviation is
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associated with a decline in the 90/10 ratio of 0.28 (= 0.828/2.98) standard deviations, conditional
on the state’s occupation mix.

Table 9: Wage Income Inequality and Innovation

Dependent Variable: 90/10 Ratio Gini Coefficient
(1) (2) (3) (4)

Av. Patents per Capita 1920-1940 -2.210∗∗∗ -0.828∗∗ -0.030∗∗∗ -0.010
(0.358) (0.343) (0.006) (0.007)

% Agricultural Occupation (1940) 1.777∗∗∗ 0.020∗∗∗

(0.343) (0.006)
% Manufacturing Occupation (1940) -0.086 -0.012∗∗∗

(0.216) (0.003)
Observations 48 48 48 48
R-squared 0.5545 0.7150 0.5239 0.7509
Mean of Dep. Var. 12.30 12.30 0.44 0.44
Std. Dev. of Dep. Var. 2.98 2.98 0.04 0.04

Notes: Table reports estimated coefficients from a regression of 1940 income inequality, measured by the ratio of the
90th to the 10th percentile of wage income (columns 1 and 2) and the Gini coefficient (columns 3 and 4), on the average
patents per 10,000 residents between 1920 and 1940. Independent variables standardized to have zero mean and unit
standard deviation. White heteroskedasticity robust standard errors reported in parentheses. ∗,∗∗ ,∗∗∗ represent that
coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical Census Data, USPTO patent
records.

However, the estimated relationship between innovation and income inequality is sensitive
to measurement. The top 1% income share shown in Figure 19 exhibits a non-linear, U-shaped
relationship with patenting. We show this using income data in the 1940 Census and full income
data constructed from Internal Revenue Service individual tax filing data from Frank (2009). The
latter series will correct for any bias in the the top 1% share estimates due to the top-coding of
Census income data at the $5,000 threshold.

Both figures reveal a robust pattern. In the least innovative states we find a negative re-
lationship. However, in the most innovative states such as New York, New Jersey and Mas-
sachusetts we find that more patenting was associated with more income held by the top 1%.
One potentially confounding effect is the different mixes of occupations in these innovative states.
For example, Philippon and Reshef (2012) show that between 1909 and 1933 skill-based wage-
compensation in finance was high. Addressing this concern, Appendix Figure A-9 shows that
these patterns are robust to excluding individuals who work in the financial sector.

Furthermore, Appendix Figure A-10 shows that we can reconcile the negative relationship
between inequality and inventiveness shown in Figure 18 with the U-shaped relationship shown
in Figure 19. When we use the top 10% income share the relationship approximates the pattern
in the data we see when using the Gini coefficient or the 90/10 ratio. The U-shaped relationship
only begins to emerge beyond the top 5% threshold. This suggests the very upper end of the
income distribution is key to understanding the link between innovation and inequality.

Although we do not claim to show a causal link between innovation and income inequality,
our analysis yields a number of important insights. First, alternative measures of inequality may
yield startlingly different results. The literature has not yet reached a consensus on the economics
behind the differences seen in these various measures. Second, the correlations presented here
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Figure 19: Relationship between Top-1% Labor-income Share and Inventiveness

Panel A: Census Wage Income Data Panel B: Full Income Data
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Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and 1940
state-level wage income inequality, measured by the share of income controlled by the top 1% of the state’s wage
earners. Delaware excluded as an outlier for visibility. Source: 1940 Historical Census Data, USPTO patent records,
Frank (2009).

suggest that innovation may indeed have an important effect on income inequality. Note that our
data cover a period in U.S. history when income inequality was especially high (Goldin and Katz
(1999), Piketty and Saez (2003)).

Fact 9 Innovation was strongly positively correlated with social mobility.

While places with high income inequality tend to exhibit low levels of social mobility (Chetty
et al., 2014), innovation might actually decrease inequality if it acts as a social elevator, as exhib-
ited in our model. The Schumpeterian paradigm suggests that innovation allows new entrants to
capture markets from old incumbents. This process of creative destruction creates churn in the
economy, allowing individuals and firms with limited market shares to grow. This mechanism
lies at the heart of a large class of economic models, such as Aghion and Howitt (1992), Klette
and Kortum (2004), and Akcigit and Kerr (2017).

We examine the relationship between innovation and social mobility directly using our oc-
cupation data. Figure 20 shows how a state’s level of social mobility in 1940 correlates with the
number of patents per capita granted between 1920 and 1940. Social mobility is measured as the
fraction of individuals with a low skill father, who themselves have a high skill occupation. The
figure implies that more innovative regions featured more social mobility.

Of course, more innovative states may have higher social mobility for a number of reasons.
For example, we have shown that innovative states tend to be more urban which may be cor-
related with social mobility while states with different types of economic activity (agricultural
versus manufacturing) may also vary in their degree of upward mobility. To counter this con-
cern, we regress our measure of social mobility in 1940 on average patents granted per capita
between 1920 and 1940, and controls for a state’s occupation mix. The percent of people in a
state who work in the agricultural sector serves as a proxy for the state’s degree of urbanization.
Table 10 shows that the relationship between patents per capita and social mobility is positive
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Figure 20: The Relationship between Inventiveness and Social Mobility
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Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and 1940
social mobility, measured by the share of those with a low-skill father who themselves have a high skill occupation.
Source: 1940 Historical Census Data, USPTO patent records.

and statistically significant, even after controlling for the state occupation mix.

Table 10: % of High-skill Child given Low-skill Father

(1) (2)
Av. Patents per Capita 1920-1940 0.746∗∗∗ 0.484∗∗∗

(0.116) (0.149)
% Agricultural Occupation (1940) -0.031∗∗∗

(0.011)
% Manufacturing Occupation (1940) -0.016

(0.019)
Observations 49 48
R-squared 0.5924 0.6844

Notes: Table reports estimated coefficients from a regression of 1940 social mobility, measured by the share of those
with a low-skill father who themselves have a high skill occupation, on the average patents per 10,000 residents be-
tween 1920 and 1940. Both dependent and independent variables standardized to have zero mean and unit standard
deviation. White heteroskedasticity robust standard errors reported in parentheses below coefficient. ∗,∗∗ ,∗∗∗ repre-
sent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical Census Data,
USPTO patent records.

These results suggest that innovation could have been a key driver of social mobility. The
analysis is important in light of the finding of Long and Ferrie (2013) that America generally be-
came less socially mobile around the turn of the twentieth century (down from its mid-nineteenth
century high-point). While we do not measure changing mobility levels over time, our results do
indicate that innovative places were also socially mobile places. Moreover, since Table 1 shows
inventors were a small share of the total population who had a outsized effect on U.S. develop-
ment, our findings underscore the need to study social movement with this important sub-group
of the population in mind.
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6 Conclusion

This paper presents a series of facts emerging from a major data collection exercise combining
U.S. patent records with Federal Censuses between 1880 and 1940 and regional economic aggre-
gates. The new data provide a comprehensive profile of inventions during the golden age of U.S.
invention and can complement modern studies such as Aghion et al. (2015b) and Bell et al. (2015)
to provide a more complete picture of inventor profiles over time and space.

