

Algorithmic Foundations for Business
Strategy

Mihnea Moldoveanu

Working Paper 17-036

Working Paper 17-036

Copyright © 2016 by Mihnea Moldoveanu

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may
not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

Algorithmic Foundations for Business
Strategy

Mihnea Moldoveanu
Visiting Professor
Harvard University Graduate School of Business Administration
Professor of Business Economics
Desautels Professor of Integrative Thinking
Director, Desautels Centre for Integrative Thinking
Vice-Dean, Learning, Innovation and Executive Programs
Rotman School of Management, University of Toronto

Page | 2

Abstract

I introduce algorithmic and meta-algorithmic models for the study of strategic

problem solving, aimed at illuminating the processes and procedures by which strategic

managers and firms deal with complex problems. These models allow us to explore the

relationship between the complexity of an environment, the sophistication of the problem

solving processes and procedures used to optimally map problem statements into strategic

actions, and the organizational structures that are best suited to the implementation of

solutions. This approach allows us to distinguish among levels of sophistication in the

strategic management of complex predicaments, specifically among rational, irrational, quasi-

rational and super-rational problem solving processes and responses of strategic managers

and organizations. It highlights a set of dynamic search and adaptation capabilities that can

be studied via the algorithmic and computational properties of the problems they are meant

to solve and the efficiency and reliability by which they search a solution space. It points to

several new components of competitive advantage that are linked to the complexity

adaptation of a firm: ‘offline problem solving’ and ‘simulation advantage’ emerge as key

strategic differentiators for firms facing complex problems.

Page | 3

1. Introduction: Strategy and Algorithmics

All life is problem solving.

Karl R. Popper

Using tools and models from computational complexity theory and the algorithmics
of hard problems that are new to the strategy field, this paper addresses the question of how
strategic process and structure adapt to the complexity of the strategic scenario or
predicament. Relevant literature has focused on the effects of environmental complexity on
firm level decision processes and strategic outcomes (Levinthal, 1997; McKelvey, 1999) and
on the barriers and obstacles to adaptation, performance and imitation that complexity raises
at the level of optimization and decision processes [Rivkin, 2000; Denrell and March, 2001]
and organizational structures [Siggelkow and Rivkin, 2005; Davis, Eisenhardt and Bingham,
2008]. An algorithmic perspective on the strategic problems faced by the firm opens up the
opportunity to systematically explore optimal adaptations to complexity at the level of both
problem solving processes and organizational architectures, and to distinguish between different
levels of sophistication in the ways in which strategic processes and structures deal with
complexity. The current paper pursues this opportunity by contributing an algorithmic and
computational model of strategic problem solving that allows researchers to distinguish
between different levels and kinds of adaptations to complexity; and to explore the fit
between the canonical strategy problems a firm faces, its stock of problem solving
procedures, and its architectural and procedural adaptations to complexity.

The question of strategic adaptation to complexity has received significant attention
in the strategy literature [McKelvey, 1999; Rivkin, 2000; Siggelkow and Levinthal, 2003,
2005; Moldoveanu and Bauer, 2004; Siggelkow and Rivkin, 2005 Moldoveanu, 2009], which
has built on the ‘organizations-as-problem-solving-entities imagery and associated
distinctions of the Carnegie School [March and Simon, 1958; Cyert and March, 1963] to
showcase the ways in which strategic choices more or less successfully map changes in
organizational structure and function to payoffs as a function of internally and externally
generated complexity. This literature has used models strategic environments adapted from
complex adaptive systems research [Holland, 1962; Kauffman, 1969, 1993, 1995] to study
the interaction between strategic choices and consequence under complexity-induced
constraints, and pointed to a range of structural, cognitive and procedural adaptations to
complexity that have broadened both the scope of strategy research and the strategist’s
toolkit. I sharpen the focus of the study of ‘strategy and complexity’ by introducing an

Page | 4

algorithmic and computational perspective on strategy making, which allows us to draw new
and useful distinctions when gauging the effectiveness of strategic processes and the
capabilities of strategic managers faced with complexity. It uses the lexicon of computational
complexity theory and ‘algorithmics’ to model the ways in which strategic managers ‘set
strategy’ by solving ‘hard problems’ – problems that are likely to confront them in complex
environments - and shows how problem solving procedures, capabilities and the
organizational structures they engender can differentiate between more or less effective
strategic processes and procedures.

I build on recent work that links structural and functional complexity to the
computational complexity of solving an adaptation problem in a complex environment, but
expand the range of models of the firm-environment nexus that we can apply complexity
analysis to. Following [Porter, 1996], Rivkin [2000] models firms as coupled activity systems,
which in turn are modeled, following [Kaufmann 1969; 1993], as Boolean networks of N
nodes with K edges per node, wherein the state of each node evolves as a function of the
previous state of that node and the states of all of the nodes linked to it by edges. If we
model strategic choices as periodic decisions over alternative coupled activity sets, and
activity sets as evolving NK networks, we can understand the problem that the strategic
manager solves as that of predicting the evolution of various NK networks that model the
value linked activities comprising the fabric of the business. Rivkin [2000] points out that
this problem is technically intractable [Weinberger, 1996] – in the sense that the number of
operations required to solve it grows exponentially with N for K>2 - and infers that
successful ‘complex’ strategies (high N, high K) are hard to imitate in the sense that
successful imitation is statistically very rare. But a careful, algorithmically informed analysis
of the computational complexity of optimizing NK fitness functions [Wright, Thompson
and Zhang, 2000] shows that there exists a tractable approximate solution algorithm for
optimizing NK fitness functions with arbitrary N and K , suggesting that complexity-related
barriers to imitation may be weaker if the fitness landscape is not sharply peaked and that
the imitator is in the possession of the right search procedure (the approximation algorithm
whose performance they demonstrate). Such findings highlight the importance of
understanding the precise computational structure of the optimization problem that the strategist is trying
to solve. They suggest that a computational perspective should be applied to other canonical
strategic problems that are known to be intractable - such as finding the Nash Equilibrium in
a competitive game that guarantees the firm a set minimum payoff [Gilboa and Zemel,
1989], or finding the maximum-value configuration of a product’s costly features and
attributes subject to a maximum cost constraint [Moldoveanu, 2009]. Modeling strategic
choice and optimization problems in terms of the algorithms that most efficiently solve
these problems, and complexity in terms of the computational complexity of these

Page | 5

algorithms extends the range of models of strategy making that we can study from a
complexity perspective.

I extend previous research that models the effects of computational complexity on
strategic choice and optimization by introducing a range of algorithmic and architectural
adaptations to complexity that differ in terms of effectiveness, efficiency and reliability. They
provide measures of the capability of a firm or a strategic manager to search or explore the
solution space [Newell and Simon, 1972] of a strategic problem. This represents an advance
on models of adaptations to complexity which posit that strategic managers systematically
avoid certain classes of problems on the basis of their degree of difficulty. Moldoveanu [2009]
uses the time complexity hierarchy (P-NP, or, tractable-intractable) devised for the study of
hard problems to study the ways in which strategic managers solve problems, and marshals
empirical and experimental evidence to argue that strategic managers systematically choose
tractable over intractable problems as ways of representing their raw predicaments. He
argues strategic managers exhibit lexicographic preferences over problem types (P>NP) and
register or collect information solely on the variables needed to solve the tractable problems
which they have chosen. He predicts that one of the key signatures of computational sloth -
the systematic and non-adaptive unwillingness to think in terms of NP-hard problems on the
part of managers – is systematic ignorance of a set of variables, such as network position or
competitors’ reaction function, that would only matter if managers were actually engaged in
solving NP hard problems such as computing an optimal network strategy or finding the
Nash equilibrium in their buyer-seller market). I argue, however, that brute force truncation
of the solution process and lexicographic problem selection are but two of several strategies
that strategic managers and firms can use to solve problems for which exhaustive searches of
the solution space are computationally expensive. I show how meta-algorithms and
heuristics [Hromkovic, 2003; Michalewicz and Fogel, 2004] can be both used to structure the
process of solution search so that polynomial time searches will yield acceptable answers to
NP-hard problems, and how the deployment of such algorithms can be understood to lie at
the foundation of the firm’s adaptive strategic advantage. We are, as a result, able to texture
our understanding of the rationality of strategic managers in ways that go beyond the
distinctions between ‘full’ and ‘bounded’ rationality and ‘optimizing’ versus ‘satisficing’
[Simon, 1978; 1991] and include forms of (hyper)rationality that take into account the costs
and benefits of the processes by which optimization is carried out. Key to such hyper-
rational patterns of strategic response is the set of solution space search procedures
(algorithms) that an organization can implement. The algorithmic language introduced here
gives us a set of models for measuring the fit between the structure of a strategic problem
and the algorithmic suite of procedures for solving it.

Attempts to understand organizational responses to turbulent environments [Rivkin
and Siggelkow, 2003, 2007; Siggelkow and Rivkin, 2005, among others] have also focused on

Page | 6

examining changes in organizational structures or architectures (more/less centralized
decision making authority; more-fewer couplings among outcomes of individual level
decisions) to different environmental regimes (more/less uncertainty; longer/shorter
required organizational response times). However, structural modifications to an
organization are costly, and the time required for their implementation is sometimes shorter
than that needed for a survivable response. Virtual search for optimal solutions - like
‘fictitious play’ in the theory of games [Brown, 1951]– can provide a low(er) cost alternative
to solving a strategic adaptation problem by making actual changes to a firm’s allocation of
tasks, incentives and decision rights. An algorithmic analysis of a firm’s strategic problems
will be shown to give us tools for gauging a firm’s strategic ‘simulation advantage’, which
arises from its ability to explore, ‘off-line’, the solution spaces of difficult strategic problems
more reliably and efficiently than its competitors. ‘Off-line’ strategic problem solving can be
a useful complement to the ‘on-line’ exploration of fitness landscapes involved in actual
experimentation, provided that the problem statement guiding the offline, virtual search
closely tracks the causal structure of the problem statement that guides an online search. But,
unlike approaches to simplification in strategic problem solving [Gavetti and Levinthal,
2000; Gavetti, Levinthal and Rivkin, 2005; Gavetti and Rivkin, 2006] that rest on
representational simplifications – such as metaphors and analogies - to model the ways in
which strategic managers think their way through complexity, the current work shows how
computational short cuts and fast solution algorithms can also function as effective
simplification devices for strategic problems.

Structural strategic adaptations to high complexity regimes are also be informed by
the algorithmic models of problem solving introduced here. Some of the technically ‘hard’
problems of business strategy are more susceptible than others to decentralized and parallel
search processes, and some problems will be more likely to yield to fully decentralized (or,
random) search processes than others. The kind and degree of structural changes (such as
thickening, patching, coasting and trimming [Siggelkow, 2002]) that will produce beneficial
effects in the face of environmental change will depend on the algorithmic structure of the
firm’s problems and its solution space search procedures - in the same way in which
understanding the class of problems a RISC processor is designed to solve and the class of
algorithms it is designed to implement can inform optimal architectural enhancements to it.

Some work in economics [Rubinstein, 1993] has for some time now posited that
agents may differ not only with respect to their preferences and beliefs, but also with respect
to their logical and computational prowess. Bounds to computational prowess are also
bounds to the sophistication of search procedures [Levinthal, 1997], and make the
difference between ‘luck’ and ‘skill’ based explanations of strategic outcome [Denrell, Fang
and Winter, 2003]. This work extends attempts in microeconomics [Rubinstein,1986; 1993 ;
Gilboa and Zemel, 1989] and the theory of computation [Daskalakis, Goldberg and

Page | 7

Papadimitriou, 2006] to model the behavior of agents solving complicated decision problems
in the face of bounds to the depth of the logical computation they can perform . It broadens
the reach of the approaches of these prior papers by (1) showing how large classes of
business strategy problems can be understood in terms of their computational structure and
complexity, (2) how the time complexity of the associated solution algorithms can be
measured by inclusion of the canonical problems in one of the classes of algorithmic
problems known to be either tractable or intractable, (3) how the science of designing
algorithms for hard problems (‘algorithmics’) [Hromkovic, 2003; Michalewicz and Fogel,
2004] can be used to understand both a firm’s adaptation to complexity (by making
intractable problems locally tractable) and superior performance (by developing a capability
for adaptively solving hard problems under resource constraints). It extends these analyses
by applying a complexity hierarchy not only to understanding how strategic managers solve
the problems of their business (cost reduction, strategic pricing, tactical pre-commitment,
profitable product re-positioning or industry diversification) but also to understanding the
basic ways in which managers think about data, principles, rules, solution spaces, and about
search itself in terms of solving problems of known complexity and structure.

Outline. I show how strategies can be understood as the outcome of computational
processes and as algorithmic solutions to strategic problems, and demonstrate the generality
of the model by showing how many core problems of strategy can be reduced to canonical
algorithmic processes of measurable time complexity. I show that intractability in itself need
not pose an insurmountable barrier to strategy: There are families of meta algorithms and
heuristics for solving intractable problems ‘accurately enough, enough of the time’ in
acceptable amounts of time and under viable resource constraints; and many strategic
formulation processes can be understood as the application of such meta-algorithms to
strategic problems. I put forth an adaptive capacity to solve hard problems (often
corresponding to ‘complex’ problem solving environments) as a source of firm-level
advantage, and create a three-dimensional measure of competitive advantage that
incorporates the quality (precision, accuracy) of the solution produced, the probability of
reaching that solution under time and resource constraints (its reliability), and the speed with
which a solution of minimum acceptable quality is reached (its efficiency). I derive the
implications of the algorithmic perspective for the empirical study of strategic procedure,
process, outcome and performance in terms of a three-fold dependence: of problem solving
procedures on the computational complexity and structure of the firm’s strategic problems,
of the optimal structure of the organization on the choice of problem solving procedure, and
of the metrics and performance measures for problem solving processes on the specific
procedure used to solve a strategic problem.

Page | 8

2. Three Motivational Examples. Consider the following as examples of the ways in which the
complexity of a problem matters to the strategic and technological choices of a business, and
the way in which prior insight into the complexity of the problem matters to a firm’s strategic
choices.

Example 1. Google, Inc.’s co-founders [Bryn and Page, 1998] solved the problem of
producing a search engine for billions of WWW pages without either avoiding the problem
[as Moldoveanu, 2009 would predict] or ‘just stumbling’, via haphazard search [Cyert and
March, 1963; Newell and Simon, 1972] onto the solution. The problem that the search
engine solves –that of providing a ranking of web sites in terms of relative popularity,
influence or impact – can be represented as the problem of searching all of the paths
through a potentially not-fully connected graph (the network of all 1 Billion www pages
existing circa 1999) to find those containing the site of interest and tabulating the number of
paths in the network that pass through each node – which would require enumerating all such
paths, whose number is an exponential function of the number of nodes (1Bn). The insight
on which the Google search engine, circa 2000, (‘PageRank’) is based captures the basic
intuition of ranking pages that have more links pointing to them more highly, but restricts
itself to measuring the relative number of citations among pairs of web sites (i.e. how many
times does page A cite page B, normalized by the total number of citations A makes). As a
result, it provides an approximate measure of importance that tracks – but does not always
equal – the exact solution based on the exhaustive enumeration of all paths through the
network.

Example 2. Cisco Systems, Inc.’s makes (designs, builds, sells, services) network
appliances that link end users, through network hubs (switches and routers) to one another
and to central transmission points. It is constantly solving the problem of providing mutually
interoperable hardware, software, firmware and netware ‘stacks’ (protocols, encoding,
decoding and signal formatting algorithms running on custom and general purpose silicon)
aimed at matching customer demands with the lumpy characteristics of existing platforms,
the hard-wired specifications of a large number of IEEE and ETSI technical standards and a
set of gross margin and operational cash flow constraints. Rather than executing ‘brute force’
searches of all possible solutions to this very large scale optimization problem, Cisco evolved
into an ‘acquisition machine’ of technology firms (and proceeded to acquire some 180 firms
as of 2011, an average of 6.7 firms acquired per year) that independently and asynchronously
searched the solution search space, under the influence of high powered incentives provided
by venture capital investments and the prospect of a high-valuation ‘exit’ (in the form of an
acquisition by Cisco). This strategy seems to heed the well-known insight [Garey and
Johnson, 1983] that the problem of evaluating the set of solutions to an intractable problem
for satisfaction of a performance target is a tractable problem. The difficulty of intractably
large optimization problems consists in the exhaustive enumeration of the solutions in the

Page | 9

search space, which must precede the independent evaluation of each candidate; uncoupling
enumeration from evaluation results in a massive decrease in the computational complexity of
the task. By contrast, what used to be Nortel, Inc. became famous for a ‘not-invented-here’
syndrome that saw the company attempt to develop and re-develop, from scratch, all of the
hardware and software stacks for its network appliances and base stations, ranging from
DMS switches to WiMax base stations. Cisco today has a market capitalization of over $100
Bn, whereas Nortel filed for bankruptcy in 2010.

