Finding Excuses to Decline the Ask

Christine L. Exley
Ragan Petrie
Finding Excuses to Decline the Ask

Christine L. Exley
Harvard Business School

Ragan Petrie
George Mason University

Working Paper 16-101
Finding Excuses to Decline the Ask

Christine L. Exley and Ragan Petrie *

October 26, 2016

Abstract

Individuals frequently exploit “flexibility” built into decision environments to give less. They use subjectivity to justify options benefiting themselves over others, they avoid information that may encourage them to give, and they avoid the ask itself. In this paper, we examine whether a reluctance to give may arise even when such explicit flexibility is absent. We investigate whether merely alerting individuals to an upcoming prosocial ask – that is neither avoided nor contains subjective components – results in reduced prosocial behavior. That is, we investigate whether individuals use time to quickly find or develop their own flexibility and excuses not to give. Results from a field study and complementary online study provide a clear answer: yes.

Keywords: charitable giving, prosocial behavior, self-servingly biases, excuses

JEL codes: D64, C93

*Exley: clexley@hbs.edu, Harvard Business School; Petrie: rpetrie@tamu.edu, Department of Economics, Texas A&M University; We gratefully acknowledge funding for this project from George Mason University, Harvard Business School, and Stanford University.
One need not look far to see evidence of charitable acts. Volunteerism and giving in local communities are common. Social media campaigns, such as #GivingTuesday, highlight giving opportunities online. Giving USA recently reported the highest level of (inflation-adjusted) charitable giving in their 60-year history: $358.38 billion in 2014. Over 70% of this giving comes from individuals, as opposed to foundations, bequests, or corporations. While about one-third of donations benefit religious organizations, other popular causes range from education to the environment and animals (Giving USA Foundation, 2015).

Despite this prevalence of giving, or perhaps in part because of it, there is a clear reluctance to give. Individuals walk in a direction away from solicitors (Andreoni, Rao and Trachtman, 2016; Trachtman et al., 2015), do not answer their door for fundraisers (DellaVigna, List and Malmendier, 2012), opt-out of future mail campaign solicitations (Kamdar et al., 2015), and avoid tasks that earn them money if a donation request is known to follow (Lin, Schaumberg and Reich, 2016). Individuals also achieve outcomes that benefit themselves over others more often by engaging in self-serving evaluations of fairness (Babcock et al., 1995; Konow, 2000), ambiguity (Haisley and Weber, 2010), beliefs about others (Di Tella et al., 2015; Klinowski, 2015), risk (Exley, 2016a), subjective quality measures (Gneezy et al., 2016; Exley, 2016c), and competing moral principles (Danilov and Saccardo, 2016; Garbarino, Slonim and Villeval, 2016).

Gino, Norton and Weber (2016) classify such behavior by noting that “when the context provides sufficient flexibility to allow plausible justification that one can both act egoistically while remaining moral, individuals seize on such opportunities to prioritize self-interest at the expense of morality.” Earlier work highlights this precondition of flexibility to engage in less desirable or questionable behavior when they refer to mechanisms such as “elastic justification” (Hsee, 1995, 1996), “causistry” (Norton, Vandellos and Darley, 2004), or “moral wiggle room” (Dana, Weber and Kuang, 2007).

1 Avoidance may also reflect a desire to avoid empathetic triggers (Andreoni, Rao and Trachtman, 2016) or social pressure (DellaVigna, List and Malmendier, 2012), as also supported by additional work (Meer, 2011; Andreoni and Rao, 2011; Castillo, Petrie and Wardell, 2014, 2015). Relatedly, individuals desire to avoid others knowing about giving opportunities (Dana, Cain and Dawes, 2006; Broberg, Ellingsen and Johannesson, 2007; Lazor, Malmendier and Weber, 2012).

2 Other factors that may be viewed self-servingly may relate to the reliance on chance or others’ decisions (Dana, Weber and Kuang, 2007; Andreoni and Bernheim, 2009; Linardi and McConnell, 2011; Falk and Szech, 2013), the use of donations (Fong and Oberholzer-Gee, 2011; Li et al., 2015; Gneezy, Keenan and Gneezy, 2014; Batista, Silverman and Yang, 2015), or performance metrics (Yörük, 2016; Brown, Meer and Williams, 2014; Gneezy, Keenan and Gneezy, 2014; Meer, 2014).

3 Indeed, decades ago, Snyder et al. (1979) shows that when individuals are choosing between two movie theaters, they only avoid choosing the same movie theater as a person with disabilities if the movies are different – not the same. More recent examples show how individuals use flexibility when delegating decisions to others (Hamman, Loewenstein and Weber, 2010; Coffman, 2011; Bartling and Fischbacher, 2012), weighing plausible counterfactuals (Shalvi et al., 2011), assessing their own ability (Schwardman and van der Weele, 2016), or avoiding “moral tests” (Miller and Monin, 2016).
Even in a setting without explicit flexibility, individuals may find and develop their own excuses not to give. To consider the potential for such underlying behavior, this paper investigates individuals’ responses to a prosocial ask in a decision context that is not explicitly flexible. Subjective components that could readily serve as excuses not to give—such as competing norms of fairness, ambiguity, or risk—are not highlighted in our setting. Avoidance behavior that may emerge when an individual infers an ask is forthcoming (e.g. by avoiding potential solicitors) does not manifest in our setting; the prosocial ask is not avoided. Our setting thus allows for the examination of a broader phenomenon where a reluctance to give emerges from merely giving individuals time to think about an impending ask. To test whether individuals capitalize on such an opportunity by finding or developing their own excuses not to give, the prosocial ask is either announced in advance and “expected” or a surprise and “unexpected.”

Most environments are not conducive to examining the impact of expecting the ask absent the flexibility to avoid it. Future donation asks are often avoided if they are expected. Imminent donations asks, such as when individuals receive fundraising mail or are approached by solicitors, are likely recognized as such and do not allow for unexpected asks.