Examining the drivers of innovation during this historical time period sheds light on numer-
ous debates on innovation and long-run economic growth. For example, our evidence on the
family background of inventors pinpoints an important role for education and human capital ac-
cumulation. Entry into an inventive career was increasing in father’s income, but the mechanism
appears to operate through improved access to education for children. Our evidence on the life
cycle of invention highlights creative destruction dynamics. Inventors were positively selected
early in their careers on the quality of their inventions but their productivity dropped sharply
later in their careers, presumably as new entrants disrupted existing ideas.

Our micro-level evidence provides key linkages to our macro-level findings. Although we
found inventors to be a small sub-group of society they had a tremendous influence on economic
growth. Inventors tended to move to urban and financially developed places favorable to inno-
vating, and they received large pecuniary payoffs from engaging in technological development.
While we have shown that regional innovation yields growth, it is also related to inequality and
social mobility. Establishing the background of the most effective inventors can therefore in-
form well-targeted innovation policies. The extent to which innovation contributes to growth,
inequality, and mobility is central to determining the societal costs and benefits of technological
advance.
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A Census Data Description

In this section we detail our Census data and the methods we use to prepare it for analysis. We
use IPUMS complete-count data from the decennial Censuses in 1880, 1900, 1910, 1920, 1930,
and 1940. We are limited to this set of years because the complete Census records are released
only with a 72 year lag. In addition, the 1890 Census was largely destroyed in a fire in 1921. We
start in 1880 because the Census for this year is systematic and contains a set of family related
variables we use in our analysis. As the codebook for the 1880 Census writes:

“The 1880 Census is in several critical respects the first “modern” Census; it broke new ground
in its completeness of coverage, accuracy of enumeration, and range and detail of questions. The
supervision of enumerators shifted from a part-time responsibility of regular U.S. marshals to
150 Census Supervisors specifically appointed for the purpose. To make a full, accurate, and
speedy enumeration practical, the size of enumeration subdistricts was reduced from a maximum
of 30,000 inhabitants in 1870 to a maximum of 2,500 in 1880 while the number of enumerators
was increased from 6,530 to 31,282. A variety of new questions were added that greatly enhance
the value of the 1880 Census compared to earlier years. It was the first federal Census to inquire
about marital status ... Equally important, a question on relationship to head of family was added,
which makes it possible to distinguish kin from secondary individuals and allows construction of
a wide variety of variables on family structure.”

The set of variables contained in the Census varies greatly over time. In addition, the micro-
data from the 1940 Census is continuing to be populated with additional variables. Table A-1
summarizes the information available in our six decennial Census years.

A.1 Cleaning the Census Data

The Census provides a unique identifier for each individual in its records. These person identi-
fiers, or “PIDs,” are unique within Censuses, but are not constant across each Census year: an
individual with PID 1 in 1880 is not the same individual with the PID 1 in 1900. We are unable
therefore to create a panel dataset using our six Census datasets. Although the PIDs are unique
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Table A-1: Variables in the Censuses

Census Year 1880 1900 1910 1920 1930 1940
Age X X X X X X
Race X X X X X X
Gender X X X X X X
Marital status X X X X X X
Years married X
Times married X
Birth place X X X X X X
Arrival year (immigrants) X X X X X
Mother’s birth place X X X X X X
Father’s birth place X X X X X X
Head of household X X X X X X
Family number X X X
Children born X
Children living X
Speak English X X X
Read X X X
Write X X X
Attended school X X X
Highest grade schooling X
Own home or rent X X X
Home mortgage X X X
Value of home X X
Radio X
Occupation X X X X
Industry X X X
Class of worker X X X
Income X

Notes: This list focuses on those variables we use in our analysis and for which a large number of records have non-
missing information. Home ownership variables are populated only for select group of individuals, and cannot be
robustly matched to patent data.

in the vast majority of states and years, there are occasions in which the same individual shows
up twice in the same year. Supposing data entry errors, we drop these duplicate PIDs.18

We take steps to impute missing data where it is easy to do so; for instance, we fill in missing
age data by calculating the difference between the observed Census year and the individual’s
reported birth year.19

Before 1940, many variables are coded in strings rather than as categorical variables. For
instance, sex variables can take on values “MALE,” “FEMALE,” “M,” “F,” and additional codes
indicating unknown. In many cases, these are easy to categorize into numeric categories. How-
ever, in certain instances, additional categorization must be done by hand. For instance, the

18One individual in Georgia (PID 559409) has consistently non-sensical data, and is thus dropped from the 1900
Census.

19A number of individuals in 1900 have negative ages, or some ages above 130 years old. We drop these individuals
from our analysis, supposing data entry errors.
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race variable often mixes race and nationality. We therefore must make some assumptions as to
what nationality corresponds to which race. For example, we classify those reporting that they
are “Asian,” “Chinese,” “Filipino,” “Japanese,” “Korean,” “Mongolian,” or “Siamese” as one
category “ASIAN.”

There are two additional places where such categorization plays an important role in our
analysis. First, the occupation variables contain over twenty thousand unique values in 1880,
1920, and 1930. Many of these unique values are the result of misspellings – such as “FARMR”
in place of “FARMER” – or due to differences between British and American English, such
as “LABOURER” instead of “LABORER.” In order to reduce the dimension of the occupation
data, we collapse the raw occupation data into three skill groups – low, medium, or high – and
three occupation categories: doctors, lawyers, and farmers. The three skill groups are mutually
exclusive, and account for 79.4% of individuals with non-missing occupation data. Doctors and
lawyers are all high skill, while farmers can be any skill level so long as they appear to work in
farm related activities.

The skill classification proceeds as follows. We first classify individuals into low skill occu-
pations using a string match. Low skill individuals perform routine jobs, sell their labor as hired
hands, or work as servants or maids. For instance, if an individual reports an occupation con-
taining the string “ASSIST,” “CLERK,” “LAUNDR,” or “FARM,” they are initially classified as
low skill.20 This method will classify those who say they are a shop clerk, blacksmith’s assistant,
laundry girl, or farm hand as low skill individuals. However, it will also classify farm supervi-
sors and legal clerks as low skill. To correct for this, we next begin the classification of middle
skill occupations.

Middle skill individuals are 1) those with particular specialties, such as carpenters or black-
smiths 2) those who perform middle management roles such as supervisors, or foremen, and 3)
those in the clergy or law enforcement. We replace those coded with low skill occupations with
a middle skill code if the individual both reports a string associated with a medium skill job,
and is not an assistant or apprentice. Therefore, those who report that they are a “Foreman on a
farm” will initially be classified as low skill because their occupation includes the string “farm,”
but will be updated to medium skill due to the string “Foreman.” On the other hand, a “Black-
smith’s apprentice” will not be updated to medium skill, as the string “apprentice” disqualifies
classification as middle skill, even though the individual works with a blacksmith.

A similar routine is carried out for high skill classifications. Individuals are classified as
high skill if 1) their occupation requires higher cognitive thought, such as a scientist, lawyer, or
financier, 2) they are owners, directors, or upper management of ventures, 3) they are highly
skilled manual workers, such as jewellers, goldsmiths, or silversmiths, or 4) they are public
officials such as members of congress, or politicians. In addition, they must not be assistants,
apprentices or hired hands. Once again, therefore, one who “Owns a farm” will initially be a
low skill individual, but will be updated to high skill as a result of the string “own.” Finally,
students and those retired have missing occupation skills.