Example 3. The securitization of cash flows arising from mortgage debt repayments is
widely believed to have contributed to the worldwide financial crisis of 2007 and 2008, but
the connection between the nature of the crisis of confidence and trust in inter-bank lending
and acquisition of mortgage derivatives has only recently been signaled [Arora, Barak,
Brunnermeier and Ge, 2010]. The complexity connection revolves around the well known
‘market for lemons’ model of Akerlof [Akerlof, 1970]: if buyers know that 20% of the used
cars in the market are ‘lemons’, the price of a used car is $10,000.00, and they cannot easily
tell lemons apart from reliable cars, then they will not be willing to pay more than $8000.00
for a used car, which would cause those who do sell reliable cars to pull out of the market
(because they do not want to sell at a 20% discount), leaving the market to grind to a halt. It
is possible for Bank of Limonia, say, to create a set of iN derivatives (CDO’s) whose payoff
depends on the probability of default of up to M different mortagegs (or, tranches of
mortgages) coming from C different risk classes in such a way that a buyer who wants to
figure out whether higher-probability-of-default-mortgages (‘lemons’) are reflected in any
pool of securities would need to calculate whether there is any class of mortgage that is over-
represented in the design of the derivatives, which requires considering all of the links in the
bi-partite graph linking asset classes and derivatives, which is a computationally intractable
problem. [Arora et al, ibid] show that a computationally bounded buyer would not be able to
figure out whether or not the lower payoff is due to change or to the special design of a
lemon by the seller. Knowing this, buyers should rationally choose to stay away from the
market altogether.

These examples highlight the importance of complexity – as a measure of the
difficulty of solving certain problems – to both the specific design of a strategy and to
strategic outcomes. Moreover, they highlight ways in which insight into the complexity of a
large scale optimization or decision problem can be advantageously incorporated in the
strategy making process.

3. Managerial and Organizational Algorithmics: The Study of the Computational Structure of Business
Problems and Problem Solving Processes. The computational (or, ‘time’) complexity of a problem
has become an established measure that indexes the worst- case number of operations that
the most efficient known procedure – or, algorithm – for solving that problem will take up
[Cook, 1971 is the seminal paper; Papadimitriou, 1994 provides a thorough review; Rivkin,
2000, Moldoveanu and Bauer, 2004, Moldoveanu 2009 apply the measure to quantifying the

Page | 10

difficulty of solving business problems]. Computational complexity is expressed as a
function, C(N), of the number of independent variables N of a problem statement. These
variables may be the set of arguments and constraints of an optimization problem (which
produces a vector or scalar corresponding to the optimum as a solution) or a decision
problem (which produces a 0 (‘no’) or a 1 (‘yes’) as the answer. The functional form of C(N)
lets us distinguish among different types of strategy problems. Some problems can only be
solved by algorithms with time complexity that grows very quickly as a function of the size
of the input, whereas others can be solved by algorithms whose time complexity grows
rather more slowly.

‘Very quickly’ and ‘more slowly’ need tightening: the polynomial-time property was
introduced to provide it. Polynomial-time problems (P) are those problems that can be
solved by deterministic solution algorithms whose (worst case) complexity is at most a
polynomial function of the number of input variables, i.e. C(N) = Pk(N) is the kth degree
polynomial of the argument, where 0≤k<∞. By contrast, Nondeterministic Polynomial Time
(NP) problems are problems that can be solved non-deterministically by polynomial time
algorithms or deterministically by algorithms with super-polynomial (eg exponential, factorial)
time complexity - i.e. C(N) > Pk(N) for any k, and, typically, C(N)≥ekN. The relevance of the
exponential term in rendering the exact solution of problems with even small N (30-100
variables) impractical for state of the art computational devices is well covered in standard
references [eg Garey and Johnson, 1983; Papadimitriou, 1994]. NP-hardness (for
optimization problems; NP-completeness for decision problems) is the key signature of
intractability of a problem, as a problem solver will predictably run out of time when trying to
solve it via a deterministic algorithm that exhaustively searches its solution space. Because of
this, intractability is sometimes held to entail practical unsolvability [Rivkin, 2000]. But, as we
shall see, intractability need not entail unsolvability: many intractable problems will yield to
approximation and randomization-based search procedures which can provide ‘good
enough’ solutions which, moreover, can be monotonically improved through additional
computation.

The algorithmic study of the ways in which strategic managers solve problems entails
(Figure 1) the articulation of well-defined, well-structured (WDWS) problems that represent
the predicaments faced by the firm’s managers and the encoding of these problems via a set
of canonical problem statements (decision or optimization problems) whose complexity can
be measured. We can thereby classify them as easy, hard or intractable and study of the ways
in which strategic managers and firms go about solving them by comparing the managers’
problem solving processes with ‘optimal’ or ‘quasi-optimal’ algorithms that have been
designed to solve canonical problems in various complexity regimes.

Page | 11

Problems

Well
Defined

Ill Defined
(No well defined
current, desired
state, search space)

Well
Structured

Ill Structured (wicked)
(Search space defined
but changes as a
function of search
process

Easy
(Linear or
constant)

Hard
(nonlinear)

Tractable
(P hard)

Intractable
(NP hard/complete)

Figure 1: Business Problems: A Map

Figure 2 represents the modeling operation by which problems of strategic managers
are encoded as canonical problems whose time complexity can be estimated. P hard
problems encode both ‘easy’ and ‘hard’ problems that are nonetheless tractable as a
canonical set of problem statements such as linear optimization, searching, sorting and
ranking of options, pattern matching. Appendix I presents a canonical ‘library’ of P-hard
problems useful for the study of strategy because their solution algorithms can be used to
encode a large number of production tasks that a strategic manager or management team
undertakes.

 NP hard (complete) problems encode intractable problems, whose complexity
grows exponentially or super-exponentially as a function of the number of variables in the
problem statement. They include problems of finding the equilibria of competitive games,
designing strategic products or solutions with lumpy constraints and optimizing the network
flow of information, trust, matter and money. Appendix II presents a library of canonical
NP-hard/NP-complete problems that encode another large class of problems of strategic
management. The Appendices are summarized in Table 1.

Page | 12

WDWS
Problems

Recognizing Options

Super-
Polynomial Time
Complexity
NP)

Polynomial
Time
Complexity (P)

Optimizing own
network position

Easy
(Constant or
Linear
Complexity)

Hard (Super-
linear
Complexity)

Tractable

Intractable

Sorting Options

Ranking Options

Pattern / Trend
Recognition

Linear Optimization:
Pricing, inventory,
Cash flows

Optimizing network
information flow

Designing sets of linked
activity systems for
optimal performance

Discovering Nash
Equilibrium strategy sets

Inductive, deductive,
abductive inference

Figure 2: Using Algorithmic Complexity Classes to Map the Problems of Business

Canonical
Problem

Problem Statement Complexity
Class

Examples of Managerial Problems
It Encodes

Correlation Calculate correlation
between two vectors (e.g.
time series)

P Reasoning by analogy: Find
situation/object with characteristics
most similar to current one

SORT Order a random list
according to a criteria

P Rank a set of alternatives in terms of
payoffs, desirability/utility

K-SAT Given a set of elementary
propositions, determine
whether or not they
satisfy a set of clauses

NP Predict evolution of densely
connected value-linked activity chain,
modify a contractual agreement in a
self consistent fashion.

Page | 13

Canonical
Problem

Problem Statement Complexity
Class

Examples of Managerial Problems
It Encodes

TSP

(Travelling
Salesman
Problem)

Find minimum distance
path connecting N
locations

NP Optimize workflow on assembly line,
optimize information flow in network

KSP

(Knapsack
Problem)

Find optimal subset of
objects of known value
and volume that fit into a
finite volume bag

NP Find optimal set of product features
of fixed cost that will maximize profit

CLIQUE Determine whether or not
a graph G has a clique of
size K

NP Find strategic equilibrium of a
complexity game that has a given
minimum payoffs; find specific cliques
in a organizational or inter-
organizational network.

COVER Find minimal set of
subsets of S whose union
covers S

NP Find the optimal set of predictors for
the values of a variable {Y}

MIN
VERTEX
COVER

Find minimal set of
vertices in a graph that
span all of its edges

NP Network search problems: find
maximally connected set of
organizations or individuals in a
network.

Table 1: Canonical Problems of Known Time Complexity (Columns 1,2) and the
Problems of Strategic Management That They Can Be Used to Encode (Column 4).

Page | 14

Canonical problem statements provide a toolkit for analyzing not only the substantive
problems of business strategy (selection of the optimal activity set, large scale optimization
of cost structure via operational optimization, strategic product and platform design choice
of partners in a strategic network in order to maximize network advantage, the strategic
design of contractual arrangements by the construction of a set of clauses that map states of
the world and actions of the contractants onto payoffs via jointly agreeable mapping
functions) , but also the fundamental modes of thinking of strategic managers as they tackle the
problems of their business [Moldoveanu, 2011]. These include ‘one-off, frugal’ heuristics
such as the recognition heuristic and one-reason decision making (Figure 3a), as well as more
complicated and systematic patterns of thought such as regression-based learning (EXACT
COVER), inductive (COVER), deductive (K-SAT), and abductive (KSAT, COVER) (Figure
3b). The resulting map is as much a canonical map of the problems of strategy as it is a
mapping of strategic managers’ modes of thinking through the problems of strategy (Figure 3b).
One of the advantages of the canonical approach to describing strategic thinking qua
computation is the availability of a common language for describing both the products and the
processes of managerial thinking.

Implications for Strategic Managers’ Cognitive Simplification of Problems. The important point
is that the basic patterns of inference that managers would need to use to make optimal
inferences (the best explanation from among a number of explanations all supported to
some extent by the available data set (abduction); the best inference to a set of rules or
regularities that most parsimoniously explain a data set (induction); self-consistently adding
an explanatory axiom or assumption to a set of axioms in a model (deduction)) can itself be
understood as solving an intractable (NP hard) problem. Informational restrictions on problem
statements [Denrell, 2007; Denrell and March, 2001] and cognitive frames and metaphors
meant to provide simplifications of such inference problems can be understood as
simplifications of the computational task of solving the full inference problem (deductive,
inductive, abductive) which is unsolvable for high numbers of independent variables,
especially when the problem is in the NP (intractable) complexity class). The implication of
this mapping for strategic problem solving research is that the use by strategic managers of
simplifications and informational restrictions is doubly contingent: it will vary both with the
number of variables in the problem statement (N) and with the computational complexity of
the problem (P, NP).

Page | 15

Heuristic or
Algorithm

Upper-bound on
Computational
Complexity

Complexity Class Relative Frequency of
Utilization (predicted
and/or estimated)

Availability heuristic MN2 P Presumed High

Representativeness
Heuristic

MN2 P Presumed High

Recognition Heuristic M P High

Minimalist Heuristic M(N+1) P Medium

Dawes’ Rule N(2M-1)+M P Low→Medium

Franklin’s Rule N(2M-1)+M P Low→Medium

Figure 3a: The Computational Complexity and Complexity Class Partitioning of
Commonly Used Heuristics for Making Inferences About M Entities, Using N
Available Cues That Offer Discrimination Value Between Any Two of the M Entities.

Mode of Thinking Algorithmic Model Time Complexity / Class

Analogical Correlation Super Quadratic (P)

Deductive Satisfiability Exponential (NP)

Linear Regression Set Cover Exponential (NP)

Inductive Set Cover Exponential (NP)

Abductive 3 Sat, Cover, Exact Cover Exponential (NP)

Figure 3b: Encoding of Systematic Modes of Managerial Thinking in Canonical
Forms.

Page | 16

4. Algorithmics for Hard Business Problems: Dynamic Search Capability as Strategic Ingenuity and
Degrees of Rationality. The decomposition of the ‘hard problems of strategy’ that emerges via
encoding strategy problems by intractable (NP hard optimization problems and NP
complete decision problems) canonical problems suggests that many – and perhaps most –
problems of business strategy are intractable. One can make sense of this result in several
ways. One approach [Rivkin, 2000] is to postulate that strategic problems that can be
accurately modeled by intractable canonical problems are only very rarely solved in real time by
managers or teams of managers. The NP-hardness of the problem of predicting the
evolution of a NK network that models value-linked activity chains, for instance, is held to
entail that complexity is hard to either imitate or replicate, and that it can be a source of local
competitive advantage because of the difficulty of replicating it. Another approach
[Moldoveanu, 2009] is to posit that NP-hard problems are systematically avoided by strategic
managers in practice by a mechanism of ‘lexicographic preferences over complexity classes’
of problems: Strategic managers prefer to solve P hard problems rather than NP hard
problems, even if the cost of solving the two problems is equal, which can occur for low N
(for instance: for N=4, 2N<N3) and will, accordingly, restrict their attention span to variables
that they need to solve P hard and not NP hard problems (Figure 4). They will, accordingly,
encode unstructured situations and difficulties (‘predicaments’) via problem statements drawn
from the P class, and avoid using NP class problem statements to turn their predicaments
into WDWS problems.

Manager’s
Mind

Competitor’s
product offerings

• Topology of firm’s
network

• Competitor’s
factor costs

• Competitor’s
conjectures about
focal firm

• Industry demand
conditions

• Own factor costs

Variables that manager does
not pay attention to…

Variables that manager
attends to…

• Determine optimal
network strategy
(NP)

• Determine set of un-
dominated strategies
(NP)

•Optimize inventory
(P)
•Find most informative
precedent for current
situation (P)

…which would matter if
manager solves

…to solve

Figure 4: Synthesis of “Inattentional Blindness” in Strategic Managers Induced by
Lexicographic Choices of Problem.

Page | 17

However, it is also possible that strategic managers and firms formulate and
sometimes successfully solve NP- hard optimization and NP-complete decision problems by
adaptive approximations. Strategic managers tackle hard design problems (finding the optimal
set of features of a product, subject to lumpy cost and multiple compatibility constraints),
craft complex contractual arrangements (articulating the optimal set of internally consistent
clauses compatible with a set of external constraints and expectations), perform root cause
analyses of challenges and difficulties (finding the minimal network of propositions or
hypotheses that best explain a set of data) and attempt to find specific subsets of Nash
Equilibria of pricing and pre-commitment games their firms engage in. They need not do so
by engaging in brute force searches that exhaustively plough through solution spaces.
‘Randomization’, ‘satisficing’ and ‘muddling through’ have for a long time been recognized
as hallmarks of organizational problem solving [March and Simon, 1958; Simon, 1991]. But,
this classical picture of satisficing and randomizing can and should be substantively refined in view of
the various adaptations to complexity that computational complexity theory contributes. I show that less-
than-exhaustive approaches to solving intractable problems are characterized by varying
levels of ingenuity, which I distinguish from organizational intelligence as follows: whereas
organizational intelligence relates to the sheer level of computational work (as in the intensity
of search) that an organization can coherently organize and marshal towards solving a given
problem, the ingenuity of the organization relates to the stock of alternative search
procedures (algorithms and meta algorithms) that can radically enhance the speed of the
search process over that achieved by exhaustive search and the desirability of the solution it
produces relative to that produced by blind randomization or other non-adaptive satisficing
manoeuvres.

 The Motivational Examples, Revisited. Let us re-examine the examples introduced earlier
through the lens of the proactive management of and adaptation to computational
complexity.