We therefore embed our field experiment in an online voting contest where the ask is imminent but not necessarily expected. Upon arriving at the contest webpage, individuals learn that they must complete a three-step registration process for their vote to count. In the first step, individuals vote for their favorite animal group and are unlikely to expect an ask. In the second step, individuals provide information on how they know their voted-for animal group and view any messages related to their randomly assigned treatment group. In the third step, individuals face the ask and decide whether to click-through to the donation page of their voted-for animal group. Strong treatment effects and attrition of only 1% validate this design choice. The use of an online voting contest also maintains the benefits of a natural environment where individuals are not directly informed of, and likely remain unaware of, the on-going research. The six treatments groups—which influence what participants view during the second step before the ask—arise from two conditions.

Our first condition addresses our central question by varying the expectation of the ask. When the ask is expected, the second step mentions the upcoming donation ask by saying

4Inherent to examining whether individuals develop their own excuses absent explicit flexibility, we consider excuses broadly in this study. For instance, excuses may involve psychologically guarding oneself from emotional appeals, thinking of reasons not to give such as there being better giving alternatives, or forming beliefs that do not counter one’s identity or help to limit cognitive dissonance.

5Moreover, the degree to which individuals already expect an ask biases against our treatment effects that arise from the manipulation of the expectation of an ask.

6Most individuals have voted in an online contest or poll before (Google Consumer survey, Oct. 2015, n=500) and over a quarter have done so to help others (Google Consumer survey, Oct. 2015, n=500).
“Do you love [group name]? Register your vote in the next step, and if you want to, donate to them!” When the ask is unexpected, the second step instead reads “Do you love [group name]? Register your vote in the next step!”

Our second condition investigates potential policy interventions that may limit individuals’ ease with which to find excuses not to give. We compare the effectiveness of providing no information, unavoidable information and avoidable information on “why to give” in the second step. In line with industry practice, provided information features an adoption story about a rescued dog.

Our contest yielded approximately six-thousand participants. When no information is provided, we find that the mere expectation of the ask causes click-through rates to fall by 22%. Individuals appear readily able to find their own excuses when given time – in practice, just a few seconds – to do so. A reluctance to give extends beyond settings with explicitly provided flexibility and hints that being caught on the spot with a request can increase compliance, perhaps because there is little time to develop excuses.

Results related to policy also emerge. While the negative impact of expecting the ask persists in the presence of avoidable information, unavoidable information effectively counteracts this drop. In addition to validating the common practice of charities bundling donation requests with unavoidable information on why to give, these results are consistent with individuals more easily developing excuses when information on why to give can be avoided. Indeed, in line with the idea that individuals avoid information to maintain “moral wiggle room” (Dana, Weber and Kuang, 2007; Bartling, Engl and Weber, 2014; Grossman, 2014; van der Weele, 2014; Grossman and van der Weele, 2016), 22% of participants view information they could have avoided when the ask is unexpected but only 17% do so when the ask is expected. Among those that view information, individuals spend more time considering it when they know the ask is coming and excuses would likely be needed.

In our field experiment, we only observe click-through rates to donation pages. To investigate if the negative impact of the ask persists with donation data, we therefore ran a complementary online experiment with approximately eight-hundred Amazon Mechanical Turk workers. Corresponding results document a 5% significant decrease in average

7This particular investigation was also instrumental to recruiting our non-profit partners.

8Alternatively, expecting the ask may create a negative association with the contest and reduce giving absent any excuse-related behavior. Several pieces of evidence do not support this possibility. Attrition is rare and does not vary across treatment groups. If expecting the ask sours the experience, individuals nonetheless cast their vote, and moreover, viewing habits suggest that they avoid information and take time to find excuses when they expect the ask. Expecting the ask also does not discourage individuals who have previously supported for their voted-for charity, counter to at least a uniform souring of the experience.

9This also relates to the later discussed response time literature (Rand, Greene and Nowak, 2012; TINGhög et al., 2013; Recalde, Riedl and Vesterlund, 2014; Krajbich et al., 2015; Kessler, Kivimaki and Niederle, 2015).
donations if the ask is expected, and this average effect masks substantial heterogeneity. Expecting the ask causes a 10% significant reduction in average donation among individuals who have not previously supported their voted-for charity, 12% significant reduction among females, and 20% significant reduction among the interaction of these two groups.

Our field experiment also finds heterogeneity by prior support for the charity. Both experiments therefore contribute to growing evidence that there is a spectrum of individuals ranging from those who are always selfish to those who are always prosocial. Although not relevant for either extreme, excuses appear more relevant for those closer to the selfish side.10 Our field experiment (with 83% of that sample being female) is underpowered to gender differences, however, the finding from the complementary online experiment that women are more likely to use excuses not to give echos the results from DellaVigna et al. (2013). They find that women are more likely to avoid the ask when it is easier to do so. More broadly, women may be more likely to be marginal givers and thus susceptible to excuses.

\section{Field Study Design}

\textbf{Step 1 - Vote for favorite group}

For the first step (see Figure 1), an individual votes for her favorite animal group and provides her first name, last name, email address and zip code. She also confirms her eligibility by agreeing to the terms-of-use and stating that she is 18 years or older, resides in the US and will only vote once. An individual only views information that this contest is related to a research study if she chooses to click on the terms-of-use hyperlink, and in the 4% of cases.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image1.png}
\caption{Screen shot of first step of the voting contest}
\end{figure}

10Karlan and Wood (2014) find more adverse responses to effectiveness information among smaller previous donors, Exley (2016a) documents more excuse-driven responses to risk among those who give less when there is no risk, and Exley (2016c) finds more excuse-driven responses to lower-rated charities among those who give less to the highest-rated charities. In the voting literature, Gerber and Rogers (2009) observe that messages about low-voter-turnout, relative to high-voter-turnout, are most counterproductive among infrequent voters. Heterogeneous findings by prior prosocial behavior also appears in relation to responsiveness to natural disasters (Lilley and Slonim, 2016), financial incentives (Niesse-Ruenzi, Weber and Becker, 2014; Lacetera, Macis and Slonim, 2014), social image concerns (Exley, 2016b), and self-image concerns (Gneezy et al., 2012).
cases where this occurs, note that this hyperlink click precedes the treatment variations shown in the second step.

Step 2 - Presented with any materials related to treatment group

In the second step, the top portion of the page requests information on how the individual knows her voted-for group – e.g. whether she has adopted from them, attended one of their events, donated money to them, used their services, volunteered for them, worked as a staff member, never interacted with them, and/or interacted in some other way. The bottom portion of the page displays any information related to the treatment group. The six treatments vary on two dimensions: whether the upcoming ask is mentioned or not, and whether information on why to give is not provided, is unavoidable, or is avoidable. Figure 2 displays the first two “No Information” treatments, which only vary by whether the short message at the bottom of the page.