The occupation categories are more straightforward to classify. Doctors are those who are

20This example is far from the full set of strings used to classify individuals. A full list of terms is available from
the authors upon request. The set of strings was chosen by hand after examining the most common occupations.
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both high skill and who report an occupation string containing “DOCTOR,” “MEDIC,” “MD,”
“PHARM,” “DENT,” “PSYCH,” or “OPTOM,” among others. Thus pharmacists, dentists, psy-
chiatrists, and optometrists will all be classified as doctors. Lawyers are high skill individuals
with an occupation string containing “LAW,” “JUDG,” “ATTORN,” and a number of legislator
strings such as “SENATE.” Thus attorneys, lawyers, judges, and legislators all count as lawyers
by our broad definition. Finally, farmers are any individual who have an occupation string con-
taining broad categories and common misspellings like “FARM,” “FRM,” “FIELD,” and “CROP,”
or more narrow strings such as “HUSKER,” “COTTON,” “PICK,” or “CHICKEN.”

The second major instance in which careful classification is required is in determining the
birthplace of individuals. The majority of individuals report their place of birth at the state or
country level. However, many give more specific answers such as the city, county, or (if abroad)
principality of birth. In order to calculate robust migrant flows, it is necessary to aggregate these
more refined answers to a state or country level. While there are too many small cities listed
to code each person by hand, we make substantial progress in matching individuals to their
state of birth: 86.7% of Census records with non-missing birthplace information are successfully
matched.

We begin this refinement process by standardizing place names to be upper case, with no
spaces. Next, we assign the largest cities in each state to its logical destination. For instance,
“MOBILE” and “BIRMINGHAM” are assigned to Alabama. Note that individuals who were
born in the much smaller town of Birmingham, Connecticut, for instance, will be incorrectly
matched to an Alabama birthplace. While we are comfortable with this small error in most
cases, it can prove quite difficult to address for city names that are large in multiple places. For
instance, many people live in both Kansas City, Kansas, and Kansas City, Missouri. In such cases,
we assume that the individual did not migrate across state lines if possible. That is, we assign
an individual’s birthplace to be Kansas if they currently live in Kansas and to be Missouri if
they currently live in Missouri. These large cities that appear in multiple states are, as far as we
can tell, only cities that straddle state lines. Therefore this conservative approach to migration
appears to be justified - even if an individual moves from Kansas City, MO to Kansas City, KS, he
will still be living in the same metropolitan area. Since classifying this individual as a migrant is
thus misleading, we believe this no-migration error is justified.

A similar routine is carried out for international migrants as well. In particular, many German
migrants provided specific states of birth, such as Bavaria, Württemberg, or Hamburg. Again,
we aggregate these to the country level. We then divide the reported countries into nine regions:
Western Europe, Scandinavia, Eastern Europe, Oceania, Africa, the Middle East, Latin America,
Canada, and East Asia.21

With the cleaned birthplaces, we can then define the migration status of individuals. An
individual is said to be an international migrant if they were born in any of the nine global
regions defined above. An individual is defined as an interstate migrant if their birth state is
different to their state of residence in the Census. Although we cannot calculate year-on-year
migration flows, we can ask whether an individual has moved out of his state of birth, and has

21A full list of classifications at both the state and country level is available from the authors upon request.

A-4



The Rise of American Ingenuity (Online Appendix)

yet to move back.

A.2 Father Match

In order to study social mobility and the role of parental affluence, we attempt to form a robust
link between individuals and their parents. The 1940 Census provides an explicit match between
individuals and their spouse and parents, so long as they live in the same household. Using a
household identifier and a variable giving an individual’s person number in the household (e.g.
household head is 1, spouse may be 2, father may be 3, etc.), and the person number of their
relevant family, we can explicitly ascertain the PID of the individual’s family members.

Before 1940, however, we use our own algorithm to determine the PIDs of individuals’ family
members. First, we generate a family identifier, given by a unique surname, household ID,
and city. We then use the relationship to household head variable recorded by the Census to
determine the PID of individuals’ family members. Specifically, we first limit ourselves to families
with only one household head. Then we consider those individuals who report being either the
household head or his/her spouse. We extract the PID of these household heads, and assign
them to individuals reporting to be either the son or the daughter of the household head. This
builds a crosswalk dataset - every son/daughter of a household head is matched to the PID of
his/her mother and father.

To test the validity of this matching routine, we use our algorithm on the 1940 data, checking
that we match the correct father to the correct child using the person number variables provided
by the Census. Our match is nearly perfect: among individuals for whom the Census provides a
person number match, we correctly ascertain the PIDs of an individual’s father in over 99.99% of
every state’s population.

While this high match rate is encouraging, it does not suggest that our algorithm is perfect.
Instead, it suggests that we are able to successfully replicate the Census’ own algorithm for
matching parents to children. The match is still subject to two important caveats. First, we can
only match individuals to their parents if they live in the same household, and therefore our
match may be more successful for younger children or poorer families. Second, we only match
parents if at least one of them is the head of the household. In principle, one could attempt
to match other members of the family by considering, for instance, the brother and nephew
of the household head. However, matching based on non-nuclear family members introduces
additional noise and incorrect matches, particularly in cases in which large families reside in
the same household. We therefore avoid these kinds of matches in the construction of our final
dataset.

B Patent Data Description

Our analysis is based on three main patent datasets we assembled using a mixture of hand entry
and optical character recognition (OCR) techniques based on the original patent documents, and
information from existing databases. These data are summarized as follows:
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• Patent Dataset A. 6,675,311 patents. Consists of close to the universe of patents granted by
the USPTO between 1836 and 2004 covering the location of the first named inventor listed
on the original patent documents down to the city level.

• Patent Dataset B. 60,594 patents. Consists of the universe of patents granted by the USPTO
for the years 1880, 1900 and 1910 covering both the name and location of the first named
inventor down to the city level.

• Patent Dataset C. 5,739,225 patents. Consists of the universe of patents granted by the
USPTO including the name of all inventors and assignees from 1920 to 2006.

Note that these datasets contain overlapping and sometimes complementary information—
for instance, Patent Dataset A contains the location of inventors but not their names whereas
Patent Dataset C contains names but not locations.

We obtained address information for the first inventor from the original patent documents
using OCR and hand entry (Patent Dataset A). This dataset contains U.S. patents that were
granted to both U.S. citizens and individuals living abroad, but in our analysis we obviously
limit ourselves to patents granted to individuals and entities based in the United States. In 1880
94% and in 1940 86% of patents were granted to inventors located in the U.S.

For the years 1880, 1900, and 1910 (Patent Dataset B), we extracted the name and address
of the first inventor listed on the patent document, under the assumption that this individual
was the principal inventor of the art. Single inventors were the norm during this time period.
In 1880, 1900 and 1910 approximately 92%, 90% and 91% of patents were granted to a single
inventor respectively.

From 1920 through 2006, we retrieved the name of every inventor listed on every patent
each year using data supplied to us by the European Patent Office (Patent Dataset C). In a
parallel work, Akcigit et al. (2017c) created a panel dataset with an inventor identifier through
disambiguating the inventor data using the algorithm of Li et al. (2014). We use these data in our
analysis of inventor careers in Fact 4.

B.1 Citation Adjustment

Our data includes the number of citations each patent receives from patents granted from
September 1947, when the USPTO began to note citation data in a systematic way, to Febru-
ary 2008. Thus, we have the full universe of citations received by patents granted during this
time period. Citations start in 1947 because a USPTO Notice was issued on December 19th, 1946,
instructing examiners to add citations in the published format of the patent, a practice that was
incorporated into the Manual of Patenting Examining Procedure (paragraph 1302.12).