Example 1: Google, Inc. The problem of computing a measure of the relevance or
salience of every one of up to 1 x 109 www pages is computationally hard on any of the
measures of ‘centrality’ (in-degree betweenness, in-degree Bonacic) that could function as
plausible proxies, and which would have involved enumerating all or most of the
permutations and combinations of web pages. Moreover, this problem would need to be
solved at least once a day by any search engine claiming to provide an ‘ordering’ of the web
pages that provides a timely input to an interested user. Page [2001] created a special
centrality measure (‘Google’ centrality) that ranked the number of times a web page was
cited by any of up to k web pages relative to the number of times these pages cited other pages
and weighted by the centrality measure of the pages that cited the original page, and thereby
created a highly sparse 109x109 matrix that could be inverted (an order of 1018) operations,
executable within a day by a set of linked, parallel computational devices – a patent worth

Page | 18

over $300MM in options on Google shares to Stanford University after Google’s IPO in
2004. The key to the success of the search engine is the special adaptation to complexity that
it affords to one who wishes to compute centrality measures for the nodes of a very large
network in a short period of time.

Example 2. Cisco Systems, Inc.’s ‘production function’ can be represented by a
massive collection of COVER problems (see Appendix 2) representing the set of logical
consistency checks needed to maintain inter-operability and logical consistency among many
different networking and communication protocols. COVER is NP hard, but the solution
procedure can be broken up into an enumeration step – whereby all possible combinations of
the basic elements (standard specs, for instance) are laid out, and an evaluation step, whereby
each of the solutions is evaluated for consistency. Cisco’s targeted growth-through-
acquisition strategy capitalized on the fact that both steps can be parallelized, which means
that the generation and partial verification of solutions is provided by the market (fuelled by
the high powered incentives provided by venture-backed firms). More generally, in the
context of an industry with high network externalities in which generation of solutions that
‘fit’ is computationally intractable, a growth through acquisition strategy is coherent with the
insight that the problem of verifying the solution to an NP-hard problem is only P-hard
[Papadimitriou, 1994].

Example 3. The problem of detecting tampering in a large number of derivatives that
have been constructed from a large collection of mortgages that fall into many different risk
classes is computationally equivalent to that of identifying dense sub-graphs of a large bi-
partite network [Arora et al, 2010], which is NP-hard. To a buyer that either does not have
the computational resources to find the solution to the detection problem but understands
that the problem exists, the problem will be unsolvable, and the buyer will rationally choose
to stay out of the market, as Akerlof ‘market for lemons’ model predicts. If the prospective
buyer does not understand the computational structure of the detection problem, the
problem is non-existent. However, a buyer that is armed with a P-hard approximation
algorithm [as can be found in Charikar, 2000] for the detection of the dense subgraphs in a
network that gives a performance guarantee (it will not overestimate or underestimate by
more than a factor of 2, or of 1.x) there arises the possibility of investigating a pool of
derivatives with respect to the degree to which they have been tampered with, and thereby
rejecting the ‘lemons’ on the basis of a due diligence process that does not overwhelm
computational resources.

These cases highlight the importance of a structural (Cisco)or functional (Google)
adaptation to computational complexity. They point to the extent to which ingenuity – or,
the complexity-adaptive deployment of intelligent computation – can make a very large
difference both to strategic choice and ensuing dynamics. An algorithmic and
computationally informed study of strategic problem solving offers additional ‘resolving

Page | 19

power’ above and beyond the classical ‘satisficing-optimizing’ distinctions inherited from the
Carnegie School (Figure 5). Strategic managers faced with computationally intractable
problems have traditionally been deemed boundedly rational to greater or lesser degrees
depending on whether their solution search procedures are more characteristic of satisficing
approaches (random guessing, one reason or one criterion decision making) or optimizing
(commonly assumed to consist of exhaustive searches among possible solutions – including
multiple optima in the case of optimization problems and choosable options in the case of
decision problems). However, as the examples above highlight, strategic managers can also
function as ‘meta-optimizers’ who seek procedures for solving computationally hard problems
that are optimal given the structure and the complexity of the problem and the time and resource constraints
available for solving it –i.e ‘adaptively optima;’.

Is there a Silver Bullet Among Intractable Problem Solving Procedures? It is tempting to ask: is
there a problem solving procedure that ‘beats out’ all others on any given problem? A
powerful result from the theory of search [Wolpert, 2001] suggests that the adaptation of
problem solving procedures (algorithms) to the structure of the problem faced is a required
pre-condition for successful adaptation: Wolpert proves that no single algorithm or family of
algorithm can statistically or deterministically dominate any other algorithm against any hard
problem. Thus, ‘meta-rationality’ – as an adaptation to complexity – is grounded in the
insight of the strategic manager into the computational complexity and structure of the
problem under consideration and the range of problem solving procedures that strategist and
organization can devise and implement.

Figure 5: Illustrating Degrees of Computational Intelligence and Exploratory
Ingenuity in Strategic Problem Solving.

Page | 20

Strategic Ingenuity: Intelligent Adaptations to Complexity. The study of strategic problem
solving stands to learn a lot from feats of NP-hard problem solving (Figure 6) such as that
involved in solving a 4663 city TSP - wherein brute force would require C(4663-TSP)~ 5 x
10¹⁴⁰³ calculations, which would take 1.6 x 10¹³⁸³ years on a state of the art machine - in
about 6.9 minutes on a non-state-of-the-art Pentium-powered PC via a local neighborhood
search algorithm devised by Lin and Kernighan [1973]: The degree to which a problem is
‘solvable’ within the available resource limitation of the problem solver depends on (a) the
structure of the problem and (b) the nature of the solution search procedure. The Lin-
Kernighan ‘local neighborhood search’ heuristic was used to produce a reduction of 101384 in
the time required to find the shortest path linking the 4663 cities.

Problem:
“Find minimum-length
tour connecting Canada’s
4663 cities”

Solution:

Figure 6. A TSP Problem Search Space for Canada’s 4663 Cities and Solution to the
Problem Using Lin Kernighan Local Search Heuristic

Page | 21

The examples above suggest that one should look carefully for a systematic way to
study ‘good enough’ solution procedures for hard problems (‘ingenuity’) – as well as to
precisely characterize ‘good-enough-ness’ on a problem-specific basis - and that is what the
field of ‘algorithmics for hard problems’ [Hromkovic, 2003; Michalewicz and Fogel, 2004]
provides. I examine families of algorithms and algorithm design techniques (‘meta-
algorithms’) for solving intractable problems, and show how the judicious deployment of
such techniques can form the basis of both ‘adaptive strategy-making’ and of a new measure
of adaptive advantage.

 Table 1 provides a road map to this project: Faced with a difficult (intractable)
problem, strategic managers can engage in a full, exhaustive search of the space of solutions
(which may exceed the computational and operational limits of the strategist and the firm);
they can engage the kind of blind, random guessing at a solution that characterizes
‘muddling through’; or they can use complexity-adaptive search methods which involve
intelligent approximation and randomization to arrive at a good enough solution most of the
time. In order for a model to add value to a research enterprise, this approach should allow
researchers to make new and more precise distinctions that can be linked to measurable
properties of the process and outcome of strategic search. Table 2 summarizes the ways in
which intelligent approximation and randomization procedures for solving intractable
problems can be distinguished at the levels of process and outcome from blind
randomization - ‘just guessing’ and ‘muddling through’, as elaborated below.

Algorithmic or
Meta-Algorithmic
Procedure for
Solving
Computationally
Hard Problem

How it Differs from Blind Search and Random Guessing at the Level of
Process and Outcome Pattern

Branch and Bound

(Strategic Solution) Process: rapid, tree-structured generation and evaluation of trial
strategic solutions and elimination of under-performing families of solutions;

Outcome (performance) Pattern: lower number of trial solutions, lower probability of
competency traps (local optima), faster convergence to global optimum.

Divide and Conquer

(Strategic Solution) Process: early partitioning of strategic solution search space into more
easily searchable sub-spaces, parallelization of the search effort;

Outcome (performance) Pattern: lower number of trial solutions (local optima), ower
probability of getting caught in local optima, faster convergence to global optima.

Page | 22

Algorithmic or
Meta-Algorithmic
Procedure for
Solving
Computationally
Hard Problem

How it Differs from Blind Search and Random Guessing at the Level of
Process and Outcome Pattern

Local Neighborhood
Search

(Strategic Solution) Process: early iterative modification of a promising trial strategic
solution and evaluation of modified variants vis a vis first guess and subsequent
modifications, continued iterative search around local optima;

Outcome (performance) Pattern: clustering of intermediate solutions around a local subset
of the solution search space; lower spread of the local optima to which solution procedure
converges; lower probability of settling into local optimum; faster rate of convergence to
global optimum.

Stochastic Hill
Climbing

(Strategic Solution) Process: early generation of multiple starting points and trial solutions
for the strategic search process, frequent evaluation of solutions vis a vis one another and vis
a vis solution criteria;

Outcome (Performance) Pattern: lower probability of getting caught in local optima, higher
probability of escaping local optima and finding global optimum, faster convergence to global
optima.

Genetic/

Evolutionary Search

(Strategic Solution) Process: early and parallel generation of components of global solution,
frequent alteration and recombination of candidate components into multiple candidate
solutions, frequent evaluation of overall solutions vis a vis one another;

Outcome (Performance) Pattern: fast generation and elimination of many local optima,
lower probability of settling on any one local optimum, slow(er) convergence to a global
optimum.

Relaxation to Linear
Optimization

(Strategic Solution) Process: smoothing of integer or lumpy constraints, followed by global
search of smoothed solution search space;

Outcome (Performance) Pattern: very low probability of finding or settling in local optima,
very fast convergence to (sometimes sub-optimal) ‘almost-global’ optimum.

Table 2: Illustrating How Strategic Solution Search Procedures Adaptive to Difficult
Problems

Page | 23

Branch and Bound (BB) techniques rely on a partitioning of the solution search space
via a tree whose nodes represent decisions among different elements of a solution,
calculating bounds on the performance of a solution that arises from different branches of
the tree, and deleting from the search space branches likely to result in a sub-optimal
solution. The key feature of a good tree structure for BB methods is that it is ‘prunable’:
estimates of performance bounds for different branches are calculated in advance, to lower
the chances that an optimum be ‘missed’ by the resulting search. A search tree for solutions
to a 4-variable MAX SAT problem is shown in Figure 7a. If the MAX SAT problem is the
same as that in the Appendix II, wherein F=(X1^~X2^X4)&(X1^~X2^~X3), then, the BB
meta-algorithm will classify the various paths through the search tree and save by searching
only part of the entire search space (Figure 7b).

0

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

0

0

0

0

0 0

0

0

0

0 0 000

1

1 1

1 1 1 1

1 1 1 1 1111

Figure 7a: Branch and Bound-Ready Decomposition of Four Variable Search Space
{x

1
, x

2
, x

3
, x

4
} for SAT Problem.

Page | 24

Guide search
away, clause

violation
detection

Guide search
away, clause

violation
detection

x1

x2 x2

x3 x3 x3 x3

x4 x4 x4 x4 x4 x4 x4 x4

0

0

0

0

0 0

0

0

0

0 0 0000

1

1 1

1 1 1 1

1 1 1 1 1111

Number of clauses satisfied
2 01 1….1….1

Figure 7b: Branch and Bound Variable Depth Search of Search Space {x
1
, x

2
, x

3
, x

4
}

for SAT Problem (X1^~X2^X3)&(X1^~X2^~X4).

For the six-city TSP problem of Figure 14, a BB-suitable tree search can be built on
the basis of whether or not a path contains a particular segment connecting two cities. The first node of
the tree creates two ‘buckets’ of possible routes: one containing routes containing AB and
one containing routes that do not. Subsequent nodes of the tree (there will be N(N-1)/2
nodes for an N city tree in total) provide finer-grained partitioning of the space of possible
paths. The key to reducing the time complexity of the search is a tight characterization of the
best case performance that one can expect from any given sub-tree: Each bifurcation of the tree
cuts the number of total search operations required by 50 per cent. Therefore, there is a
premium on making estimates that trade off optimally between tightness and precocity of
choice.

 BB methods can be used to quickly narrow the search space in problems of strategy
choice that have runaway computational complexity. In a simultaneous move oligopolistic
competition game with 4 competitors, each of whom has 6 strategies at her disposal, the
search space for combinations of strategies has 1296 distinct outcomes (64). A BB method
can quickly narrow this space by 50% by eliminating combinations of strategies that include
a ‘low cost’ product or service offering on the basis of examining the worst case scenario (a
price war) that is likely to be triggered by this choice. Each step of eliminating combinations
of strategies that contain an undesired component will trigger a similar contraction of the

Page | 25

search space. BB is thus a form of ‘elimination by aspects’ of undesirable alternatives
[Tversky, 1972] which relies on a structured partitioning of the search space, and quick
calculation of the extremal values of the payoff landscape along different branches (i.e. based
on a ‘quick look-forward’ by the problem solver).

How it differs from blind random search. A complexity-aware strategic management team
using BB to sequentially narrow the space of possible solutions - ‘options’, ‘strategies’ - will
produce periodic estimates of the merits of the various branches of the tree and iteratively
eliminate the dominated branches. Its processes will differ from those used by a team that
guesses blindly by (1) the structuration of the search space as a tree of mutually exclusive,
collectively exhaustive (MECE) components of the possible solutions, and (b) the quick
evaluation of families of solutions corresponding to certain roots of the tree, and (c) the
quick elimination of dominated families of solutions. The performance of BB methods
against many intractable problems suggests that BB approaches to strategic search should
correlate with results that dominate blind, random guessing by producing a lower number of
local optima (‘competency traps’) and a higher rate of convergence to the globally optimal
solution.

Divide and Conquer (DC) methods relate to (a) partitioning the problem search space
into smaller search spaces (‘sub-problems’) that can be more easily searched, and (b) piecing
together the separate solutions to the smaller problems to form (possibly sub-optimal, but
still superior) solutions to the larger, intractable, problem. For instance: he set of all possible
subsets of a set of features of a product can be divided up into subsets-of-subsets of features
that can be searched independently by several different individuals or teams working in
parallel. DC methods offer no guarantee that the concatenation of solutions to smaller sub-
problems will in general be an optimal or even feasible solution to the bigger problem: the
concatenation of the minimal paths connecting two sets of N/2 cities will not be the
minimal path connecting the full set of N cities. Organizations tackling problems that have
the algorithmic structure of TSP will generally not benefit from parallelization and
decentralization of the search effort to the same degree that organizations which tackle
problems which can be so decomposed - such as subset-search problems like COVER.

DC can be used to achieve both parallelization (DC-P) and/or randomization (DC-
R) of the search process. DC-P can be used by a top management team to assign different
sub-problems to different individuals or groups, based on their expertise, marginal
incentives, such that individual team members or sub-groups can function as individual
problem solvers in a way that enhances the functioning of the team as a whole as a group
problem solver. DC-R can be used as an intelligent random search procedure, wherein the
time complexity saving in the overall problem will be commensurate with the tightness of

Page | 26

the estimate of the optimal performance solution that can be expected from each sub-group,
but will also allow for the possibility that some bounds are either not tight or not correct.

How it differs from blind random search. Unlike a strategic team that guesses blindly, a
complexity-aware strategic management team using DC search methods will engage in early
partitioning of the solution search space and the parallelization of the solution search effort.
It will also maintain tight coordination (and synchronization) between the parallel sub-space
search efforts so as to minimize the probability of unnecessary search.

The outcomes of a DC-based search process will likely outperform blind guessing-
based search by decreasing the probability of adopting local optima, because only entire
solutions are considered as viable, and entire solutions can only be the result of
concatenating all or most of the partial solutions produced by the parallel search groups. The
decreased probability of adopting a locally optimal solution therefore arises from the fact
that DC methods generate fewer local optimum ‘trial solutions’ than do alternative solution
search methods.

Local Neighborhood Search (LNS). The dramatic reduction in the time complexity of
TSP highlighted in Figure 12 above was accomplished by a procedure for searching the N!-
size search space of the TSP using a local search meta-algorithm named after its inventors,
Lin and Kernighan [Lin and Kernighan, 1973]. The procedure consists of selecting an
‘almost-complete’ tour of the cities, or a ‘delta path’, which includes all of the cities exactly
once, except for the last one (e.g.: 1-3-2-5-6-3 for the six city TSP of Figure 6, for instance:
‘almost complete’ because the last link (return to 1) is missing, and is replaced by a return to
3), measuring the total distance of the delta-path that had been generated, selectively making
switches among the edges included in the delta path and edges that are ‘available’ but not
included, comparing the total distance of the modified circuit with its last version, and
maintaining the more efficient path. One key to the (exponential) speed-up achieved by this
heuristic is the strategy by which edges are exchanged, which is (usually) 2 (specifically: 1-
3&3-2 replaced with 1-2&2-3) at a time (entailing a local search space of N(N-3)/2. The
algorithm allows for the exclusion ‘by inspection’ of many possible combinations of routes:
for instance, in the 4663 city TSP (Figure 12), one can exclude combinations such as (Toronto
(Central Canada)-Kelowna (Western Canada)-London (Central Canada) without ‘evaluation’. The
speedup produced by LS is related to the replacement of the N! search space by a tightly
coordinated sequence of moves along a trajectory of O(N2) search problems, and is typical
of both the architecture and the performance of well-designed local search strategies
generally.