No Information-Unexpected Ask : “Do you love [group name]? Register your vote in the next step!”

No Information-Expected Ask : “Do you love [group name]? Register your vote in the next step, and if you want to, donate to them!”

![Figure 2: No Information treatments](image)

Figure 3 displays the two “Unavoidable Information” treatments, which add in information on why an individual might want to donate to her voted-for animal group. This information takes the form of a real adoption story of a dog rescued by her voted-for group. Depending on her voted-for group, the adoption story always features one large photograph or two small photographs, along with 140-170 words describing how the dog was rescued. The adoption story follows the message that varies the expectation of the ask.
Unavoidable Information-Unexpected Ask: “Do you love [group name]? Read ‘[dog name]’s Story’ below about a pup they saved, and register your vote in the next step!”

Unavoidable Information-Expected Ask: “Do you love [group name]? Read ‘[dog name]’s Story’ below about a pup they saved, register your vote in the next step, and if you want to, donate to them!”

Figure 3: Unavoidable Information treatments

![Unavoidable Information-Unexpected Ask](image1)

![Unavoidable Information-Expected Ask](image2)

Figure 4 displays the final two “Avoidable Information” treatments. An individual can click the bar at the bottom of the page to reveal the information or not click to avoid the information. This bar follows the message that varies the expectation of the ask.

Avoidable Information-Unexpected Ask: “Do you love [group name]? Click to read ‘[dog name]’s Story’ below about a pup they saved, and register your vote in the next step!”
Avoidable Information-Expected Ask: “Do you love [group name]? Click to read ‘[dog name]’s Story’ below about a pup they saved, register your vote in the next step, and if you want to, donate to them!”

Figure 4: Avoidable Information treatments

(a) Unexpected Ask (b) Expected Ask

Step 3 - Choose whether to click-through to donation page

As shown in Figure 5, during the third and final step, an individual must decide whether to click-through to her voted-for group’s donation page. To ensure an individual makes an active decision about clicking-through, notice that she must indicate this decision before clicking on the “register my vote” button. After clicking this button, a screen appears confirming the vote has been registered and a confirmation email is sent. If the voter chooses to click-through to the donation page of her voted-for animal group, she is automatically redirected to that page.

Figure 5: Screen shots of third step of the voting contest
2 Field Study Data

2.1 Participant Recruitment

From March 9th to 22nd of 2015, individuals could vote for one out of eight participating Bay Area animal groups. To encourage participation, the group with the most votes by the end of the contest won $4,000. Additionally, one voter was chosen at random, and the group that individual voted for won $1,500. This smaller prize provided an incentive for all individuals to register a vote, even if their voted-for group was unlikely to win the $4,000.

The contest was hosted via a Qualtrics survey on the website of an organization that helps individuals find dogs for adoption (www.wagaroo.com) from animal shelters, rescue groups, or families needing to rehome their dogs. The hosting organization did not participate in the contest. Groups participating in this contest, however, had interacted with the hosting organization before, mostly by posting profiles of their dogs available for adoption on the hosting organization’s website. This relationship helped to ensure supporters of the participating groups about the legitimacy of the contest. The left panel of Figure 6 shows how the landing page for the contest appeared.

To facilitate voter recruitment, participating groups were provided with professionally designed promotional materials. The right panel of Figure 6 shows an example. Groups were free to use these materials and any of their own materials to promote the contest via outlets such as Facebook, Twitter, their own web page, and email lists.

Figure 6: Voting Contest

11 Random assignment to treatment groups was balanced across the 2 weeks of the contest, and our results are robust to only considering data from the first or second week.

12 Our own monitoring suggests that most promotion took place on Facebook.
2.2 Participant Completion

Out of the 6,664 individuals who began the three-step voting registration process, only 4% did not complete all three steps. Excluding individuals with a duplicate name and/or email address reduces the rate of attrition to only 1% of the remaining 6,059 individuals who began the registration process. The attrition rate remains constant across all treatment groups, and our results are not sensitive to excluding individuals on the basis of duplicate names and/or email addresses. The analysis that follows therefore excludes all potential duplicates and focuses on the 5,976 unique and successfully cast votes, thus yielding 980 - 1,005 in each treatment group.

2.3 Description of the Data

For the 5,976 participants, we measured the amount of time participants spent on each step. While the median time spent on the first step (44-45 seconds) and last step (11 seconds) did not vary across treatments, the amount of time spent on the second step varied in the direction one would expect: 19-21 seconds when no information was provided, 26-27 seconds when the information was avoidable, and 31-32 seconds when the information was unavoidable.

Our data also consist of information directly inputted as part of the three-step voting registration. From participants’ inputted names in the first step, computer code that predicts gender from a database of names indicates 83% of participants were female, 14% were male, and 4% were not known. From participants’ answers about how they knew their voted-for group in the second step, 26% have adopted a pet from them, 22% have donated money or a gift, 17% have attended an event, 15% have volunteered, 10% have used a service such as spay/neuter or training classes, and 1% have worked as a staff member. Appendix Table A.1 shows that the frequency of these interactions, as well as predicted gender, are not different across the treatment groups.

Participants’ active decisions about whether to click-through to the donation page of their voted-for animal group in the third step is our central outcome metric. Among voters who chose to click-through, subsequent donation decisions were only observed by the involved animal group. Data collection from the animal groups unfortunately resulted in noisy and non-standardized information. Even if we consider this data, the observed donation level of 1-2% leaves us underpowered to detect any significant differences across our treatment

\footnote{The reduced attrition rate may reflect some individuals starting to register a second vote but then quitting when they remembered that only one vote per person was allowed.}

\footnote{This is important as it is indeed possible that some individuals shared the same name as another participant, or that more than one individual shared a particular email address, such as a family email address.}
groups. Analysis of donation data, however, is possible with our complementary online experiment (see Section 4).