For patents granted before 1947, the noted citation count is left censored: a patent granted
in 1940 will only have citations from patents granted after 1947, but will not have citations from
patents between 1941 and 1946. This artificially deflates the number of citations received by
patents before 1947, confounding attempts to use citations as an objective measure of a patent’s
quality. Furthermore, aggregate citation trends may weaken the link between raw citation counts
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and patent quality. For instance, if patents granted in 1960 cite an average of 5 prior patents, but
those granted in 1990 cite 20 patents, one might expect the average citation received from a 1960
patent to be more indicative of a high quality innovation than a citation received in 1990. We
therefore adjust the number of citations received by each patent following the quasi-structural
approach laid out in Hall et al. (2001).

This approach relies on two critical assumptions. First, we assume that the citation process is
stationary. That is, we assume that the evolution of citation shares does not change over time: a
patent will on average receive a share πkτ of its citations τ years after it is granted, regardless of
the grant year. This allows us to project back our adjustment factors to patents filed before the
citation data began in 1947. Second, we assume proportionality. That is, we assume that the shape
of the citation evolution does not depend on the total number of citations received so that highly
cited patents are more highly cited at all lags. This allows the application of the same adjustment
factor to every patent in our data granted in a given period and belonging to a given patent class.

The adjustment proceeds as follows. We start with the full patent citation network data,
keeping only those patents granted in the United States. Let Ckst be the total number of citations
to patents in year s and technology category k coming from patents in year t.22 Further, define Pks

to be the total number of citations received by patents granted in year s in technological category
k. One can then define πkst = Ckst/Pks to be the average share of citations received by patents
in class k in year s from patents granted in year t We assume that πkst is some multiplicatively
separable function of grant year, patent category, and a citation lag. That is, we can write

log[πkst] = α0 + αs + αt + αk + fk(L) (A-1)

for L = t− s the lag between cited and citing patent grant years, and fk(·) some category-specific
function of these lags. For our purposes, we define fk(L) = γ̃k,L. We may then estimate equation
A-1 using OLS to recover estimates of α0, αs, αt, αk, and γ̃k,L for each value of s, t, k and L in our
data.23 Taking exponentials of equation A-1 yields

Ckst/Pks = eα0 eαs eαt eαk eγ̃k,(t−s) (A-2)

This formulation allows us to standardize citation counts over time and across categories. Specif-
ically, in order to adjust for patent class, cited year, and citing year effects, we weight each citation
from a patent in year t to a patent in class k in year s by exp (−α̂k − α̂s − α̂t). Each patent’s cita-
tion counts are therefore reflective of the patent’s quality relative to the average patent in some
base year and category.24

While this procedure accounts for aggregate differences across patent classes and grant years,
it does not yet correct for bias arising from the left truncation of citation records. To build

22For the purposes of the adjustment, we use technological categories as defined by the NBER patent data. For a
detailed description of these data, see Hall et al. (2001).

23It is rare for a patent to receive citations more than 30 years after its initial grant date, and thus we top-code the
citation lag L to have a maximum value of 30. That is, we define L = min{t− s, 30}.

24For our purposes, we choose each patent citation to be relative to a patent in the “Other” category granted in 1975,
receiving citations from patents also granted in 1975. Mechanically, this corresponds to setting the omitted categories
in estimation of equation A-1 to be k = “Other”, s = t = 1975.
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intuition for the truncation correction, consider an example in which each of the estimated α

coefficients were 0: the only bias in our citation data arises from the lag. In that case, the
assumptions of proportionality and stationarity suggest a natural adjustment factor for a patent
granted L years before the 1947 cutoff. Define Gk(L) to be the CDF of the lag distribution:
the share of an average patent’s citations received within the first L years after its grant. The
adjustment factor is then given by

σk,L =
1

1− Gk(L)

We would then predict that a patent in category k granted in year 1947 − L and receiving c
citations from patents granted after 1947 would have received σk,Lc citations had the USPTO kept
track of citations before 1947.25

In order to incorporate the year and category fixed effects into this truncation adjustment
framework, one must establish a notion of the CDF of the lag distribution conditional on year
and category effects. To do so, we interpret the exp(γ̃k,L)’s as weights for each patent in the
citation data. For instance, if the estimated exp(γ̃k,L=2) is 2, then an average patent is twice as
likely to receive a citation after 1 year than in the year of patent grant, conditional on year and
category effects. To construct the CDF of citations by lag conditional on year and class effects,
we can sum our estimates of exp(γ̃k,L), normalizing the estimated coefficients so that they sum
to 1. This gives us our estimate of Gk(L):

Ĝk(L) =

L
∑

l=1
exp(γ̃k,l)

30
∑

l=1
exp(γ̃k,l)

(A-3)

We can then calculate our truncation adjustment factor as before26

σ̂k,L =
1

1− Ĝk(L)
. (A-4)

To summarize, the citation adjustment proceeds in four steps:

1. Estimate equation A-1 using OLS to recover α0, αk, αt, αs and γk,L.

2. For each citation made from a patent p′ granted in year t to a patent p in class k granted in
year s is weighted by

ωk,s,t = e−αk−αt−αs

Define, for each cited patent p, the year- and category-adjusted citation count c to be the
sum of the ωk,s,t it received.

3. Calculate Ĝk(L) according to equation A-3

25Ignoring year and category effects and adjusting citations in this way does not significantly change the results
presented in the main body of the paper.

26Note that we only calculate the truncation adjustment up to L = 20, despite estimating γk,L for L as large as 30.
This is to bound Ĝk(L) away from 1, so that we do not divide by 0 in the adjustment. For L larger than 20, we apply
the adjustment factor for L = 20.
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4. Using Ĝk(L), calculate the truncation adjustment factor σ̂k,L according to A-4. Finally, define
a patent p’s adjusted citation count to be c̃ = c · σk,L if p is in class k and was granted L
years before 1947.

Figure A-1 plots the adjustment factors for truncation years for each of the six NBER patent
categories. The multiplicative adjustment factors range from 1 to almost 5, and vary by NBER
category. Meanwhile, Figure A-2 plots the distribution of log citations and the evolution of the
average citation counts according to three adjustment regimes: no adjustment, full adjustment,
and an adjustment in which we do not correct for truncation at 1947. We see that the fully
adjusted citation counts have a much flatter time series relative to the unadjusted citation counts.
This is by design: the purpose of the adjustment is to remove the aggregate fluctuations which
do not accurately measure the relative quality of patents.

Figure A-1: Citation Adjustment: Adjustment Factors by Years Truncated
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B.2 Patent Classes and Matching Patents to Sectors

We obtain the main USPTO patent class for each patent and the NBER patent aggregations of
these classes.27 We match patents to sectors using the USPTO technology class of the patent.

We also use value added and full-time employment data by sector from 1947 through 1986,
before the SIC was revised in 1987. These data are matched to data provided by Bill Kerr con-
taining the fraction of patents in each class which were manufactured and used by every 3-digit
SIC code (Kerr, 2008). We first aggregate these SIC codes into the same categories contained in

27The USPTO occasionally reclassifies patents based on the emergence of new technologies. Throughout the paper,
we use the 2006 classification.
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Figure A-2: Citation Adjustment: Citation Distributions and Average Citation Counts

over Time
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the industry value added data from the BEA. Table A-2 shows this aggregation.