Page | 27

How LNS differs from blind random search. One would expect strategic managers
engaging in LNS to (a) use intuition and experience to guide the starting point(s) of the
search to a plausible ‘complete’ solution (a full contingent plan found in ‘scenario planning’),
(b) generate small deviations from the initial solution by altering individual components
thereof, and (c) tightly coordinate the process by which they evaluate the performance of the
set of ‘perturbed’ solutions to keep track of iterative improvements over the initial solution.
Other than the exclusion of dominated solutions, search moves within the local
neighborhood of a local solution are ‘random’. A strategic management team, for instance,
may ‘search’ in the neighborhood of a capacity expansion strategy in an undifferentiated
oligopoly by looking for combinations of product features and marketing and distribution
tactics that will sustain margins in the eventuality of a possible p[rice war its expansion will
trigger. LNS can provide an algorithmically sound explanation for states of ‘frenetic local
search’ within a strategic management team, which, although seemingly ‘unintelligent’ and
‘prematurely anchored’ on an initial guess can in fact produce dramatic reductions in the
costs of producing solutions to NP hard problems. LNS methods will likely generate local
optima that are more tightly clustered around a point on the firm’s fitness landscape
corresponding to the starting point of the search, and a higher rate and probability of
convergence to the global optimum of the strategic solution search space.

Randomization Methods (RM): Stochastic Hill Climbing. Randomized algorithms
[Hromkovic, 2003] have achieved great levels of sophistication and success in the field of
algorithmics, with good reason: NP stands for Non-Deterministic Polynomial Time (rather
than Non-Polynomial Time). It points to the fact that intractable problems are solvable by
non-deterministic algorithms (or, ‘Turing Machines’) in polynomial time. It is not, then,
surprising that intelligent randomization yields significant improvements in complex
problem solving performance. A randomized algorithm (as opposed to a process of ‘blindly
guessing’) is a structured and informed guessing strategy, aimed at maximizing the probability of
arriving at a good enough solution in a given number of steps. The difficulty of searching the
solution spaces of most ‘hard problems’ is the vast number of ‘local minima’ that
incremental procedures (‘local hill climbing’, or incremental improvement strategies) can get
trapped into [Rivkin, 2000; Levinthal and Ghemawat, 1999]. Stochastic hill climbing
methods (SHC) [Michalewicz and Fogel, 2004] ease limited search processes from the
constraints of local optima by probabilistically causing the searcher to ‘jump’ to different
regions of the search space and thus to perform large numbers of bounded local searches.
Simulated annealing algorithms generalize stochastic hill climbing methods by specifying various
temperature level gradients of the search process: temperature denotes ‘mean kinetic energy’ of a
state of particles assembled in a macro-state (e.g. liquid), and the temperature of a search process
increases with the probability that the process will jump away from the local search it is
currently performing within a certain time window. Strategic managers using stochastic hill

Page | 28

climbing-type solution procedures can ‘heat’ or ‘cool’ their adaptive search process
depending on the problem solver’s estimate of the number of local optima entailed by the
problem statement or, adaptively, as a function of the results of the ongoing set of local
searches. Adaptive search procedures of this sort will exhibit jumps from one region of the
search space to another whose frequency and probability of occurrence depends on the
results that immediately precedent sub-space searches have produced.

Intelligent randomization provides one explanation of how organizations solve
problems that map into technically intractable canonical problem statements by arriving at
good enough solutions in a number of steps that does not overwhelm the ability of the
organization to calculate and execute. A well known model of organizational structure,
dynamics and performance represents the organization as a set of N elementary activities
that are in either ‘on’ (1) or ‘off’ (0) states. The performance of the organization (its ‘fitness
function’) is a real valued function of all of the possible sets of activities that the organization
jointly engages in. Subsets of activities are more or less tightly coupled, and the degree of
inter-dependence of these activities is represented by a natural number k, representing the
number of activities to which each activity is coupled. The resulting NK model has been
used repeatedly [Levinthal and Warglien, 1997; McKelvey, 1999; Rivkin, 2000; Lenox,
Rockart and Lewin, 2006] to examine the dependence of a firm’s performance on the
structure and topology of its activity sets. To a firm that aims to strategically choose the set
of activities that it pursues, the problem of choosing the set of activities that optimizes its
performance (the real valued fitness function) has been shown [Weinberger, 1991] to be
computationally equivalent to the well-known intractable (NP-complete) kSAT problem for
k>1. That problem takes as an input a set of N variables and a set of M Boolean expressions
containing up to k variables AND, OR, and NOT, and asks for an assignment of the N
variables to the M expressions that will make these expressions true (i.e. will ‘satisfy’ them,
hence the name of the problem. The Nk strategic decision problem (‘Is there a fitness
function of the N activities, each mutually coupled to k others with value greater than V?’)
maps into the kSAT problem (‘Is there a set of variables whose aggregate satisfiability score
is at least N when plugged into a set of M k-variable formulas?’) trivially for M=N, and with
padding of the search space for M>N and M<N [Weinberger, 1996]. Based on this result,
Rivkin [2000] argued that the intractability of the Nk decision problem (derived from the
intractability of the kSAT problem for k>1) can make complex strategies (characterized by
the patterning of many, densely linked activities) difficult to imitate.

However, the complexity of solving the kSAT problem yields to searches of the
solution space that are based on randomly permuting both the sets of initial variables and the
assignment of truth values to variables within a formula [Schoening, 2002; Brueggermann
and Kern, 2004; Ghosh and Misra, 2009]. These approaches achieve a worst-case complexity
of solving the 3SAT problem of (1.d)N (where d is a natural number following the decimal

Page | 29

point) instead of 2N, which, even for very large values of N can produce a massive decrease
in the complexity of the 3SAT problem. See Table 3: a factor of 1020 reduction in the
complexity of solving the 3SAT problem for N=100 is achieved by a random walk based
algorithm, transforming a problem that it unsolvable on any computational device or
combination thereof to one that is trivially solvable on most computational devices today,
and suggesting that a realistic Nk problem (with N=100, k=3) can be solved by an
organization (or a strategic manager) that pursues a structured randomization strategy.

N
Exhaustive Search Complexity
2N, Total Number of Operations.

Random Walk Based Search
Complexity 1.334N, Total Number of
Operations.

1 2 1.3334

2 4 1.7796

3 8 2.3707

4 16 3.1611

10 1,048 17.7666

20 1,048,576 315.6523

100 1.27 x 1030 3.16 x 109

Table 3: Comparison of Computational Complexity of Solving 3SAT Problem Using
Deterministic Exhaustive Search (Column 2) Versus a Set of Rapid Random Walks
(Column 3) As a Function of the Number of Variables (Column 1).

 How SHC differs from blind random search. SHC-guided search for strategic solutions
embodies one of the key advantages that intelligent, complexity-aware randomization has
over blind randomization: it forces the solver to abandon local optima as part of the search
protocol. Processes guided by SHC will likely exhibit the quick and possibly parallel
exploration of multiple candidate solutions, and rapid jumps of the problem solving process
from one candidate solution to another. The search protocol is less likely to converge to a
dominated local optimum than an alternative based on blind guessing because it embodies
stopping rules for searching around local optima; and will exhibit higher probabilities of

Page | 30

converging to a global optimum, because of the lesser likelihood of getting trapped in local
optima, and the greater coverage of the full solution search space.

Genetic (or, evolutionary) algorithms (GA) combine the insight that randomization can
induce (probabilistically speaking) speedup of search with a structured approach to the
solution generation process inspired from evolutionary biology [Baeck, 1996]. Primitive,
random candidate solutions or ‘partial solutions’ (which could, for instance, be delta paths in
a Lin Kernighan representation of TSP) are perturbed (‘mutation’) and combined (‘sexual
reproduction’) to produce new candidate solutions that are then selected on the basis of the
quality of the solution that they encode [Fogel, 1995]. Mutation rate, selection pressure and
recombination intensity are all parameters under the control of the problem solver.
Exponential speedup of convergence to the shortest route has been reported for the TSP
[Wang, Zhang and Li, 2007], which arises both from the parallelization of the randomization
operator across members of a population of candidate solutions (‘mutation’,
‘recombination’) and from the iterative application of the selection operator which operates
at the level of the entire population.

How GA differs from Blind Random Search. Strategic solution processes patterned by GA
type procedures will differ from blind random search with regard to the process by which
candidate solutions are generated: fast generation of many bits and pieces of a solution
(‘chromosomes’) followed by recombination of the candidate solutions and the
concatenation of the randomly generated and recombined solution segments into candidate
solutions will be followed by the rapid elimination of clearly inferior solutions. At the level
of outcomes, GA methods provide fast coverage of the solution search space, and,
accordingly, lower probability of choosing a dominated solution (a local optimum); along
with faster convergence to the overall global optimum. Unlike the case of SHC, however,
where local optima are filtered away because the search process is more likely to escape from
them, or the case of LNS, where local optima are filtered out because the search process is
less likely to generate them, in the case of GA, the reduction of incidences of falling into
local optima is due to the fact that local optima are less likely to be chosen as candidate
solution, because of the inherent competition among local optima that the approach
generates.

Relaxation to Linear Optimization. (RLO) Informed guessing (and updating of the
solution search space accordingly) is not the only approach that organizations can take to
solving the problems arising from an N-k model of their own activity sets. They can also re-
frame the decision problem into an optimization problem that is approximable by algorithms
that have well behaved complexity bounds. In other words, given a problem they cannot
solve, they can re-formulate as a closely related problem that they can solve. A strategic
manager can re-frame the Nk decision problem from that of deciding whether or not the

Page | 31

configuration of activities the firm is or could be pursuing is maximal, to that of maximizing
the total ‘fitness score’ of the set of activities it is or could be pursuing. The resulting
problem maps into the well known MAX SAT optimization problem: ‘given a set of k-
variable clauses and a set of N variables that figure into these clauses, maximize the number
of satisfies clauses over all of the possible ways of assigning variables to clauses.’ Asano and
Williamson [2002] show that an approximation algorithm which takes as an input a linear-
programming equivalent of the integer programming problem MAX 3SAT can achieve
performance guarantees of close to 0.85 of the global maximum in polynomial-time (i.e. in
the ‘tractable’ regime). Mapping back to our N-k optimization problem: if the organization
(a) re-frames the N-k decision problem into an N-k optimization problem (finding the
optimal configuration of activities, as opposed to determining whether or not there exists an
activity set that will generate a pre-determined utopia point – which may in any case be more
realistic), (b) approximates the problem statement by an associated linear programming
problem (allowing for performance figures of clauses to take on values between 0 and 1, and
not just ether 0 or 1), (c) solves the resulting (tractable) problem and then (d) adjusts the
resulting solution to reflect the constraints imposed by its real activity sets, then it can
achieve – by only solving a tractable problem – performance results that are guaranteed to be
within 15 per cent (1-0.85) of the global optimum. Randomization and approximation can
render intractable problems into practically solvable ones, provided that (a) randomization is
pursued intelligently and in a way that informed by the structure of the problem, and (b) that
the organization can adjust its goals from achieving the global maximum with no margin for
error to achieving a global maximum within some tolerance. This is not an argument that
complexity cannot inhibit imitation or function as a source of competitive advantage, but
rather that it need not do so, and a computationally savvy imitator can break through the
intractability barrier of optimizing its activity sets to match or exceed the performance of a
competitor. It also suggests that there may exist a special set of ‘imitative capabilities’ –
grounded in randomization and approximation procedures – that allow perennial ‘second
movers’ to become competent imitators.

The Knapsack Problem (KSP) [Karp, 1972] (P: “Find the set of utensils of known
value and volume that can be packed into a knapsack of fixed volume such that the total use
value of the utensils in the knapsack is maximized”) can be used to model a large number of
problems of product, solution or service design (P: “find the maximum value set of features
of known value and cost that are embodied in a product or service such that the total cost
does not exceed C”) or the problem of the optimal design of a value-linked activity set
(P=”find the maximum net value combination of value-linked activities of known value and
cost”). The difficulty of KSP is known to lie in the fact that it is an integer programming (IP)
problem, which arises from the lumpiness of the objects in the problem statement: no utensil
can be sub-divided for inclusion in the knapsack, and any utensil must either be taken or left

Page | 32

behind. Were utensils (product features) sub-divisible or only probabilistically inclusible in
the knapsack, then the IP problem would ‘relax’ to a linear programming (LP) problem of
maximization of N variables (under 1 constraint: volume), a problem of polynomial time
complexity. A simplification procedure for KSP, accordingly, comprises (a) relaxing the
constraint that all numbers of utensils might be integers, (b) solving the associated LP
problem, (c) rounding the resulting solution to the nearest set of integers, (d) verifying that the
solution is feasible and (e) repeating (c) (with a different rounding criterion) and (d) until a
solution is found. RL is applicable to a large number of intractable problems, and
Hromkovic [2003] gives LP relaxations of other NP hard problems. Strategic managers and
strategic management teams can implement RL by cutting corners on an associated IP problem:
By loosening the ‘lumpy’ constraints that are ‘written into’ the problem statement via the “‘0
or 1’ rule” by either negotiating or cheating strategies. Negotiating (with large clients, for
instance) the precise definition of technical terms such as ‘99.999 per cent reliability’ (a common
requirement in telecommunications firms) can turn a hard requirement into a soft one (one
that can be satisfied with a system that is “99.999 per cent reliable in these conditions).
Alternatively, one can engage in a form of cheating (by ‘marke-tecting’ rather than
‘architecting’ a product, service or platform) in a way that promises satisfaction of all
requirements and constraints but does not deliver on promises that are ex ante believed to be
difficult to audit by the market. Distortive maneuvers undertaken by firms faced with IP (NP
hard) problems can, in this case, be seen as adaptive relaxations of the NP hard problem of
product, platform or activity set design to a P-hard LP problem of constrained linear
optimization with variables ranging over the real numbers.

How RLP differs from blind random search. RLP spells out a set of approximation rather
than randomization search methods. As such, the problem solving process patterned by
RLP-type algorithms will likely exhibit a significant focus on the precise definition of the
problem, aimed at iteratively and adaptively relaxing the constraints that render the problem
intractable (integer constraints, for instance). The quality of the performance outcome will
depend on the degree to which the global optima to the relaxed problem statement track
those of the intractable problem. ‘Better’ relaxations of the constraints of integer
programming problems will provide tighter approximations of the global optima of the
original problem statement. Because the resulting optimization problem is tractable, the
probability of getting trapped into local optima is lower, and the rate of convergence to the
global optimum will be significantly higher than those achieved by alternative methods.

Implications for the Definition and Measurement of Strategic Problem Solving Capabilities. The
range of intractable problem solving techniques introduced allow us to refine our
understanding of strategic problem solving by incorporating the dependence of ‘complexity’

Page | 33

and ‘decomposability’ on the structure of a problem and the properties of the solution
search method:

Separability and Decomposability Are Contingent on Both Problem Statements and Solution
Procedures. The use of Branch and Bound methods to solve the TSP suggests that separability
(or, decomposability [Simon, 1996]) of a problem depends both on structural elements of the
problem itself (in this case the TSP) and on the approximation method used (in this case,
Branch and Bound). While the TSP is not decomposable using ‘divide and conquer’ methods
(the shortest path connecting N cities will in general not be the concatenation of the shortest
paths connecting k disjoint subsets of N/k cities), it is decomposable via Branch and Bound
(or, for that matter, via genetic algorithms that operate on orthogonal sets of cities).