Before turning to how click-through rates change in response to our treatment variations in the next section, it is useful to note that click-through rates, or targeted website traffic to donation pages, are highly valued metrics. For instance, in their survey paper on political campaigns, Nickerson and Rogers (2014) discuss how “data collected from online activities can be of particular value” as the barrier to entry is low and it facilitates predictions about levels of support and likelihood of subsequent actions. Given the increasing professionalism of the nonprofit sector (Hwang and Powell, 2009), it may therefore be no surprise that a similar focus appears to be developing among nonprofit organizations. Out of the 84 nonprofit organizations (netting over $400 million dollars) featured in the 2015 M+R Benchmarks Study, 76% paid for web marketing. The belief that this investment may be worthwhile is moreover supported by M+R Benchmarks Study reporting an average of $610 dollars in donations for every 1,000 website visitors compared to only an average of $40 for every 1,000 fundraising emails sent.

As a baseline, it is therefore encouraging to note that we observe an average click-through rate to donation pages of 46%. This average compares favorably to available benchmarks about how often individuals click-through in response to emails.

3 Field Study Results

3.1 Treatment Effects on Click-through Rates

In the No Information - Unexpected Ask treatment, voters are reminded to register their vote in the next step. The addition of 8 words that alert voters to the upcoming donation ask in the No Information - Expected Ask treatment has a substantial impact. Figure 7 shows that the mere expectation of the ask, or opportunity to find and develop one’s own excuses prior to the ask, causes click-through rates to significantly decrease from 51% to only 40%. Columns (1) and (2) of Table 1 confirm the significance of this drop via a linear probability model of the likelihood to click-through on expecting the ask, both when controls

15 Although noisy, it is interesting to note that rates conditional on being asked are typically around 2% for mail campaigns (Huck and Rasul, 2011; Karlan and List, 2007; Karlan and Shafir, 2011; Eckel and Grossman, 2008) and via social media (Castillo, Petrie and Wardell, 2014, 2015).

16 For details, please see http://mrbenchmarks.com.

17 The M+R Benchmark Study reports a click-through rate of 0.48% from fundraising emails, with only 14% even being opened. MailChimp reports a click-through rate of 2.89% from large email campaigns initiated by nonprofit organizations, with only 25.45% of emails being opened (see http://mailchimp.com/resources/research/email-marketing-benchmarks). Silverpop reports that even the top-quartile of nonprofit organizations only have a click-through rate of 4.8% and opening rate of 27.3% (see http://www.silverpop.com/Documents/Whitepapers/2013/WP_EmailMarketingMetricsBenchmarkStudy2013.pdf). We are not aware of any benchmark of click-through rates from an online contest.
are not included and when controls are included for each voter’s gender, day during contest that they voted, selected animal group, and ways in which they know their selected animal group.18 That is, individuals appear readily able to find excuses not to click-through when the ask is expected. This reluctance to give arises even without the ability to avoid the ask or the provision of information or factors that allow for subjective and self-serving evaluations.

Turning now to the policy-related results, we investigate whether expecting the ask is less detrimental when developing excuses may be more difficult or less desirable.19 Consistent

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
\hline
\textbf{Information:} & \textbf{None} & \textbf{None or Unavoidable} & \textbf{None or Avoidable} \\
\hline
\textit{Expected Ask} & -0.11*** & -0.11*** & -0.11*** & -0.11*** & -0.11*** \\
& (0.03) & (0.03) & (0.03) & (0.03) & (0.03) \\
\textit{Unavoidable Info} & -0.04 & -0.04 & & & \\
& (0.03) & (0.03) & & & \\
\textit{Expected Ask} & 0.11** & 0.10** & & & \\
& & (0.03) & & & \\
\textit{Avoidable Info} & -0.03 & -0.03 & & & \\
& (0.02) & (0.02) & & & \\
\textit{Expected Ask} & 0.04** & 0.07*** & 0.06** & & \\
& (0.02) & (0.02) & (0.02) & & \\
\textit{Previous Supporter} & 0.51*** & 0.43*** & 0.51*** & 0.45*** & 0.51*** & 0.43*** \\
& (0.04) & (0.03) & (0.04) & (0.04) & (0.04) & (0.02) \\
\textit{Constant} & & & & & & \\
\hline
\textbf{Controls} & no & yes & no & yes & no & yes \\
\textbf{Observations} & 1989 & 1989 & 3973 & 3973 & 3987 & 3987 \\
\textbf{Click-through rates} & 0.46 & 0.46 & 0.46 & 0.46 & 0.45 & 0.45 \\
\hline
\end{tabular}
\caption{Click-through regressions}
\end{table}

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. Standard errors are clustered at the voted-for animal group level and shown in parentheses. The results are from a linear probability model of likelihood to click-through to the donation page of voted-for animal group. \textit{Expected Ask}, \textit{Unavoidable Info}, and \textit{Avoidable Info} are indicators for when the ask is expected, the information provided is unavoidable, and the information provided is avoidable. Controls include indicators for each individual’s day that they voted during the contest, selected animal groups, previous supporters, and males.

18 All results in this paper are robust to considering Probit regression results as opposed to regression results from a linear probability model.

19 A reduction in the salience of an upcoming ask may directly decrease the focus on finding excuses.
with this possibility, there is no longer a negative impact of expecting the ask when unavoidable information on why to give is provided. In the Unavoidable Information treatments, click-through rates remain at 47% regardless of whether the ask is expected or unexpected. Columns (3) and (4) of Table 1 show providing unavoidable information significantly and indeed fully counteracts the negative impact of expecting the ask.

However, when information can be acquired in a manner that allows for excuses not to give, we again see evidence for the negative impact of expecting the ask. In the Avoidable Information treatments, expecting the ask causes a significant reduction from 48% to 41%. Columns (5) and (6) of Table 1 show that providing avoidable information does not significantly counteract the negative impact of expecting the ask.