Once we know the fraction of patents in each class that are accounted for by the BEA-provided
industries, we assign each class to an industry. We say a patent class c is affiliated with industry
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j if industry j manufactures the highest share of patents in class c. We can then calculate the total
number of patents for each BEA industry.

C Merging Patent and Census Data

C.1 Data Preparation

We first standardize the names and places listed in the patent and Census data. We begin by
ensuring that all names are fully capitalized, and remove all special characters (e.g. “.”s) from
the names.28 In addition, we remove suffixes such as “JR,” “Senior,” and “III” from listed names.
We next parse the names into different words. The surname is taken to be the last word of an
individual’s name, while an individual’s first name is taken to be the first word. The first letter of
the second word of an individual’s name is taken to be their initial, so long as the name contains
at least three words. For example, a name originally recorded as “Thomas Alva Edison,” will
return three pieces of information: the surname “EDISON,” a first name “THOMAS,” and an
initial “A.” Note that this procedure implies that those with multiple words in their surname
are constrained to have a first name, single middle initial, and one-word surname. For example,
Robert Van de Graaff, inventor of the Van de Graaff generator (a machine that generates static
electricity), is eventually listed as “ROBERT V GRAAFF.”29

Locations are likewise standardized. First, we capitalize all place names listed in the Census
and on the patent records. We then ensure that the spelling of common pieces of the place
name are constant across the two data sources. For instance, we enforce that the word “SAINT,”
as in “SAINT LOUIS,” are all listed as “ST.” In addition, we remove superfluous words such
as “WARD,” “DISTRICT” or “CITY;” for instance, “NEW YORK CITY” becomes simply “NEW
YORK.” Finally, we standardize a number of common place names by hand; for example, we
impose that the five boroughs of New York City – Brooklyn, Manhattan, Queens, the Bronx, and
Staten Island – are all coded as “NEW YORK.”

C.2 Merging the Data

We next merge the patent data to the decennial Censuses. To do so, we first insist that records
in the Census have the same first name, last name, county, and state as the inventor listed on the
patent. In addition, the patent in question must have been granted in the same year as the Census
was conducted. While we make a strong effort to clean our data before matching, there remain
some cases that do not match even on these basic criteria. Of all patent-inventor instances in the
patent data, 70.8% find a match in the census based on these criteria. The remaining 29.2% may
not match either because their names were incorrectly entered in either the Census or patent data,
or because they may have moved across state lines between the time the Census was conducted

28We drop Census records with first or last names longer than 40 characters. We do this because we suppose that
such long names arise from input errors.

29The 1910 Census provides multiple name fields. We take the most well-populated field, and fill in missing values
with the names contained in the other name variables. In the vast majority of cases, the names provided in the two
variables are identical.

A-11



The Rise of American Ingenuity (Online Appendix)

T
a

b
l
e

A
-2:2-

a
n

d
3-D

i
g

i
t

SIC
C

o
d

e
s

a
n

d
A

s
s
o

c
i
a

t
e
d

I
n

d
u

s
t
r

y
T

i
t
l
e
s

01-02
Farm

s
23

A
ppareland

other
textile

products
61

C
redit

agencies
other

than
banks

07-09
A

griculturalservices,forestry,and
fishing

26
Paper

and
allied

products
62

Security
and

com
m

odity
brokers

10
M

etalm
ining

27
Printing

and
publishing

63
Insurance

carriers
11-12

C
oalm

ining
28

C
hem

icals
and

allied
products

64
Insurance

agents,brokers,and
service

13
O

iland
gas

extraction
29

Petroleum
and

coalproducts
65-66

R
ealestate

14
N

onm
etallic

m
inerals,except

fuels
30

R
ubber

and
m

iscellaneous
plastics

products
67

H
olding

and
other

investm
ent

offices
15-17

C
onstruction

31
Leather

and
leather

products
70

H
otels

and
other

lodging
places

24
Lum

ber
and

w
ood

products
40

R
ailroad

transportation
72

Personalservices
25

Furniture
and

fixtures
41

Localand
interurban

passenger
transit

73
Business

services
32

Stone,clay,and
glass

products
42

Trucking
and

w
arehousing

75
A

uto
repair,services,and

parking
33

Prim
ary

m
etalindustries

44
W

ater
transportation

76
M

iscellaneous
repair

services
34

Fabricated
m

etalproducts
45

Transportation
by

air
78

M
otion

pictures
35

M
achinery,except

electrical
46

Pipelines,except
naturalgas

79
A

m
usem

ent
and

recreation
services

36
Electric

and
electronic

equipm
ent

47
Transportation

services
80

H
ealth

services
371

M
otor

vehicles
and

equipm
ent

48
C

om
m

unications
81

Legalservices
372-379

O
ther

transportation
equipm

ent
481,482,489

Telephone
and

telegraph
82

Educationalservices
38

Instrum
ents

and
related

products
483

R
adio

and
television

83
Socialservices

39
M

iscellaneous
m

anufacturing
industries

49
Electric,gas,and

sanitary
services

86
M

em
bership

organizations
20

Food
and

kindred
products

50-51
W

holesale
trade

84,89
M

iscellaneous
professionalservices

21
Tobacco

products
52-59

R
etailtrade

88
Private

households
22

Textile
m

illproducts
60

Banking
43,91-97

G
overnm

ent

N
otes:Sector

codes
retrieved

from
the

docum
entation

of
value

added
statistics

provided
by

the
BEA

:
https://w

w
w

.bea.gov/industry/xls/G
D

PbyInd_VA
_SIC

.xls
on

A
ugust

10,2016.

A-12



The Rise of American Ingenuity (Online Appendix)

and the patent was granted. Predictably, this problem is particularly pronounced immediately
following the end of the First World War: we match just 61.1% of patent-inventor observations in
1920.

Naturally, there may remain multiple inventor matches if, for example, there are multiple
Thomas Edison’s living in Middlesex county, New Jersey in 1900. Indeed, 44.4% of our initially
matched patents have multiple candidate inventors. We then refine the match further based
on other information in the patent documents. First, for each patent, we look to see if one of
the candidate inventors in the Census data has the same middle initial as listed on the patent
document. If so, we only keep those that match. This removes 8.2% of our multiple matches.

At this stage, the multiplicity concern arises from the possibility of multiple Thomas A Edi-
son’s living in Middlesex, NJ in 1900. Thus we refine to a more granular geography. Our second
refinement asks whether there are any candidate inventors living in the same city or township
as was listed on the patent document. We only keep those who match on this criterion, so long
as the patent has at least one matched candidate. Thus we limit ourselves to Thomas A Edison’s
living in Menlo Park, Middlesex County, New Jersey in 1900. The refinement based on cities
removes 7.3% of the duplicate inventors, who survived the refinement based on middle initials.

Multiplicity can still persist, however, and may be particularly common within family units if
a son is named after his father. At this stage, both John J Smith Jr and his father John J Smith Sr,
living in the same household, would be matched to the same patent. To combat this, we finally
refine the match based on an age criterion. For a given patent, we ask if there is a candidate
inventor between the ages of 15 and 85 in the Census. If so, we keep that candidate inventor, and
discard the candidate children under 15 years old and the elderly above 85. This age refinement
removes 5.5% of the multiple inventors present at this stage. We next repeat this refinement with
a sharper age criterion, keeping those between 18 and 65 years of age if such a match exists.