There Are Many Ways to Decompose a Problem Into Sub-Problems. Solving large scale
optimization problems by fractionation into sub-problems bring up the well-known credit
assignment problem [Minsky, 1961; Denrell, Fang and Levinthal, 2004] which requires the
problem solver to assign ‘partial credit’ to the outcomes of the individual steps (or, sub-
problem solutions) of a many-step sequence of goal-directed actions after learning the
outcome of the entire process. Denrell et al [2007] posit that the local mental models of the
problem solver will influence credit assignment by constraining the local optimization
problem that each agent solves at each step of the process. Through the algorithmic
perspective, a global model for an intractable problem will comprise both the problem
statement and the procedure for breaking up the problem into sub-problems, which is supplied
by the search heuristic used (Divide and Conquer, Branch and Bound, Stochastic Hill
Climbing, Local Neighborhood Search, Genetic Algorithms), which will then supply
different local models for the sub-problems to be solved. An LNS based search of the TSP
search space will produce a very different set of sub-problems (and local mental models)
than will a BB-based partitioning of the TSP search space. In the first case, the initial guess
supplies a very large number of hard constraints on the local search. In the latter case, the
initial partitioning supplies a low number of constraints of (a much simpler) local search.

5. Implications for the Definition of Adaptive Advantage and Dynamic search Capabilities.

 The family of algorithmic and quasi-algorithmic procedures for strategic problem
solving introduced here allow us to characterize the advantage relating to the firm’s ability to
adapt in real time to changes in the landscape of its strategic payoffs. It is a form of
exploratory advantage [March, 1991] that accrues to a firm in virtue of its dynamic search
capabilities – its ability to deploy its problem solving techniques, routines and procedures to
solve the problem of optimally mapping organizational actions to predicted payoffs. These
can be understood as a specific set of dynamic capabilities [Teece and Pisano, 1994;
Eisenhardt and Martin, 2000] that allow the firm to search the solution spaces of its strategic

Page | 34

problems more effectively, efficiently and reliably. The algorithmic framework allows us to
operationalize dynamic search capabilities as the strategic ingenuity of a firm by considering
the net benefit of using a problem solving procedure (an algorithm A, which may be
deterministic or probabilistic) to a problem (tractable or intractable) to generate a solution
SA. The time complexity of the algorithm gives us an estimate of the total cost of using it to
generate SA, i.e. C(A)= c(m) K(SA), where c(m) is the marginal cost of an operation and K(SA)
is the time complexity (number of operations) of producing the solution using A. The value
of the solution SA generated by algorithm A, V(SA), will be different for different kinds of
algorithms, as follows:

Deterministic algorithms, exact solutions. V(SA)=V(S) if the algorithm has converged (i.e.
if m=K(SA)), and 0 otherwise. Since the solution generated by the algorithm is the solution to
the problem, the value of the solution generated by the algorithm at any step m is the value
of having solved the problem exactly. Examples include small competitive games (small
numbers of players and strategies) and low-dimensional induction, abduction or deduction
tasks;

Deterministic algorithms, approximate solutions. V(SA)=Fm(||S-SA||), where dF/d()<0: the
value of the solution generated by the algorithm at any step m will be a decreasing function
of the distance between the solution produced by the algorithm (the approximation) on the
mth iteration and the exact solution to the problem. Examples include approximate solutions
to IP problems using LP relaxation methods;

Randomized algorithms, exact solutions. V(SA)=G(Prm(S=SA)): the value of SA is
proportional to the probability that the solution generated on the mth operation of the
algorithm is the solution to the problem. Examples include stochastic hill climbing
algorithms and genetic algorithms;

 Randomized algorithms, approximate solutions. V(SA)=G(Prm(||S=SA||<€), where
dG/d()>0: the value of the solution produced by the algorithm at step m will be an increasing
function of the probability that the solution produced at step m is within a small enough
distance of the solution to the problem. Examples include stochastic hill climbing, genetic
algorithms as well as randomized versions of Branch and Bound and Divide and Conquer
meta-algorithms.

We can now articulate a measure of the adaptive advantage of a firm over another that is
general enough to encompass all firm and industry level predicaments of interest (via the
canonical representation of ‘problems’); specific enough to make predictions of relative
performance in individual cases; and adaptive to the time constraints that firms constantly
face when they solve problems. If firms taken in their entirety produce solutions to business
problems and if their strategy making processes can be understood as the application of the

Page | 35

collection of problem solving tools and methodologies at their disposal, then their strategic
search advantage should track the quality of the solutions they provide.

To define the quality of a solution-generating process, we focus on three dimensions (the
accuracy, reliability and efficiency of the problem solving process), and accordingly on the
following trade-offs: between the accuracy of a solution and the speed with which it can be
attained (which will depend on the time complexity of the problem solving procedure and
the marginal cost of individual operations), between the accuracy of a solution and the
probability of attaining it in a given time window (which measures the reliability of the
algorithm or meta-algorithm used), and between the reliability of a solution and the speed
with which it is generated (Figure 8). These frontiers can be pieced together in a three-
dimensional measure of time-bounded competitive advantage (Figure 9), which induces a
simple ‘ordering’ among firms relative to a particular problem (or, collection of problems):
“Firm A has a strategic search (adaptive) advantage over Firm B at solving problem PROB
iff it can produce a more accurate solution to P more quickly and more reliably than can firm
B.”

Accuracy
of

Solution
(proximity

to
optimum)

A
(a,s)

Speed of Convergence
(inverse of time to achievement)

Competitive advantage: ≥ , ∀a, S
A

(a,s)
B

(a,s)

B
(a,s)

S

a

Accuracy
of

Solution

Probability of achieving
solution of requisite accuracy within maximum allowable

time x resource window

Competitive Advantage: ≥ , ∀a, p
A

(a,p)
B

(a,p)

B
(a,p)

A
(a,p)

p

a

Figure 8: Illustrating the Concept of “Adaptive Advantage of Firm A over Firm B”
via Trade-off Frontier Between Accuracy (Validity, Goodness of Fit) and
Convergence (Speed of Solutions Offered by the Two Firms), and the Concept of
“Competitive Advantage of Firm A over Firm B” via Trade-off Frontier Between
Accuracy and Reliability of Solutions.

Page | 36

a=Accuracy of solution

B
(a,s,p)

A
(a,s,p)

P=Probability of Convergence

S = Speed of convergence
Competitive Advantage: ≥ , ∀a,s,pA

(a,s,p)
B

(a,s,p)

Figure 9: Three-Dimensional Measure of ‘Adaptive Advantage’.

Functional and Structural Adaptive Advantage Defined. The adaptive search advantage of a firm
can take both functional (the procedures it uses) and structural (the organizational
architecture it uses) forms. Strategic managers may choose both among different solution
procedures for a complex problem, and among different organizational structures for
implementing the search process [Rivkin and Siggelkow, 2003]. The computational
approach to strategic problem solving offers a way of parsing the types of strategic search
advantage that a firm enjoys in distinct categories, relating to both structural and functional
forms of adaptation:

Off-line versus on-line problem solving. Strategic managers can attempt to solve strategic
problems ‘off-line’ – in their minds, or in sessions of strategic deliberation and planning that
are uncoupled from the operations of the firm. But, a firm as a whole can be modeled as
searching the solution space of the problem it is trying to solve, thus engaging in ‘on line’
problem solving, and this embodied search process does not require the conscious
representation of a problem, its search space, or the search of optimal procedures for solving
it. A large logistics and distribution business, for instance, is, as a whole, ‘looking for’ the

Page | 37

optimum (minimal cost) configuration of flows of goods from one location to another over
a network of possible (cost-weighted) paths, which can be mapped into an optimal network
flow problem that is NP-hard [Hromkovic, 2003]. The owner of a small shoe shop may have
no conception of linear programming (LP), and still less of using LP methods to optimize
her inventory subject to estimated local demand for shoes, but the shop may nevertheless
produce inventory numbers that correspond to the outputs of an LP procedure. Strategic
managers in a mining firm may have no clue about randomized search procedures for very
large spaces, but the mining firm as a whole may embody a set of randomized search
procedures for the optimal drilling plans in a region suspected of harboring a deep gold vein
[Moldoveanu and Martin, 2009]. That intelligence does not require representation [Brooks,
1991] is a point made in the artificial intelligence literature more than 20 years ago, and is
relevant here as well. The intelligent search for solutions and design of search procedures
may be something that individuals in firms engaged in solving intractable problems do
without knowing (in the sense of being able to articulate) that they do and how they do it.

Structural versus functional adaptations. The literature examining the links between
complexity and the range of complexity-adaptive strategic actions [Siggelkow and Levinthal,
2005; Rivkin and Siggelkow, 2003] usually take the topology of the firm’s value-linked
activity system and the assignment of tasks to individuals as fixed or to a large extent
determined by the production function of the firm. However, as we have seen in the
previous discussion of the design of search procedures for the solution to complex
problems, different algorithms and heuristics can make use of parallelization, randomization
and brute force methods, each of which entail different assignments of tasks, decision rights
and incentives to groups and individuals. The computational framework allows us to
distinguish between structural adaptations – relating to the assignment of incentives and
decision rights to individuals and teams, and functional adaptations – relating to the design of
the specific tasks carried out by different individuals’ minds and bodies. Structural and
functional adaptations can shape both online and off-line problem solving, as follows:

Offline, functional. This is the classical image of strategic problem solving taking place
in the minds of strategic managers, or within the top management team: problem statements
are formulated, and optimal solution search procedures are designed and simulated.
Adaptive advantage accrues to the strategic managers and teams that design procedures that
yield the most accurate and reliable results over the shortest period of time.

Online, structural. This is a less familiar image of the organization as a whole engaging
in a problem solving process and searching the solution space through a large sequence of
adjustments in decision rights, expertise/talent and incentives. Like a colony of ants working
together seamlessly to build a raft that transports the colonies’ offspring across a rivulet after
a flood, there is no complete representation of the problem or the solution search space in

Page | 38

the mind of any individual within the organization. Strategic search advantage derives from
the speed with which the organization as a whole can explore a rugged payoff landscape and
avoid traps arising from local optima and catastrophes arising from coordination failure,
which in turn arises from the fit between the solution space search procedure the
organization is executing and the type and complexity of problem it is solving;

Offline, structural. These are adaptations of the ‘offline’ processes of planning,
deliberation and strategic problem solving of a strategic management team to the nature of
the problem being solved. These processes remain offline because they are not yet
implemented by the organization, but the problem-solving culture of the management team
– the set of communication, coordination and search heuristics that the team uses, and the
fit between these procedures and the complexity and type of problems being solved – all
shape the speed, reliability and accuracy with which solutions or optimal solution search
procedures are actualized;

Online, functional. These are adaptations of the tasks of individuals and groups within
the firm to the specific search problem the organization is solving. Different solution search
procedures for canonically hard problems – like DC, BB, SHC, LNS – entail different sets of
tasks (narrow exploration around local optima or in the neighborhood of a plausible best
first guess, wide jumps among exploratory regimes, etc) which can be implemented by the
same individuals or teams. Mapping tasks to teams and groups is constrained but not
determined by the expertise, decision rights and incentives that have been provisioned
throughout the organization. Therefore, a further degree of freedom for the design of
optimal strategic search processes relates to the adaptive assignment and reassignment of
tasks to people (or, machines) in order to maximize the firm’s ability to synthesize more
reliable and more accurate solutions in a shorter period of time.

6. Implications of the algorithmic approach for the empirical study of strategic process, outcome and
performance. The computational approach to strategic problems has significant implications
for the empirical study of the ‘strategic management of complexity’. Some researchers have
focused on the fit between firm architecture (centralized/decentralized; sparsely/densely
connected) and environmental complexity (uncertainty, ambiguity, rate of change of relevant
variables) [Siggelkow and Rivkin, 2005; Davis, Eisenhardt and Bingham, 2008]. In parallel,
others have focused on the ‘dynamic capabilities’ [Teece and Pisano, 1994; Arend and
Bromiley, 2011] that may explain why some firms succeed in quickly-changing environments
when others fail. The computational view of strategic problems and their on line and off line
solution procedures clarifies the interplay between problem structure and complexity,
organizational heuristics and procedures and outcome and the importance of the problems
firms solve and solution search procedures that they search with in shaping the fit between
the architecture of the firm and the structure of the environment.

Page | 39

Firms develop core capabilities for solving particular kinds of problems and claiming
value from the resulting solutions. A large systems integrator like Cisco or Alcatel Lucent
will develop specialized algorithms and meta-algorithms for solving large scale logical
compatibility problems like COVER, that a logistics company like CEVA or Kuehne and
Nagel will evolve specialized routines and sub-routines for quickly solving TSP-type
problems; and that a software solutions company like SAP, Inc. will evolve better, faster,
more reliable heuristics and meta-algorithms for solving multi-feature product design
problems captured by kSAT and COVER. The structure and complexity of these problems,
along with the solution procedures and organizational architectures used to implement them
and the metrics used to gauge the quality of a solution, together determine firm level
outcomes. The computational approach offers a contingent mapping among different strategic
problems, solution procedures and the organizational structures by which solutions are
generated, selected and implemented. With such a mapping, we can examine the relationship
between changes in environmental conditions, changes in the complexity class and structure
of strategic problems, and changes in problem solving procedures and organizational
outcomes. We can also use the approach to figure out whether Kuehne and Nagel’s logistical
optimization procedures are optimized to its core problems, or, rather, there is significant
room for improvement - potentially by an ingenious innovator. The computational and
algorithmic study of strategic problem solving outlined here implies a three-fold contingency in
the factors that influence outcomes and performance, which can be summarized in terms of
fit (Figure 10):

Figure
10: Four Fold Contingency of Outcome and Performance From an Algorithmic
Perspective

Page | 40

Between the complexity class of the strategic problem and the strategic solution search procedures (‘algorithms’)
of the firm. At the level of the canonical problems and solution search procedures, outcome
depends on the degree to which the solution algorithm is adapted to the complexity and the
computational structure of the problem. An exhaustive search of all the possible solutions to
an NP-hard problem with a large number of input variables, for instance, is likely to exhaust
the time and resources of the firm before a good enough solution is found. On the other
hand, the discipline of exhaustive search through all alternative solution for a P-hard
problem will provide highly reliable method by which the optimal set of actions is attained.
Not only the computational complexity class and the number of variables matter to the
selection of the best solution search procedure. Some approximation procedures – like
divide-and-conquer – are well suited to some intractable problems – like the Knapsack
Problem – but very poorly suited to other problems – like the Traveling Salesman Problem,
which is amenable to a Local Neighborhood Search procedure. The first level of
contingency of outcome on strategic problem solving process, then, has to do with the
degree to which the solution algorithm matches the complexity class and the computational
structure of a strategic problem. Adaptive rationality in this case acquires the meaning of the
ability to change the solution procedure in response to the nature of the problem.

Between the strategic search procedures of the firm and its organizational structure and architecture.
A second level of contingency arises at the level of fit between the problem solving
procedure and the organizational structure or architecture that implements the solution
process. A randomization procedure like stochastic hill climbing or an approximate search
procedure like divide and conquer are optimally implemented on distributed organizational
architectures that can work in parallel while at the same time keeping each other abreast of
progress made along the various paths and branches associated with the smaller sub-
problems. Exhaustive search, by contrast, can benefit from a fast, serial implementation of
the problem solving procedure, which allows for instantaneous pooling of the solutions
generated and evaluated along the way. Equally important to the organizational architecture
of a problem solving process is the communication protocol associated with a distributed
problem solving task. Distributed problem solving may require more or less synchronous
sharing of valid and relevant information regarding the solution search space, depending on
the kind of procedure used: while branch and bound approaches may be implemented using
asynchronous communication protocols once the division rule for various parts of the
solution space has been agreed to, stochastic hill climbing and genetic algorithm-based
approaches will proceed far more quickly on the basis of a synchronous information sharing
protocol, which keeps the various problem solving teams abreast of each others’ progress.