Figure 7: Clicks-through rates

\[\text{Fraction that Click-through}\]

\[
\begin{array}{ccc}
\text{No Information} & \text{Unavoidable Information} & \text{Avoidable Information} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Unexpected Ask} & \text{Expected Ask} \\
\end{array}
\]

As the unavoidable information provided in this study did not encourage higher click-through rates across the board— that is, it only countered the negative impact of expecting the ask— there is room to optimize what type of information is provided. For instance, results from Levine and Kam (2015) indicate that the focus on past success as opposed to future need may suggest that the organizations can succeed without further support. Unavoidable information may also be less effective if it causes individuals to expect the ask even without explicitly mentioning it. While this could explain the equal click-through rates in the Unavoidable Information treatments, it would not explain why similar findings do not persist when individuals are offered the same information in the Avoidable Information treatments.

\[\text{Expected Ask} + \text{Expected Ask} \times \text{Unavoidable Info} = 0 \text{ is not rejected (} p = 0.91).\]

\[\text{Expected Ask} + \text{Expected Ask} \times \text{Avoidable Info} = 0 \text{ is rejected (} p = 0.01).\]
3.2 Heterogeneous Treatment Effects on Click-through Rates

Charities often consider how to target fundraising appeals towards new versus previous supporters, and prior literature confirms that responsiveness to various factors, such as image concerns or financial incentives, vary across these two groups. To consider the potential for heterogeneous effects by the level of prior support, we therefore turn to the gathered information on how voters know their voted-for animal group. We classify 54% of voters as previous supporters if they have previously adopted from, donated to, volunteered for, attended an event of, used services of, or been a staff member for their voted-for animal group. The remaining 46% of new supporters include anyone who has not engaged in those forms of previous support; they have never interacted with their voted-for animal group or have only interacted in some other way. Other ways largely involve small interactions, and in particular, liking the group on Facebook.

Appendix Table A.2 displays the main click-through regression results when the treatment effects are interacted with an indicator for being a previous supporter. As shown by the coefficient on Expected Ask, expecting the ask causes click-through rates to significantly drop by 16 percentage points among new supporters. As shown by the coefficient on Expected Ask*Previous Supporter, this drop is qualitatively smaller by 9 percentage points among previous supporters. The resulting 7 percentage point drop in click-through rates from expecting the ask is indeed not statistically significant among previous supporters.23 In other words, while new supporters appear to capitalize on the opportunity to find and develop their own excuses when they expect the ask, a similar reluctance to give does not significantly emerge among previous supporters.24,25

3.3 Treatment Effects and Information Acquisition

Information acquisition choices in the Avoidable Information treatments are such that individuals more readily avoid prosocial behavior when the ask is expected. This section further considers whether evidence – related to both extensive margin decisions about whether to reveal the information and intensive margin decisions about how to consider the information when revealed – is consistent with excuse-driven behavior.

23Expected Ask + Expected Ask*Previous Supporter = 0 is not rejected (p = 0.20).

24There is also some evidence that previous supporters are less responsive to the provision of information, perhaps because previous supporters are more familiar with the available information on how their voted-for group rescues dogs. While unavoidable information has a negative level effect among new supporters, unavoidable information is significantly less detrimental to previous supporters and does not significantly influence their click-through rates (Unavoidable Info + Unavoidable Info*Previous Supporter = 0 is not rejected, p = 0.94).

25Appendix Tables A.3 further provides some qualitative evidence for females being more responsive to the treatment manipulations, although our sample, consisting of 83% females, is underpowered to detect any potential differences.
The moral wiggle room literature suggests viewing decisions will be affected at the extensive margin when the ask is expected. While information may be avoided both when the ask is expected and unexpected, a particular desire to maintain “wiggle room” is more likely when the ask is expected. Our results support information avoidance in both scenarios. Avoidance is common when the ask is unexpected: only 18% of new supporters and 25% of previous supporters reveal the information. Avoidance is even more likely when the ask is expected: only 13% of new supporters and 21% of previous supporters reveal the information. That is, expecting the ask causes a 28% decrease in revealing information among new supporters and a 18% decrease among previous supporters. The first two columns of Appendix Table A.4 confirm these drops for both new and previous supporters, although qualitatively less so among the latter.

The self-serving literature suggests viewing decisions will be affected on the intensive margin. Individuals may view the same information in a more self-serving manner when they may profit from doing so. Unlike the extensive margin though, there is no clear measure of individuals’ intensive margin viewing decisions. In focusing on one observable measure – the amount of time individuals spend viewing the information – the last two columns of Appendix Table A.4 show that viewing time is not significantly different when the ask is expected or unexpected. However, conditional on revealing the information, Appendix Table A.5 demonstrates that viewing time behavior may be more nuanced. Among individuals who choose to reveal the information when the ask is unexpected, both new supporters and previous supporters who click-through spend more time viewing the information than their counterparts who do not click-through. This pattern may reasonably arise because individuals who support the organization are more likely both to spend time reading information and to click-through. Suggestively, a similar pattern does not emerge when the ask is instead expected. There is less time spent viewing the information among individuals who click-through (generous-types) and more time spent viewing among individuals who do not click through (selfish-types). The generous-fast finding is particularly striking among previous supporters while the selfish-slow finding is more striking among new supporters. In addition to supporting the possibility that new supporters are more likely to be excuse-driven than previous supporters, this finding is consistent with the broader empirical findings where prosocial tendencies are intuitive and fast while selfish choices are deliberate and slow (see Zaki and Mitchell (2013) for a review or Rand, Greene and Nowak (2012) for an example).

\(^{26}\) Expected Ask + Expected Ask*Previous Supporter = 0 is rejected \((p = 0.03)\).

\(^{27}\) A similar pattern emerges in the Unavoidable Information treatments (see Appendix Tables A.6).

\(^{28}\) Our heterogeneous findings also relate to the literature that considers how confounds may influence the relationship between decision time and prosocial tendencies. For instance, the relationship may depend
4 Complementary Online Study

From April 14 -16 of 2016, we recruited 800 participants via Amazon Mechanical Turk to complete a complementary online study. Eligible participants – anyone who resided in the United States and had completed 100 tasks via this platform with an approval rating of 95% or better – saw our study description as “You will be asked to answer a 5 minute academic survey” and knew the guaranteed payments was $1 for completing the survey. One individual did not partake in our survey yet submitted an (invalid) completion code, and thus our sample size is 799 individuals. As shown via the screenshots in Appendix B, Figures B.1- B.3, this study employs a similar design as the No Information treatments from the field study and provides donation data as a robustness check on our field study results.

In the first out of two decisions, individuals are asked to vote for one of eight charities. They learn that the charity with the most votes will receive a donation of $100, and additionally, the charity voted for by a randomly selected participant will receive a donation of $25. Selecting from the top-ten most followed and the top-ten super-sized charities on Charity Navigator, the eight charities that individuals could vote for include ALSAC - St. Jude Children’s Research Hospital, American Cancer Society, City of Hope, Oxfam America, Smithsonian Institution, The Nature Conservancy, World Vision, and World Wildlife Fund.