Finally, if there are still multiple matches for a given patent, then we exclude the individual
and patent from the sample altogether and they are counted neither as an inventor nor as a non-
inventor. This is done to be conservative about our match rate, and to avoid inducing spurious
correlations from incorrect matches. As a robustness check, we also run our analysis on a sample
in which we keep a random inventor for each patent with a multiple match. The results are
qualitatively similar, and are available from the authors upon request.30

Table A-3 shows the success of our match at each stage of our process. We see that 72.1%
of all patents granted in decennial Census years find a match in the Census, while 69.9% of
all inventors find a match. Once we impose the county match, these numbers drop to 44.4%

30There is one exception to this similarity in headline results. Table 2 in the main body of the paper show a weak
correlation between the probability that an individual becomes an inventor and the inventor status of one’s father.
When we keep a random matched inventor, this correlation becomes large, significant, and positive. This change can
be best understood with an example. Suppose that John J Smith Jr is 25 years old and cohabits with his father, the
50 year old John J Smith Sr. The younger John Smith is an inventor of two patents, but his father is not. Because
they are both between the age of 15 and 85 with the same first name, last name and middle initial, and live in the
same city, we must keep a random John J Smith for each of the two patents. For the first patent, suppose we kept the
younger John Smith, while the other patent is assigned to his father. This generates a spurious correlation between an
individual’s inventor status and that of his father: even though John Smith Sr was never granted a patent, it appears
as though he was in our data. These family relationships might be a persistent source of multiplicity, and thus likely
drives this particular difference in our results. We therefore favor the more robust results presented in the main body
of the paper.
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and 45.1%, respectively. Next, we show the percent of all patents that find a unique match at
each stage of the process. For instance, 36.6% of patents and 36.5% of inventors have a unique
counterpart in the Census data after imposing that Census and patent data match on city.

Table A-3: Match Rates at Each Stage of Matching Process

Unit of Observation
Criteria Patent Inventor

Percent with at least one match
State, Name 72.1% 69.9%
State, County, Name 44.4% 45.1%

Percent with unique match
State, County, Name 30.3% 29.8%
. . . + Initial 35.1% 35.2%
. . . + City 36.6% 36.5%
. . . + Age between 18 & 65 39.0% 39.2%

We then merge into our data every patent ever granted to each inventor we have successfully
matched. Thus, while we only match inventors to the Census if they are granted a patent in a
decennial Census year, our matched data contain patents granted to inventors in every year from
1920 through 2006, as well as patents granted to inventors in 1880, 1900, and 1910.

C.3 Match Success

Figure A-3 shows the match rate by decennial Census year. Our most successful match year is
1880, in which we match 44.0% of all patents and 46.0% of all inventors in the patent data to
a unique individual in the Census. While the match rate hovers around 40% for most years, in
1920 we match 29.2% of U.S. patents and 28.7% of inventors. The relatively low match rate we
observe for 1920 may simply be idiosyncratic. As we point out in Section 2 the 1920 Census was
conducted in the winter which led to some level of underenumeration, though not on a scale to
bias our results. The effects of World War I demobilization on the movement of ex-servicemen in
the population who were also inventors may also have had an effect.

Figure A-4 shows the match rate by state, pooling all years together. Panel A shows the
match rate for patents, while Panel B shows the match rate for inventors. There is heterogeneity
in the match success across states. While Rhode Island enjoys a successful match rate of 54.5%
for patents and 55.9% for inventors, we only match 17.3% of patents and 21.0% of inventors
in Nevada. Part of this difference may be attributable to the changing county (and even state)
boundaries in the early part of our sample, as frontier states saw rapid increases in population.

A potential concern with our results is that they may be driven by systematic match errors,
rather than the unique characteristics for inventors. For instance, if name disambiguation proves
especially difficult for common names, our match success will reflect only rare names, which
may disproportionately represent a particular race, sex, or age profile. Alternatively, if data
input errors are common within the Census, especially uncommon or foreign-sounding names
may be matched at a lower rate than traditional American names.
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Figure A-3: Match Rate by Decennial Census Year - All States
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Notes: Figure shows the percent of inventors (solid red bars) and patents (dashed blue bars) present in the patent data
who successfully match to the Census data by year. All states are aggregated together to produce this plot.

To test for any biases, we ask whether the patents and inventors that are successfully matched
to the Census are observably different from those that are not matched. For this exercise, we
consider the universe of patents granted in each of our decennial Census years in the 48 mainland
states used in our analysis. We then generate a binary variable equal to 1 if that patent and
inventor were successfully matched to our Census data and survived the refinements detailed
above. We then regress this indicator on characteristics of the patent and inventor. One might
be particularly concerned that we have more success matching common, traditional American
names, or particularly prominent inventors. We measure inventor and patent prominence by
the number of citations received between 1947 and 2008. We use two indicators for the rarity of
the inventor’s name. First, we construct the share of the population with each first name using
Census data. Second, we include the string length of the inventor’s surname.

The results of this regression exercise are displayed in Table A-4. Column 1 show that those
with longer names are less likely to be matched, and those with common first names are slightly
more likely to be matched. However, we do not disproportionately match patents or inventors
of a higher quality. These effects are small: increasing name prevalence by 100 (approximately
1 standard deviation) is associated with just a 1.3 percentage point increase in the match rate,
roughly 3% of its mean. Meanwhile, a one standard deviation (1.75) increase in an individual’s
surname length reduces the match rate by 0.6 percentage points.
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Figure A-4: Match Rate by State - All Years
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Notes: Figure shows the percent of inventors (Panel B: dark blue bars) and patents (Panel A: bright red bars) present
in the patent data who successfully match to the Census data by the state listed on the patent application. All years
are aggregated together to produce this plot.

To test for disproportionate matching of particular population groups, we again use the Cen-
sus to construct our variables of interest at the first name level. We thus include the percent of
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Table A-4: Selection into Matching: Regressions on Probability of Match

Panel A: Patent Match Probability
(1) (2) (3) (4)

Surname Length -0.346∗∗ -0.219 -0.285∗ -0.302∗∗

(0.154) (0.154) (0.153) (0.149)
Name prevalence (per 10,000 people) 0.013∗∗∗ 0.013∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.003) (0.003) (0.003) (0.003)
Citations between 1947-2008 -0.011 -0.010 0.005 -0.004

(0.011) (0.011) (0.007) (0.007)
Percent First Name Int’l Migrant -0.203∗∗∗ -0.201∗∗∗ -0.201∗∗∗

(0.025) (0.018) (0.017)
Average Age with First Name -0.085∗ -0.000 -0.012

(0.051) (0.036) (0.036)

Fixed Effects None None State× Year
State× Year
Tech Class

Observations 175093 175093 175093 175093
Mean of Dep. Var. 38.65 38.65 38.65 38.65

Panel B: Inventor Match Probability
(1) (2) (3) (4)

Surname Length -0.675∗∗∗ -0.535∗∗∗ -0.592∗∗∗ -0.598∗∗∗

(0.142) (0.141) (0.140) (0.139)
Name prevalence (per 10,000 people) 0.022∗∗∗ 0.022∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(0.002) (0.003) (0.002) (0.002)
Citations between 1947-2008 -0.028∗∗∗ -0.028∗∗∗ -0.008 -0.009

(0.010) (0.010) (0.007) (0.007)
Percent First Name Int’l Migrant -0.222∗∗∗ -0.218∗∗∗ -0.218∗∗∗