Page | 41

Between solution search procedures of the firm and the metrics used to gauge the quality of the
intermediate and final solutions. A third level of contingency arises at the level of the fit between
the solution search procedures used by a firm and the metrics and thresholds for gauging the
quality of the solution before, during and after the problem solving process. Ex ante, the
specification of thresholds for adequate or good enough solutions will impact the usability of
some algorithms as problem solving procedures. Genetic algorithms, for instance, may
generate large numbers of inferior or dominated solutions before arriving at a global
optimum. But, if these dominated solutions are excluded by the problem solving team
because of the inadequate performance, then the algorithm will not converge to the
optimum, precisely because the requisite diversity among partial solutions required for the
performance of the procedure as a whole will have been curtailed. On the other hand, using
clear metrics ex ante for the elimination of inferior solutions helps distributed problem
solving teams with the use of branch-and-bound type methods, which rely for their success
on the quick elimination of inferior solutions. ‘Strategic patience’ in problem solving,
therefore, yields different payoffs for different procedures. Similarly, along-the way measures
of the quality of solutions that emerge during the problem solving process can be more or
less suitable to the procedures used. If a strategic management team expects linear or
monotonic convergence of the problem solving process to an optimal solution – wherein
each new iteration yields a better solution than the last – then this measure will essentially
preclude the use of some non-linear or non-monotonic procedures like genetic algorithms
and stochastic hill climbing, but even local neighborhood search that can generate multiple
inferior or dominated solutions ‘on the way to’ the optimum solution.

Implications for the Imitability, Replicability and Transferability of Adaptive Advantage in On-
line and Off-line Strategic Problem Solving. Understanding firm-level strategic outcome as the
result of a three-fold fit among complexity class and structure of problems, the stock of
solution procedures and the organizational structures and architectures used to implement
solutions allows us to investigate the relationship between complexity, imitability and
replicability [Rivkin, 2000; 2001; Szulansky and Winter, 2001] in a new and more precise way.
The imitability of a focal firm’s solutions is limited by the complexity of the problems
provided that (a) the firm has access to a stock of solution procedures which produce more
reliable and accurate solutions more quickly than its would-be imitators and/or (b) that the
firm has achieved a fit between these solution procedures and its organizational architecture
that is costly to imitate. Replication has traditionally been held to be an ‘easy’ problem
relative to imitation, because the firm owns a ‘template’ for its own past success [Nelson and
Winter, 1982; Rivkin, 2001].

However, replication of one business strategy in a new context varies in difficulty,
according to how novel the new context is. At one end of the spectrum, a firm can replicate
an algorithmically simple set of strategies in a market that has not changed much from its

Page | 42

state at the time of the firm’s previous success (same product feature set, same customers,
same technology, same development constraints, same competitive landscape) - which
would also make the strategy easier to imitate. At the other end of the spectrum, the firm can
aim to replicate its strategy in a market in which (a) the computational structure and
complexity of the problem has changed (because of technology changes, novel network
effects at the level of competitors or customers, or a new set of competitors), or (b) the
number of relevant variables has increased (more competitors, more relevant predictive
variables in demand function, more technological options) even as the computational
structure has remained constant (turning the problem into an intractable one), which likely
entails that (c) the firm’s stock of solution procedures needs to be modified to optimally
adapt to the new problem structure and (d) that the firm’s structure and architecture may
also need to change to track the new solution procedures. The problem of replication,
therefore, may be more usefully thought of as a problem of transfer of the firm’s problem
solving procedures and architectures to new domains of activity, which may be similar to the
domains of the firm’s original success (the domain of what is now called replication), or
different in various degrees and aspects (new problem, new optimal algorithm, new optimal
structure) therefrom. The ‘new-ness’ of the firm’s strategic problem is, a function of a set of
variables (complexity of problems, set of search procedures and adaptive organizational
architectures) which the new modeling language allows us to explicitly model and
parametrize.

Firms can and do survive shifts in their core market focus, which often bring
significant shifts in the specific problems these firms have to solve. IBM morphed from a
manufacturer of application specific integrated circuits, printed circuit boards and personal
computers and laptops, into a data analytics, informatics and consulting business over ten
years. At the same time, Nortel, Inc. could not replicate its success in the digital phone
exchange and optical communications business in the fourth generation fixed wireless and
telecommunications base station market. Circuit City applied its stock of problem solving
routines and structures to the market for used cars – via CarMax – while at the same time
Enron attempted an ultimately fatal diversification strategy based on ‘loose associations and
metaphors’ [Rivkin, 2001]. A ‘strategic problem solving advantage’ can play an explanatory
role in the outcome of such focal shifts by an incumbent company on the basis of a
conception of the transferability of the complex problem solving advantage from one domain
to another.

Page | 43

Table 4: Summarizing the Implications for Imitability and Transferability of
Functional and Structural Adaptations to Complexity Used for On-Line and Off-Line
Strategic Problem Solving.

 Functional Adaptation to Complexity Structural Adaptation to Complexity

On-Line Problem
Solving

Barriers to imitability (creating first mover
advantage): imitator’s limited ability to design
organizational routines (including communication
and coordination techniques and technologies) that
embody adaptive complex problem solving
algorithms of focal firm;

Barriers to transferability (limiting adaptation
advantage): own limited ability to design
organizational routines (including communication
and coordination techniques and technologies) that
embody new adaptive complex problem solving
algorithms;

Barriers to imitability (creating first mover advantage):

imitator’s limited ability to implement organizational routines

 (including communication and coordination techniques and

 technologies) that embody adaptive complex problem

solving algorithms of focal firm;

Barriers to transferability (limiting adaptation advantage): own

limited ability to implement organizational routines (including

communication and coordination techniques and technologies) that

embody new adaptive complex problem solving algorithms;

Off-Line Problem
Solving

Barriers to imitability (creating first mover
advantage): imitator’s understanding of the
computational structure of strategic problems by
imitator; switching costs for sticky problem solving
routines and interaction blueprint (executive strategy
sessions, etc);

Barriers to Transferability (limiting adaptation
advantage): own understanding of the
computational structure of strategic problems by
imitator; switching costs for sticky problem solving
routines and interaction blueprint (executive strategy
sessions, etc);

Barriers to imitability (creating first mover advantage):

 imitator’s switching costs arising from re-allocation of incentives and

decision rights to individuals and teams (‘structural changes’)

Barriers to transferability: own switching costs arising from

re-allocation of incentives and decision rights to individuals and teams

(‘structural changes’)

Page | 44

Table 4 summarizes barriers to imitability and transferability to the strategic search
advantage derived from both functional and structural adaptations of both online and offline
problem solving activities. Assume a ‘high complexity environment’ – one in which
achieving globally optimal outcomes through strategic action requires the solution of an
intractable problem. Then, the incumbent’s advantage over a putative imitator is directly
related to the imitator’s ability to conceptualize and design (off line) and to implement (on-
line) solution search procedures that can match or better the incumbent’s own strategic
search capabilities. The incumbent’s transferability of its strategic solution search advantage
to another market or to a new set of industry conditions relates to its ability to conceptualize
and design (off line) and to implement and execute (on line) a set of strategic solution search
procedures that are optimally matched to the new set of problems corresponding to the
changed environment. Assuming that strategic search capabilities are sticky (resulting from
inertia operating at both cognitive and behavioral levels, and from high switching costs
associated with changing the allocation of decision rights and incentives in a firm, we can see
our way to a set of predictions regarding the ability of an incumbent to transfer its strategic
ingenuity, on the basis of the similarity between the problems the incumbent is currently
solving and the problems it would have to solve in order to succeed in the new industry or
changed environment. For instance, the canonical set of problems characterizing the
informatics and ‘big data’ business – IBM’s new focus – are sufficiently close to the kinds
of hardware and software/firmware design problems the company had been previously
solving. They can be represented by COVER and SET COVER problems (Appendix II)
with large numbers of independent variables, representing logical consistency checks
performed over the constraint sets of a VLSI design problem, or over the combinations of
hypotheses that optimally explain a large data set. The computational perspective on firms
predicts that this computational isomorphism of the problem domains should make for a
smooth adaptation of IBM’s dynamic search capabilities to the new problem domain: they
are in the same complexity class (NP), have similar computational structures (COVER), have
similar numbers of variables (>100) and should therefore respond in similar ways to the
same set of approximation and randomization procedures for simplifying the search process.

 If the complexity of problems represents a true hierarchy – as complexity grows in
the number of independent variables of a problem statement and is discontinuous across the
P-NP frontier, then we can further create horizons of transferability of strategic solution
search capabilities: firms are less likely to be able to transfer such capabilities upwards in
complexity (i.e. from NP-hard problems with fewer variables to NP hard problems with
more variables; and from P hard problems to NP hard problems) than upward ; and they are
more likely to be able to transfer such skills to new industries and environments presenting
problems that yield to procedures that are within the firm’s repertoire of dynamical search

Page | 45

capabilities than to new industries presenting problems that which yield to solution
procedures that are not.

7. Concluding Comments. The algorithmic language introduced here for the study of strategic
problem solving yields a family of models of firm level problem solving at several levels:
individual strategic managers, top management teams and organizations taken as a whole –
which highlights the importance of adaptations to complexity as a source of adaptive
advantage, and adds precision and resolving power to existing models of managerial
rationality, adaptivity and dynamic search capability.

 The complexity lens sheds light on fundamental questions such as: ‘Why do firms as
the specific pooled allocations of tasks to humans exist in the form they do?’ and “What is
the strategic value of organizational culture?’ Novak and Wernerfelt, [2012] argue that firms
constitute high-fixed, low-variable cost structural solutions to the problem of optimally
assigning tasks to units of production in ways that minimize overall coordination costs by
grouping together tasks requiring more frequent coordination into firms. Even in the
absence of incentive mis-alignments, coordination games present coordinating agents with a
multiplicity of equilibria whose selection or refinement is costly [Ganslandt, 2002]. The high
fixed cost of firms as units of productive coordination correspond to the drawing of
boundaries around the range of admissible coordinative equilibria, and therefore as a
complexity driven adaptation of the value chain. More interestingly, perhaps, the methods
for solving hard problems by approximate, local or stochastic methods considered in this
paper involve tight coordination among the activities of several agents or teams: Intelligent
randomization involves keeping track of the evolution of the search space and of dominated
and ‘promising’ solutions in real time, and the constant exchange of information about the
results of the local sub-searches. Local search involves keeping several ‘almost good enough’
alternatives on hand for quick re-insertion in the search process. Branch and bound methods
involve a rough and iterative partitioning of the search space and the use of consistent
heuristics for searching certain regions of that space rather than others. David Kreps’
[Kreps, 1990] model of organizational culture as a set of focal points of repeated coordination
games that have become common knowledge through repeated usage and are useful as
methods for simplifying the problem of coordinative equilibrium selection because of their
known-ness becomes directly relevant here, as adaptive solution procedures for NP hard
problems require ongoing and fine-grained coordination among the activities of multiple
problem solvers, and common knowledge of coordination rules and heuristics will make the
difference between an efficient and an inefficient meta-algorithmic approach to solving an
intractable problem. The computational perspective on organizational adaptation suggests
that the clustering of tasks into firms will also vary with the computational complexity of the
tasks and the degree of coordination required by the implementation of intelligently
randomized or approximate implementations thereof.

Page | 46

The problem solving lens on strategy making and strategic process design suggests a
path to a generic toolkit’ for solving strategy problems and for the doing of strategy.
Strategic competence, expertise and ingenuity exist should be treated separately from specific
expertise in the technology, market and operational details of each firm: Problem solving
‘prowess’ should be transferrable between domains of practical expertise that confront a
firm with problems of similar complexity and with similar time and resource constraints. Strategy
making can be conceptualized as a ‘hard-problem -solving activity’, and the expertise of the
strategist as an understanding of the abstract structure of strategic problems and the ability to
conceive and deploy reliable and efficient procedures for the search of the solution space of
such problems. Teaching strategy, on this view, should illuminate the algorithmic structure
and computational complexity of strategic problems that are common across firms and
industries. Leading strategy consulting firms (McKinsey & Co, The Boston Consulting
Group Ltd., Booz, Allen and Hamilton Ltd., Bain&Co., Monitor Co.) fulfill a valuable
function insofar as they function as generalized problem solvers that are able to abstract
useful heuristics, representations and algorithms from across varied areas of practice and
transfer them across firms and industries. A canonical language for describing strategy
problems creates a ‘problem solving skill transfer bridge’ across firms engaged in apparently
very different concrete problems of design, production, coordination, and competition that
are computationally isomorphic: from banking to telecommunications, from software to
semiconductors, from healthcare to transportation, from pharmaceuticals to petroleum
refining.

I end with a qualification meant to assure those who fear that the modeling language
herein makes the work of strategic managers, consultants and academics purely ‘algorithmic’.
While running a rule bound, step by step computational process is algorithmic (and therefore
automatable), the problem of designing algorithms, meta-algorithms and heuristics for hard
and intractable problems is not: Software design is not a task for which much successful
software is currently written. This is for good reason: Designing meta-algorithms involves
the matching of the solution space search heuristic to the structure of the overall problem
and this matching process is not, in most cases, rule bound. Even if the view of strategies as
algorithmically produced solutions to the problems the business faces over certain time
scales is accepted, the role of the strategist as the (non-algorithmic) designer of these
algorithms seems safe - at least for now.

Page | 47

References

Akerlof, G. A. 1970. The Market for “Lemons”: Quality Uncertainty and the Market
mechanism. Quarterly Journal of Economics, 84(3): 488-500.

Aragones, E., A. Postlewaite, I. Gilboa, and D. Schmeidler. 2003. Accuracy versus Simplicity:
A Complex Trade-off. Mimeo, Yale University.

Arora, S., Barak, B., Brunnermeier, B. and Ge, R. 2010. Computational Complexity and
Information Asymmetry in Financial Products . Innovations in Computer Science (ICS) conference.

Asano, T., and Williamson, D.P. 2002. Improved Approximation Algorithms for MAX SAT.
Journal of Algorithms, 42: 173-202.

Back, T.1991. Evolutionary Algorithms. New York: Springer. .

Brooks, R. 1991. Intelligence without Representation, Artificial Intelligence. 47 139-159.

Brown, G.W. (1951) "Iterative Solutions of Games by Fictitious Play" In Activity Analysis of
Production and Allocation, T.C. Koopmans (Ed.), New York: Wiley

Brueggemann, T. and Kern, W. 2004 An Improved Deterministic Local Search Algorithm
for 3-SAT. Theoretical Computer Science, 329: 303-313.

Bryn, S., and L. Page. 1998. Bringing Order to the Web: A Hypertext Search Engine. Mimeo,
Stanford University.

Bylander, T., D. Allemang, M.C. Tanner and J. Josephson. 1991. The Computational
Complexity of Abduction. Artificial Intelligence. 49: 25-60.

Chapman, W.L., J. Rozenblitt, and A.T Bahill. 2001. System Design Is an NP-Complete
Problem. Systems Engineering. 4: 222-229.

Charikat, M. 2000. Greedy Approximation Algorithms for Finding Dense Components in a
Graph. Proceedings of APPROX: 84-95.

Chen, X., and X. Deng. 2006. Settling the Complexity of Two-Player Nash Equilibrium.
FOCS. 261-272.

Page | 48

Cook, S. 1971. The Complexity of Theorem Proving Procedures, Proceedings of the Third
Annual ACM Symposium on the Theory of Computing.

Cooper, G. 1990. The Computational Complexity of Probabilistic Inference Using Bayesian
Belief Networks. Artificial Intelligence. 42: 393-405.

Cyert, R.M. and J.G. March. 1963. A Behavioral Theory of the Firm. New Jersey: Prentice-Hall.

Daskalakis, C., P. Goldberg, and C. Papadimitriou. 2006. The Complexity of Computing a
Nash Equilibrium. Journal of the ACM.

Davis, J.P., K.M. Eisenhardt and C.P. Bingham. 2008. Complexity Theory, Market
Dynamism and the Strategy of Simple Rules. DRUID Working Paper.

Denrell, J., C. Fang and D.A. Levinthal. 2004. From T Mazes to Labyrinths: Learning from
model-Based Feedback. Management Science, 50(10): 1366-1378.

Denrell, J. and J.G. March. 2001. Adaptation as Information Restriction: The Hot Stove
Effect. Organization Science, 12(5): 523-538.

Denrell,J., C. Fang and S.G. Winter. 2003. The Economics of Stretgic Opportunity. Strategic
Management Journal, 24:977-990.

Denrell, J. 2007. Adaptive Learning and Risk Taking. Psychological Review. 114(1): 177-187.

Eisenhardt, K. and J.A. Martin. 2000. Dynamic Capabilities: What Are They?, Strategic
Management Journal, 21:1105-1121.

Fogel, D.B. 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE
Press, Piscataway.

Fortnow, L. 2009. The Status of P versus NP Problem. Communications of the ACM. 52(9). 78-
86.