After completing their first decision, participants read text according to whether they are randomly assigned to the expected ask or unexpected ask treatment group.

Unexpected Ask: “Thank you for voting for [group name]! On the next page, complete your second decision in this study.”

Expected Ask: “Thank you for voting for [group name]! On the next page, complete your second decision in this study about whether you would like to donate to [group name].”

In the second decision, individuals are informed of an additional 100 cents in bonus payment that they may receive. They are asked how much of this bonus payment (in cents) they would like to keep for themselves and how much they would instead like to donate to their voted-for charity. The study then concludes with a brief follow-up survey.

ALSAC - St. Jude Children’s Research Hospital garnered the most votes with 37% of participants choosing them, followed by the American Cancer Society with 24% of the vote.

Indeed, Kessler, Kivimaki and Niederle (2015) show that more time corresponds with reduced giving when the benefits of giving are low but increased giving if the benefits of giving are high.

For more details about Amazon Mechanical Turk, recent papers investigating this platform include Paolacci, Chandler and Ipeirotis (2010) and Horton, Rand and Zeckhauser (2011).
and the World Wildlife Fund with 15% of the vote. The remaining five charities received 2%-8% of the vote. Individual donations to the charities plus any awarded prize donation (e.g. $100 or $25) were given to the charities online within a few weeks of the study completion.

We classify 38% of individuals as previous supporters since they indicate having previously donated to and/or volunteered for their voted-for charity. We classify the remaining 62% of individuals as new supporters since they indicate having never supported their voted-for charity or only having supported them via social media. While this sample is less balanced between previous and new supporters than our field study (where the split was instead 54%-46%), it is substantially more gender balanced with females accounting for 44% of the sample as opposed to the previously observed 83%.

Table 2 presents the OLS regression results of how much individuals donate on whether they expect the ask. Column (1) shows that the negative impact of expecting the ask extends to donation behavior: the average donation decreases by 4 cents when the ask is expected – representing a 5% significant decrease from 73 cents to 69 cents.

Column (2) shows that, as in our field study, expecting the ask is particularly detrimental to those who may be more susceptible to excuses not to give – new supporters. While expecting the ask does not significantly influence the average donation among previous supporters, average donations among new supporters decrease by 8 cents – representing a 10% significant decrease from 77 cents to 69 cent.

Column (3) highlights a significant gender difference: expecting the ask is less detrimental to males than females. While expecting the ask does not significantly influence the average donation among males, expecting the ask causes the average donation among females to drop by 9 cents – representing a significant 12% decrease.

Column (4) shows the the heterogeneous findings are additive. The expectation of the ask is therefore most detrimental among new female supporters. Column (5) shows that these results are robust to the inclusion of controls.

30 If we also include those who have supporter their voted-for charity via social media, then 46% of participants would be previous supporters and none of the results that follow significantly change.

31 New supporters also include the 1% who check “other” – i.e., their friend works at that charity.

32 Expected Ask + Expected Ask*Previous Supporter = 0 is not rejected (p = 0.52).

33 Expected Ask + Expected Ask*Male = 0 is not rejected (p = 0.97).
Table 2: Donation regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2.39)</td>
<td>(3.03)</td>
<td>(3.69)</td>
<td>(4.85)</td>
<td>(4.83)</td>
</tr>
<tr>
<td>\textit{Previous Supporter}</td>
<td>-8.74**</td>
<td>-9.16*</td>
<td>-5.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.55)</td>
<td>(5.09)</td>
<td>(5.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Expected Ask}</td>
<td>10.40**</td>
<td>14.77**</td>
<td>14.36*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td>(4.91)</td>
<td>(7.43)</td>
<td>(7.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Male}</td>
<td>-0.22</td>
<td>-0.96</td>
<td>-1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.40)</td>
<td>(4.14)</td>
<td>(4.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Expected Ask}</td>
<td>9.04*</td>
<td>12.36**</td>
<td>11.19*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Male</td>
<td>(4.84)</td>
<td>(6.19)</td>
<td>(6.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Previous Supporter}</td>
<td>0.73</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Male</td>
<td>(7.14)</td>
<td>(7.23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{Expected Ask}</td>
<td>-7.01</td>
<td>-6.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td>(9.94)</td>
<td>(10.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{Constant}</td>
<td>73.41***</td>
<td>76.70***</td>
<td>73.53***</td>
<td>77.24***</td>
<td>74.60***</td>
</tr>
<tr>
<td></td>
<td>(1.69)</td>
<td>(2.05)</td>
<td>(2.48)</td>
<td>(3.11)</td>
<td>(14.80)</td>
</tr>
</tbody>
</table>

\begin{itemize}
\item Controls: no, no, no, no, yes
\item Observations: 799, 799, 799, 799, 799
\item Average Donation: 71.42, 71.42, 71.42, 71.42, 71.42
\end{itemize}

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. Standard errors are clustered at the voted-for animal group level and shown in parentheses. The results are from OLS regressions of donations to voted-for charity. \textit{Expected Ask} and \textit{Previous Supporter} are indicators for when the ask is expected and previous supporters. Controls include indicators for day the study was conducted and selected charities. Controls also include self-reports about whether participants answered questions carefully, answered questions randomly, understood the study, have ever volunteered for a charity, or have ever donated to a charity.

5 Conclusion

Gino, Norton and Weber (2016) conclude their survey paper by noting that self-serving behavior is likely when individuals have “flexibility and creativity in how they acquire, attend to, and process information.” This paper extends the literature by documenting evidence for excuse-driven behavior more broadly, in an environment where there is less flexibility to avoid the ask and neither information nor factors that can easily be viewed self-servingly are provided.

In a large field experiment using an online voting contest, we vary whether an upcoming donation ask is announced and expected or a surprise and (more) unexpected. We document a 22% significant reduction in click-through rates to donation pages when individuals know
an ask is coming. A complementary online experiment confirms this behavior with donation data. Both studies show how expecting an imminent ask, and thus having the brief opportunity to find and develop excuses prior to facing the ask, is detrimental to prosocial behavior among new supporters but not previous supporters. The complementary online experiment also finds that expecting the ask is particularly detrimental to donations from females.