(0.024) (0.016) (0.015)
Average Age with First Name -0.124∗∗∗ 0.014 0.000

(0.047) (0.030) (0.029)

Fixed Effects None None State× Year
State× Year
Tech Class

Observations 122095 122095 122095 122095
Mean of Dep. Var. 39.12 39.12 39.12 39.12

Notes: Dependent variable is an indicator for an observation being matched to the census data, multiplied by 100 for
legibility. White heteroskedasticity-robust standard errors reported in parentheses. ∗, ∗∗, and ∗∗∗ represent coefficient
statistically different from 0 at the 10, 5, and 1% level respectively. Inventor technology class defined to be the
technology class of his/her first patent.

individuals with the inventor’s first name who were international migrants and the average age
of those with the inventor’s name in the Census as dependent variables in columns 2 through 4.
Column 2 includes no fixed effects. Column 2 would suggest that, we are less likely to match
those with names commonly associated with international migrants, while there is hardly any
bias in our age match. This implies that, although we find little difference in the international
mobility between inventors and non-inventors using our matched data, it remains possible that
inventors were more likely to be international migrants. A one standard deviation increase in the
percent of people with the inventor’s first name who are international migrants (13 percentage
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points) is associated with a 2.64 percentage point reduction in the patent match rate.

Columns 3 and 4 control for state-year fixed effects in our selection regressions, while column
4 additionally controls for the patent’s technology class, and the technology class of the inventor’s
first granted patent. Column 3 most closely matches that of our previous regression analyses,
which use matched data for just one year of the census, and include state fixed effects (see, for
example, Table 2). The inclusion of these fixed effects does not significantly change the patterns
shown in columns 1 and 2.

Another concern would be that the substantial heterogeneity in state match rates is system-
atically correlated with key state variables of interest. Although we do not use the matched data
for our state-level analysis, it is worth considering this claim. Table A-5 reports estimates from
an OLS regression of a state’s match rate on its observable characteristics. We see that none of
our regional variables predict a state’s match rate. Indeed, the full set of variables only explains
approximately 12% of the variation in state match rates, as measured by the regression’s R2.

Table A-5: Selection into Matching: State Match Rate Regressions

Panel A: Patent Match Panel B: Inventor Match
(1) (2) (3) (4)

90-10 Wage Income Ratio -0.542 -0.364 -0.541 -0.321
(0.627) (0.719) (0.620) (0.709)

Average Income -0.003 -0.006 -0.004 -0.007
(0.012) (0.017) (0.012) (0.017)

Population Density 0.030 0.021 0.034 0.022
(0.034) (0.040) (0.034) (0.039)

Deposits per capita 0.006 0.005 0.004 0.003
(0.011) (0.011) (0.010) (0.011)

Average outbound transport cost 0.101 0.134 0.055 0.101
(0.281) (0.311) (0.278) (0.307)

Percent of residents with college degree 0.083 0.107 0.187 0.209
(0.721) (0.773) (0.713) (0.762)

Percent employed in manufacturing -0.132 -0.183
(0.418) (0.412)

Percent employed in agriculture -0.154 -0.196
(0.242) (0.239)

Observations 47 47 47 47
R-squared 0.122 0.131 0.114 0.130
Mean of Dep. Var. 37.363 37.363 37.699 37.699

Notes: Dependent variable is the percent of a state’s patents matched to the census in one of our six census years. White
heteroskedasticity-robust standard errors reported in parentheses. ∗, ∗∗, and ∗∗∗ represent coefficient statistically
different from 0 at the 10, 5, and 1% level respectively.

D Additional Robustness Checks

D.1 Sector-level Analysis

The positive relationship between innovation and output growth persists at the sector-level, as
shown in Figure A-5.31 It plots industry-level annualized growth in value added (Panel A) and

31For details on the match between patent classes and industries, see Appendix B.2.
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full-time-equivalent employees (Panel B) against the log total patents produced by the industry
between 1948-1986, before the change of SIC code definitions in 1987. Both horizontal and ver-
tical axes are residualized against 1948 value added (Panel A) or full-time-equivalent employees
(Panel B). Each point represents a 2-digit SIC code.

Figure A-5: Innovation and Long-run Growth: 3-digit Sectors between 1948-1986
Panel A: Growth in Value Added Panel B: Growth in FTE Employees
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Notes: Figure plots industry-level annualized growth in value added (Panel A) and full-time-equivalent employees
(Panel B) against the log total patents produced by the industry between 1948-1986, before the change of SIC code
definitions in 1987. Both horizontal and vertical axes are residualized against 1948 value added (Panel A) or full-
time-equivalent employees (Panel B). Each point represents a 2-digit SIC code, before the codes were changed in 1987.
Patent classes are matched to sectors using data provided by William Kerr [3-digit version comes from Kerr (2008)
and 4-digit comes from Acemoglu et al. (2016a)]. A patent class k is matched to an industry s if s is the modal user of
patents from k. Industry data provided by the Bureau of Economic Analysis.

In Table A-6, we provide the regression coefficients of Figure A-5 and confirm the results
using citation-weighted patent counts as our measure for innovation. The results highlight the
strong positive association between innovation and economic growth at the sector level.

Table A-6: Innovation and Sectoral Growth

Dependent Variable: Value-Added FTE Employee
Growth (1948-1986) Growth (1948-1986)

(1) (2) (3) (4)
Log Patents (1948-1986) 0.679∗∗∗ 0.609∗∗∗

(0.191) (0.159)
Log Citations (1948-1986) 0.677∗∗∗ 0.617∗∗∗

(0.179) (0.149)
1948 Dependent Variable Value (1000s) -0.152 -0.142 -0.627 -0.595

(0.102) (0.095) (0.457) (0.420)
Observations 18 18 18 18
Mean of Dep. Var. 6.44 6.44 0.39 0.39
S.D. of Dep. Var. 1.61 1.61 1.45 1.45

Notes: Table reports estimated coefficients from a regression in which the dependent variable is the sector-level annu-
alized growth rate in value added (columns 1 and 2) and full-time-equivalent employees (columns 3 and 4). Patent
classes are matched to sectors using data provided by William Kerr [3-digit version comes from Kerr (2008) and 4-digit
comes from Acemoglu et al. (2016a)]. A patent class k is matched to an industry s if s is the modal user of patents
from k. Industry data provided by the Bureau of Economic Analysis. White heteroskedasticity robust standard errors
reported in parentheses. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level.

A-19



The Rise of American Ingenuity (Online Appendix)

D.2 Additional Figures and Tables

Figure A-6: Innovation and Long-run Growth: U.S. States between 1919-1999
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Notes: Figure plots the total number of patents granted to inventors in each state between 1919 and 1999 on the
horizontal axis, and the annualized growth rate in state GDP per capita between 1919 and 1999 on the vertical
axis. Both horizontal and vertical axes plot the variables of interest residualized against 1919 log GDP per capita, to
account for conditional convergence. Source: BEA Historical Regional Economic Accounts, and data from (Martin
(1939)) courtesy of Price Fishback.