Garey, M.R., and D.S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP
Completeness. San Franscisco, Freeman.

Ganslandt, M. (2002), Communication, Complexity and Coordination in Games, in Zellner,
A., H.A. Keuzenkamp and M. McAleer, eds., Simplicity, Inference and Modeling: Keeping it
Sophisticatedly Simple, New York: Cambridge University Press.

Page | 49

Gavetti, G., D.A. Levinthal and J.W. Rivkin. 2005. Strategy Making in Complex Worlds: The
Power of Analogy. Strategic Management Journal, 26:691-712.

Gavetti, G. and D.A. Levinthal. 2000. Looking Forward and Looking Backward: Cognitive
and Experiential Search.Administrative Science Quarterly, 45:113-137.

Gavetti, G. and J.W. Rivkin. 2006. On the Origins of Strategy: Action and Cognition over Time.,
Working Paper, Harvard University graduate School of Business Administration, Division of
Research.

Ghosh, S.K., and Misra, J. 2009. A Randomized Algorithm for 3-SAT. Honeywell Technology
Solutions Laboratory.

Gigerenzer, G, P. Todd, and the ABC Research Group. 1999. Simple Heuristics that Make us
Smart. Oxford University Press, New York.

Gilboa, I., and E. Zemel. 1989. Nash and Correlated Equilibria: Some Complexity
Considerations. Games and Economic Behavior. 1.

Holland, J. H. 1962. Outline for a Logical Theory of Adaptive Systems. Journal of the ACM.
9(3): 297-314.

Hromkovic, J. 2003. Algorithmics for Hard Problems: Introduction to Combinatorial Optimization,
Randomization, Approximation and Heuristics. 2nd edition, Springer, Heidelberg.

Karmarkar, N. 1984. A New Polynomial Time Algorithm for Linear Programming.
Proceedings of the 16th ACM Symposium on the Theory of Computing. 302-311.

Karp, R.M. 1972. Reducibility Among Combinatorial Problems. In Miller, R.E., and J.W.
Thatcher, eds., Complexity of Computer Computations. Plenum, New York.

Kauffman, S. 1969. Metabolic Stability and Epigenesis in Randomly Constructed Genetic
Nets. Journal of Theoretical Biology. 22: 437-467.

Kauffman, S. 1993. The Origins of Order: Self Organization and Selection in Evolution. Oxford
University Press, New York.

Kreps, D.M. 1990. Game Theory and Economic Modeling. Oxford University Press, New York.

Page | 50

Lenox, M.J., Rockart, S.F., and Lewin, A. Y. 2006. Interdependency, Competition, and the
Distribution of Firm and Industry Profits, Management Science, 52: 757-772.

Levinthal, D., and P. Ghemawat. 1999. Choice Structures, Business Strategy and
Performance: An NK Simulation Approach. Working Paper 00-05, Wharton School.

Levinthal, D.A., and Warglien, M. 1997. Landscape Design: Designing for Local Action in
Complex Worlds, Organization Science, 10(3); 342-57.

Lin, S., and B.W. Kernighan. 1973. An Effective Heuristic Algorithm for the Traveling
Salesman Problem. Operations Research. 21. 498–516.

March, J. G.1991. Exploration and Exploitation in Organizational Learning. Organizational
Science. 2: 71-87.

March, J. G., Simon H. A. 1958. Organizations. John Wiley, New York.Marr, D. 1982. Vision.
H. Freeman and Co., San Francisco.

Marr, D. 1982. Vision. San Francisco: H. Freeman and Co.

Martello, S., and P. Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations,
John Wiley & Sons, Chichester, New York.

Martin, R. 2007. The Opposable Mind: How Successful Leaders Win Through Integrative Thinking.
Harvard Business School Press, Cambridge.

McKelvey, B. 1999. Avoiding Complexity Catastrophe in Coevolutionary Pockets: Strategies
for Rugged Landscapes. Organization Science , 10 (3): 294-321.

Michalewicz, Z., and D. Fogel. 2004. How to Solve It: Modern Heuristics. Springer, Heidelberg.

Minsky, M. 1961. Steps Toward Artificial Intelligence. Proceedings of the Institute of Radio
Engineers. 49: 8-30.

Moldoveanu, M.C. 2011. Inside Man: The Discipline of Modeling Human Ways of Being. Stanford
Business Books Stanford.

Moldoveanu, M.C. 2009. Thinking Strategically About Thinking Strategically: The
Computational Structure and Dynamics of Managerial Problem Selection and Formulation,
Strategic Management Journal. 30: 737-763.

Page | 51

Moldoveanu, M.C., and R. Bauer. 2004. On The Relationship Between Organizational
Complexity and Organizational Structuration. Organization Science. 15(1): 98-118.

Moldoveanu, M.C., and J.A.C. Baum. 2008. The Epistemic Structure and Dynamics of Social
Networks, Social Science Research Network. Paper 88795.

Moldoveanu, M. C., and R. L. Martin. 2008. The Future of the MBA. Oxford University Press,
Oxford.

Moldoveanu, M.C. and R.L. Martin. 2009. Diaminds: Decoding the Mental Habits of Successful
Thinkers. Toronto: University of Toronto Press.

Newell, A., & Simon, H. A. 1972. Human Problem Solving. New York: Prentice-Hall.

Novak, S. and Wernerfelt, B. (2012), On the Grouping of Tasks into Firms: Make-or-Buy
with Interdependent Parts. Journal of Economics and Management Strategy. 21: 53–77

Page, L. 2001. Methods for Node Ranking in a Linked Database. United States Patent.

Papadimitriou, C. 1994. Computational Complexity. Addison-Wesley, New York.

Pearl, J. 1990. Causality. Cambridge University Press, New York.

Peirce, C.S. 1998. The Essential Peirce. Chapter 12: Pragmatism as the Logic of Abduction,
University of Indiana Press, Indiana: 226-241.

Porter, M. E. 1996. What is Strategy? Harvard Business Review. (Nov-Dec): 61-78.

Rivkin, J. 2000. Imitation of Complex Strategies. Management Science. 46: 824-844.

Rivkin, J.W. (2001). Reproducing Knowledge: Replication without Imitation at moderate
Complexity. Organization Science: 12:274-293.

Rivkin, J. and N. Siggelkow. 2003. Balancing Search and Stability: Interdependencies Among
Elements of Organizational Design. Management Science, 49(3): 290-311.

Rivkin, J. and N. Siggelkow. 2007. Patterned Interactions in Complex Systems: Implications
for Exploration, Management Science, 53: 1068-1085.

Rubinstein, A.1993. On price Recognition and Computational Complexity in a Monopolistic
Model. Journal of Political Economy 101: 473-484.

Page | 52

Rubinstein, A. 1986. Finite Automata Play a Repeated Prisoner’s Dilemma Game, Journal of
Economic Theory. 46: 145-153.

Schoening, U. 2002. A Probabilistic Algorithm for k-SAT Based on Limited Local Search
and Restart, Algorithmica, 32: 615-623.

Siggelkow, N. 2002. Evolution Towards Fit. Administrative Science Quarterly, 47: 125-159.

Siggelkow, N., and Levinthal, D. 2005. Escaping Real (Non-Benign) Competency Traps:
Linking the Dynamics of Organizational Structure to the Dynamics of Search. Strategic
Organization. 3(1): 85-115

Siggelkow, N., and Levinthal, D. 2003. Temporarily Divide to Conquer: Centralized,
Descentralized, and Reintegrated Organizational Approaches to Exploration and
Adaptation. Organizational Science. 14: 650-669.

Siggelkow, N. and J. Rivkin. 2005. Speed and Search: Designing Organizations for
Turbulence and Complexity. Organization science, 16(2):101-122.

Simon, H. A. 1991. Bounded Rationality and Organizational Learning. Organizational Science.
2(1): 125-134.

Simon, H. A. 1978. Rationality as Process and as Product of Thought. The American Economic
Review. 68(2): 1-16.

Teece, D. and G. Pisano. 1994. The Dynamic Capabilities of Firms: An Introduction.
International Institute for Applied Systems Analysis Working Paper WP-94-103.

Tversky, A., and D. Kahneman. 1986. Rational Choice and the Framing of Decisions. Journal
of Business. 59: 251-284.

Wang, L., J. Zhang, and H. Li. 2007. An Improved Genetic Algorithm for TSP, Proceedings of
the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong.

Weinberger, E.D. 1991. Local Properties of Kauffman's NK Model: A Tunably Rugged
Energy Landscape. Physical Review. 44: 6399-6413.

Weinberger, E.D. 1996.NP Completeness of Kauffman’s N-k Model: A Tunably Rugged
Energy Landscape. Santa Fe Institute Working Paper 96-02-003.

Page | 53

Wolpert, D. 2001. The Mathematics of Search. NASA Ames Research Laboratory Working
Paper.

Wright, A. H., Thompson, R. K., and Zhang, J. 2000. The Computational Complexity of N-
K Fitness Functions. IEEE Transactions on Evolutionary Computation. 44(4): 373-379.

Page | 54

Appendix I: P-Hard Problems, ‘Easy’ and ‘Hard’. I take a ‘short cut’ to the exposition of
problems with polynomial time solution algorithms (P hard problems), illustrated in Figure
11. The short cut consists of considering problems that are known to be solvable in
polynomial time and showing how large classes of problems and sub-problems encountered
in strategic problem solving can be understood as being algorithmically equivalent to them.
This approach allows one to build a large scale, ‘tree-structured’ classifier for the problems
of strategic management, which can then be applied to the task of classifying problems with
respect to their expected time complexity and resulting solution costs.

Constant complexity
T = C

Linear
complexity
T = AN + C

Super-quadratic
complexity

T > AN2 + BN + C

One-shot
heuristic search

procedures

Ranking
or sorting
a list from

‘high’ to ‘low’

Recognition
or ‘pick the

highest-’
ranking

procedures

Correlation

‘Pick the
first thing that

comes to
mind’

‘Pick the
highest one

name/
number from

a list’

‘Pick the first
recognized

name/
number from

a list’

Ordering
random list
from high

to low

Compute
degree of
similarity

Constrained
Linear

Optimization

Linear
Programming

belong to belong to belong to belong to belong to

reduce reduce reduce reduce reduce reduce

Quadratic
(T = AN2 + C)

and quasi-quadratic
complexity

T = AN log N + C

T = complexity of solution algorithm; N= number of variables in problem statement
A,B,C are arbitrary constants.

Figure 11: Complexity Regimes: I. The P-Class.

 There are a few problems that make up ‘the core’ of strategy problem solving, and
that have time complexity that is at most quadratic in the number of problem variables, i.e.
C(N)=O(N2). Constant complexity problems are invariant to the size of the input. Although it
sounds like no solution algorithm can be blind to the size of its input, the process of ‘making
strategy happen’ presents frequent examples, in the forms of mental automatisms. A

Page | 55

strategic manager can automatically discard market information that comes from a distrusted
source, or, alternatively, automatically take advice that comes from a trusted source, even if
the data that backs up the advice is present. If the problem is that of selecting the greatest
total addressable market attainable from a given technological platform, then, either
discarding the data altogether or taking the recommendation of the source data without
parsing it oneself will obviously be ‘blind’ to the data set.

 Linear complexity problems have solution algorithms with the property that C(N) =
O(AN), where A is some positive constant. They include ‘frugal heuristics’ [Gigerenzer et al,
1999] like the recognition heuristic: One can estimate the size of the largest rural suburban
telecom services market in India, for instance, by picking the first (from a list of N) cities
that one recognizes (or, to make the algorithm complete, picking at random if one
recognizes no name). One can rationalize the use of this rule on the assumption that one is
most likely to recognize the largest rural region. Using this heuristic to pick the best option
from a list entails a worst case time complexity of C(N) = N, i.e., in the worst case, one has
to read the entire list before getting to a city that one recognizes. The basic insight can be
extended to ‘chose the best’ algorithms for lists under multiple criteria, in which case the
number of M of criteria becomes a multiplier of the time complexity of the problem, i.e.
C(M,N) = MN.

 More sophisticated algorithms for efficiently processing random lists ordering to
answer questions like ‘Which is the best element under criterions c?’ can be devised, ranging from
the tree searches that we encountered in the previous section (C(M,N) = N log2(M)) to
multicriteria choice models that require re-visiting the list several times, and ordering
according to each new criterion. ‘Biases’ [Tversky and Kahneman, 1986] in decision making
under uncertainty appear, in this approach, as computational shortcuts for multi-criterion
judgment formation, which may, in some cases, be ecologically adaptive.

 Computing the correlation between two vectors or arrays is a good model for analogical
reasoning, or for the kind of automatic processing involved in pattern recognition in low level
or high level vision [Marr, 1982]. The time complexity of correlating two vectors of lengths
N and M is given by: C(Corr(X,Y))=2MN-1 and is hence linear in the length of the vectors. A
‘pattern’ of behavior (a demand fluctuation, a competitor’s response) can be encoded as an
MxM sample array of samples, and the complexity of correlating such a pattern with a
‘known’ pattern stored in working memory will be proportional to M2N2. A good working
measure of the complexity of simple pattern recognition (comparing an observed pattern of
industry behavior with one of K patterns stored in memory) is thus C(“Pattern
recognition”)=Kx M2N2 x log2(K , comprised of the M2N2 required for computing correlation
coefficients and the Klog2(K) operations required to classify the pattern as ‘most like’ one of
the patterns stored in memory.

Page | 56

Linear programming (LP) problems can be used to model n-variable linear
optimization problems under L constraints, such as those arising from optimal price or
quantity selection in either a monopoly or a perfectly competitive market, or profit-
maximizing inventory planning under size and storage cost constraints. [Karmarkar, 1984]
showed that the complexity of such problems is super-quadratic in the number of
optimization variables, and linear in the length (in bits) of the total input, i.e. C(n, L) =
O(n3.5L). LP problems have become a staple of both managerial practice and of training in
managerial economics, and algorithms for solving LP problems have been ‘automated’ by
numerous commercially available software packages and sub-routines.

Page | 57

Appendix II: NP Hard and NP-Complete Problems: The Intractable. I shall take a short cut
to the exposition of intractable problems that mirrors the approach taken in the theory of
computational complexity over the past 39 years [Cook, 1971; Karp, 1972; Garey and
Johnson, 1979; Papadimitriou, 1994; Hromkovic, 2003]. Whereas P-hard problems are
solvable by a deterministic algorithm in a number of operations (C(N)) that is at most a
polynomial function of the number of the problem variables, (C(N)≤Pk(N)), non-
deterministic polynomial-time problems (NP for short) can only be solved by a deterministic
algorithm in a number of steps that is a super-polynomial function of the number of
problem variables, i.e. C(N)> Pk(N)), and, typically, an exponential or super-exponential
function of the number of variables: C(N)≥eN; or, by a non-deterministic algorithm (hence
the name) in a number of steps that is a polynomial function of the number of variables. The
short cut I shall take represents NP-hard problems in terms of a hierarchy (Figure 12) of
problems that are reducible by polynomial-time transformations to a problem proven [Cook,
1971] to be NP-hard, the k-satisfiability (kSAT, with k>2) problem, discussed below.
Subsequent proofs of NP-hardness [Garey and Johnson, 1979; Fortnow, 2009] take the
reductive form of transformations of any problem onto either a kSAT problem or onto a
problem that is polynomial time reducible to a kSAT problem.

Knapsack

Satisfiability
(Cook, 1976)

3 SAT

Partition Vertex cover

Clique
Hamiltonian

circuit

transforms to transforms to

transforms to transforms to

transforms to

transforms to

-Figure 12: Complexity Regimes: II. The NP-Class. T ≥ a exp(bN).