The decision context we consider does not explicitly highlight features that could be used as excuses. Nonetheless, excuse-driven behavior in our experiment is pronounced. This poses a challenge to policies seeking to counter excuse-driven behavior. If individuals only use factors — such as risk, competing norms, or avoidance techniques — as excuses not to give, then an effective policy may eliminate the risk, define the norms and prevent avoidance techniques. However, if individuals find their own excuses even absent explicitly-highlighted information such as risk or competing norms or the ability to engage in avoidance, effective policies are less clear. The potential array of excuses may therefore suggest a push towards interventions that encourage participants to evaluate a situation when self-serving motives are not present before following-up with a related prosocial ask (see such manipulations in Babcock et al. (1995), Haisley and Weber (2010) and Gneezy et al. (2016)).

In addition to testing strategies for mitigating excuse-driven behavior, we view several avenues for future work as promising. First, while excuses are not relevant among individuals who are always or never prosocial, both empirically and theoretically considering the full distribution of excuse-driven types may prove useful. Second, given the various nuances in prosocial decisions, a feasible strategy for documenting excuse-driven behavior may involve manipulating the expectation of the ask. Third, the ability to more easily develop excuses when an ask is expected may carry over to other contexts and yield different policy prescriptions. Limiting the ability to develop excuses may be desirable in some contexts, such as when excuses impede achieving Pareto-optimal coordination. Instead facilitating excuse-driven behavior may be desirable in other contexts — for instance, if excuses mitigate the gender gap in non-promotable tasks at work (Vesterlund et al., 2015).
References

Andreoni, James, Justin M. Rao, and Hannah Trachtman. 2016. “Avoiding the ask: A field experiment on altruism, empathy, and charitable giving.” *Journal of Political Economy*.

Kamdar, Amee, Steven D. Levitt, John A. List, Brian Mullaney, and Chad Syverson. 2015. “Once and Done: Leveraging Behavioral Economics to Increase Charitable Contributions.”

Krajbich, Ian, Bjorn Bartling, Todd Hare, and Ernst Fehr. 2015. “Rethinking fast and slow based on a critique of reaction-time reverse inference.” Nature Communications.

A Field Study

Table A.1: Fraction of participants who have interacted with voted-for group in following ways

<table>
<thead>
<tr>
<th>Information</th>
<th>Expected</th>
<th>Ask</th>
<th>Any</th>
<th>None</th>
<th>Unavoidable</th>
<th>Avoidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopter</td>
<td></td>
<td></td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>Donor</td>
<td></td>
<td></td>
<td>0.22</td>
<td>0.24</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>Attendee of Event</td>
<td></td>
<td></td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>Volunteer</td>
<td></td>
<td></td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>User of Services</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Staff</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Interacted in Other Way</td>
<td></td>
<td></td>
<td>0.44</td>
<td>0.43</td>
<td>0.42</td>
<td>0.44</td>
</tr>
<tr>
<td>Have Never Interacted</td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Previous Supporter</td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.55</td>
<td>0.56</td>
<td>0.55</td>
</tr>
<tr>
<td>New Supporter</td>
<td></td>
<td></td>
<td>0.46</td>
<td>0.45</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td>0.83</td>
<td>0.85</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.13</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>Gender Unknown</td>
<td></td>
<td></td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Observations</td>
<td>5976</td>
<td>991</td>
<td>1001</td>
<td>1005</td>
<td>980</td>
<td>1000</td>
</tr>
</tbody>
</table>

The first eight rows indicate the frequency with which the shown answers were provided in response to how a participant knew the animal shelter for which they voted. A previous supporter is any individual who indicated that they were an adopter, donor, volunteer, attendee of event, user of services or staff. A new supporter is anyone who did not indicate one of the aforementioned ways of knowing the animal group for which they voted. Computer code that predicts gender from names was used to classify participants as female or male, or unknown gender.
Table A.2: By type of supporter, click-through regressions

<table>
<thead>
<tr>
<th>Information:</th>
<th>Linear probability model of click-through</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>None or Unavoidable</td>
<td>None or Avoidable</td>
<td>None or Avoidable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>-0.16***</td>
<td>-0.16***</td>
<td>-0.16***</td>
<td>-0.16***</td>
<td>-0.16***</td>
<td>-0.16***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Unavoidable Info</td>
<td></td>
<td>-0.09***</td>
<td>-0.09***</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>0.15***</td>
<td>0.15***</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Unavoidable Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoidable Info</td>
<td></td>
<td>-0.06**</td>
<td>-0.07**</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>0.09**</td>
<td>0.09**</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Avoidable Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Supporter</td>
<td></td>
<td>-0.04</td>
<td>-0.00</td>
<td>-0.04</td>
<td>0.00</td>
<td>-0.04</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unavoidable Info</td>
<td></td>
<td>0.09**</td>
<td>0.09**</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>-0.08</td>
<td>-0.08</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Unavoidable Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoidable Info</td>
<td></td>
<td>0.06</td>
<td>0.07</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>-0.10</td>
<td>-0.10</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Avoidable Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Previous Supporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>0.53***</td>
<td>0.46***</td>
<td>0.53***</td>
<td>0.49***</td>
<td>0.53***</td>
<td>0.46***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.05)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Controls</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1989</td>
<td>1989</td>
<td>3973</td>
<td>3973</td>
<td>3987</td>
<td>3987</td>
<td></td>
</tr>
<tr>
<td>Click-through rates</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at the voted-for animal group level and shown in parentheses. The results are from a linear probability model of likelihood to click-through to the donation page of voted-for animal group. Expected Ask, Unavoidable Info, Avoidable Info, and Previous Supporters are indicators for when the ask is expected, the information provided is unavoidable, the information provided is avoidable, and previous supporters. Controls include indicators for each individual’s day that they voted during the contest, selected animal groups, and males.
Table A.3: By gender, click-through regressions