Table A-7: Innovation and Long Run Growth, U.S. States between 1947-1987: Davis,
Haltiwanger, and Schuh Growth Rate

DHS Growth Rate 1st Stage
OLS OLS IV IV OLS
(1) (2) (3) (4) (5)

Log Patents (1945-1950) 0.039∗∗∗ 0.032∗∗∗ 0.041∗∗∗ 0.027∗∗

(0.009) (0.010) (0.012) (0.012)
OSRD Contracts 0.698∗∗∗

(0.083)
Log GDP per Capita (1945) -0.505∗∗∗ -0.516∗∗∗ -0.532∗∗∗ -0.464∗∗∗ 0.250

(0.045) (0.045) (0.045) (0.040) (0.638)
Population Density (1945) 0.332 0.245 0.250 0.574

(0.198) (0.173) (0.177) (2.291)
1900-1940 GDP DHS Growth Rate 0.114∗∗

(0.058)
Observations 48 48 48 48 48
Mean Growth 0.909 0.909 0.909 0.909 6.698
Std. Dev. of Growth 0.134 0.134 0.134 0.134 1.502
F-Statistic 66.126

Table reports estimated coefficients from a regression in which the dependent variable is the state-level annualized
growth rate in GDP per capita from 1947-1987. White heteroskedasticity robust standard errors reported in paren-
theses. DHS growth rate refers to the growth rate measure as proposed by Davis, Haltiwanger, and Schuh. The IV
estimates are two-stage least squares estimates using the number of OSRD contracts in each state during World War
II. ∗,∗∗ ,∗∗∗ represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level.
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Figure A-7: The Geography of Inventiveness over Time: Patents per 10,000
Panel A: 1880 Panel B: 1900

Panel C: 1910 Panel D: 1920

Panel E: 1930 Panel F: 1940

Notes: Figure maps the number of patents per 10,000 residents in each state of the mainland U.S. in each decennial
census year of our data. Darker colors represent more inventive activity per resident. Patent data come from the
USPTO’s historical patent files, while population counts are calculated using the U.S. Census.
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Figure A-8: The Geography of Inventiveness over Time: Inventors per 10,000
Panel A: 1880 Panel B: 1900

Panel C: 1910 Panel D: 1920

Panel E: 1930 Panel F: 1940

Notes: Figure maps the number of unique inventors per 10,000 residents in each state of the mainland U.S. in each
decennial census year of our data. Darker colors represent more inventive activity per resident. Patent data come from
the USPTO’s historical patent files, while population counts are calculated using the U.S. Census. Source: Historical
Census Data, USPTO patent records.
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Table A-8: Who Became an Inventor? Controlling for Occupation Fixed Effects

(1) (2) (3) (4) (5) (6)
Father Inventor 0.292∗∗ 0.292∗∗ 0.288∗∗ 0.292∗∗ 0.289∗∗ 0.290∗∗

(0.135) (0.135) (0.135) (0.135) (0.135) (0.135)
Father Income 90th − 95th %ile 0.000 -0.003 -0.002

(0.002) (0.002) (0.002)
Father Income 95th %ile and above -0.001 -0.007∗∗∗ -0.006∗∗∗

(0.002) (0.002) (0.002)
Father: High School Graduate 0.002 -0.003 -0.002

(0.002) (0.002) (0.002)
Father: At least Some College 0.001 -0.009∗∗∗ -0.008∗∗∗

(0.002) (0.002) (0.002)
Self: High School Graduate 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001)
Self: At least Some College 0.034∗∗∗ 0.035∗∗∗ 0.035∗∗∗

(0.005) (0.005) (0.005)
Occupation FE Y Y Y Y Y Y
Observations 51078946 51078946 51078946 51078946 51078946 51078946
Mean of Dep. Var. 0.017 0.017 0.017 0.017 0.017 0.017

Notes: Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects,
and controls for race, sex, migration status, a quadratic in age, and father’s age. Columns (2) through (5) include
indicators for father being between the 50th and 75th percentile of income, and between the 75th and 90th percentile
of income as independent variables. The omitted categories are below median income and less than high school
eduction. All columns include fixed effect controls for Census-defined occupation categories, including those with
missing occupation data as a separate category. Source: 1940 Historical Census Data, USPTO patent records.

Table A-9: Individual Background and Career Citation Counts

(1) (2) (3) (4) (5)
Father Inventor 0.692 0.682 0.544 0.708 0.557

(0.513) (0.466) (0.477) (0.485) (0.498)
Father Income 90th − 95th %ile -0.257 -0.244

(0.340) (0.343)
Father Income 95th %ile and above 0.237 0.170

(0.373) (0.368)
Father: High School Graduate 0.221 0.118

(0.220) (0.220)
Father: At least Some College 0.198 0.073

(0.175) (0.175)
Self: High School Graduate 0.006 0.005

(0.064) (0.063)
Self: At least Some College 0.280∗∗∗ 0.280∗∗∗

(0.048) (0.049)
Observations 9032 9032 9032 9032 9032
Mean of Dep. Var. 3.205 3.205 3.205 3.205 3.205
S.D. of Dep. Var. 1.964 1.964 1.964 1.964 1.964

Notes: Table reports coefficients from a regression in which the dependent variable is log one plus career citation
counts for the sample of inventors in our matched sample. Standard errors clustered at the state-level reported in
parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, a quadratic in
age, and father’s age. Columns (2) and (3) include indicators for father being between the 50th and 75th percentile of
income, and between the 75th and 90th percentile of income as independent variables. The omitted income category is
below median income, and we omit an indicator for the individual having less than a high school education. ∗,∗∗ ,∗∗∗

represent that coefficients statistically differ from 0 at the 10%, 5%, and 1% level. Source: 1940 Historical Census Data,
USPTO patent records.
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Figure A-9: Relationship between Wage Income Inequality and Inventiveness: Inequality

Measures Excluding those Working in Financial Sector

Panel A: Ratio of 90th
to 10th Panel B: Gini Coefficient

Percentile of Income
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Panel C: Share of Income held by Top 1%
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Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and the
state-level wage income inequality observed in the 1940 census. All wage inequality measures exclude those who
work in the financial sector. Panel A measures income inequality with the ratio of the 90th percentile to the 10th

percentile of income, while panel B uses the Gini coefficient as its measure. Panel C measures inequality by the share
of income controlled by the top 1% of the state’s wage earners. Source: 1940 Historical Census Data, USPTO patent
records.

A-24



The Rise of American Ingenuity (Online Appendix)

Figure A-10: The Relationship between Innovation and Top Income Shares

Panel A: Top 10% Share Panel B: Top 5% Share
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Panel C: Top 0.1% Share Panel D: Top 0.01% Share
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Notes: Figure plots the relationship between average patents per 10,000 residents between 1920 and 1940, and the
state-level wage income inequality. Source: 1940 Historical Census Data, USPTO patent records, Frank (2009).
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Table A-10: T-tests of Difference between Inventor and High-Skill Non-Inventor Wages

over the Life Cycle

Age Group Inventor High-Skill p-value
Mean Log Wage Mean Log Wage

19-25 6.610 6.141 0.000
(1.025) (0.922)

26-35 7.608 6.665 0.000
(0.703) (0.857)

36-45 7.884 6.791 0.000
(0.725) (0.906)

46-55 7.854 6.741 0.000
(0.793) (0.942)

56-65 7.696 6.586 0.000
(0.977) (1.000)

Notes: Table reports average log wages for inventors and high-skill non-inventors within each age group. Wage
income data taken from 1940 Census. Standard deviations reported in parentheses below means. Final column
presents p-values from a two-sided t-test of means among inventor and high-skill non-inventor populations. Source:
1940 Historical Census Data, USPTO patent records.
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