Page | 58

NP hard/complete problems can be used to model and transform large classes of
problems arising in business strategy and distinguish between problems that can be
straightforwardly ‘encoded’ in the language of generalized or canonical problems and
problems that can be ‘transformed’ into such problems by methods that have characterized
the progress of the field of computational complexity theory to date, as follows:

K-SAT and MAX-SAT. The KSAT problem is a decision problem. It asks for an assignment of
truth values to a set of elementary propositions that satisfies a k-variable formula or clause,
expressed as a Boolean function of the elementary propositions. For example, the problem
may be to find the set of truth assignments to the elementary propositions X1, X2, X3,X4
(where ‘0’ denotes ‘false’ and ‘1’ denotes ‘True’) that satisfy the formula F=(X1^~X2^X4)&(
X1^~X2^~X3)= 1 (‘True’), where ‘^’, ‘&’ and ‘~’ are the standard operators ‘or’, ‘and’ and
‘not’ of Boolean logic. The intuition behind the problem being hard in the intuitive sense is
that all possible truth assignments of X1, X2, X3, X4 must be checked against F in order to
determine whether or not they satisfy it; and the problem is the first to be proven to be NP
complete [Cook, 1971]. Thus for a deterministic search process of a KSAT solution, we
have, C(k)≈eK. The associated maximization problem, MAXSAT, is that of finding a truth
assignment to X1, X2, X3,X4 that maximizes the number of satisfied clauses (F has 2, each
with 3 variables), and is NP-hard. K SAT can be used directly to encode the problem of the
design of strategic contracts or relationships, where the individual variables encode possible
states of the world that are relevant to the contract, the logical clauses encode contractual
clauses and formulas encode the consequences of contingent agreements among firms
(Figure 13). Truth assignments to individual variables represent eventualities, clauses then
encode possible consequences to the firm, and the problem of contract design refers to the
problem of determining conjunctions of states of the world that will lead to particular
payoffs or consequences.

Page | 59

K-SATISFIABILITY

Predicting evolution of
NK network of value

linked activities

Deductive reasoning
(theorem proving)

Analysis of large
scale contractual

arrangements

encodes

encodes encodes

CODE:
Variables = linked activities
Values = activity states
Clauses = sub-networks of

activities CODE:
Variables = literals
Values = true/false
Clauses = propositions

CODE:
Variables = world states
Values = true/false
Logical Clauses = contractual

clauses

Probabilistic causal
inference

encodes

CODE:
Variables = causal hypothesis
Values = true/false
Logical Clauses = combinations

of hypotheses and data
statements

Figure 13: The NP Hard Problem K-SAT and the Business Problems It Encodes

Cook [1971] uses KSAT to encode ‘theorem-proving procedures’. This entails that
the problem can be used to model deductive reasoning more generally, which can be encoded
as the problem of figuring out whether or not a formula (a ‘theorem’) is logically compatible
with a set of assumptions (the ‘axioms’). Cooper [1990] uses the problem to model the
problem of causal inference using probabilistic networks [Pearl, 1990], which asks whether
or not a set of causal hypotheses (which play the role of the axioms) provide a causal
explanation for a set of data points (or, evidence statements). The modeling ‘maneuver’ that
Cooper makes is to model conjunctions of causal hypotheses and single data points as
Boolean formulas, wherein the problem of finding the set of hypotheses that provide a
minimally acceptable ‘inference network’ becomes that of finding a truth assignment to the
variables of KSAT that satisfy the resulting formulas.

Thus, KSAT can be used to encode not only ‘deterministic’ problems of deductive
construction, but also problems that incorporate incomplete information and uncertainty,
and which admit of multiple possible causal inferences. It can therefore be used to model the
‘root cause analysis’ that top management teams and consulting firms perform when trying
to understand the most plausible set of causes for strategically important events (sudden
downturn in demand for the firm’s products) that can plausibly have been ‘caused’ by
multiple causal factors (change in clients’ tastes, introduction of a competitive product,

Page | 60

introduction of a substitute, ‘random’ seasonal fluctuation) which may or may not interact
with one another.

Rivkin [2000] showed that the problem of predicting the evolution of a Boolean
network of N nodes (each of which can take on the value of 0 or 1 depending on its prior
state and the current state of other nodes with which it has primary links) with K>2 links to
other nodes maps into the KSAT problem and is therefore NP complete in its decision
problem version (‘Is future state S compatible with system model and initial conditions?’). If
such a network is used to model the value-linked activity set of a business (with K denoting
the number of activities whose states matter to the value added by any one activity), then the
problem of purposive strategic change is NP-complete and therefore strategic design is
‘intractable’. The conclusion depends on the validity of the representation of a set of the
firm as a net of value-linked activities [Porter, 1996], and as one which behaves like a
Boolean network (i.e. the links model deterministic relationships). Even in such a case,
however, it will be seen below that the problem of strategic change, even though
theoretically intractable, may not be practically intractable, as there are classes of meta-
algorithms and heuristics that he been developed specifically for the purpose of providing
‘good enough’ solutions to the KSAT and other NP-hard problems.

KSAT problems (3SAT in particular) also model abductive reasoning, defined, since
Charles Sanders Peirce [1998(1903)] as “inference to the best explanation”. An abduction
problem takes as input a set of data, D, to be explained, and set of hypotheses, {H}, and a
mapping e({hi,}, {dj}) from subsets of H to subsets of D. The problem asks for an explanation
in the form of the minimal subset of H that completely explains D. [Bylander et al, 1991]
reduce the problem of determining whether or not an explanation exists (i.e. a subset of H
that explains all of D) to 3SAT, by assigning a variable in the 3SAT problem and its
negation to an incompatible set of hypotheses, and each Boolean expression (a function of
the variables corresponding to the hypotheses) to a datum to be explained; in which case a
complete explanation exists only if the Boolean expression is satisfiable by the assignment of
truth values to the set of hypotheses. Abductive reasoning has been used to model
managerial thinking ‘in practice’ [Martin, 2007; Moldoveanu and Martin, 2008], as it
represents a pragmatic combination of the salient features of deductive and inductive
reasoning as it emphasizes both ‘validity’ (in the form of explanatory coverage, or
‘completeness’) and reliability (in the form of generalizability, proxied for by parsimony).
The reduction of the ‘completeness’ problem of abduction to KSAT suggests that seeking
valid explanations alone can function as a source of explosive growth in time complexity of
the managerial problem, as the number of causal hypotheses and data points increases. We
will see below that satisfying the parsimony condition in abductive reasoning gives rise to an
NP hard problem.

Page | 61

TSP. The Traveling Salesman Problem (TSP) (Figure 14) typically represents the problem faced
by a salesman who must find the minimum-distance (or minimum time) circuit that takes
him to each of N cities, given that he knows the distance (time) which separates any pair of
cities. The problem is polynomial-time reducible to the HAMILTONIAN CIRCUIT
problem [Karp, 1972] which in turn is polynomial-time reducible to the KSAT problem, and
hence it is NP hard. The intuition behind its complexity measure is that the number of paths
that need to be searched is proportional to N!, which entails, by Stirling’s formula, that

N
e
NNC

N

π2)(

= >Pk(N), and the reduction to a known NP-hard problem assures that

there is no polynomial time short cut to a polynomial time solution. The TSP can be used to
encode (Figure 15) a number of strategically important logistical or operational problems,
such as minimizing the temporal or spatial length of the paths of work-pieces on a factory
floor, or maximizing the efficiency of a traveling sales force or of a distribution system.

D

B
C

E

F

A

dAB

dBC

dCE

dEFdAF

dEB

dED

dAE

Figure 14: The Traveling Salesman Problem with N=6 Cities. The Goal Is to Find
the Minimum Total Distance Path Connecting All of the Six Cities.

Page | 62

TSP

Spatial Route
Optimization

(Operations / Logistics) Informational Path
Optimization

In Organization

Influence Path
Optimization

In organization

encodes encodes encodes

CODE:
‘Cities’=Agents;
Edges=Information Exchange Links
Distances=Inverse(Link Integrity)

CODE:
‘Cities’=Agents;
Edges=Trust/Influence Links (Directed)
Distances=Inverse(Link Strength)

CODE::
‘Cities’=spatial locations;
Edges=spatial paths
Edge length=spatial distance

Figure 15: The NP Hard Problem TSP and Business Problems It Encodes

It can also be used to encode problems that are directly relevant to organizational
design or the optimization of the operation of a top management team. Mapping, for
instance, individuals onto ‘cities’ and the affective distance among individuals (the inverse of
the influence of individual i on individual j) onto spatial or temporal distances (the edges of
the network) the TSP maps into an ‘optimal influence strategy’ problem, where the goal is to
find the optimal ‘persuasion path’ through a senior management team. This problem in turn
can represent both the ‘CEO problem’ (‘how to persuade the members of my executive
team or board of directors of a new strategic path?’) and the problem of ‘strategic selling’
(‘how to persuade the key decision makers and influential agents of a strategic customer of
making a large scale commitment to my product, service or solution?’) Alternatively, if we
map the nodes onto individuals and edges onto information exchanges among individuals,
whose length is measured by the inverse of the probability of truthful or trustful information
transfer between two managers (the ‘integrity’ of the informational link between them), the
TSP maps into an ‘optimal information strategy design problem’, whose solution helps
strategic managers promulgate news and rumors most efficiently. In this case, the
promulgator of the rumor would want to be both the start and the end point of the
informational path of the rumor through the network so that he or she can ‘verify’ (or,
authenticate) the fidelity with which the rumor has been transmitted through the network.

Page | 63

KNAPSACK. The KNAPSACK Problem (KSP) [Karp, 1972; Martello and Toth, 1990]
represents the problem of optimally packing a knapsack of known total volume V with a set
of k utensils out of N possible options so as to maximize the total utility of the set of
utensils included, subject to all utensils fitting in V, given knowledge of the volume and the
value of each utensil. Under the constraints are that no fraction of a utensil can be taken
along (“0 or 1”) and that each utensil can be included only once, KSP presents a search
space that comprises 2N possible options (the number of subsets of N), providing an upper
bound C(N)=2N, which the reduction of KSP to a problem known to be polynomial-time
reducible to KSAT (namely, PARTITION) also confirms as a lower bound on the
complexity of an exact solution using a deterministic algorithm.

KSP is known to be a highly versatile modeling tool, having been used in the design
public key cryptosystems (where it appears as the SUBSET SUM problem [Martello and
Toth, 1990]), and it lives up to its versatility in encoding strategy problems. It can be used to
represent the problem of strategic product design [Chapman, Rosenblitt and Bahill, 2001]
under lumpy constraints that arise from existing platforms and developing technical
standards (which map into the ‘utensils’), the problem of the optimization of the cost
structure of a manufacturing business by choosing over non-divisible activity sets with
known costs and benefits and the problem of mapping technological platform features into
the features of strategic products, under total cost-of-goods-sold constraints, among others.
It can also be used (in its cryptographic form via the SUBSET SUM problem) to model the
problem of decoding the jargon used by experts that seek to hijack the position power of top
managers with their knowledge power by the use of professional codes as a form of public
key cryptosystem, and the problem of ‘infiltrating’ technical standards proceedings that use
jargon as a barrier to entry.

VERTEX COVER. The VERTEX COVER (VC) problem is a decision problem that relates
to finding a subset v of at most K of the N vertices V of a graph G(E,V), where E denotes
the set of connecting edges, such that v will include the vertices that together touch all of the
edges E of G. The VC problem was proven to be NP-complete by reduction to
PARTITION [Karp, 1972] and a brute force algorithm will find the solution in
C(N,K)≈2KN. The associated NP-hard optimization problem is that of finding the minimum
vertex cover of G, i.e. that of finding the minimal K. The VC problem straightforwardly
encodes problems relating to the firm’s ‘network strategy’. It is well documented that a firm’s
position within its industry network matters to its strategic performance, which raises the
problem of ‘managing’ the firm’s ‘networking strategy’ [Moldoveanu, 2009] by seeking the
network ties that maximize the firm’s ‘network strategic advantage’. What underlies the
solution to most such problems is recognizing the ‘core’ of well-connected firms within the
industry, i.e. the network’s ‘vertex cover’. The VC problem thus construed encodes the

Page | 64

problem of ‘strategic network sensing’ – of mapping the firms within a network that
together ‘span’ the entire network.

 The VC problem also encodes problems related to understanding and manipulating
the ‘epistemic networks’ [Moldoveanu and Baum, 2008] that arise within executive teams
and are causally relevant to the ability of the team to coordinate or co-mobilize. An
epistemic network is a network defined by a set of individuals I, a set of propositional beliefs
P and a set of links among individuals and beliefs that denote the ‘knows’ or ‘believes’
operator. Individuals A, B, C and proposition R are linked by an epistemic path if A believes
B believes C believes P, for instance. The problem of figuring out the set of central beliefs in a
top management team maps onto the problem of figuring out the minimal set of
propositions that together ‘span’ the set of individual members of the team – which is the
minimal vertex cover of the epistemic network of beliefs of the top management team.
These beliefs are important because they function as focal points in coordination games and
scenarios and in mobilization scenarios [Moldoveanu and Baum, 2008], and thus finding and
controlling them is important for narrowing down the set of equilibria of the coordination
and mobilization games that the top management team plays. Relatedly, the problem of
figuring out which top manager(s) are most ‘in the know’ (who knows most and who knows
most about what others know) becomes the problem of figuring out the minimal vertex
cover of the network of agents of the top management team.

CLIQUE is a decision problem (CP) that asks whether or not a graph G(V,E) of N vertices
and E edges has a clique of size k (defined by a fully connected sub-network SG of G). The
associated optimization problem asks for the minimal/maximal clique that graph G
possesses [Garey and Johnson, 1979]. The intuitive time complexity of a brute force
approach to CP is C(N,k)=Nkk2, and the reduction of CP to VC [Karp, 1972] attests to the
tightness of the time complexity bound. CP is also a versatile strategic problem modeling
tool (Figure 16): it has been used [Gilboa and Zemel, 1989] in its decision form to model a
problem considered ‘prototypical’ for strategic choice processes - that of finding a particular
Nash equilibrium (NE) set of strategies that give a payoff of at least P in a competitive game
(which includes: a Nash Equilibrium in which a player makes a certain minimum payoff, a
Nash equilibrium whose support contains a certain strategy, and a Nash Equilibrium in
which the aggregate payoff of the players exceeds a certain number). The problem of finding
a NE is one that can in some cases be modeled by LP (as will be demonstrated below for a
specific 2 player game). Subsequent work [Chen and Deng, 2006; Daskalakis, Goldberg and
Papadimitriou, 2006] showed that the problem of finding the Nash Equilibrium of a game
cannot, in general, be solved in polynomial time, as it is a member of a subclass of TFNP
(‘Total Function Non-deterministic Polynomial Time’) - the function-theoretic equivalent of
NP-complete decision problems and NP-hard optimization problems.

Page | 65

SET COVER. There are two versions of this problem: EXACT COVER and (simply)
COVER. EXACT COVER (EC) asks for whether or not there exists a collection of pairwise
disjoint subsets of a given, finite set S whose union is equal to S. [Aragones et al. 2003] show
that EC can be used to represent the problem of linear regression, i.e. of finding the set of
predictors {X1, …, XK} for a set of observations {Yj} that contains at most k elements
subject to the correlation coefficient between the predictors and the predicted variable being
at least r. The time complexity of a brute force solution to EC is intuitively given by the
complexity all possible subsets of S, i.e. C(EC(S))=2|S|-1, and the reduction of EC to KSAT
[Karp, 1972] assures us that the problem is indeed in NP.

The problem of induction, on the other hand, i.e. of finding the minimal set of rules
or generalizations that are consistent with a set of data, is transformable to the COVER
problem, which asks whether or not there exists a set of n subsets of S whose union is equal
to S [Aragones et al, 2003]. If the data are encoded as a matrix whose (i,j) entries represent
the degree to which sample i has attribute j, then a rule is one that states that no sample with
property l will fail to exhibit property k, for instance. The minimal set of rules, then, will be
the smallest set of subsets of the data set that exactly correspond to a set of rules. COVER
and EXACT COVER are versatile enough to encode other problems of strategic interest,
such as the optimal design of teams comprising individuals with potentially overlapping skill
sets (the set S is the set of skills needed for a task, the subsets of S are the skills
corresponding to each individual) or conflicting personality characteristics for the optimal
pursuit of tasks requiring certain sets of skills (software design) or personality types (sales).

Finally, the problem of parsimonious abduction – of figuring out the minimal set of
hypotheses that together explain a data set – maps into a version of the COVER problem
[Bylander et al, 1991], that asks for the minimum set of subsets of a set whose union is the
set itself (‘collectively exhaustive’). If we let the set in question encode Hmin the set of
explanatory hypotheses of at least minimal plausibility, then the problem of parsimonious
abduction maps into the optimization version of the COVER problem. If we further specify
that allowable explanations must consist of ‘mutually exclusive’ hypotheses, then the
parsimonious abduction problem maps into the optimization version of the EXACT
COVER problem.