<table>
<thead>
<tr>
<th>Information:</th>
<th>Expected Ask</th>
<th>Unavoidable Info</th>
<th>Expected Ask</th>
<th>*Unavoidable Info</th>
<th>Avoidable Info</th>
<th>*Avoidable Info</th>
<th>Male</th>
<th>Expected Ask</th>
<th>*Male</th>
<th>Unavoidable Information</th>
<th>*Male</th>
<th>Expected Ask</th>
<th>*Avoidable Information</th>
<th>*Male</th>
<th>Constant</th>
<th>Controls</th>
<th>Observations</th>
<th>Click-through rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>None</td>
<td>-0.11***</td>
<td>-0.11**</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td></td>
<td></td>
<td></td>
<td>-0.04*</td>
<td></td>
<td>-0.04*</td>
<td></td>
<td>0.05</td>
<td>0.04</td>
<td></td>
<td>0.08</td>
<td>0.09</td>
<td></td>
<td>0.52**</td>
</tr>
<tr>
<td>None or Unavoidable</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
<td>0.05</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td>0.52***</td>
<td>0.44***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None or Avoidable</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td>-0.11***</td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td></td>
<td>-0.06</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td>0.52***</td>
<td>0.44***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
</tr>
<tr>
<td>Unavoidable Info</td>
<td></td>
<td>-0.05</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>Expected Ask</td>
<td></td>
<td>0.10**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.04</td>
<td></td>
<td>0.08</td>
<td>0.09</td>
<td></td>
<td>0.52**</td>
</tr>
<tr>
<td>Avoidable Info</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td>0.52***</td>
<td>0.44***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>-0.05</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Unavoidable Info</td>
<td>0.10**</td>
<td>0.10**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td>0.52***</td>
<td>0.44***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoidable Info</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>-0.05</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Avoidable Info</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. Standard errors are clustered at the voted-for animal group level and shown in parentheses. The results are from a linear probability model of likelihood to click-through to the donation page of voted-for animal group. *Expected Ask, Unavoidable Info, Avoidable Info, and Male are indicators for when the ask is expected, the information provided is unavoidable, the information provided is avoidable, and the participant is male. Controls include indicators for each individual’s day that they voted during the contest, selected animal groups, and previous supporters.
Table A.4: By type of supporter, viewing behavior regressions

<table>
<thead>
<tr>
<th></th>
<th>Linear probability model of</th>
<th>OLS of Time of Viewing Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reveal Information</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Expected Ask</td>
<td>-0.05**</td>
<td>-1.14</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.95)</td>
</tr>
<tr>
<td>Previous Supporter</td>
<td>0.07**</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(1.79)</td>
</tr>
<tr>
<td>Expected Ask</td>
<td>0.01</td>
<td>-1.42</td>
</tr>
<tr>
<td>Previous Supporter*</td>
<td>(0.02)</td>
<td>(1.78)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.18***</td>
<td>4.48***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.60)</td>
</tr>
<tr>
<td>Controls</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Reveal rates</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Average times (in seconds)</td>
<td>5.15</td>
<td>5.15</td>
</tr>
</tbody>
</table>

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at the voted-for animal group level and shown in parentheses. The results in the first panel are from a linear probability model of likelihood to reveal the information. The results in the second panel are from OLS regressions of seconds spent viewing the information in the Avoidable Information treatments, which equals 0 if the information is not revealed. If the information is revealed, we define the time spent viewing the information as the amount of seconds that elapses between participants clicking to reveal it and their final click on the page to continue to the next step (or in rare cases, their click to close the story after choosing to reveal it). **Expected Ask** is an indicator for the Expected Ask treatments. Controls include indicators for each individual’s day that they voted during the contest, selected animal groups, and males. Data include the observations from the Avoidable Information treatments.
Table A.5: By type of supporter, average time individuals spend viewing information when it is avoidable but chosen to be revealed

<table>
<thead>
<tr>
<th>Ask:</th>
<th>Unexpected</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Supporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) If clicked-through</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>(b) If did not click-through</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Observations</td>
<td>86</td>
<td>58</td>
</tr>
<tr>
<td>Previous Supporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) If clicked-through</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>(b) If did not click-through</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Observations</td>
<td>129</td>
<td>117</td>
</tr>
</tbody>
</table>

We define the time participants spend viewing the information in the Avoidable Information treatments as the amount of seconds that elapses between participants clicking to reveal it and their final click on the page to continue to the next step (or in rare cases, their click to close the information after choosing to reveal it). Similar findings result if one instead defines the time participants spend viewing the information as the amount of seconds that elapses between their first click on the page (presumably from answering the question about how they know their voted-for animal group) and their final click on that page to continue to the next step.

Table A.6: By type of supporter, average time individuals spend viewing information when it is unavoidable

<table>
<thead>
<tr>
<th>Ask:</th>
<th>Unexpected</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Supporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) If clicked-through</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>(b) If do not click-through</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>Observations</td>
<td>458</td>
<td>455</td>
</tr>
<tr>
<td>Previous Supporters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) If clicked-through</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td>(b) If do not click-through</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Observations</td>
<td>522</td>
<td>550</td>
</tr>
</tbody>
</table>

We define the time participants spend viewing the information in the Unavoidable Information treatments as the amount of seconds that elapses between their first click on the page (presumably from answering the question about how they know their voted-for animal group) and the final click on that page to continue to the next step.
B Complementary Online Study

Figure B.1: Vote

You may choose to vote for one of the charities below. The charity that receives the largest number of votes in this study will receive $100 as a donation! Additionally, one participant from this study will be randomly drawn, and the charity chosen by that participant will receive $25 as a donation!

Note: Your vote will only count if you complete the entire study.

Which charity would you like to vote for?

- ALSAC - St. Jude Children's Research Hospital
- American Cancer Society
- City of Hope
- Oxfam America
- Smithsonian Institution
- The Nature Conservancy
- World Vision
- World Wildlife Fund

Figure B.2: Treatment Manipulations

(a) Unexpected Ask

(b) Expected Ask
Figure B.3: Donation Decision

You have the opportunity to receive up to an additional 100 cents in bonus payment. Any bonus payment you receive will be distributed within one week and is in addition to the 100 cents you will receive within 24 hours for completing this study.

Below, please indicate how much of the additional 100 cents you would like to keep for yourself as a bonus payment and how much of the additional 100 cents you would instead like to donate to Smithsonian Institution.

Out of 100 cents, how many cents would you like to keep for yourself?	0
Out of 100 cents, how many cents would you like to donate to Smithsonian Institution?	0
Total	0